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Abstract—Traditional classification algorithms, in many times,
perform poorly on imbalanced data sets in which some classes
are heavily outnumbered by the remaining classes. For this kind
of data, minority class instances, which are usually much more
of interest, are often misclassified. The paper proposes a method
to deal with them by changing class distribution through over-
sampling at the borderline between the minority class and the
majority class of the data set. A Support Vector Machines (SVMs)
classifier then is trained to predict new unknown instances.
Compared to other over-sampling methods, the proposed method
focuses only on the minority class instances lying around the
borderline due to the fact that this area is most crucial for
establishing the decision boundary. Furthermore, new instances
will be generated in such a manner that minority class area
will be expanded further toward the side of the majority class
at the places where there appear few majority class instances.
Experimental results show that the proposed method can achieve
better performance than some other over-sampling methods,
especially with data sets having low degree of overlap due to
its ability of expanding minority class area in such cases.

I. INTRODUCTION

Imbalanced data sets can be observed in many practical
application domains such as detection of fraudulent credit
card transactions [5], detection of oil spills in satellite radar
images [13], diagnosing rare diseases, text categorization, and
so on [2]. In data sets like that, some classes are heavily
outnumbered by the remaining classes. For simplicity, this
paper, however, will consider only two-class data sets with one
minority class and one majority class. By convention, minority
class instances will be treated as positive ones and majority
class instances as negative ones. This is because we usually
pay much more attention to minority class instances like can-
cer patients in medical diagnosis and fraudulent transactions
in the detection of credit card frauds. However, traditional
classification algorithms usually fail in the detection of such
rare, but important, cases.

The main reason underlying performance degradation of
traditional learning methods is that they concentrate on opti-
mizing overall accuracy to which minority class instances con-
tribute just a little in comparison with overwhelming majority
class instances. Consider the example with a data set including
98 negative instances but only two positive instances. A trivial
learning algorithm may simply assign all these instances to
the negative class in order to acquire 98 percent accuracy. A
”good” accuracy like that, however, could be useless when

the system already made a serious mistake, for example, in
diagnosing a cancer, which poses life threatening, as a non-
cancer.

Class imbalance is possibly the most noticeable factor that
explains for poor performance of many standard classification
methods. However, other aspects should also be considered.
Data imbalance can be divided into between-class and within-
class imbalance. The latter means that minority and majority
class instances can be scattered in a number of imbalanced
data sub-groups. Some researchers observed that class imbal-
ance may not be a direct reason but usually lead to more
direct reasons like small disjuncts formed within the minority
class [10], [11], [19]. Therefore, dealing with small disjuncts
may help improve performance on minority class instances
significantly. Besides that, the effect of small classes can be
reduced when the distance between classes is large [15], [21].

Many solutions for dealing with imbalanced data sets have
been proposed. Some methods perform at data processing level
with the aim at re-balancing the data by adding new instances
into the minority class or removing a number of instances
from the majority class. Other methods modify existing clas-
sification algorithms to be more suitable for imbalanced data
sets.

In this paper, we focus on over-sampling methods with
SVMs as base classifiers to deal with the data imbalance
problem. For our approach, artificial minority class instances
will be generated around the borderline between the two data
classes. This is because of the fact that borderline instances
are most prone to be misclassified, and hence crucial for es-
timating the optimal decision boundary. Focusing re-sampling
on this area potentially makes more benefit than performing
on the whole minority class. One noteworthy feature of the
proposed method is that it can help expand the minority class
to the areas where the density of majority class instances is
not so high. With this approach, minority class instances can
be recognized even at the regions near the boundary where
there do not exist any representative of them in the training
set.

The remainder of the paper is organized as follows. Section
II introduces some works related to our research. The basics of
Support Vector Machines and their problem with imbalanced
data sets are given in Section III. Our approach and exper-
imentation are described in Section IV and V, respectively.
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Section VI concludes the paper.

