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Borel and Stokes Nonperturbative

Phenomena in Topological String Theory

and c = 1 Matrix Models

Sara Pasquetti and Ricardo Schiappa

Abstract. We address the nonperturbative structure of topological strings
and c = 1 matrix models, focusing on understanding the nature of inst-
anton effects alongside with exploring their relation to the large-order
behavior of the 1/N expansion. We consider the Gaussian, Penner and
Chern–Simons matrix models, together with their holographic duals, the
c = 1 minimal string at self-dual radius and topological string theory
on the resolved conifold. We employ Borel analysis to obtain the exact
all-loop multi-instanton corrections to the free energies of the aforemen-
tioned models, and show that the leading poles in the Borel plane control
the large-order behavior of perturbation theory. We understand the non-
perturbative effects in terms of the Schwinger effect and provide a semi-
classical picture in terms of eigenvalue tunneling between critical points
of the multi-sheeted matrix model effective potentials. In particular, we
relate instantons to Stokes phenomena via a hyperasymptotic analysis,
providing a smoothing of the nonperturbative ambiguity. Our predictions
for the multi-instanton expansions are confirmed within the trans-series
set-up, which in the double-scaling limit describes nonperturbative cor-
rections to the Toda equation. Finally, we provide a spacetime realization
of our nonperturbative corrections in terms of toric D-brane instantons
which, in the double-scaling limit, precisely match D-instanton contribu-
tions to c = 1 minimal strings.

1. Introduction and Summary

The nonperturbative realm of quantum field and string theories has often
been a source of many new results and surprises. Another recurrent topic
of great interest over the past decades has been the large N approxima-
tion, lately relating gauge and string theories in a nonperturbative fashion.
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Of particular interest to us in this work is the case of the perturbative 1/N
expansion of hermitian matrix models, whose nonperturbative corrections are
exponentially suppressed as exp (−N). In the double-scaling limit, these models
describe noncritical or minimal (super)string theories, and the nonperturbat-
ive structure of the matrix model is related to that of the corresponding string
theory [1]: the exp (−N) contributions are instanton effects in the matrix
model [2,3] and they are interpreted as D-brane configurations in the string
theoretic description [4–6]. Of course the study of matrix models is not con-
fined to the vicinity of their critical points and one may also study nonper-
turbative effects away from the double-scaling limit. The interesting point is
that off-critical matrix models may be dual to topological string theories. For
instance, this happens in the case first suggested by Dijkgraaf and Vafa [7],
where some off-critical matrix models describe the topological string B-model
on certain non-compact Calabi–Yau (CY) backgrounds, with the string genus
expansion (in powers of the string coupling, gs) being identified with the 1/N
matrix model expansion; and it is also the case for topological strings with a
Chern–Simons dual, first studied in [8,9]. This turns out to be a more gen-
eral statement, as it was later shown in [10–12] that topological string theory
on mirrors of toric manifolds also enjoys a dual holographic description in
terms of off-critical matrix models. It is thus evident that fully understand-
ing the nonperturbative structure of matrix models, both at and off criti-
cality, will have many applications in both minimal and topological string
theories.

