
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083175, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Boreholes Data Analysis Architecture
based on Clustering and Prediction
Models for Enhancing Underground
Safety Verification

NAEEM IQBAL1, ATIF RIZWAN2, ANAM NAWAZ KHAN3, RASHID AHMAD4, BONG WAN

KIM5, KWANGSOO KIM6 AND DO-HYEUN KIM 7,∗

1,2,3,6
Computer Engineering Department, Jeju National University, Republic of Korea

4
Department of Computer Science, COMSATS University Islamabad, Attock Campus 43600, Pakistan

5,6
Electronics and Telecommunications Research Institute (ETRI), Korea;

Corresponding author: DoHyeun Kim (Email: kimdh@jejunu.ac.kr; Tel.: +82-64-754-3658)

This research was supported by Energy Cloud RD Program through the National Research Foundation of Korea(NRF) funded by the

Ministry of Science, ICT (2019M3F2A1073387), and this work is supported by the Korea Agency for Infrastructure Technology

Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 20DCRU-B158151-01 ). Any

correspondence related to this paper should be addressed to Dohyeun Kim.

ABSTRACT During the last decade, substantial resources have been invested to exploit massive amounts of

boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered

one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to process

and analyze boreholes data to monitor digging operations and identify the boreholes shortcomings. This

research study presents a boreholes data analysis architecture based on data and predictive analysis models to

improve borehole efficiency, underground safety verification, and risk evaluation. The proposed architecture

aims to process and analyze borehole data based on different hydrogeological characteristics using data and

predictive analytics to enhance underground safety verification and planning of borehole resources. The

proposed architecture is developed based on two modules; descriptive data analysis and predictive analysis

modules. The descriptive analysis aims to utilize data and clustering analysis techniques to process and

extract hidden hydrogeological characteristics from borehole history data. The predictive analysis aims to

develop a bi-directional long short-term memory (BD-LSTM) to predict the boreholes depth to minimize

the cost and time of the digging operations. Furthermore, different performance measures are utilized to

evaluate the performance of the proposed clustering and regression models. Moreover, our proposed BD-

LSTM model is evaluated and compared with conventional machine learning (ML) regression models. The

R2 score of the proposed BD-LSTM is 0.989, which indicates that the proposed model accurately and

precisely predicts boreholes depth compared to the conventional regression models. The experimental and

comparative analysis results reveal the significance and effectiveness of the proposed borehole data analysis

architecture. The experimental results will improve underground safety management and the efficiency of

boreholes for future wells.

INDEX TERMS Machine Learning, Deep Learning, Boreholes Data. Data and Predictive Analytics, ROP

I. INTRODUCTION

The revolution in industrial development paved the way

towards increasing the urban population rapidly. The rapid

growth of social life in urban developed an infrastructure to

increase the comfort level for the city dwellers. The devel-

oped infrastructure provides everything from water supply

to underground subways and rail networks. However, several

issues arise due to the outdated and aging infrastructure of

big cities, such as water and sewage pipes cracked in big

cities. Since the 2000s, the number of accidents has increased

due to underground water in urban areas in South Korea. The

underground water drilling causes ground depression, such as
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40.2% of sewage pipe damage, 18.7% of water pipe damage,

5.3% of poor excavation work [1].

Digging well is a process to access underground resources

such as water, gas, to name of few. Digging technologies have

brought a breakthrough change since the first commercial

well of oil came into existence through percussion drill

technology. Drilling methodologies can be categorized as

rotatory and percussion based on rock breaking technique

involved. Rotatory methods helped in achieving maximum

operational efficiency; however, several other factors need

consideration too for digging complex wells. Based on the

trajectory and characteristics of well, the digging methods

fall into vertical, horizontal and directional technologies.

Digging or drilling in a horizontal direction (HDD) is a

technique which is gaining enormous attention because of its

cost-effective and environment-friendly nature, time involved

and land use features of the earth [2]. From its conception till

now, HDD is well adopted to geology conditions. However,

digging well plays a significant role in the fulfillment of

industrial development needs, the economy, and replenishing

the needs of safe drinking water for the rest of the world. For

the purpose of extracting underground resources digging is

done to ample the vast water needs of living beings.

Due to the enormous growth of the groundwater digging

process, data growth has already outrun the conventional

capacity. Geoscience, hydrogeology, and drilling wells, like

various science branches, have also made advancements

because of immense technological changes in computing

power, remote sensing, and ML. The latest borehore digging

approaches generate a massive amount of data and meta-data.

The exponential growth of data rate, complexity, variety,

and quality is overwhelming, which requires efficient data-

driven techniques to cope with such data [3]. The use of big

data analytics to aid knowledge discovery is very evident

in recent times. For example, in [4], the authors proposed

a big data-based analysis for water resource management.

In [5], authors employed a big data analysis model to map

groundwater potential in South Korea. The major challenge

in the data associated with digging groundwater is converting

such a massive volume of data into data-driven models.

Analyzing big data is a massive source of information,

which is not available and needs to be extracted out of big

data. An integral part of big data analytics is data mining

(DM) that mine data to trace patterns, relationships between

input and output variables, grouping similar data points, or

forecasting future outcomes to make informed decisions [6].

Data mining is not limited to big data; it has been in use

before the inception of big data, for example, clustering [7],

regression [8] and classification [9]. Existing methods seem

insufficient in analyzing big data due to multi-dimensional

data having different data types and formats. To cope with

this, ML techniques are used to process and investigate

hidden insights and characteristics that help management to

devise effective decisions. For example, the most straightfor-

ward unsupervised algorithm is k-mean clustering that can

efficiently transform large data sets into samples so that mul-

tiple machines can process them [10]. Clustering lies under

the umbrella of unsupervised learning, also called data explo-

ration for identifying similar patterns in data [11]. Another

method for big data analytics is based on ML algorithms

composed of learning modules that are proven to be the back-

bone of the intelligent systems providing a platform for the

analysis of complex and dynamic non-linear systems, such as

big data of groundwater wells [12]. However, management

of groundwater and optimization of digging well process

requires estimation or prediction of hydrological parameters

such as next borehole depth. Groundwater borehole’s depth

point prediction has become a very challenging task [2].

Increased water and drilling demand caused depletion of

groundwater resources leading towards abrupt changes in

in-depth points. Therefore, a reliable and timely prediction

of boreholes depth is required for efficient and informed

decision-making to enhance the planning and management

of groundwater resources.

With proper utilization and data analysis of boreholes data

along with usage of mathematical tools can help prediction

of boreholes depth. In the recent advancement in ML tech-

niques, it is quite possible to process hidden characteristics

of huge data to build intelligent models for making effective

decisions [13], [14]. The most widely used methods for depth

rate prediction include Artificial Neural Network (ANN)

that are efficient are handling complex non-linear patterns

of time series boreholes groundwater data [15]. Nowadays,

Deep learning (DL) has become one of the revolutionized

research topics in many areas, such as computer vision [16],

patterns and object recognition’s [17], [18], healthcare [19],

etc. DL models enable automatic data representation in a

training process and produce the most promising results than

traditional ML models. DL models can learn representations

automatically from supervised and unsupervised data using

a multilayered neural network [20]. DL model is developed

based on stochastic optimization, such as Long Short Term

Memory Recurrent Neural networks (LSTM-RNN). Recur-

rent Neural networks (RNN) is an effective time-series data

model because it comprises looping structures to process se-

quence data [21]. However, RNN faces difficulties in learning

long-data sequences, which causes exploding gradient prob-

lem. To overcome this problem, Long Short Term Memory

(LSTM) was introduced to enable feedback connections to

perform better than RNN [22]. LSTM is an enhanced variant

of the RNN family that has self-connecting hidden layers and

a gating structure to handle long-sequences time-series data

effectively. Therefore, it is a robust DL model for model-

ing long-sequences time-series data. The existing prediction

model results indicates that the LSTM model performs rela-

tively better compared to traditional ML models [23], [24].

However, some shortcomings exist in traditional DL models

[25], for instance, manual representation of features, poor

generalization, loss of time, low convergence, and local min-

ima, to the name of a few. To address those problems, a BD-

LSTM is proposed to combine forward and backward LSTM

models to improve the performance of the prediction model.
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BD-LSTM is an effective model for long-range sequences

data because two LSTM models concurrently trained on the

given long-range sequences data, which enable it to produce

better generalization and fast convergence DL model.

The core contributions of the proposed research study are

followed as:

• The core contribution of the proposed research study is

to utilize data and predictive analysis models to cluster

borehole data samples into homogeneous groups based

on hidden hydrogeological characteristics and predict

boreholes depth for enhancing boreholes efficiency and

underground safety verification management.

• Descriptive analyses are employed to utilize data and

clustering analysis techniques to process and analyze

underlying patterns and hidden characteristics of the

boreholes data.

• Statistical and time-series analyses are utilized to in-

vestigate historical data of boreholes for underlying

patterns and trends.

• Optimal number of clusters is determined using the

heuristic elbow curve method.

• GA-based k-means clustering algorithm is developed to

cluster borehole data samples into homogeneous groups

based on different hydrogeological parameters, such

as soil color, land layer, stratum layers and boreholes

depth.

• Comparative analysis of the proposed GA-assisted k-

means clustering is evaluated and compared with state-

of-art clustering techniques.

• Developed BD-LSTM to predict boreholes depth to

minimize cost and time for enhancing planning and

management of borehole resources.

• Evaluated and compared the BD-LSTM model with

conventional ML regression models to demonstrate the

significance and robustness of the proposed research

study.

The rest of the paper is summarized as follow. Section

II presents the related works; Section III presents method-

ology of the proposed approach. Section IV presents data

description and preprocessing. In section V, descriptive data

analysis are discussed to investigate hidden characteristics of

boreholes data. In section VI, experimental and simulation

environment are discussed. In section VII, we present the

experimental and performance analysis results. Section VIII

concludes the paper with possible future direction.

II. LITERATURE REVIEW

In this section, existing approaches related to the improve-

ments of the digging wells process. Different approaches

have been proposed by different researchers to improve

and optimize digging process. Several researchers performed

wide-scale studies that involved borehole locations, opti-

mization, and scheduling of oil field operations. A study

presented in [26] proposed a mixed-integer linear program-

ming model (MILP) known as to determine platform lo-

cations to shorten the distance between wells and rigs to

increase productivity, revenue and decrease cost. Likewise,

[27] also proposed a mixed-integer programming model for

ascertaining platform location, assigning them wells, and

making decisions regarding pipeline planning and facilitates

transportation optimization.

In the recent past rapid growth in technology has generated

vast amount of data. AI and ML have emerged as a potent tool

for acquiring useful insights from borehole data, prediction

and making decisions [28]. With increased boreholes pro-

cess, ML-based approaches for making informed decisions

through prediction based on historical boreholes time series

data are becoming more important day by day. Furthermore

boreholes depth prediction can be critical for future manage-

ment of groundwater and digging wells process [29]. Com-

monly used ML methods employed for prediction include

ANN [30], support vector regression (SVR) [31] and K-

nearest neighbors (KNN) a feature similarity based method

[32]. Several researchers performed wide-scale studies that

involved borehole locations, prediction, optimization and

scheduling of oil field operations. Digging for underground

resources accounts for huge budgets; therefore, any method

to reduce time will result in a billion-dollar saving. Rate

of penetration (ROP) accounts for the time consumed to

drill a well; therefore, the optimization of borehole depth

is immensely important in the digging wells. Therefore, a

study presented in [33] employed a ML method, Random

Forest (RF), on vertical wells dataset for prediction and en-

hancement of borehole depth using the following parameters,

rotations per minute, mud flow rate and weight on bit.