II. RELATED WORKS

Methods dealing with imbalanced data sets can be cate-
gorized into two main groups. The first group performs at
the data level in order to change the class distribution of
the data set. The second group modifies existing classification
algorithms. Data processing methods can be divided smaller
into over-sampling and under-sampling methods. The simplest
form of over-sampling is to duplicate minority class instances.
Although it helps reduce the degree of imbalance between the
two classes, this method can lead to the overfitting problem
due to so many instances lying at the same location. More
intelligent over-sampling strategies have also been proposed
that one of the most popular methods is SMOTE [7]. In this
approach, synthetic minority class instances are randomly cre-
ated on the line segments joining each minority class instance
with a number of its nearest neighbors. SMOTE may be more
useful than over-sampling with duplication because it makes
denser the minority class instances that are inherently very
sparse. Some other methods perform over-sampling on the
borderline area such as Borderline-SMOTE [9]. This method
evaluates a minority class instance being qualified for over-
sampling with the SMOTE technique if more than a half of
its m nearest neighbors come from the majority class. Another
approach applies SMOTE only for the minority class support
vectors obtained after training Biased-SVMs [18].

A number of under-sampling methods have also been
proposed. Under-sampling can be conducted simply just by
removing some majority class instances at random until ac-
quiring a desired imbalance degree. Under-sampling, however,
can lead to loss of some valuable information. More advanced
under-sampling techniques enable to identify less important
majority class instances to be eliminated. For example, Kubat
and Matwin [12] utilized some criteria to exclude redundant,
boundary and noisy majority class instances.

Other techniques combine both over-sampling and under-
sampling. Batista et al [3] proposed to apply SMOTE after
performing a data cleaning (i.e., under-sampling) method such
as Tomek links and the Wilson’s Edited Nearest Neighbor
Rule. Liu at al [14] over-sampled the minority class with
SMOTE to some extent, then under-sampled the majority class
a number of times to create bootstrap samples having the same
or similar size with the over-sampled minority class.

Some researchers have also used the approach of data
decomposition. Cieslak and Chawla [8] used a supervised
clustering technique to divide the training set, then apply
sampling locally for each individual cluster of the data set.
Jo and Japkowicz [11] partitioned the minority and majority
classes separately using the k-means algorithm, then over-
sampled the clusters by duplication in order to re-balance
class distribution as well as inflating small disjuncts of the
minority class to counter within-class imbalance. Wu et al
[21] also partitioned classes using k-means to reduce concept
complexity of large classes, then re-labeled the data according
to newly created clusters and converted the original problem

into a new multi-class problem whose each class corresponds
to a cluster.

Besides sampling, there exist methods that directly modify
the standard classification algorithms themselves. Veropoulos
et al [17] reformulated the standard SVMs algorithm to
assign different misclassification costs to positive and negative
instances. For a realistic example, in the field of cancer
diagnosis, a cancer that is misclassified as a non-cancer should
be assigned much higher cost than the case of a non-cancer
being wrongly diagnosed as a cancer. Such approaches are
called cost-sensitive learning. Raskutti and Kowalczyk [16]
conducted one-class SVMs to learn only from positive class
instances. Wu and Chang [20] proposed the kernel boundary
alignment algorithm that changes kernel matrix in order to
conduct a (quasi) conformal transformation from input space
into feature space where the area around the decision boundary
is magnified more than the remaining areas. Akbani et al [1]
used the approach of combining SMOTE with cost-sensitive
learning that may help create a more well-defined decision
boundary than using just cost-sensitive learning.

III. SUPPORT VECTOR MACHINES AND IMBALANCED
DATA CLASSIFICATION

A. Support Vector Machines

The objective of the training of Support Vector Machines
(SVMs) is to find the optimal hyperplane that separates the
positive and negative classes with a maximum margin. The
central idea underlying this method is to perform a mapping
Φ from the input space into a (usually) very high dimensional
feature space where the data become easier to be linearly
separated [4]. This mapping can be performed by a kernel
trick. There exist a variety of kernels that can be selected.

Consider the training set {(xi, yi)}, i = 1, . . . , N where xi

is a training instance and yi ∈ {+1,−1} is its corresponding
true label. The primal SVMs problem is defined by

Minimize:

1
2
‖w‖2 + C

∑
i

ξi (1)

subject to:

yi(w · Φ(xi) + b) ≥ 1− ξi,∀i

ξi ≥ 0,∀i

where w and b are the weight vector and the bias of the
separating hyperplane; ξi indicates degree of location violation
of the i-th training instance; and C is the parameter chosen
by the user to penalize mislocated training instances.