Recently [13–15] there has been significative progress in understanding
and in quantitatively computing nonperturbative effects in matrix models away
from criticality. In [13], and building upon double-scaled results [2,3,16,17],
off-critical saddle-point techniques were developed in order to compute inst-
anton amplitudes (up to two loops) in terms of spectral curve geometrical
data. This work focused upon one-instanton contributions in one-cut models,
and in [15] an extension to multi-instanton contributions, again in one-cut
models, was obtained, starting from a two-cut analysis. Extensive checks of
the nonperturbative proposals in these papers were also performed, by match-
ing against the large-order behavior of the 1/N expansion. Another approach
to multi-instanton amplitudes was developed in [14], this time around based
on orthogonal polynomial methods, via the use of trans-series solutions to
the string equations [18]. Further progress along these lines recently led to
the proposal of [19], where a proper nonperturbative definition of a modular-
invariant holomorphic partition function was presented, which was also shown
to be manifestly background independent. Remarkably, many of the results
uncovered in [13–15] appear to extend beyond the context of matrix models;
e.g., in cases where the theory is controlled by a finite-difference equation,
such as the string equation [18] for matrix models, it is possible to compute
nonperturbative effects and relate them to the large-order behavior of the the-
ory. This is the case of Hurwitz theory [13], which is controlled by a Toda-like
equation, and also the case of topological strings on the background considered
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in [20].1 However, all models considered in the aforementioned articles lie in
the universality class of 2D gravity, with c = 0, and methods that have been
worked out in this case cannot be applied in a straightforward fashion to the
case of topological strings in the universality class of c = 1. In view of this, it
is necessary to develop new techniques in order to approach nonperturbative
effects in models which belong to the universality class of the c = 1 string at
the self-dual radius.

Let us be a bit more specific about the nature of the string perturbative
expansion and the type of nonperturbative contributions we shall be looking
for. Topological strings, much like physical string theory, are perturbatively
defined in terms of two couplings, α′ and gs, as2

F (gs; {ti}) =

+∞∑

g=0

g2g−2
s Fg(ti), (1.1)

where F = log Z is the free energy and Z the partition function, and where
the fixed genus free energies Fg(ti) are themselves perturbatively expanded in
α′. In some sense, the α′ expansion is the milder one: it has finite convergence
radius, with this radius given by the critical value of the Kähler parameters
where one reaches a conifold point in moduli space. As it turns out, the prob-
lem of finding a nonperturbative formulation of the A-model free energy, in
α′, may be reduced to that of solving the mirror B-model description, where
topological string amplitudes become exact in α′. In this way, the A-model
solution is found by translating B-model amplitudes back to the A-model, by
means of the mirror map. This topic has been extensively studied in the litera-
ture and we refer the reader to the recent developments [11,12] and references
therein.

The situation gets more complicated as one tries to go beyond pertur-
bation theory in gs. In this case, one is immediately faced with the familiar
string theoretic large-order behavior Fg ∼ (2g)! rendering (1.1) as an asymp-
totic expansion [4]. In this case, one expects nonperturbative corrections of
order ∼ exp (−1/gs), and an adequate nonperturbative formulation of the
theory must encode all these corrections. As described above, there are certain
cases, such as the backgrounds considered by Dijkgraaf and Vafa [7], or mod-
els with a dual Chern–Simons interpretation, where topological strings have a
holographic matrix model description, with the matrix model large N expan-
sion reproducing the topological string genus expansion. In these set of back-
grounds, one would be tempted to use the finite N matrix model free energy
as the gs nonperturbative definition of topological string theory.3 In order to
establish this result, one must first understand how the finite N matrix model

1 A local CY threefold given by a bundle over a two-sphere, Xp = O(p − 2) ⊕ O(−p) → P
1,

p ∈ Z, which may be regarded as a quantum group deformation of Hurwitz theory; see [20]
for further details.
2 Recall that in the A-model the {ti} are Kähler parameters while in the B-model they are
complex parameters.
3 Other nonperturbative completions, provided by a holographic dual, have been proposed
in [21].
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would encompass all nonperturbative contributions ∼ exp (−1/gs). This situ-
ation is clear for minimal strings, realized in the double-scaling limit of hermi-
tian matrix models: the nonperturbative effects associated with the asymptotic
nature of the genus expansion are implemented via eigenvalue tunneling effects
in the dual matrix model, and are interpreted in the continuum formulation in
terms of Liouville branes in spacetime [1,6]. For topological strings, a similar
understanding has been achieved in the case of the local curve [10,13], where
a matrix model description is available [20]. In this case, the nonperturbative
effects associated to the asymptotic behavior, or large-order behavior, have
again been matched to instantons arising from matrix eigenvalue tunneling,
and a spacetime interpretation in terms of domain walls has been provided
[13].