Multiview data with high dimensions are an integral part of

big data applications; however, clustering such data is a chal-

lenging task due to data features having the same relevance.

To deal with this issue, the authors proposed an intelligent

weighted k-means clustering technique for multiview data

with high-dimensional in various big data applications. The

authors formed a distance function based on various weights

of views and features for determining object clusters [34].

Moreover, global search is employed by the PSO algorithm

for the elimination of sensitivity of initially selected cluster

centres. Similarly, in [35], a k-means clustering approach

is used for meaningful patterns in learning contexts. This

approach aided a collection of heterogeneous data related to

learners for improving overall learning process. A study [36]

presented a robust density-based affine invariant clustering

algorithm using a data depth-based clustering approach to

group data samples. Data depth is defined as measures of the

centrality of a data point of the given dataset. Moreover, it

can detect arbitrary data shapes and forms a stable cluster.

Data-driven techniques are widely used to drive strategic

decisions based on historical data interpretation and analysis

[37], [38]. For instance, in [39], a two-phase ML-based

framework was developed based on bi-directional LSTM

to monitor vessel traffic intelligently to enhance the vessel

trajectory quality. Another study presented in [40] also de-

veloped a bi-directional LSTM based peer-to-peer energy

trading platform, which aimed to control the day-ahead dis-
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tribution of energy. In [41], the authors developed an adap-

tive constrained based dynamic time wrapping (AC-DTW)

algorithm to overcome the conventional DTW drawbacks.

Furthermore, clustering methods also play a vital role in data

mining to recognize patterns and trends. In [42], the authors

proposed an enhanced density-based spatial clustering (DB-

SCAN) algorithm to group spatial points to obtain optimal

clusters for identifying trajectory locations. Both [43] and

[44] developed a clustering model using the DB-SCAN al-

gorithm to cluster financial data into homogeneous classes.

Clustering analysis is the process of grouping objects

based on similarity into homogeneous clusters in such a

way that objects in the same group are similar to each

other compared to the objects in other groups [45]. Dif-

ferent researchers attempted to utilize clustering techniques

to partition boreholes and hydrogeological data based on

underlying patterns for effective digging wells. In [46], the

authors proposed a novel k-means clustering algorithm for

multi-view data employing a learning mechanism for com-

putation of weights corresponding to new features, which

are later used for updation of cluster centers member-ship

and view weights. A maximum likelihood-based approach

was developed based on clustering techniques to improve the

efficiency of the boreholes [47]. In another study presented in

[48], the authors determined the linear relationship between

digging wells and geological parameters of rock and soil.

The authors utilized clustering techniques to investigate time-

series data to identify the physical and chemical properties,

which change over time during the water digging process

[49]. The study presented in [50] also applied clustering

techniques to cluster hydro-chemical data samples based on

chemical similarity into distinct water groups. Multivariate

clustering methods were used to cluster water chemistry

data into distinct groups [51]. Partitional clustering analysis

utilized boreholes data to identify the relationship between

hydrogeological, lithology, and geotechnical [52]. In [53], the

authors applied clustering techniques to multivariate time-

series data to cluster geochemical anomalies based on under-

lying and hidden characteristics. C-mean and fuzzy c-mean

were applied to partition boreholes and hydrogeological data

samples into homogeneous groups [54]. Hierarchical clus-

tering technique was used to the valley soil data to cluster

hydrogeological data into distinct groups [55]. In [56], the

authors proposed a novel clustering algorithm developed

for point data through modification in an existing scale-

able algorithm for clustering; involving spatial and temporal

distance function. Likewise, a trajectory indexing technique

is employed for supporting trajectory-related data.

Prediction models have been employed in many areas as

well as in digging wells and hydrogeological engineering.

Digging well is considered a costly process due to numerous

operations in water, oil, and gas development. Therefore,

boreholes depth prediction can be used to decrease costs

and operational time to improve digging well efficiency.

Several studies have been attempted to process and analyze

hidden characteristics of boreholes and hydrogeological data

to predict boreholes depth rate. For example, in [57], the

authors modeled the depth of the water table based on ANN

and SVM. For preparing data, discrete wavelet transform

is used. Results depicted that SVM achieved higher perfor-

mance comparative to ANN. In [58], the authors developed

an ANN-based prediction model to predict penetration rate.

Next, an artificial bee colony (ABC) algorithm was used

to optimize parameters that significantly influence the pen-

etration rate. Another similar study presented in [59], the

authors suggested a prediction model to predict penetration

rate based on boreholes data using the ANN model to reduce

digging cost and time for future wells. Both [60] and [61]

proposed PSO-assisted ensemble models to predict the rate of

penetration and optimize operational parameters of boreholes

to improve the drilling resources. An ANFIS-based predic-

tion model was developed to predict boreholes depth rate

and compared experimental results to find an accurate ROP-

prediction model [61]. In [62], the authors proposed a compu-

tational intelligence-based algorithm to predict the boreholes

ROP. The presented method evaluated the predictive perfor-

mance of learning models based on ML algorithms such as

ANN, ELM, SVR, and LS-SVR. Experimental results depict

that LS-SVR achieved superior prediction performance with

RMSE of 18.27 percent than counterpart solutions. Both [63]

and [64] presented ANN-based prediction models to predict

the boreholes borehole depth rateto minimize operational

digging costs for future wells.

Table 1 presents the summary of the existing studies re-

lated to clustering and prediction for digging wells efficiency.

To the best of the author’s knowledge, all the aforementioned

studies are either applied clustering techniques to cluster

borehole data or applied prediction techniques to predict

borehole depth. The proposed study aims to utilize advanced

data and predictive analysis techniques to cluster borehole

data based on hydrogeological patterns into homogeneous k

clusters and predict boreholes depth for minimizing digging

operations cost and time. Furthermore, most of the existing

studies attempted to utilize hierarchical and fuzzy-based

clustering techniques to cluster boreholes samples to improve

the digging wells process. In contrast, our work aims to

optimize k-means clustering based on an evolutionary algo-

rithm to cluster boreholes samples into homogeneous groups.

Moreover, most of the existing studies utilized ANN to

predict the borehole depth to minimize the operational cost of

digging wells. In contrast, our proposed work aims to utilize

BD-LSTM to predict boreholes depth using borehole data to

improve drilling efficiency for future well and compare with

the traditional ML models to highlight the significance of

the BD-LSTM. Therefore, to the best of our knowledge, it

is an open area for researchers to utilize advanced cluster-

ing and regression techniques to cluster boreholes samples

into k distinct groups based on different hydrogeological

characteristics and predict the boreholes depth to improve

the digging well efficiency, underground risk evaluation, and

underground safety verification management.
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TABLE 1. Summary of the existing studies

Existing Approach Objective Techniques Pros Cons

MILP [26]

This study aimed to find borehole
locations to minimize the distance
between well and rigs to increase
productivity and decrease cost.

Mixed integer
linear

programming

To assess the tendency of
the reservoir and a couple

with the multiphase
flow in pipelines

High computational
time

GWL
prediction [29]

The GWL prediction model was
developed based on ANN and
ANFIS using hydrogeological
parameters to predict GWL.

ANN and
ANFIS

Accurately predict GWL,

achieved R
2 score

of 0.96

Hold-out method was
used, which can lead to

poor generalization issue

Rate of penetration
(ROP) [65]

The author’s utilized machine learning
and data analytics to predict

the borehole depth rateto increase the efficiency
of the digging process.

Random forest
(RF)

It can be used to save time
and cost of the digging
process because it used
surface parameters only

High computational
cost due to modifying

surface parameters
using brute force

Pattern recognition
method [47]

The presented study aimed to
utilize data-driven methods that

searches historic data to identify patterns
for future well for efficient drilling.

Gaussian
mixture

modeling

Provide roadmap based
on extracted patterns

for future well boreholes

Low flexibility and
high computational

complexity

Hierarchical cluster
analysis [50]

The authors used the pattern recognition
method of the hierarchical cluster to partition

hydrochemical data into water groups.

Hierarchical
clustering

Partitioned water samples
into homogeneous groups

based on extracted patterns

Considered only
sedimentary layer to

extract characteristics

ssFCM [53]

The main objective was to cluster
multivariate soil geochemical anomalies

using a semi-supervised fuzzy
c-mean clustering method.

Hierarchical
and semi

supervised
fuzzy c-mean

Combine supervised and
unsupervised techniques

to extract hidden
characteristics of the data

High computational
complexity

Cluster analysis [55]

Two types of cluster analysis were
performed to identify and

partition groups of elements
having similar geological structures.

Hierarchical
and non-

hierarchical
clustering

Identified and partitioned
elements into distinct

groups based on similar
geological sources

Difficult to determine
the number of clusters

for large data, and
high time complexity

Boreholes depth
prediction [57]

Data-driven approaches were used
to predict boreholes depth to
improve boreholes efficiency

for the future well.

ANN and
SVM

Accurately predicted
boreholes depth using
SVM, comparison of

SVM with ANN

Lack of time-series
prediction algorithms

borehole depth rate prediction [58]

Developed ANN model
based on optimization algorithm to

predict borehole depth rateto reduce the
cost for effective drilling.

ANN and
ABC

optimization
algorithm

Used optimized set of
parameters using ABC
optimization scheme

Used Hold-out method
to validate data samples

borehole depth rate prediction [61]

Trained ANN model using evolutionary
techniques to predict ROP

to improve digging wells efficiency.
ANN

Identified influential
parameters of the
drilling process

High computational
complexity

III. PROPOSED METHODOLOGY

This section presents a detailed methodology of the proposed

architecture. The main objective of the proposed architecture

is to utilize data and predictive analysis models for enhancing

efficiency and underground safety management of future

boreholes digging.

A. PROPOSED ARCHITECTURE

This subsection presents architecture of the proposed ap-

proach. Fig. 1 presents architecture diagram of the pro-

posed approach. The proposed architecture consists of five

layers: the acquisition of borehole data, preprocessing of

borehole data, descriptive data analysis of borehole data

based on different hydrogeological patterns, development of

ML-based prediction models, planning and city construction

management. The proposed study uses a real borehole dataset

acquired from Jeju National University (JNU), South Korea.

The dataset consists of different attributes, such as borehole

ID, x and y coordinates, altitude, starting depth, ending depth,

soil color, land layer, to name a few. Data preprocessing is

used to preprocess the acquired boreholes data to increase

the reliability and effectiveness of the dataset. It is an im-

portant step to transform raw data into a reliable format for

pattern extraction and other processes. Data analysis uses

preprocessed data to investigate hidden insights and patterns

of the boreholes data. Different data analysis models are

developed, including statistical, time-series, and clustering

analysis, to get hidden insights and patterns of borehole

data. Data analysis is an effective process to investigate and

extract hidden insights and characteristics from the given

preprocessed data, which is important for planning digging

wells resources for future boreholes.

Clustering analysis is used to cluster borehole data based

on soil color, land layer, and boreholes depth into k distinct

clusters to identify and understand data structure. The main

objective of the clustering model is to develop an advanced

clustering approach to cluster borehole data samples into

homogeneous groups based on hidden hydrogeological pat-

terns to improve digging wells efficiency and underground

safety management. Therefore, a GA-assisted k-mean clus-

tering algorithm is proposed to cluster borehole samples

into distinct k groups. Furthermore, a heuristic method is

used to calculate the required number of optimal clusters.