In Equation (1), minimization of the first and second terms
corresponds to maximizing the margin and minimizing the
training error, respectively. Therefore, parameter C allows to
make a trade-off between these two factors. A smaller value
of C means that we would like to have a larger margin at the
cost of more training errors, and vice versa. The dual form of
the primal problem above is as follows:
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Fig. 1. The learned decision boundary (the solid curve) is skewed toward
the minority class. Symbols ”+” and ”−” denote minority and majority class
instances, respectively. The dashed line indicates the ideal boundary.

Maximize: ∑
i

αi −
1
2

∑
i,j

αiαjyiyjK(xi,xj)

subject to:
0 ≤ αi ≤ C,∀i∑

i

αiyi = 0

where αi’s are the Lagrangian multipliers corresponding to
training instances; and K(xi,xj) = Φ(xi) ·Φ(xj) is a kernel
function that enables to compute dot products in the feature
space without knowing the Φ mapping. The training instances
with αi > 0 are called support vectors. They are the critical
elements of the training set, and lie closest to the decision
boundary; if all other training instances were removed, the
same separating hyperplane would be found [4].

B. SVMs and Imbalanced Data Classification
It was shown in [10] that SVMs are not sensitive to the

class imbalance problem because they base their classification
on a small number of support vectors; and a large quantity of
training data can be considered redundant. Therefore, SVMs
should be a good choice for dealing with imbalanced data sets.

In fact, however, SVMs are still affected by the data
imbalance to some extent [1]. Because of the sparseness of
minority class instances, the chance to observe them near
the ideal decision boundary is low compared to majority
class instances. This also means that the learned decision
boundary will be skewed toward the side of the minority class
(Fig. 1). Furthermore, the standard SVMs algorithm does not
treat in different ways to misclassifications on minority and
majority class instances. When the two classes are too close
to each other, SVMs can choose to sacrifice all of the minority
class instances to achieve absolute accuracy on majority class
instances. Consequently, the learned decision boundary again
is moved further toward the minority class.

For the two problems described above, the first one can be
solved by approximating the ideal boundary with an interpola-
tion technique as proposed in [20], while the second one can
be overcome by using different parameters C [17], say C+

and C−, for the minority and majority classes in which C+

is selected greater than C− depending on the degree of data
imbalance.

Fig. 2. Utilize interpolation (a) and extrapolation (b) techniques to create
artificial instances.

Fig. 3. Using only interpolation (a) may be not as good as combining
both interpolation and extrapolation (b). Symbol ⊕ denotes artificial positive
instances.

IV. OUR METHOD

To deal with imbalanced data sets, we propose a new over-
sampling method. Artificial minority class instances will be
generated along the decision boundary due to the fact that
instances in this area are very critical for estimating the
optimal decision boundary. Sampling on the entire of the
minority class may not be necessary. Focusing just on the
borderline area has been shown to achieve better performance
[9], [18]. In our approach, the borderline area is approximated
by the support vectors obtained after training a standard SVMs
classifier on the original training set. New instances will be
randomly created along the lines joining each minority class
support vector with a number of its nearest neighbors using
the interpolation (Fig. 2a) or extrapolation (Fig. 2b) technique
depending on the density of majority class instances around
it. If majority class instances count for less than a half of
its nearest neighbors, new instances will be created with
extrapolation to expand minority class area toward the majority
class. This expansion can be achieved because the direction of
extrapolating may go from the inside (the neighbor instance)
to the outside (the borderline instance under consideration) of
the area occupied by minority class instances. In opposite case,
because of the crowdedness of majority class instances, instead
of expanding area, the current boundary area of the minority
class will be consolidated in the way similar to SMOTE. A
different point of the proposed method compared to SMOTE is
that new instances will be created in the order of the first to the
k-th nearest neighbor instead of randomizing the selection of a
nearest neighbor. Specific steps of our algorithm are described
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as below:

Algorithm: BorderlineOversampling(X, N , k, m)
Input:
• X: Training set
• N : Sampling level (100, 200, 300, ... percent)
• k: Number of nearest neighbors like in SMOTE
• m: Number of nearest neighbors to decide sampling type

(interpolation or extrapolation)
Output:
• Xnew: Over-sampled training set

Variables:
• SV+: Set of positive support vectors (SVs)
• T : Total number of artificial instances to be created
• amount: Array contains the amount of artificial instances

corresponding to each positive SV
• nn: Array contains k positive nearest neighbors of each positive