However, there are several cases where this paradigm seems not to apply,
at least not in a straightforward fashion. It is our goal to address such issues in
the present work in the prototypical example of the resolved conifold, but also
encompassing matrix models in the c = 1 universality class. Topological strings
on the resolved conifold are holographically described by the Chern–Simons
matrix model, but there are now no obvious instantons associated to eigen-
value tunneling as the Chern–Simons potential has no local maxima outside of
the cut, where the eigenvalue instantons could tunnel to. This problem, which
was not an issue in any of the previously mentioned examples, also appears
in other matrix models, such as the Gaussian and Penner models; all of them
in the c = 1 universality class. One may then ask where do nonperturbative
corrections arise from, or what exactly controls the large-order behavior of the
1/N perturbative expansion in these models. We shall answer these questions
in this paper. One way out is to directly compute the (would-be) instanton
action that controls the large-order behavior of the perturbative expansion, by
means of a standard Borel analysis (see, e.g., [22]). At first this may look like
a formidable task, as one may expect the topological string genus expansion
to be rather complicated, not amenable to a Borel transform. Happily, the free
energies of all cases we consider enjoy a Gopakumar–Vafa (GV) integral repre-
sentation [23,24] which allows for an exact location of the singularities in the
Borel complex plane controlling the divergence of the asymptotic perturbative
series, i.e., the instanton action [22]. This is the topological string generaliza-
tion of a celebrated c = 1 string result [25]. Interestingly enough, this integral
representation may also be regarded as an one-loop Schwinger integral [24],
thus providing a spacetime interpretation of these nonperturbative effects; as
already pointed out in [24] they control the pair-production rate of BPS bound
states. As we shall later see, these results, which we further identify as Stokes
phenomena of the finite N partition function, will also allow us to explain the
nonperturbative contributions as one-eigenvalue effects in the matrix model
picture. We find, from a saddle-point analysis, that the c = 1 nonperturbative
effects arise due to the multi-valued structure of the effective potential (as
preliminarily suggested in [26]); a different picture from that of matrix models
in the universality class of 2D gravity plus matter, where the one-eigenvalue
tunneling occurs from a metastable minimum to the most stable one.
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This paper is organized as follows. We begin in Sect. 2 by reviewing the
main ideas behind our subsequent work. This includes the definition of the
Borel transform and the relation between instantons and the large-order behav-
ior of perturbation theory, both related to the existence of a nonperturbative
ambiguity in the calculation of the free energy. In this section, we also discuss
the Schwinger effect, where one actually has a physical prescription to define
the inverse Borel transform, which will turn out to be the case for topological
strings and c = 1 matrix models via the GV integral representation of the
topological string free energy. In Sect. 3, we then move on to presenting the
matrix models we shall be focusing upon. We review some of their properties,
such as their spectral curves and their perturbative genus expansions, and also
obtain expressions for their exact, finite N partition functions and holomorphic
effective potentials, both of which play important roles in sections to come. In
this section, we also discuss the double-scaling limit of these models and show
how they relate to FZZT branes. Section 4 presents one of the main topics
in this paper, the Borel analysis of the Gaussian, Penner and Chern–Simons
matrix models. We show how to obtain Schwinger-like integral representations
of the free energy, via Borel resummation, and how the correct identification of
the leading poles in the complex Borel plane leads to the one-instanton action
in all our examples. We further show in this section that while the all-loop
multi-instanton amplitudes precisely reconstruct the perturbative series, the
one-instanton results control the large-order behavior of perturbation theory.
We then move on to another of our main topics in Sect. 5, namely the issue
of Stokes phenomena. We recall how to obtain Stokes phenomena for integrals
with saddles via hyperasymptotic analysis, and perform a detailed calculation
for the Gamma function. This extends to the Barnes function and, in this way,
allows us to identify instantons with Stokes phenomena as we reproduce the
results we have previously found in Sect. 4, out of hyperasymptotic analysis. In
Sect. 6, we provide a semiclassical interpretation of our instantons via eigen-
value tunneling, where this tunneling is now associated with the existence of a
branched multi-sheeted structure in the relevant holomorphic effective poten-
tials. Indeed, simple monodromy calculations reproduce our results for the
multi-instanton action straight out of this interpretation. We further show in
this section how to interpret our instantons in spacetime, from the point of
view of ZZ branes. In Sect. 7, we discuss the trans-series approach to c = 1
matrix models and how it further validates our results. Finally, we conclude in
Sect. 8 with an outlook and future prospects. We also include two appendices,
one dedicated to the study of the monodromy structure of the polylogarithm,
and the other dedicated to the Cauchy dispersion relation, in the case of more
general topological string theories than the ones we address in this paper.