The proposed clustering model results are evaluated and
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FIGURE 1. Proposed architecture diagram of the borehole data analysis architecture based on data and predictive analysis models.

compared with the traditional k-mean and weighted k-mean

algorithms. Next, we develop traditional and deep learning-

based prediction models to build an effective model to predict

the boreholes depth rate using the history data of boreholes.

The main objective of the prediction model is to predict

boreholes depth rate to minimize digging operation costs for

effective drilling management and planning. The last layer

is responsible for effectively planning and managing the

drilling resources based on experimental results for enhanc-

ing efficiency of underground safety management.

B. PROCESS PROCEDURE OF THE PROPOSED

APPROACH

This subsection presents step by step procedure of the pro-

posed architecture. Fig. 2 presents interaction model of the

proposed boreholes data analysis architecture. The proposed

architecture process consists of different steps: acquisition of

boreholes data, preprocessing of boreholes data to get con-

sistent data, data models generation for analysis, ML-based
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prediction models, tuning of hyper-parameters to enhance

the performance of the proposed predictive analysis models,

execution of ML models to get desired results and storing

desired results in repository for future boreholes.

ML-based Platform 

(Clustering and Prediction)

Boreholes Data 
(Digging Depth, Soil Material, 

Land Layer, etc.)
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Data Models
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Resulting 
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Data 
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Data 
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Analysis of 
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FIGURE 2. Procedure diagram of the proposed architecture.

C. PROPOSED CLUSTERING MODEL

This subsection discusses clustering module, which aims

to cluster borehole data based on different features into k

distinct groups. In this work, a novel GA-based k-means

algorithm using elbow curve method is proposed to cluster

borehole data into k distinct groups. Fig. 3 presents proposed

optimal k-means clustering mechanism based on elbow curve

method. The proposed optimal GA-based k-means clustering

mechanism consists of the following components, such as

borehole depths data, elbow curve-based computation of

optimal k number of clusters, GA-based selection of clus-

ter centroids, clustering of boreholes depths data using k-

means clustering technique based on optimal k and optimal

centroids values, performance analysis, and clustering results

repository. The elbow curve method is a heuristic method,

which is used to determine the optimal k number of clusters

for the given boreholes input dataset. The genetic algorithm

(GA) is used as an optimization scheme, which is used to

avoid local optima and discover good initial centroids that

lead to superior partitions under k-means. There are different

methods used to calculate the distance between data points

(borehole data) and centroids, such as Euclidean Distance

or Manhattan distance. The k-means clustering uses optimal

k and optimal centroids in order to calculate distance, and

group the given data instances based on minimum distance.

Finally, performance analysis is performed in order to eval-

uate the performance of the proposed GA-based k-means

clustering mechanism. The clustering data is stored in the

clustering results repository.

Algorithm 1 presents detail flow of the proposed GA-based

k-means clustering approach to cluster borehole data samples

into k distinct groups. The proposed algorithm consists of

three main modules. First, elbow curve method is used to

determine optimal k number of clusters. Second, GA-based

optimization scheme is used to determine optimal cluster

centroids. Lastly, we used optimal k and optimal clusters

centroids to group borehole data into distinct groups to help

drilling management.

Algorithm 1: Proposed optimal GA-based k-means

clustering using heuristic method.

Input: Borehole Data Samples

D = {D1, D2, D3, ..., (Dn)} , Relevent

Features F = F1, F2, F3, ..., Fn, k number of

optimal clusters, weighted feature Wf

Output: Clustering of Borehole Data samples based

on hydrogeological parameters into optimal

k clusters

Wf ← Boreholedepth
k ← ElbowCurveMethod

for each iteration do
Ccentroids ← GeneticAlgorithm(D, k)
Rclusters ← Kmeans(D, k,Ccentroids)
Panalysis ← Evaluation(Rclusters, Ccentroids)
StorePerformanceAnalysisResults(Rclusters)
StoreClusteringResults(Rclusters)

end

Function GeneticAlgorithm(Boreholedata,

k):
Pt ← InitializePopulation

maxiteration ←MaxIterations

Mr ←MutationRate

for i ∈maxiteration do

for each individual ∈Pt do
Fvalue[i]← evaluate(individual)

end

Pindividuals←Selection(Pt, Fvalue)
Ospring ←Crossover(Pindividuals)
Ospring ←Mutation(Ospring)
Pt ←MergePopulation(Ospring, Pt)

end

return Centroid set with best fitness value;
Function Kmeans(D, k, Ccentroids):

for each sample i ∈X do
Sd ← 0
Rc ← null

for each cluster centroid c ∈Ccentroids do
d← EuclideanDistance(i, c)
if d < Sd then

Sd ← d ; // Update shortest

distance

Rc ← c ; // Assign data

point i to the closest

cluster c

end

end

Clabel[i]← Rc ; // Update centroids

c using GA

end

return Clabel;

The first step consists of the borehole data acquired from

the several organizations. The acquired data is not in a

reliable format. First of all, we preprocess acquired boreholes
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FIGURE 3. Proposed GA-assited k-mean clustering model for clustering borehole data samples.

data to remove irrelevant features and duplicate records to

increase the effectiveness of the dataset. The preprocessed

data are in reliable form for discovering hidden knowledge

and underlying patterns using data mining (DM) techniques.

The k-means clustering is an unsupervised clustering al-

gorithm that requires k (total number of clusters) value

in advance to cluster data samples. Therefore, it is still a

challenge to calculate the optimal value of k to group data

samples using k-means clustering. Therefore, we use an

elbow curve method to determine optimal k for the given

Borehole Dataset. This is a heuristic method used to deter-

mine optimal k. To determine optimal k, an elbow curve

method is implemented to run a k-means clustering algorithm

on the prepared borehole dataset for a range of k (from 1 to

10) to calculate the sum of squared errors (SSE) for each k.

The SSE is defined as shown in equation 1.

SSE =

n1
∑

j=1

∣

∣X1j − C1

∣

∣

2
+

n2
∑

j=1

∣

∣X2j − C2

∣

∣

2
+...+

nk
∑

j=1

∣

∣Xkj − Ck

∣

∣

2

(1)

The SSE can be simplified as follow in equation 2.

SSE =
k

∑

i=1

ni
∑

j=1

∣

∣Xij − Ci

∣

∣

2
(2)

Where Xij represents Borehole data sample and Ci repre-

sents cluster centroid.

Finally, we visualize SSE for each k using a line chart

and select elbow of the curve as an optimal k for the given

Borehole Dataset. The main objective is to minimize SSE and

select a k with low SSE and elbow of the curve as an optimal

number of clusters for the given dataset.

Next, GA-based optimization scheme is used to select

optimal centroid values rather than a selection of centroids

randomly for k-means clustering. The GA algorithm initial-

izes with a random population, which consists of a set of in-

dividuals generated randomly. To generate a new population,

different genetic operations are performed, such as selection,

crossover, and mutation. Each chromosome (a set of genes)

of the population represents k number of centroids. The basic

steps are repeatedly applied for several generations to search

for appropriate cluster centres in the feature space such that a

similarity metric of the resulting clusters is optimized. Thus,

we select an optimal number of centroids to cluster boreholes

data using k-means clustering technique.

The next step presents k-means clustering, which is a well-

known unsupervised algorithm that divides data samples into

a k number of sub-groups based on the minimum distance

between a data point X1 and cluster centroid Ci. Also, it is

an iterative technique that aims to divide the data samples
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into predefined k number of distinct non-overlapping clusters

where each data sample belongs to only one cluster. It aims

to make intra-cluster data samples as similar as possible and

keeping clusters as different as possible. It uses distance

measure (i.e., Euclidean Distance) to calculate the distance

between data points and cluster centroids to assign data

points to a particular cluster based on minimum distance.

The Euclidean Distance (ED) can be calculated between two

points as follow in equation 3.

EDXY =

√

√

√

√

n
∑

k=1

(Xk − Yk) (3)

In this work, it determines k number of clusters using

an elbow curve method in order to divide borehole data

samples into k number of clusters. It selects optimize cluster

centroids based on the GA mechanism. Thus, it uses optimal

clusters centroids values in order to divide borehole data into

k clusters by determining a distance between a data point Xi

and cluster centroid Ci and assign data sample to a particular

cluster based on minimum distance.

D. PROPOSED PREDICTIVE ANALYTICS MODEL

In this section, an architecture of the proposed boreholes

depth rate prediction model is presented. Fig. 4 presents the

flow of the proposed predictive analytics model to predict

the next boreholes depth using boreholes data for enhancing

digging wells efficiency by minimizing cost and time. The

step-by-step flow of the proposed BD-LSTM is described as

follow; acquisition of boreholes data, preparation of bore-

holes data, normalization of boreholes data, splitting pre-

pared data into training and testing subsets, training proposed

BD-LSTM and conventional ML models using training data

samples, testing, and evaluation of the learned models. In

this study, a min-max normalization method is employed

to scale data in a uniform range. The prepared data is split

into two subsets with a ratio of 70% (training) and 30%

(testing). Different statistical metrics are utilized to evaluate

the performance of the proposed BD-LSTM and compare

it with conventional ML models. The following statistical

metrics are used, such as mean absolute error (MAE), mean

square error (MSE), root mean square error (RMSE), and R2

score.

Algorithm 2 presents a flow of the proposed predictive

analytics model. The training data samples are given as input

to the proposed BD-LSTM. First, model parameters are ini-

tialized, such as batch size, the total number of training sam-

ples, and hyper-parameters, etc. Second, in each iteration, a

batch of samples is selected from training data samples D.

Each sample of batch Di is split into sequences to feed into

forward and backward LSTM models. Next, experimental

results of both forward and backward LSTM models are con-

catenated using an average mode. The concatenated output

is passed to the flatten layer, which is used to convert bi-

directional sequences into vector g. Next, vector g is passed

to the activation function, such as softmax, to get the desired

outcome. Finally, an adaptive learning-based optimization

technique is used to tune the hyperparameters to minimize

training loss and maximize training accuracy.

Algorithm 2: Proposed predictive analytics algo-

rithm for Borehole depth rate prediction.

Input: Training Data Samples

D = {(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)}
, batch size b, total number of training samples

n, model hyper-parameters w

Output: Trained BD-LSTM model

w ← initilizeRandomly

b← batchSize

n← Size(D)
for each iteration do

for j ∈ 1, 2, 3, ..., (n
b
) do

Dj ← D

Dl
j ← splitBatchSamples()

fsequences ← LSTMf (D
l
j)

bsequences ← LSTMb(D
l
j)

foutput ← fsequences
boutput ← bsequences
csequences ← Average(foutput, boutput)
gvector ← Flatten(csequences)
Routcome ← activationFunction(gvector)
w ← adamOptimizer ; // Update

hyperparameters using adam

optimizer technique to

minimize training loss

end

end

IV. DATA PRESENTATION AND PREPROCESSING

This section presents boreholes data acquisition, preprocess-

ing, and descriptive analysis to investigate hidden insights

and characteristics of boreholes process.

A. BOREHOLES DEPTH DATA

In this paper, a real boreholes dataset is acquired from several

organization. The dataset consists of different attributes, such

as borehole ID, x and y coordinates, altitude, starting depth,

ending depth, soil color, stratum layer, to name of few.