SV
Begin

1) T ← (N/100)× |X|
2) Compute SV+ by training SVMs on X
3) Compute amount by evenly distributing T among SV+

4) Compute nn
5) For each sv+

i ∈ SV+, compute m nearest neighbors on X.
If less than a half of the m nearest neighbors come from
the negative class, along the lines joining sv+

i with its k
positive nearest neighbors (in the first to k-th nearest neighbor
order), create amount[i] artificial positive instances using the
following formula (extrapolate to expand positive class area):

x+
new = sv+

i + ρ(sv+
i − nn[i][j])

where nn[i][j] is the j-th positive nearest neighbor of sv+
i ;

ρ is a random number in the range [0, 1]. Otherwise, use the
following formula (interpolate like in SMOTE to consolidate
the current boundary area of the positive class):

x+
new = sv+

i + ρ(nn[i][j]− sv+
i )

6) Xnew = X ∪ {x+
new}

End

The range [0, 1] of parameter ρ in the algorithm above
means that for the case of using extrapolation, new instances
will go far away from the minority instance under consider-
ation with a distance not exceed the distance between it and
its corresponding nearest neighbor.

In summary, our method consists of some main character-
istics as follows: (1) Over-sample the minority class to reduce
data imbalance. (2) Sampling is concentrated on the most
critical area, i.e., the boundary area. (3) Use extrapolation
to expand minority class area at the places where there
exist fewer majority class instances; this also means it helps
increase the chance to see minority class instances near the
ideal boundary (see Subsection III-B). Therefore, the learned
decision boundary can be pushed closer to the ideal decision
boundary compared to the usage of only interpolation like in
SMOTE (Fig. 3).

V. EXPERIMENTATION

A. Data Sets

In this experimentation, we used six data sets from the UCI
machine learning repository [2] including Spect(0), Glass(7),

TABLE I
SIX UCI DATA SETS THAT WERE USED FOR THE EXPERIMENTATION.

Data set Attributes No. of data Imbalance
Spect 22 267 4
Glass 9 214 6
Vowel 10 528 + 462 10
Yeast 8 1484 28
Abalone 8 4177 35
Page-blocks 10 5473 61

TABLE II
SAMPLING LEVELS (NUMBERS IN PARENTHESES DENOTE IMBALANCE

DEGREES)

Data set Sampling levels (%)
Spect (4) 100, 200, 300
Glass (6) 100, 200, 300, 400, 500
Vowel (10) 100, 300, 500, 700, 900
Yeast (28) 100, 500, 1000, 1500, 2000, 2500, 2700
Abalone (35) 100, 500, 1000, 1500, 2000, 2500, 3000, 3400
Page-blocks (61) 100, 1000, 2000, 3000, 4000, 5000, 6000

Vowel(0), Yeast(5), Abalone(5) and Page-blocks(4). Numbers
in parentheses indicate which class was chosen as positive
class; and all of the remaining classes were combined to create
a negative class. These data sets are described in Table I.
Note that data sets Spect and Vowel were already divided
into training and test sets on the UCI repository. For Vowel,
the training set consists of English vowels data gathered from
speakers numbered 0-47, and the test set from speakers 48-89.
For Spect, the training and test sets have different level of data
imbalance; in fact the training data is balanced. Therefore, we
decided to combine them so that the resulted data set can be
split again later with the same imbalance in the both training
and test sets.

B. Experimental Results

We compared the proposed method Borderline Over-
sampling (BOS) with the standard SVMs method (SVM) and
some other over-sampling methods including over-sampling
by duplication (OSD) and SMOTE. A version of SMOTE
(B-SMOTE) that works only on borderline minority class
instances was also implemented. These borderline instances
are approximated by the support vectors obtained after training
a standard SVMs classifier on the original data set. Numbers
of nearest neighbors that are used in SMOTE, B-SMOTE and
BOS were all set to five. We used the package LIBSVM [6]
for training SVMs classifiers with the Gaussian RBF kernel.

We know that overall accuracy is not appropriate for

TABLE III
AVERAGE g-mean OVER ALL THE SAMPLING LEVELS.