2. Asymptotic Series, Large Order and Topological Strings

We start by reviewing some useful facts concerning asymptotic series, the rela-
tion of their large-order behavior to nonperturbative effects, as described by
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instantons or by the Schwinger effect, and put them in the context of topolog-
ical string theory as we wish to study in the present work. For an introduction
to these topics with applications in quantum mechanics and quantum field
theory, we refer the reader to [22] and references therein.

Let us consider the perturbative expansion of some function, F (z), with
z the specific perturbative expansion parameter,

F (z) ∼
+∞∑

n=0

Fn zn. (2.1)

In many interesting examples one may infer that, at large n, the coefficients
behave as Fn ∼ (βn)!, thus rendering the series divergent. As an approximation
to the function F (z), the asymptotic series (2.1) must necessarily be truncated.
As such, one is faced with an obvious problem: how to deal with the fact that
the perturbative expansion has zero convergence radius? In particular, if we
do not know the function F (z), but only its asymptotic series expansion, how
do we associate a value to the divergent sum? The best framework to address
issues related to asymptotic series is Borel analysis. One starts by introducing
the Borel transform of the asymptotic series (2.1) as

B[F ](ξ) =

+∞∑

n=0

Fn

(βn)!
ξn, (2.2)

which removes the divergent part of the coefficients Fn and renders B[F ](ξ)
with finite convergence radius. In particular, if F (z) originally had a finite
radius of convergence (i.e., if it was not an asymptotic series), B[F ](ξ) would
be an entire function in the Borel complex ξ-plane. In general, however, B[F ](ξ)
will have singularities and it is crucial to locate them in the complex plane.
The reason for this is simple to understand: if B[F ](ξ) has no singularities for
real positive ξ one may analytically continue this function on R

+ and thus
define the inverse Borel transform by means of a Laplace transform as4

F̃ (z) =

+∞∫

0

dsB[F ]
(
zsβ

)
e−s. (2.3)

The function F̃ (z) has, by construction, the same asymptotic expansion as
F (z) and may thus provide a solution to our original question; it associates a
value to the divergent sum (2.1). If, however, the function B[F ](ξ) has poles or
branch cuts on the real axis, things get a bit more subtle: in order to perform
the integral (2.3) one needs to choose a contour which avoids such singular-
ities. This choice of contour naturally introduces an ambiguity (as we shall
see next, a nonperturbative ambiguity) in the reconstruction of the original
function, which renders F (z) non-Borel summable.5 As it turns out, different

4 For simplicity, we are assuming z ∈ R
+ in this expression.

5 Strictly speaking, the function is said not to be Borel summable if different integration
contours yield different results. It may still be the case that, in spite of having singularities
in the real axis, all alternative integration contours yield the same result.
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integration paths produce functions with the same asymptotic behavior, but
differing by exponentially suppressed terms. For instance, in the presence of a
singularity at a distance A from the origin, on the real axis, one may define
the integral (2.3) on contours C±, either avoiding the singularity from above,

and leading to F̃+(z), or from below, and leading to F̃−(z). One finds that
these two functions differ by a nonperturbative term [22]

F̃+(z) − F̃−(z) ∼ i e
− A

z1/β . (2.4)

In certain cases, e.g., when one has a Schwinger representation for the function
[27,28], there is a natural and rigorous way to define the integral (2.3) on a
contour which avoids the singularities, and which also allows for a physical
interpretation of the nonperturbative contributions.