Altitude represents the height of the drilling depth process.

Ground Water Level depicts how deep under the ground

below the earth’s surface is water present. Stratum code

represents the layer formed at the earth’s surface; it could

be sedimentary rock layer soil or igneous rock layer code.

The acquired dataset consists of 9,287 data samples along

with 12 attributes. There is a 1,987, unique borehole ID

(unique borehole locations). Likewise, the geological layer

name suggests the name of rock layers or soil at the earth’s

surface. Soil color defines the composition of soil based

on color characteristics. Table 2 presents a summary of the

acquired boreholes data with a brief description.
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FIGURE 4. Proposed predictive analytics model for borehole depth rate prediction.

B. DATA PREPROCESSING

Data preprocessing is one of the most critical steps in data

mining to transform raw data into a reliable format for

enhancing the quality and consistency of the data [66]. It

helps gain meaningful insights from data by cleaning and

organizing it. Using the real dataset, some time leads issue

like missing values, noise, and inconsistencies. Therefore

data is preprocessed to remove abnormalities. Not dealing

with abnormalities later affect the performance of a ML

model hence it is an integral part of model building. Data

preprocessing comprise of data cleaning, integration, trans-

formation and reduction.

The acquired boreholes data are not in reliable format

in order to process and extract hidden hydrogeological pat-

terns and characteristics. Therefore, a solution needed to

preprocess dataset in order to handle missing values and

duplicate records. In data preprocessing, static and irrelevant

data attributes are removed to enhance the effectiveness of the

boreholes data. Also, we remove all those data records that

don’t have values of the following attributes, such as starting

and ending boreholes depth.

V. DESCRIPTIVE DATA ANALYSIS OF BOREHOLE DATA

This section presents data analysis of borehole data charac-

teristics to process and analyze hidden insights and under-

lying patterns from the acquired borehole data. Analyzing

data is an easy way to manipulate data, analyze trends, the

relationship between independent and dependent variables,

and meaningful data patterns and trends. It provides a sum-

mary of data involving data interpretation based on analytical

and logical reasoning. Different types of data analysis are

performed, including statistical and time-series analysis, and

clustering analysis to analyze hidden insights of the borehole

data.

A. STATISTICAL ANALYSIS

In this subsection, statistical and time-series analyses are

performed to investigate borehole data using statistical tech-

niques to seek hidden insights and trends. Fig. 5 is used

to analyze the distribution of boreholes data based on rock

(land) layer, including Landfill layer, Sedimentary layer,

Burlap soil layer, Alluvial soil, Remnant layer, Weathered

soil layer, Weathered rock layer, Soft rock layer (ordinary

rock), Gyeongam Formation, etc. It can be observed that the

majority of borehole data instances belong to a standard layer

entitled sedimentary layer.

The sedimentary layer is the most common rock layer

formed at the earth’s surface due to the accumulation of min-

erals and organic residues. It is also evident that a small set

of borehole data instances belong to the burlap soil layer and

residual soil layer. Burlap soil mostly disintegrates with time,

while residual soil is formed due to chemical weathering
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TABLE 2. Borehole dataset features and description.

Feature Description

1 Borehole ID It represents a borehole location ID. A unique ID is assigned to each borehole or location.
2 Borehole Resonance It denotes borehole resonance ID.
3 X It represents the borehole location coordinate value of X.
4 Y It represents the borehole location coordinate value of Y.
5 Altitude It represents an attitude of the digging depth process. High altitude values create a situation where cold

weather provisions are needed for proper operation of the digging wells.
6 Ground Water Level It is used to represents a borehole depth below the earth’s surface that is saturated with water.
7 Stratum Code It represents Korean stratum code.
8 Starting Depth It represents starting depth of borehole location x for a specific rock unit r. In other words, it is a top depth

of a specific layer r for a borehole x.
9 Ending Depth It represents the ending depth of borehole location x for a specific rock unit r.
10 Geological Layer Name It is defined as the rock layer that through the borehole passes. It includes the following layers: the landfill

layer, sedimentary layer, burlap soil layer, etc.
11 Academic Stratup Name It represents different academic startup names, such as GM, SM, ET, SP, and CL, etc.
12 Soil Colour It represents the soil colour of the borehole location.

FIGURE 5. Standard Layer based analysis of the prepared Borehole data.

residing on top of the parent rock.

Similarly, Fig. 6 presents the frequency distribution of soil

colors to investigate the importance of each soil color during

the drilling process. The distribution analysis of soil colors

shows that a large set of boreholes samples have soil color

“Brown” in the selected region to drill the boreholes. In con-

trast, a small set of boreholes samples have belonged to the

soil color “Tan” to drill the boreholes. The soil colors having

colors bitumen are the second most occurring distribution

compared to other soil colors, such as Dark Gray, Partridge,

Gray, Taupe, to name a few.

Furthermore, Fig. 7 shows the distribution of strata layers;

academic stratum layers are defined as rock types formed

at the earth’s surface. The main objective of the frequency

distribution analysis of strata layers is to analyze frequency

for each stratum layer to drill the boreholes in order to reach

the water levels in the selected region. The analysis shows

that majority of borehole samples belong to the stratum layer

“SM” to drill the boreholes. The second and third highest

frequency of strata layers is WR and MR to drill the borehole.

It is also evident that the stratum layer is the small frequency

FIGURE 6. Soil colour-based distribution of the prepared borehole data.

to drill the borehole in the selected region.

Furthermore, different features are extracted from the pre-

pared borehole data, including thickness, borehole depth,

time spent in terms of days to gain the groundwater level,

etc. Thickness is defined as the difference between starting

(top) and ending (bottom) borehole depth for a specific rock

unit. The basic formula for calculating thickness is defined in

equation 4.

Thickness(T ) = Endingdepth − Startingdepth (4)

Table 3 presents a use case example to calculate thickness

for each rock unit in a sequence. It also shows the total

borehole thickness as the sum of the thickness of each rock

unit.

Similarly, total borehole depth for a borehole is defined

as the sum of the difference between starting and ending

borehole depth for each rock unit in a sequence. In other

words, it is a combination of the thickness of each rock unit

for a specific borehole. Equation 5 is used to define total
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TABLE 3. Use case example to calculate thickness.

Borehole Code Soil Color Rock Layer Starting Depth Ending Depth Thickness

B1568BH001 Brown Landfill Layer 0 3.4 3.4

B1568BH001 Brown Sedimentary Layer 3.4 6.4 3

B1568BH001 Partridge Weathered Soil Layer 3.4 6.4 2.9

B1568BH001 Partridge Weathered Rock Layer 9.3 13.39 4.09

FIGURE 7. Distribution analysis of boreholes data based on stratums layers.

borehole depth.

Boreholedepth =
N
∑

i∈B

(Endingdepth(i)−Startingdepth(i))

(5)

To simplify further, it can be defined as follows in equation

6.

Boreholedepth = T1 + T2 + T3 + ...+ TN (6)

Next, total time spent on each borehole is calculated as

shown in equation 7. In equation 7, T imetaken represents

time spent on each borehole to gain the water. It is defined

as the count of thickness for each specific rock unit of a

single borehole. The time resolution for each thickness of a

specific borehole is one day. Therefore, the total days spent

on each borehole are calculated by counting the total number

of thickness combinations for each specific borehole.

T imetaken = Count Combinations of Thickness for

each specific borehole
(7)

In Table 4, a use case example is presented to calculate the

time taken (in terms of days) and total borehole depth for the

given borehole code (B1568BH001).

Furthermore, different hydrogeological features are ex-

tracted from the prepared data, such as the core soil layer

TABLE 4. Use case example to compute Timetaken and Boreholedepth.

Attribute Value

Borehole Code B1568BH001
X 204232.7354
Y 540038.4227
Timetaken 4 (days)

Boreholedepth 13.39 meter

and core land (rock) layer. Soil color with maximum com-

binations of thickness is selected as a core soil color for

the specific borehole. Similarly, a rock layer with maximum

combinations of thickness is selected as the core rock layer

for each borehole. Likewise, the stratum layer with maximum

combinations is selected as the core stratum layer.

Moreover, statistical analyses are employed to analyze the

borehole’s depth according to extracted hydrogeological fea-

tures. Box and whisker plots are considered to evaluate and

visualize the extracted features. Box plot analysis is used to

divide the borehole data samples to determine a five-number

summary, including minimum value, lower median quartile,

median, upper median quartile, and maximum value [67]. It

is one of the widely used descriptive data analysis methods to

summarize a set of borehole data observations on an interval

scale. Fig. 8 presents an analysis of extracted core soil colors

according to the total combinations of the thickness. The box

chart analyzes the distribution of core soil colors according to

the thickness combinations to facilitate drilling management

for effective resource planning. It is a vital hydrogeological

FIGURE 8. Statistical Analysis of boreholes data based on core soil colors.

feature affected by the presence of water due to affecting

the oxidation rate. The box-chart analysis shows that core
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soil color “Tan” has a maximum combination of thickness

in the selected region. It can be observed that the maximum

combinations of thickness are up to 68 for the core soil color

“Tan” in the selected area, which is the highest frequency

of thickness combinations than the other core soil colors. It

can be observed that the maximum thickness combinations

for core soil color “Bitumen” are up to 67, which indicates

that the occurrence of the core soil color “Bitumen” is high

compared to the rest of core soil colors. Furthermore, Outliers

are also identified, as it can be seen that some of the data

samples are located outside of the whiskers of the box plot.

Fig. 9 shows a box plot analysis to analyze the distribution

of core rock (land) layers according to the combinations of

thickness. It aims to analyze the distribution of boreholes

based on core rock layers according to the combinations of

thickness. As we described earlier, that rock layer with a

maximum frequency of thickness is defined as a core rock

layer for the specific borehole. The box and whisker plot

analysis shows that the length of the land layer “Landfill” is

large compared to the other rock layers, which indicates that

the maximum frequency of thickness belongs to the Landfill

layer to drill a borehole in the selected region. The maximum

frequency of the Landfill layer based on the combination

of thickness is up to 58, which is the highest frequency

compared to the other rock layers. Outliers are also identified

that are displayed outside of the whisker of the box plot.

Furthermore, the Weathered Soil layer is a minimum median

frequency compared to other rock layers.

FIGURE 9. Statistical Analysis of boreholes data based on core land layers.

Similarly, Fig. 10 displays the box and whisker plot to

analyze the distribution of boreholes based on core strata lay-

ers according to combinations of the thickness. As described

earlier, thickness is defined as the difference between starting

and ending depths for a specific rock unit of the borehole and

stratum layer with a maximum combination of thickness as

a core stratum layer. The box and whisker plot analysis aims

to analyzes the distribution of core strata layers according to

the combinations of the thickness (thickness frequency) to

get hidden insights of boreholes data. It is evident that the

box length of the core SP layer is high, which indicates that

most of the data points are scattered to the core stratum layer

SP. The maximum analysis shows that the core SP layer is

a high frequency of thickness combinations than other strata

layers. In contrast, the minimum analysis indicates that the

MR is a low combination of thickness in the selected regions

than the rest of the strata layers.

FIGURE 10. Statistical Analysis of boreholes data based on core stratum layers.