Data set SVM OSD SMOTE B-SMOTE BOS
Spect 56.6% 57.0% 61.2% 61.6% 65.4%
Glass 93.2% 87.2% 90.3% 91.3% 91.3%
Vowel 79.9% 39.6% 57.9% 56.5% 84.3%
Yeast 31.4% 49.1% 55.1% 58.3% 58.2%
Abalone 4.2% 65.2% 68.2% 68.1% 70.9%
Page-blocks 90.2% 91.0% 92.1% 92.3% 92.0%
Average 59.3% 64.8% 70.8% 71.3% 77.0%
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Fig. 4. The g-mean performance on the six UCI data sets at different sampling levels.

Fig. 5. Average g-mean performance over all the sampling levels.

evaluating classification performance on imbalanced data sets
(see Section I). In this paper, we used g-mean metric that

is proposed in [12] as
√
Acc+ ×Acc−, where Acc+ and

Acc− are the accuracy on the positive and negative classes,
respectively. We select this metric because it does not depend
on the class distribution of the training set.

In order to reduce the effect of randomness in the division
of data and sampling, each method was run ten times, and then
average g-mean performance was calculated. Each run con-
sists of: (1) randomly splitting the data set (except Vowel) into
training and test sets with the ratio 4:1 so as to have the same
negative to positive ratio in the both sets; (2) over-sampling
the training data; (3) performing 5-fold cross-validation on the
over-sampled training data to estimate optimal parameters C
and γ of the kernel function; (4) training SVMs classifier;
and finally (5) predicting on the test set. Sampling levels were
selected according to the imbalance ratio of each data set. The
minority class is over-sampled from 100% to the highest level
for which the two classes will become to have the same or
similar size after over-sampling. Thus, the highest sampling
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TABLE IV
AVERAGE MAJORITY CLASS NEAREST NEIGHBOR PROPORTION OF

MINORITY CLASS INSTANCES.

Data set Proportion Data set Proportion
Spect 45% Yeast 73%
Glass 21% Abalone 74%
Vowel 0% Page-blocks 31%

levels for the six data sets in turn are 300%, 500%, 900%,
2700%, 3400% and 6000% (Table II).

Experimental results are given in Fig. 4. For three data sets
Spect, Vowel and Abalone, our method BOS outperforms the
other over-sampling methods at almost all the sampling levels.
For the remaining data sets Glass, Yeast and Page-blocks, BOS
is rather competitive with other methods. We also calculated
average g-mean for each method over all the sampling levels
and report them in Table III. For convenience, a bar graph is
also given in Fig. 5. We can see that overall, BOS achieves the
best g-mean performance among the experimented methods.

One remarkable point in this experimentation is that the
performance of all the methods on Page-blocks data set is
very good (above 90%) although the imbalance ratio of this
data set is highest (61:1). This is because class imbalance is
not the only factor affecting classification performance. As
mentioned in Section I, there may exist other factors that also
make impact to the classification of imbalanced data sets such
as the distance between classes and small disjuncts within the
minority class. To understand this problem more clearly, we
conducted a more experiment to evaluate the degree of sepa-
ration between the minority and majority classes. Specifically,
we computed average proportion of majority class nearest
neighbors in the total number of five nearest neighbors of each
minority class instance. The calculated results are given in
Table IV. We can realize that the nearness of different labeled
instances in Page-blocks (31%) is relatively low compared to
other data sets. In other words, the data in Page-blocks are
quite separable, and this can explain for the good performance
on it even without over-sampling. The values for Yeast and
Abalone are highest with 73% and 74%, respectively, so that
the performance of standard SVMs on them is very poor (Fig.
5). For Vowel data set, the value of 0% means that its classes
are almost separable. Note that the BOS method achieved
best on Vowel in comparison to other methods. This result
is possibly due to the ability of BOS to expand minority class
area more strongly on the data sets with low degree of overlap.

VI. CONCLUSIONS

We have proposed a borderline over-sampling method for
dealing with imbalanced data sets. It has been shown that this
method can solve rather effectively the data imbalance problem
compared to several other over-sampling methods. Instead of
sampling on the entire of the minority class, our method
focuses only on the borderline area where is most critical for
establishing the decision boundary. Furthermore, sampling is
performed in such a way that the areas of the minority class
with the presence of fewer majority class instances will be ex-

panded by using extrapolation technique, otherwise boundary
areas will be consolidated with interpolation technique. Due to
the ability of expanding area, the proposed method has proved
more effective with data sets having low degree of overlap.
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