So far our discussion has been rather general. However, it takes no effort
to figure out the physical relevance of our discussion: divergent series are almost
ubiquitous in physics and appear basically each time we approach an inter-
esting problem in perturbation theory [22]. A typical and extensively studied
case in quantum mechanics is the anharmonic oscillator (see, e.g., [22,29,30]).
Herein, the ground state energy may be computed in perturbation theory—as
a power series in the quartic coupling—and one finds that it is analytic in all
the (coupling constant) complex plane except for a branch cut on the nega-
tive real axis, associated with the instability of the potential which becomes
unbounded for negative values of the coupling. This instability is reflected by
the fact that the series is, as expected, asymptotic. In particular, one can per-
form a Borel analysis as above and discover that the Borel transform of the
ground state energy has singularities on the positive real axis, leading to an
ambiguity of order ∼ i e−1/g, with g the quartic coupling constant. In this sim-
ple quantum mechanical example the nonperturbative ambiguity has a clear
physical interpretation: it signals the presence—at negative g—of instantons

mediating the decay from the unstable to the true vacuum, via tunneling under
the local maximum of the potential.

What these ideas illustrate is that by means of a purely perturbative
analysis, i.e., finding the singularities of the Borel transform of the original
perturbative series, it is possible to learn about nonperturbative effects—at
least the intensity of the nonperturbative ambiguity (but we shall say more
on this in the following). In some examples, it is possible to independently
compute these nonperturbative terms directly, e.g., using WKB methods or
computing the path integral around non-trivial (subdominant) saddle points
[22]. In these examples one may then proceed in the opposite way from above
and obtain information on the large-order behavior of the perturbative expan-
sion out of the nonperturbative data. This is what we shall illustrate next.

2.1. From Instantons to Large-Order and Back

In physical applications, the factor A appearing in (2.4) is the one-instanton
action (see, e.g., [22]). Let us make this relation between instantons and the
large-order behavior of perturbation theory a bit more precise, as it will play
a crucial role in our later analysis. Consider a quantum system whose free
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energy is expressed as a perturbative expansion in g, the coupling constant,6

F (0)(g) =

+∞∑

k=0

f
(0)
k gk. (2.5)

The series (2.5) will generically be asymptotic, with zero radius of convergence.
This is naturally associated to a branch cut of F (g) in the complex g-plane,
located in the negative real axis and associated to instanton effects (just like
in the anharmonic oscillator example above). The function F (g) is expected to
be analytic otherwise. In fact this is saying that our quantum system should
actually be thought of as an asymptotic formal power series in two expansion

parameters, g and exp
(
− 1

g

)
, see [14] for a discussion in the matrix model

context. The appropriate expansion of the free energy is thus [14]

F (g) =

+∞∑

ℓ=0

CℓF (ℓ)(g), F (ℓ)(g) =
i

gb
e− ℓA

g

+∞∑

k=0

f
(ℓ)
k+1g

k. (2.6)

Here, C is a parameter corresponding to the nonperturbative ambiguity. Also,

A is the one-instanton action, b a characteristic exponent and f
(ℓ)
k is the k-loop

contribution around the ℓ-instanton configuration. Typically, the coefficients

f
(ℓ)
k are factorially divergent for any ℓ [22], in which case we may think about

the (ℓ+1)-instanton sector as the nonperturbative contribution related to the
asymptotic nature of the loop expansion around the ℓ-instanton sector.