B. TIME-SERIES ANALYSIS

Furthermore, time-series analyses are conducted to investi-

gate trends in a particular period. In this work, boreholes

data are analyzed based on boreholes depth according to

time spent to reach the groundwater levels. Different time-

series analyses are conducted to examine the relationship

between digging depth and time spent in terms of days. Fig.

11 depicts the relationship between borehole depth and time

spent in terms of days to gain the water level. The relationship

between borehole depths and time spent in terms of days

varies due to the different combinations of the thickness of

rock units. It is evident that the total time spent on each

borehole fluctuates between 1 to 13 days to gain the water

level. Similarly, it can also be seen that the total depth for

boreholes varies 74.28 meters. Furthermore, the average time

spent on each borehole is approximately 5 days to gain the

water level. It can also be observed that the total time spent

varies for each borehole due to variations in hydrogeological

parameters, such as soil, rock, and land types.

Fig. 12 presents a comparison of drilling depth and

groundwater level. The relationship between drilling depth

and groundwater level varies due to variation in rock layers.

It can be observed that the groundwater level values fluctuate

between 0.18 m and 45.47 m. In contrast, borehole depth is

up to 74.28 m to gain the water level. It can also be analyzed

that the average borehole depth in the selected region is

approximately 20.03 m to gain the groundwater level. It can

also be interpreted that the average groundwater level in the

selected area is 6.73 m.

Furthermore, Fig. 13 depicts the box and whisker plot to

analyze drilling depth according to the time taken in terms
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FIGURE 11. Boreholes data analysis based on total depths and time spent.

FIGURE 12. Boreholes data analysis based on drilling depth and groundwater level.

of days. It can be seen that the drilling time increases as the

borehole depth increases. It can be analyzed that the drilling

FIGURE 13. Borehole depth analysis according to time taken.

time varies due to the softness and hardness of the rock units.

For instance, it can be interpreted that 2 to 3 days are required

to drill up to 24 m. Similarly, 7 to 8 days are required to drill

up to 30 m. Furthermore, 11 to 13 days are needed to drill

up to 38 m, which indicates the hardness of the rock units

compared to other drilling time phases.

Similarly, Fig. 14 presents the box plot analysis to inves-

tigate groundwater level according to the drilling time. The

analysis shows that the relationship between groundwater

level and drilling time varies in the selected region due

to the structure of rock layers and other hydrogeological

parameters. It can be shown that 1 to 2 days are required for

borehole drilling to gain the groundwater level between 2 m

to 9 m. It can also be observed that 11 to 13 days are spent

to gain the groundwater level up to 7 m, which described that

the hardness of rock layers ultimately minimize groundwater

level.

FIGURE 14. Groundwater level analysis according to time taken.
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C. CLUSTERING ANALYSIS RESULTS AND

PERFORMANCE ANALYSIS

This subsection presents clustering analysis results of the

implemented clustering algorithms. The main objective is

to cluster borehole samples into homogeneous groups based

on hydrogeological characteristics to increase digging wells

efficiency. Fig. 15 shows an elbow curve analysis using a

simple k-means clustering algorithm to determine optimal k.

FIGURE 15. Optimal number of clusters using un-weighted k-means clustering.

Fig. 16 presents clustering analysis results obtained using

a simple k-mean clustering algorithm. It can be observed that

the boreholes samples are clustered into two distinct groups.

In this use case example, borehole samples are clustered

based on borehole location coordinates to compute the dis-

tance between each borehole sample and cluster centroids

and assign the borehole sample to the closest cluster. The

clustering analysis results are visualized by plotting the data

points in their respective clusters.

FIGURE 16. Clustering of borehole data based on distance using k-means.

Fig. 17 depicts elbow curve analysis based on proposed

features to find an optimal number of clusters. In Fig. 17a,

we used borehole location coordinates and borehole depth

as an input parameters to run a weighted k-means algorithm

for a range of k (k = 1, 2, ..., 10) to determine SSE for

each k. Based on SSE visualization for each k, it can be

observed that elbow of the curve formed at 3; therefore,

optimal k is 3 for the given feature set to cluster boreholes

data in 3 homogeneous groups. Similarly, in Fig. 17b, the

digging depth of the borehole is used as an input parameter

to determine an optimal number of clusters. The line chart

shows that the elbow of the curve is formed at 2; therefore,

optimal k for the given borehole data using borehole depth is

2. Likewise, Fig. 17a and Fig. 17b, Fig. 17c considered soil

color as an input feature, and borehole depth is a weighting

parameter to determine optimal k. The line chart visualizes

the SEE for each k to determine optimal k. It can be seen that

the optimal k is 2 to cluster the given borehole data based

on hydrogeological patterns. Furthermore, In Fig. 17d, soil

color and land layer are considered as the input parameters,

and borehole depth is a weighting parameter to select the

elbow of the curve as an optimal k. The elbow curve analysis

shows that the optimal k is 2 to cluster borehole data based

on different hydrogeological characteristics.

Fig. 18 shows clustering analysis results using GA-assisted

k-means clustering algorithms. Borehole location coordi-

nates are considered as the input parameters and the total

borehole depth used as a weighting parameter to cluster

borehole samples into homogeneous clusters. In this use case

example, borehole samples are grouped based on distance

using a GA-assisted weighted k-means clustering algorithm.

The borehole samples are grouped into 3 distinct groups

based on the minimum distance between boreholes and clus-

ter centroids. It can be observed that borehole samples are

grouped into 3 distinct clusters, such as cluster 0, cluster 1,

and cluster 2.

Fig. 19 presents clustering of borehole samples based on

the total borehole depth using GA-assisted k-mean cluster-

ing. In this use case, total borehole depth frequency is consid-

ered an input parameter to cluster borehole samples based on

similar digging frequencies into 2 clusters. In this use case,

the soil color attribute is used as a weighting parameter in the

clustering process. The borehole samples are grouped into 2

clusters based on the total borehole depths to understand the

data structure for effective future boreholes.

Likewise, in Fig. 20, borehole samples are grouped based

on soil color into 2 distinct clusters, such as cluster 0 and

cluster 1. The soil color consists of 10 unique colors, in-

cluding Light Gray, Bitumen, Brown, Dark Brown, Dark

Gray, Gray, and Light Brown, etc. In this use case, boreholes

location coordinates and soil color are considered as the input

parameters and borehole depths as a weighting parameter to

cluster borehole samples into 2 clusters to enhance future

borehole efficiency.

Similarly, in Fig. 21, borehole data samples are clustered

based on two different hydrogeological parameters, such as

soil color and land layer. In this use case, location coordinates

of the borehole are considered along with soil color, land

layer, and total boreholes depths as a weighting parameter
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(a) Elbow curve analysis based on borehole location coordinates (b) Elbow curve analysis based on total borehole depths (total thickness)

(c) Elbow curve analysis based on soil color (d) Elbow curve analysis based on soil color and land layer

FIGURE 17. Elbow curve analysis based on features set to determine optimal number of clusters.

FIGURE 18. Clustering of borehole data based on distance (borehole locations).

to group boreholes data samples into 2 distinct clusters.

The standard land layer name includes Landfill layer, Sed-

FIGURE 19. Clustering of borehole samples based on digging wells depth.

imentary layer, Burlap soil layer, Alluvial soil, Remnant

layer, Weathered soil layer, Weathered rock layer, Gyeongam

16 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083175, IEEE Access

N. Iqbal et al.: Clustering and Prediction Models for Enhancing Future Boreholes Efficiency and Underground Safety Management

FIGURE 20. Soil color based clustering of borehole samples.

Formation, etc.

FIGURE 21. Clustering of borehole samples based on soil color and land layer.

Fig. 22 shows the distribution of borehole depths data

based on clustering using a distance measure. It shows

borehole depths according to the borehole locations in the

selected regions. There are three optimal clusters to group

borehole samples based on distance into three (k = 3)

distinct groups, such as cluster label 0, cluster label 1, and

cluster label 2. Fig. 22a visualized borehole depths data

for cluster label 0 (cluster_label=0). The z-axis represents

borehole depths data for the borehole location. It can be

observed that boreholes depths data based on the distance

for clustering label 0 varies from 13 to 200m. Similarly,

Fig. 22b visualized boreholes depths data for cluster label

1 (cluster_label=1). It can be observed that boreholes depths

data based on the distance for clustering label 1 varies from

20 to 300m. Likewise, Fig. 22a and Fig. 22b, Fig. 22c show

the visualization of total borehole depth for each borehole

data sample belongs to cluster 3. It can be seen that the total

borehole depth values fluctuate between 10 to 175m.

The complete digging process for each borehole consists

(a) Distance based visualization borehole depths (Cluster Label : 0)

(b) Distance based visualization borehole depths (Cluster Label : 1)

(c) Distance based visualization borehole depths (Cluster Label : 2)

FIGURE 22. Comparison of borehole depths based on distance.

of several instances. The minimum number of borehole in-

stances is 3, and the maximum number of borehole instances

is 13. Therefore, to visualize total digging depth for each

unique borehole, we assign different color codes to borehole

instances as shown in Fig. 22. Each color code represents
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a borehole depth recorded for a unique set of the following

parameters: a land layer, strata layer, and soil color. The total

digging depth is calculated by summing the digging depth of

each instance (represented by a unique color) for a particu-

lar borehole. Furthermore, different evaluation measures are

used to evaluate the performance of the clustering algorithms.

The following evaluation measures are considered to evaluate

and compare the performance of the implemented clustering

algorithms, such as Dunn index (DI), Davies–Bouldin index

(DBI), Silhouette coefficient (SC), and Calinski–Harabaz

Index (CHI).

DI is an appropriate measure to evaluate the performance

of clustering algorithms. The main objective of the Dunn

index is the identification of compact clusters such that means

of clusters lie far apart from one another. The basic formula

of the Dunn index is followed in equation 8.

DI = min
1≤i≤m

{

min
1≤j≤n

{

δ(Xi, Xj)

min1<k<c{△Xk}

}}

(8)

DBI is another clustering evaluation measure that evaluates

how well clusters are formed based on inherent characteris-

tics of data samples, and lower values depict better clustering

performance. It is defined as follows in equation 9.

DBI =
1

k

k
∑

i=1

max
1<i<k

{

∆(Xi) + ∆(Xj)

∆(Xi, Xj)

}

(9)

SC index is generally used to measure consistency within

clusters. It represents how much an object is similar to the

rest of its cluster comparative to other clusters. It can be

computed as follows in equation 10.

SC =
x− y

max(x, y)
(10)

We also used CHI for defining every cluster by a single class.

Moreover, it looks for significant variations and differences

between expected and observed values. The CHI is defined

as follows in equation 11.

CHI =
T (Bk)

T (Wk)
×

Sn − k

k − 1
(11)

Table 5 summarizes the performance evaluation of the

proposed clustering algorithms. In this study, borehole data

are analyzed and grouped using four different hydrogeolog-

ical features based on weighted k-mean and GA-assisted

k-mean clustering algorithms. Furthermore, different per-

formance measures are employed, such as DI, DBI, SC,

and CHI, to evaluate the performance of the implemented

clustering algorithms. It is evident that the GA-assisted k-

mean clustering algorithm performed well and improved the

performance. The performance of the GA-assisted k-mean

clustering algorithm in terms of DI for all feature types is

1.092, 1.527, 1.673, and 2.454, which indicates that the DI

values of the proposed clustering model higher compared to

the weighted k-means clustering algorithm. Furthermore, the

estimated value of CHI of the proposed clustering algorithm

for all feature groups is 3452.73, 3656.76, 3786.77, and

3987. The CHI analysis shows that the score of the ratio of

average between and inter-cluster dispersion of the proposed

clustering model is higher than the conventional weighted

k-means clustering model. Similarly, in terms of DBI, our

proposed model performed relatively better compared to

a conventional weighted k-mean clustering algorithm. The

DBI score of the proposed GA-assisted k-mean clustering

algorithm for all four features set is 0.865, 0.675, 0.721, and

0.454. It is evident that the DBI values of the proposed clus-

tering algorithm are lower than weighted k-means clustering,

which indicates that our proposed model performed well in

the clustering process.