A standard procedure then relates the coefficients of the perturbative

expansion around the zero-instanton sector, f
(0)
k , with the one-instanton free

energy as follows. The discontinuity of the free energy across the branch cut
(associated with the instability of the theory for negative g) is expressed, at
first order, in terms of the leading instanton expansion (2.6)

Disc F (g) ≡ lim
ǫ→0+

F (g + iǫ) − F (g − iǫ) = 2i Im F (g) = F (1)(g) + · · · . (2.7)

At the same time, we may use the Cauchy formula to write

F (g) =
1

2πi

0∫

−∞

dw
Disc F (w)

w − g
−

∮

(∞)

dw

2πi

F (w)

w − g
. (2.8)

In certain situations, e.g., in the aforementioned anharmonic oscillator exam-
ple [29], it is possible to show by scaling arguments that the last integral in the
expression above does not contribute. In such cases, (2.8) provides a remark-
able connection between perturbative and nonperturbative expansions. Using
the perturbative expansion (2.5) and the leading one-instanton contribution to
the discontinuity Disc F (g) ∼ F (1), one may obtain from the Cauchy formula

6 Here and below the index (ℓ) labels the ℓ-instanton sector, so that (0) labels the pertur-
bative expansion.
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(2.8) the following large order (or large k) relation

f
(0)
k =

+∞∫

0

dz

2πi

F (1)(z)

zk+1
∼ Γ (k + b)

2πAk+b

+∞∑

n=0

Γ (k + b − n)

Γ (k + b)
f

(1)
n+1A

n. (2.9)

This explicitly shows that the computation of the one-loop one-instanton par-
tition function determines the leading order of the asymptotic expansion for
the perturbative coefficients of the zero-instanton partition function. Higher
loop corrections then yield the successive 1

k corrections. Furthermore, instan-
ton corrections with action A′ > A, where we have in mind multi-instanton
corrections with action ℓA, ℓ ≥ 2, will yield corrections to the asymptotics of

the f
(0)
k coefficients which are exponentially suppressed in k.
For the cases we shall consider in this work, namely matrix models and

string theory, one finds genus expansions as in (1.1), with F
(0)
g ∼ (2g)!, so that

the relation (2.9) gets slightly re-written as follows (see, e.g., [13]). Begin with
the free energy in the zero-instanton sector, g2

sF (0)(gs). Setting z = g2
s , the

one-instanton path integral then yields a series of the form

zF (1)(z) =
i

z
b
2

e
− A√

z

+∞∑

g=0

z
g
2 F

(1)
g+1(t). (2.10)

Following a procedure analogous to the one above, where one further assumes
that the standard dispersion relation (2.8) still holds, it follows for the zero-
instanton sector perturbative coefficients

F (0)
g (t) =

+∞∫

0

dz

2πi

zF (1)(z)

zg+1
∼ Γ (2g + b)

πA2g+b

+∞∑

h=0

Γ (2g + b − h)

Γ (2g + b)
F

(1)
h+1(t)Ah.

(2.11)

Again, the computation of the one-loop one-instanton free energy determines
the leading order of the asymptotic expansion for the perturbative coefficients
of the zero-instanton free energy. Higher loop corrections then yield the suc-
cessive 1

2g corrections. One should further notice that recently, in [13–15], the

relation (2.11) has been tested in several models and rather conclusive numer-
ical checks have confirmed its validity.

2.2. The Schwinger Effect and a Semiclassical Interpretation

As discussed above, a nonperturbative ambiguity—typically associated to
instantons, from a physical point of view—can arise when defining the inte-
gration contour for the inverse Borel transform. However, this is not always
the case: we shall now review an example where a prescription to define the
inverse Borel transform naturally arises, together with a physical interpreta-
tion for the nonperturbative contributions [28]. This is the Schwinger effect
[27].

The one-loop effective Lagrangian describing a charged scalar particle,
of charge e and mass m, in a constant electric field, E > 0, has an integral
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representation given by Schwinger [27] (see, e.g., [31] for a recent review)

L =
e2E2

16π2

+∞∫

0

ds

s2

(
1

sin s
− 1

s
− s

6

)
e−s m2

eE , (2.12)

which admits the weak coupling expansion

L ∼ m4

16π2

+∞∑

n=0

(−1)n B2n+4

(2n + 4)(2n + 3)(2n + 2)

(
2eE

m2

)2n+4

. (2.13)

In here we used the shorthand B2n = 1−22n−1

22n−1 B2n, with B2n the Bernoulli
numbers. Since one may further relate the Bernoulli numbers to the Riemann
zeta function via

B2n = (−1)(n+1) 2 ζ(2n)

(2π)2n
(2n)! (2.14)

it becomes evident that B2n diverges factorially fast. In this case, if one first
writes the expansion (2.13) as

L ∼
+∞∑

n=0

a2n+4 x2n+4, (2.15)

with x = 2eE
m2 , it follows that at large n one has a2n+4 ∼ (2n + 1)! rendering

this perturbative expansion asymptotic—and actually non-Borel summable as
we shall see next. Indeed, computing the Borel transform it follows

B[L](ξ) =

+∞∑

n=0

a2n+4

(2n + 1)!
ξ2n+4 =

m4

16π2

(
ξ/2

sin (ξ/2)
− 1 − (ξ/2)

2

6

)
, (2.16)

from where one immediately notices that the Schwinger integral representation
of the effective Lagrangian (2.12) is essentially the inverse Borel transform

L̃(x) =

+∞∫

0

dt

t3
B[L] (xt) e−t =

e2E2

16π2

+∞∫

0

ds

s2

(
1

sin s
− 1

s
− s

6

)
e−s m2

eE .

(2.17)

Of course so far we still have a nonperturbative ambiguity to deal with: in
order to perform the integration on the real axis one still needs to specify a
prescription in order to avoid the poles at s = nπ, n ∈ N. This introduces
the usual ambiguities leading to exponentially suppressed contributions to the
effective Lagrangian. The novelty in this case is that there is now a natural
way to address the integration avoiding the singularities in an unambiguous
way [28].

As it turns out, the contour of integration needs to be deformed in such
a way that the integral picks up the contributions of all the poles as if the
real axis is approached from above, tantamount to a +iǫ prescription; and
this is the requirement which is dictated by unitarity [28]. As such, one has a
physical principle behind the unambiguous choice of contour. Furthermore, the
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Lagrangian develops an imaginary part which is simple to compute by sum-
ming residues,7 and which cannot be seen to any finite order in perturbation
theory,

ImL =
1

8π

(
eE

π

)2 +∞∑

n=1

(−1)n−1

n2
exp

(
−n

πm2

eE

)
, (2.18)

an expression with an evident multi-instanton flavor [32], as in (2.6). Besides
the appropriate, physical prescription to perform the integration, and as such
unambiguously compute the nonperturbative contributions to the Lagrangian,
the Schwinger effect gives us something else: a physical interpretation of this
imaginary part. Indeed, the imaginary part of the effective Lagrangian (2.18)
is precisely the pair-production rate, or probability per unit volume for pair
creation, for scalar electrodynamics in a constant electric field [27]. In other
words, the above unitary +iǫ prescription for the integration contour guaran-
tees that this probability is a positive number between zero and one (which
basically demands (2.18) to be real and positive).

Another interesting illustration of the Schwinger effect, which will be of
particular relevance in our subsequent discussion on topological strings and
matrix models, is the case of a constant (Euclidean) self-dual electromagnetic
background [33–35], satisfying

Fµν = ⋆Fµν ≡ 1

2
ǫµνρλF ρλ. (2.19)

Following [31], we introduce F2 = 1
4FµνFµν and the natural dimensionless

parameter γ = 2eF
m2 . In this case, the one-loop effective Lagrangian describing

a charged scalar particle is now given by Schwinger [27] and Dunne [31]

L =
e2F2

16π2

+∞∫

0

ds

s

(
1

sinh2 s
− 1

s2
+

1

3

)
e− 2s

γ , (2.20)

admitting the weak coupling expansion

L ∼ − m4

16π2

+∞∑

n=1

B2n+2

2n (2n + 2)

(
2eF
m2

)2n+2

. (2.21)