VI. IMPLEMENTATION ENVIRONMENT OF THE

PROPOSED ARCHITECTURE

This section discusses experimentation environment of the

proposed approach. The development of proposed models

is done using Python programming language. Moreover,

preprocessing of data, clustering, and regression analysis are

implemented using well-known libraries known as Numpy,

Pandas, Scikit-learn, Keras, and TensorFlow. Table 6 presents

implementation setup of the proposed approach.

Fig. 23 depicts simulation and implementation flow of

the proposed work. The proposed work used Python as a

core programming language to implement functionalities of

the all modules. The implementation flow of the proposed

work includes the following steps; borehole data acquisition,

preprocessing of borehole data, prepare borehold data models

based on different hydrogeological parameters, such as soil

color, land layer, thickness and boreholes depth, to name a

few. The proposed work consists of the two core modules;

descriptive data analysis, and predictive analysis module

to facilitate drilling management for effective planning and

management. Descriptive data analysis includes statistical

and time-series analysis to investigate underlying patterns of

the boreholes data. Finally, experimental results are stored in

their respective data repository.

System Components Description

Operating System Windows 10 for PC Server

Primary Memory 16 GB RAM

Processor Intel ®Core  i5-4500 CPU at 3.40 
GHz 

Programming Language Python 3

IDE PyCharm Professional

Database Storage MS Excel, MySQL

Boreholes Data Acquisition 

Data Preprocessing 
(Selection of relevant data attributes and handling inconsistencies)

Prediction of Boreholes Data  
(Traditional and Deep Learning 

Techniques)

Distance based 

Boreholes Data 

Soil Material 

based Boreholes 

Data

Land Layer based 

Boreholes Data

Boreholes Depth 

Data

Data 

Analysis

 Results

Prediction

 Results

Implementation 

Environment of the 

proposed research study

Flow of the proposed research study

 Data and 

Clustering 

Analysis

Prediction 

Data  Models

Clustering of Boreholes Data  
(Traditional and Optimized K-means 

Clustering Technique)

Descriptive Data Analytics 
(Soil Color, Land Layers, and Time 

Series Analysis)

FIGURE 23. Simulation environment of the proposed time-series analysis.
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TABLE 5. Performance analysis of the implemented clustering algorithms.

Feature Model DI DBI SC CHI

Distance between
boreholes

Weighted k-mean 0.524 0.972 0.311 3278.61
GA-assisted k-mean 1.092 0.882 0.447 3452.73

Boreholes Depth
based clustering

Weighted k-mean 0.787 0.792 0.467 3587.98
GA-assisted k-mean 1.527 0.675 0.498 3656.76

Soil Color based
clustering

Weighted k-mean 0.798 0.721 0.517 3631.89
GA-assisted k-mean 1.673 0.592 0.578 3786.77

Soil Color and Land
Layer

Weighted k-mean 1.235 0.678 0.618 3798.75
GA-assisted k-mean 2.454 0.454 0.765 3987.51

TABLE 6. Implementation setup of the proposed approach.

System Components Description

Operating System Microsoft windows 10 (64-bits)
CPU Intel ®Core ™ i5-4300 CPU at 3.40

GHz
RAM 16 GB
Programming Language Python
Storage MySQL
IDE PyCharm Professional

VII. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

In this section, experiment results of the proposed BD-LSTM

and conventional models are discussed. The main objective

of the proposed predictive analytics model is to predict

boreholes depth accurately to increase digging efficiency for

future boreholes. In this study, an advanced prediction model

is proposed and compared with conventional regression

models, such as SVR, RF, and Extreme Gradient Boosting

(XGBoost). Furthermore, prediction results of the proposed

BD-LSTM are evaluated and compared with conventional

regression models using following evaluation measures, such

as MAE, MSE, RMSE, and R2 score.

Fig. 24 presents comparative analysis of the implemented

prediction models in terms of MAE and MSE.

FIGURE 24. Performance evaluation in terms of MAE and MSE.

It depicts that our ensemble prediction model using stack-

ing technique has achieved the highest R2 score of 0.973. It is

also evident that performance of ensemble prediction model

using Mean is also up to the mark due to its ability to map

temporal correlations and handle long term dependencies.

Hence, our proposed ensemble prediction model using stack-

ing technique outperformed all other implemented models

and produced relatively better prediction results.

Similarly, Fig. 25 is used to evaluate and compare pro-

posed model with conventional ML models. The R2 score

is used to evaluate and compare the performance of the

implemented regression models. The R2 score of the pro-

posed model is 0.989, which indicates the significance and

correctness of the proposed prediction model. The prediction

performance of the conventional ML models, such as SVR,

RF, and XGBoost, is 0.872, 0.92, and 0.92, respectively.

Hence, our proposed BD-LSTM model performed signifi-

cantly better and outperformed the conventional ML model

to predict boreholes depth rate for effective drilling manage-

ment, planning, and underground safety management.

FIGURE 25. Performance evaluation in terms of R2 Score.

Fig. 26 depicts a comparative review of the observed and

predicted boreholes depth using proposed BD-LSTM and

other conventional regression models. Fig. 26a presented a

comparative review of observed boreholes depth and pre-

dicted boreholes depth using conventional SVR. It can be

observed that the SVR model produced high prediction er-

rors compared to other implemented regression models. The

difference between observed and predicted boreholes depth
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(a) Comparative review of prediction results using SVR (b) Comparative review of prediction results using RF

(c) Comparative review of prediction results using XGBoost (d) Comparative review of prediction results using proposed model

FIGURE 26. Comparative review of the proposed prediction model with conventional ML regression models for borehole depth rate prediction.

is high; MAE, MSE, and RMSE of the conventional SVR

are 0.191, 0.517, and 0.719, respectively. The R2 score of

the conventional SVR is 0.872, which indicates that the

conventional SVR performed inaccurately compared to other

implemented regression models. In Fig. 26b, a comparative

review of prediction results obtained using RF is presented.

It is evident that the difference between actual boreholes

depth and next boreholes depth is low compared to the

conventional SVR. The estimated MAE, MSE, and RMSE

of the RF are 0.280, 0.324, and 0.569, respectively, which

indicates that the RF performed accurately compared to the

conventional SVR. The R2 score of the RF is 0.92, which

reveals that RF outperformed conventional SVR to predict

boreholes depth for future wells accurately. Similarly, Fig.

26c shows a comparison of observed and predicted boreholes

depth using XGBoost. The XGBoost model performed ac-

curately compared to the RF and SVR; the R2 score of the

XGBoost model is 0.954, which shows that the XGBoost

model slightly improves the prediction performance com-

pared to other conventional regression models. Likewise, in

Fig. 26d, a comparative evaluation of observed and predicted

boreholes depth using proposed BD-LSTM is presented. It

is found that the difference between observed and predicted

boreholes depth is low compared to the conventional ML

regression models, which indicates that the proposed BD-

LSTM significantly performed well and improves the predic-

tion accuracy compared to other models. It can be observed

that our proposed BD-LSTM performed accurately and sig-

nificantly as compared to the traditional ML models, such

as SVR, RF, and XGBoost. The estimated MAE, MSE, and

RMSE are 0.146, 0.044, and 0.210, respectively. Hence, our

proposed BD-LSTM performed accurately, improved accu-

racy, and outperformed the conventional regression models

to enhance boreholes efficiency for future wells.

Finally, Fig. 27 presents comparative analysis of actual and

predicted borehole depth rate using proposed BD-LSTM and

other traditional ML models. It is found that the prediction

error of the proposed BD-LSTM is low as compared to the
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FIGURE 27. Comparative analysis of actual and predicted boreholes depth using proposed BD-LSTM and conventional ML models.

traditional ML-models. Our proposed model performed ac-

curately to predict borehole depth rate for enhancing digging

well efficiency by minimizing operational cost for future

boreholes. It can be observed that the proposed model sig-

nificantly improves the prediction performance as compared

to other models.

Furthermore, we utilize different statistical metricise, such

as MAE, MSE, RMSE, and R2 score, to evaluate the re-

gression models performance. Accuracy of prediction can

be determined using various measures. A low error means

a better prediction performance. We can say that accuracy

is used to determine the difference between observed out-

put and predicted output. If we want to compare different

prediction methods keeping the dataset same every accuracy

measure will produce different result and hence different

performance. To compare the results with other techniques

MAE, MAPE, RMSE, and R-squared (R2) score and is used

for performance evaluation of model [68].

Mean absolute error (MAE) is defined as the average of

the absolute differences between predicted and actual values.

The absolute error is defined as the difference between pre-

dicted and actual value. It is used as a standard to measure

error for continuous values. It is defined by equation 12:

MAE =
n
∑

i=1

|ypredicted − yactual| (12)

Mean square error (MSE) is calculated as a mean of square

differences between predicted and actual values. MSE is

calculated as follows in equation 13.

MSE =
1

n

n
∑

i=1

(ypredicted − yactual)
2 (13)

RMSE is a standard deviation of the prediction errors. It

is calculated by taking the square root of the MAE. It is

commonly used in regression models to evaluate the fore-

casting results. RMSE for the continuous variables fluctuates

between 0 and ∞, whereas 0 stipulates that the prediction

model performed accurately, and a large value indicates that

the error between predicted and actual observation is high. It

is defined as follow in equation 14.

RMSE =

√

∑n

i=1
|(ypredicted − yactual)|2

n
(14)

Another evaluation measure used by this study is R2. It is

used as a determination coefficient to measure the regression

model’s performance using unseen data similar to MSE. It

stipulates the proportion of the variance of predicted and

actual variables.

R2 Score = 1−

∑

(yactual − ypredicted)
2

∑

(yactual − ȳpredicted)2
(15)

Table 7 presents performance evaluation and comparison

of the proposed BD-LSTM with other traditional ML models,
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such as SVR, RF, and XGBoost, to name a few. The R2 score

of the proposed BD-LSTM model is 0.989, which indicates

the significance and effectiveness of the proposed work. In

contrast, the R2 score of the conventional regression models,

such as SVR, RF, Lasso (L1), XGBoost, decision tree (DT)

regression , AdaBoost, is 0.872, 0.920, 0.81, 0.954, 0.898,

0.918, respectively. The prediction error of the proposed BD-

LSTM is low as compared to the traditional ML-models. The

estimated MAE and MSE values of our proposed BD-LSTM

model are 0.146 and 0.044, respectively. It can be observed

that the proposed model significantly improves the prediction

performance as compared to other baseline models. Hence,

our proposed model accurately predicts borehole depth rate

to increase the underground digging efficiency and public

safety.

TABLE 7. Performance evaluation of proposed predictive analytics models.

Proposed Models MAE MSE RMSE R
2 Score

SVR 0.191 0.517 0.719 0.872
RF 0.280 0.324 0.569 0.920
Lasso 0.641 0.766 0.875 0.81
XGBoost 0.432 0.219 0.187 0.954
DT 0.366 0.411 0.641 0.898
AdaBoost 0.377 0.331 0.575 0.918
Proposed Model 0.146 0.044 0.210 0.989

VIII. CONCLUSION

Digging well problems possess increasing complexity and

uncertainty levels due to hydrogeological variations. How-

ever, the application of different mechanisms in borehole data

analysis would lead to significant business value and avoid

the occurrence of accidents. This research study presented

a borehole data analysis architecture based on data and

predictive analysis using time series borehole data to improve

the digging efficiency, underground risk evaluation, and un-

derground safety management. This study utilized a real

boreholes dataset acquired from JNU, South Korea. The main

contribution of the proposed study was to employ data and

predictive analysis models to discover underlying patterns

and predict borehole depth for enhancing the planning and

management of borehole resources. Different descriptive data

analysis models were employed to investigate historical data

of boreholes, such as statistical analysis, time-series analysis,

and clustering analysis models. An advanced GA-assisted k-

mean clustering algorithm was developed to cluster borehole

data samples based on hidden hydrogeological characteristics

into homogeneous groups. The main objective of the clus-

tering analysis was to identify hidden patterns to partition

boreholes samples into k distinct groups based on four differ-

ent feature models: distance, borehole depth rate, soil color,

land layer, and stratum layer, etc. The clustering approaches

were implemented to cluster borehole data samples into

distinct groups to identify the history of data patterns for

effective resource planning and underground safety manage-

ment. Furthermore, different evaluation metrics were used to

evaluate and compare the proposed clustering approach with

the conventional weighted k-means clustering algorithm. The

experimental results show that the proposed GA-assisted

k-mean clustering technique performed well and relatively

better than the conventional weighted k-means clustering

algorithm. To predict the borehole depth rate, a BD-LSTM

model is developed to predict boreholes depth to minimize

the operational and planning cost of the digging for future

boreholes. The proposed BD-LSTM performed accurately

and outperformed the conventional ML models, such as RF,

SVR, L1, XGBoost, DT, and AdaBoost. The results depict

that data and predictive analysis models can solve problems

that are otherwise impractical or have resulting inaccuracies.

The performance evaluation and comparison demonstrate

the effectiveness of the proposed model compared to the

traditional models. The R2 score of the proposed BD-LSTM

is 0.989, which indicates that the proposed model accurately

predicts boreholes depth compared to the conventional ML

models. In contrast, R2 score of the SVR, RF, L1, XGBoost,

DT, AdaBoost, is 0.872, 0.920, 0.81, 0.954, 0.898, and 0.918,

respectively. Furthermore, our proposed BD-LSTM model

significantly performed well in terms of MAE and MSE.

The MAE and MSE error of the proposed BD-LSTM is

0.146 and 0.044, which indicates that the difference between

observed and predicted boreholes depth is low compared to

the conventional model, such as SVR, RF, L1, and XGBoost.

The experimental results will improve the overall digging

well process, holistic management of groundwater resources,

city construction, risk assessment, and underground safety

management.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests

regarding the publication of this paper.

REFERENCES

[1] “Ministry of environment to carry out detailed in-

vestigation of old sewage pipes within the year,”

lhttp://www.waterjournal.co.kr/news/articleView.html?idxno=46623,

[Online; accessed on: Feb. 15, 2021].

[2] F. Patino-Ramirez, C. Layhee, and C. Arson, “Horizontal directional

drilling (hdd) alignment optimization using ant colony optimization,”

Tunnelling and Underground Space Technology, vol. 103, p. 103450,

2020.

[3] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts,

methods, and analytics,” International journal of information management,

vol. 35, no. 2, pp. 137–144, 2015.

[4] R. Chalh, Z. Bakkoury, D. Ouazar, and M. D. Hasnaoui, “Big data

open platform for water resources management,” in 2015 International

Conference on Cloud Technologies and Applications (CloudTech). IEEE,

2015, pp. 1–8.

[5] S. Lee, Y. Hyun, and M.-J. Lee, “Groundwater potential mapping using

data mining models of big data analysis in goyang-si, south korea,”

Sustainability, vol. 11, no. 6, p. 1678, 2019.

[6] P. Russom et al., “Big data analytics,” TDWI best practices report, fourth

quarter, vol. 19, no. 4, pp. 1–34, 2011.

[7] H. Zhang, Q. Du, M. Yao, and F. Ren, “Evaluation and clustering maps

of groundwater wells in the red beds of chengdu, sichuan, china,” Sustain-

ability, vol. 8, no. 1, p. 87, 2016.

[8] N. Iqbal, F. Jamil, S. Ahmad, and D. Kim, “Toward effective planning

and management using predictive analytics based on rental book data of

academic libraries,” IEEE Access, vol. 8, pp. 81 978–81 996, 2020.

22 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083175, IEEE Access

N. Iqbal et al.: Clustering and Prediction Models for Enhancing Future Boreholes Efficiency and Underground Safety Management

[9] G. Kesavaraj and S. Sukumaran, “A study on classification techniques

in data mining,” in 2013 fourth international conference on computing,

communications and networking technologies (ICCCNT). IEEE, 2013,

pp. 1–7.

[10] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,

techniques and technologies: A survey on big data,” Information sciences,

vol. 275, pp. 314–347, 2014.

[11] T. Romary, F. Ors, J. Rivoirard, and J. Deraisme, “Unsupervised classifi-

cation of multivariate geostatistical data: two algorithms,” Computers &

geosciences, vol. 85, pp. 96–103, 2015.

[12] J. E. Shortridge, S. D. Guikema, and B. F. Zaitchik, “Machine learning

methods for empirical streamflow simulation: a comparison of model

accuracy, interpretability, and uncertainty in seasonal watersheds,” Hydrol-

ogy and Earth System Sciences, vol. 20, no. 7, pp. 2611–2628, 2016.

[13] S. Ahmad, F. Jamil, N. Iqbal, D. Kim et al., “Optimal route recommenda-

tion for waste carrier vehicles for efficient waste collection: A step forward

towards sustainable cities,” IEEE Access, vol. 8, pp. 77 875–77 887, 2020.

[14] S. Ahmad, N. Iqbal, F. Jamil, D. Kim et al., “Optimal policy-making for

municipal waste management based on predictive model optimization,”

IEEE Access, vol. 8, pp. 218 458–218 469, 2020.

[15] S. Sahoo, T. Russo, J. Elliott, and I. Foster, “Machine learning algorithms

for modeling groundwater level changes in agricultural regions of the us,”

Water Resources Research, vol. 53, no. 5, pp. 3878–3895, 2017.

[16] M. Gridach, “Character-level neural network for biomedical named entity

recognition,” Journal of biomedical informatics, vol. 70, pp. 85–91, 2017.

[17] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks

for acoustic modeling in speech recognition: The shared views of four

research groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp.

82–97, 2012.

[18] F. Jamil, N. Iqbal, S. Ahmad, and D.-H. Kim, “Toward accurate position

estimation using learning to prediction algorithm in indoor navigation,”

Sensors, vol. 20, no. 16, p. 4410, 2020.

[19] N. Iqbal, F. Jamil, S. Ahmad, and D. Kim, “A novel blockchain-based

integrity and reliable veterinary clinic information management system

using predictive analytics for provisioning of quality health services,”

IEEE Access, vol. 9, pp. 8069–8098, 2021.

[20] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A

review and new perspectives,” IEEE transactions on pattern analysis and

machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[21] A. Rahman, V. Srikumar, and A. D. Smith, “Predicting electricity con-

sumption for commercial and residential buildings using deep recurrent

neural networks,” Applied energy, vol. 212, pp. 372–385, 2018.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] X. Song, Y. Liu, L. Xue, J. Wang, J. Zhang, J. Wang, L. Jiang, and

Z. Cheng, “Time-series well performance prediction based on long short-

term memory (lstm) neural network model,” Journal of Petroleum Science

and Engineering, vol. 186, p. 106682, 2020.

[24] A. Sagheer and M. Kotb, “Time series forecasting of petroleum production

using deep lstm recurrent networks,” Neurocomputing, vol. 323, pp. 203–

213, 2019.

[25] D. Fan, H. Sun, J. Yao, K. Zhang, X. Yan, and Z. Sun, “Well production

forecasting based on arima-lstm model considering manual operations,”

Energy, vol. 220, p. 119708, 2021.

[26] V. R. Rosa, E. Camponogara, and V. J. M. Ferreira Filho, “Design opti-

mization of oilfield subsea infrastructures with manifold placement and

pipeline layout,” Computers & Chemical Engineering, vol. 108, pp. 163–

178, 2018.

[27] H. Sahebi, S. Nickel, and J. Ashayeri, “Strategic and tactical mathematical

programming models within the crude oil supply chain context—a review,”

Computers & chemical engineering, vol. 68, pp. 56–77, 2014.

[28] J. D. Kelleher, B. Mac Namee, and A. D’arcy, Fundamentals of machine

learning for predictive data analytics: algorithms, worked examples, and

case studies. MIT press, 2020.

[29] S. Emamgholizadeh, K. Moslemi, and G. Karami, “Prediction the ground-

water level of bastam plain (iran) by artificial neural network (ann) and

adaptive neuro-fuzzy inference system (anfis),” Water resources manage-

ment, vol. 28, no. 15, pp. 5433–5446, 2014.

[30] C. Soares and K. Gray, “Real-time predictive capabilities of analytical and

machine learning rate of penetration (rop) models,” Journal of Petroleum

Science and Engineering, vol. 172, pp. 934–959, 2019.

[31] P. C. Deka et al., “Support vector machine applications in the field of

hydrology: a review,” Applied soft computing, vol. 19, pp. 372–386, 2014.

[32] W. Sun and B. Trevor, “Combining k-nearest-neighbor models for annual

peak breakup flow forecasting,” Cold Regions Science and Technology,

vol. 143, pp. 59–69, 2017.

[33] C. Hegde and K. Gray, “Use of machine learning and data analytics

to increase drilling efficiency for nearby wells,” Journal of Natural Gas

Science and Engineering, vol. 40, pp. 327–335, 2017.

[34] Q. Tao, C. Gu, Z. Wang, and D. Jiang, “An intelligent clustering algorithm

for high-dimensional multiview data in big data applications,” Neurocom-

puting, vol. 393, pp. 234–244, 2020.

[35] S. Bharara, S. Sabitha, and A. Bansal, “Application of learning analytics

using clustering data mining for students’ disposition analysis,” Education

and Information Technologies, vol. 23, no. 2, pp. 957–984, 2018.

[36] M.-H. Jeong, Y. Cai, C. J. Sullivan, and S. Wang, “Data depth based

clustering analysis,” in Proceedings of the 24th ACM SIGSPATIAL In-

ternational Conference on Advances in Geographic Information Systems,

2016, pp. 1–10.

[37] N. Iqbal, S. Ahmad, D. H. Kim et al., “Towards mountain fire safety

using fire spread predictive analytics and mountain fire containment in iot

environment,” Sustainability, vol. 13, no. 5, p. 2461, 2021.

[38] A. N. Khan, N. Iqbal, R. Ahmad, and D.-H. Kim, “Ensemble prediction

approach based on learning to statistical model for efficient building

energy consumption management,” Symmetry, vol. 13, no. 3, p. 405, 2021.

[39] R. W. Liu, J. Nie, S. Garg, Z. Xiong, Y. Zhang, and M. S. Hossain, “Data-

driven trajectory quality improvement for promoting intelligent vessel

traffic services in 6g-enabled maritime iot systems,” IEEE Internet of

Things Journal, vol. 8, no. 7, pp. 5374–5385, 2020.

[40] F. Jamil, N. Iqbal, S. Ahmad, D. Kim et al., “Peer-to-peer energy trading

mechanism based on blockchain and machine learning for sustainable

electrical power supply in smart grid,” IEEE Access, vol. 9, pp. 39 193–

39 217, 2021.

[41] H. Li, J. Liu, Z. Yang, R. W. Liu, K. Wu, and Y. Wan, “Adaptively

constrained dynamic time warping for time series classification and clus-

tering,” Information Sciences, vol. 534, pp. 97–116, 2020.

[42] H. Li, J. Liu, K. Wu, Z. Yang, R. W. Liu, and N. Xiong, “Spatio-temporal

vessel trajectory clustering based on data mapping and density,” IEEE

Access, vol. 6, pp. 58 939–58 954, 2018.

[43] S. Rani and G. Sikka, “Recent techniques of clustering of time series data:

a survey,” International Journal of Computer Applications, vol. 52, no. 15,

2012.

[44] M. Huang, Q. Bao, Y. Zhang, and W. Feng, “A hybrid algorithm for fore-

casting financial time series data based on dbscan and svr,” Information,

vol. 10, no. 3, p. 103, 2019.

[45] R. Garcia-Dias, S. Vieira, W. H. L. Pinaya, and A. Mechelli, “Clustering

analysis,” in Machine Learning. Elsevier, 2020, pp. 227–247.

[46] M.-S. Yang and K. P. Sinaga, “A feature-reduction multi-view k-means

clustering algorithm,” IEEE Access, vol. 7, pp. 114 472–114 486, 2019.

[47] S. D. Kristjansson, A. Neudfeldt, S. W. Lai, J. Wang, D. Tremaine et al.,

“Use of historic data to improve drilling efficiency: a pattern recognition

method and trial results,” in IADC/SPE Drilling Conference and Exhibi-

tion. Society of Petroleum Engineers, 2016.

[48] M. He, N. Li, Z. Zhang, X. Yao, Y. Chen, and C. Zhu, “An empirical

method for determining the mechanical properties of jointed rock mass

using drilling energy,” International journal of rock mechanics and mining

sciences, vol. 116, pp. 64–74, 2019.

[49] C. Güler and G. D. Thyne, “Delineation of hydrochemical facies dis-

tribution in a regional groundwater system by means of fuzzy c-means

clustering,” Water Resources Research, vol. 40, no. 12, 2004.

[50] T. Helstrup, N. O. Jørgensen, and B. Banoeng-Yakubo, “Investigation of

hydrochemical characteristics of groundwater from the cretaceous-eocene

limestone aquifer in southern ghana and southern togo using hierarchical

cluster analysis,” Hydrogeology Journal, vol. 15, no. 5, pp. 977–989, 2007.

[51] C. Güler, G. D. Thyne, J. E. McCray, and K. A. Turner, “Evaluation of

graphical and multivariate statistical methods for classification of water

chemistry data,” Hydrogeology journal, vol. 10, no. 4, pp. 455–474, 2002.

[52] L. E. Widodo, T. A. Cahyadi, S. Notosiswoyo, and E. Widijanto, “Ap-

plication of clustering system to analyze geological, geotechnical and

hydrogeological data base according to hc-system approach,” 2017.

[53] M. Fatehi and H. H. Asadi, “Application of semi-supervised fuzzy c-means

method in clustering multivariate geochemical data, a case study from

the dalli cu-au porphyry deposit in central iran,” Ore Geology Reviews,

vol. 81, pp. 245–255, 2017.

[54] C. Reimann, P. Filzmoser, R. Garrett, and R. Dutter, Statistical data

analysis explained: applied environmental statistics with R. John Wiley

& Sons, 2011.

VOLUME 4, 2016 23



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083175, IEEE Access

N. Iqbal et al.: Clustering and Prediction Models for Enhancing Future Boreholes Efficiency and Underground Safety Management

[55] J. M. Morrison, M. B. Goldhaber, K. J. Ellefsen, and C. T. Mills, “Cluster

analysis of a regional-scale soil geochemical dataset in northern califor-

nia,” Applied Geochemistry, vol. 26, pp. S105–S107, 2011.

[56] Z. Deng, Y. Hu, M. Zhu, X. Huang, and B. Du, “A scalable and fast optics

for clustering trajectory big data,” Cluster Computing, vol. 18, no. 2, pp.

549–562, 2015.

[57] T. Zhou, F. Wang, and Z. Yang, “Comparative analysis of ann and svm

models combined with wavelet preprocess for groundwater depth predic-

tion,” Water, vol. 9, no. 10, p. 781, 2017.

[58] Y. Zhao, A. Noorbakhsh, M. Koopialipoor, A. Azizi, and M. Tahir, “A new

methodology for optimization and prediction of rate of penetration during

drilling operations,” Engineering with Computers, vol. 36, no. 2, pp. 587–

595, 2020.

[59] M. Bataee, S. Irawan, and M. Kamyab, “Artificial neural network model

for prediction of drilling rate of penetration and optimization of parame-

ters,” Journal of the Japan Petroleum Institute, vol. 57, no. 2, pp. 65–70,

2014.

[60] C. Hegde and K. Gray, “Evaluation of coupled machine learning models

for drilling optimization,” Journal of Natural Gas Science and Engineering,

vol. 56, pp. 397–407, 2018.

[61] C. Hegde, H. Daigle, K. E. Gray et al., “Performance comparison of

algorithms for real-time rate-of-penetration optimization in drilling using

data-driven models,” SPE Journal, vol. 23, no. 05, pp. 1–706, 2018.

[62] O. S. Ahmed, A. A. Adeniran, and A. Samsuri, “Computational intel-

ligence based prediction of drilling rate of penetration: A comparative

study,” Journal of Petroleum Science and Engineering, vol. 172, pp. 1–12,

2019.

[63] S. B. Ashrafi, M. Anemangely, M. Sabah, and M. J. Ameri, “Application

of hybrid artificial neural networks for predicting rate of penetration (rop):

A case study from marun oil field,” Journal of Petroleum Science and

Engineering, vol. 175, pp. 604–623, 2019.

[64] M. Sabah, M. Talebkeikhah, D. A. Wood, R. Khosravanian, M. Ane-

mangely, and A. Younesi, “A machine learning approach to predict drilling

rate using petrophysical and mud logging data,” Earth Science Informatics,

vol. 12, no. 3, pp. 319–339, 2019.

[65] S. Tewari and U. Dwivedi, “Ensemble-based big data analytics of litho-

facies for automatic development of petroleum reservoirs,” Computers &

Industrial Engineering, vol. 128, pp. 937–947, 2019.

[66] S. A. Alasadi and W. S. Bhaya, “Review of data preprocessing techniques

in data mining,” Journal of Engineering and Applied Sciences, vol. 12,

no. 16, pp. 4102–4107, 2017.

[67] C. Thirumalai, R. Kanimozhi, and B. Vaishnavi, “Data analysis using

box plot on electricity consumption,” in 2017 International conference of

Electronics, Communication and Aerospace Technology (ICECA), vol. 2.

IEEE, 2017, pp. 598–600.

[68] E. W. Steyerberg, A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen, N. Obu-

chowski, M. J. Pencina, and M. W. Kattan, “Assessing the performance of

prediction models: a framework for some traditional and novel measures,”

Epidemiology (Cambridge, Mass.), vol. 21, no. 1, p. 128, 2010.

NAEEM IQBAL is currently pursuing Ph.D. in

the Department of Computer Engineering at Jeju

National University, the Republic of Korea. He

received his MS in Computer Science from COM-

SATS University Islamabad, Attock Campus, Pun-

jab, Pakistan in 2019. He did his BS in Computer

Science from the COMSATS University Islam-

abad, Attock Campus. He has professional expe-

rience in the software development industry and

in academic as well. His research work mainly

focused on Machine Learning, Big Data, AI-based Intelligent Systems,

Analysis of Optimization Algorithms, and Blockchain-based Applications.

ATIF RIZWAN is currently pursuing Ph.D. in

the Department of Computer Engineering at Jeju

National University, the Republic of Korea. He

received his MS in Computer Science from COM-

SATS University Islamabad, Attock Campus, Pun-

jab, Pakistan in 2020 and he has also completed his

Master of Computer science (16 years) from the

COMSATS University Islamabad, Attock Cam-

pus. He has good industry experience in software

development and testing. His research work fo-

cused on machine learning, Data and Web Mining, analysis of optimization

of core algorithms and IoT based applications.

ANAM NAWAZ KHAN is currently pursuing

Ph.D. in the Department of Computer Engineering

at Jeju National University, the Republic of Korea.

She received his MS in Computer Science from

COMSATS University Islamabad, Attock Cam-

pus, Punjab, Pakistan in 2019. She did his BS

in Computer Science from the COMSATS Uni-

versity Islamabad, Attock Campus. Her research

work mainly focused on Machine Learning, Data

Mining, and Energy Prediction Systems, and IoT

Applications.

RASHID AHMAD received the B.S. degree from

the University of Malakand, Pakistan, in 2007, the

M.S. degree in Computer Science from the Na-

tional University of Computer and Emerging Sci-

ences (NUCES), Islamabad, Pakistan, in 2009, and

the Ph.D. degree in computer engineering from

Jeju National University, South Korea, in 2015.

His research work is focused on the application

of prediction and optimization algorithms to build

IoT-based solutions. His research interests mainly

focused on Machine Learning, Data Mining, related applications.

BONG WAN KIM is working as a researcher in

the Urban Space ICT Lab, the Republic of Korea.

His research work mainly focused on, Middleware

technology, device control object Internet tech-

nologies, intelligent object technology, equipment

identity management technologies, Low - power

wireless communication technology, low-power

sensor control technology, and low-power device

operation technology.

24 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083175, IEEE Access

N. Iqbal et al.: Clustering and Prediction Models for Enhancing Future Boreholes Efficiency and Underground Safety Management

KWANGSOO KIM is working as a researcher in

the Urban Space ICT Lab, the Republic of Korea.

His research work mainly focused on, Sensing

data collection, data analysis, data management

and open interfaces, data-based situational aware-

ness, Neural network modeling, neural network

learning, the neural network inference and artifi-

cial intelligence algorithms, Space modeling data,

spatial analysis, data visualization, data processing

algorithm space, space Big Data Management.

DOHYEUN KIM received the B.S. degree in

electronics engineering from Kyungpook National

University, South Korea, in 1988, and the M.S.and

Ph.D. degrees in information telecommunication

from Kyungpook National University, South Ko-

rea, in 1990 and 2000, respectively. He was with

the Agency of Defense Development (ADD),from

1990 to 1995. Since 2004, he has been with Jeju

National University, South Korea, where he is

currently a Professor with the Department of Com-

puter Engineering. From 2008 to 2009, he was a Visiting Researcher with

the Queensland University of Technology, Australia. His research interests

include sensor networks, M2M/IOT, energy optimization and prediction,

intelligent service, and mobile computing.

VOLUME 4, 2016 25