Notice that there are two possible self-dual backgrounds [33–35]: a magnetic-
like background with F real, in which case (2.21) has an alternating sign;
and an electric-like background with F imaginary, in which case (2.21) is not
alternating. If one carries through a Borel analysis similar to the previous one,
where we studied the case of constant electric field, one may further notice
that while the alternating (magnetic) series has Borel poles on the positive
imaginary axis, the non-alternating (electric) series has the Borel poles on the
positive real axis, making both situations rather distinct on what respects eval-
uating the inverse Borel transforms. For the non-alternating (electric) series it
is also possible to see that the aforementioned unitarity prescription will pick

7 Notice that the residue at s = 0 precisely vanishes.
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a Borel contour leading to a nonperturbative imaginary contribution to the
Lagrangian, unambiguously given by

ImL =
em2F
32π3

+∞∑

n=1

(
2π

n
+

γ

n2

)
e− 2πn

γ . (2.22)

This expression can similarly be obtained by first considering the magnetic
series, reflecting the integrand in (2.20) to the negative real axis in order to
obtain an integral over the entire real line, and then deforming this integration
contour such that it just incloses all the poles in the positive imaginary axis
(a contour surrounding iR+). The resulting integral will then produce a sum
over residues which, upon “Wick rotation” of the dimensionless coupling γ →
iγ̄, leads to the same expression as above, (2.22). As we shall see in the course of
this work, this expression is also at the basis of the nonperturbative structure
of topological strings and c = 1 matrix models.

Another important feature of the Schwinger effect, that we shall further
explore later on, is the fact that in the presence of a constant electric field the
pair-production process can be given a semiclassical interpretation in terms
of a tunneling process, where electrons of negative energy are extracted from
the Dirac background by the application of the external field [36]. The motion
under the potential barrier, classically forbidden, is considered for imaginary

values of time, allowing for a computation of the tunneling probability corre-
sponding to the pair-production rate as

w ∼ e−2 Im S , (2.23)

where ImS is the imaginary part of the action developed during motion under
the barrier. In here, a crucial point is that a particle in a sub-barrier trajectory
satisfies the classical equations of motion. One may then use standard classical
mechanics of a relativistic particle in order to describe this process. Indeed,
energy conservation

E = ±
√

p2 + m2 − eEx, (2.24)

together with the equation of motion ∂tp = eE, allow for an immediate
re-writing of the action (for E = 0) as:

S(p) =
p

2eE

√
p2 + m2 − m2

2eE
log

(
p +

√
p2 + m2

)
. (2.25)

Notice that, because of the logarithm, the action is a multi-valued function.
The spectrum of possible values for the energy is displayed in Fig. 1. A

potential barrier separates the lower continuum of negative-energy states (the

minus sign of
√

p2 + m2) from the upper continuum of positive-energy states

(the plus sign of
√

p2 + m2). Sub-barrier motion between points A1 and A2

will start at A1, where t = 0 = p, and corresponds to the variation of the
imaginary time/momentum along the path A1BA2, while the real part of the
energy remains constant. Indeed, at the classical turning point B we will have
t = im/eE and p = im, which corresponds to a square-root branch point of
the function S(p). The motion ends back at t = 0 = p in point A2, as shown
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Figure 1. On the left, the energy as a function of the
position. The blue (orange) region corresponds to the lower
(upper) continuum of particles with negative (positive) energy.
The white region is classically forbidden. On the right, the var-
iation of the imaginary momentum in the sub-barrier motion
(color figure online)

in Fig. 1. In this case, we see that the sub-barrier trajectory correspond to an
increment of the imaginary part of the action as

∆A1BA2
S = ImS, (2.26)

which we may compute as the shift of the multi-valued function S(p) as we
move in-between the sheets of the logarithm. In fact, it is rather simple to
realize that the value of S(p) on a generic sheet differs from its value on the
principal sheet, S∗(p), by

S(p) = S∗(p) + in
πm2

eE
, n ∈ Z. (2.27)

In the illustration above we went (once) “half way” around the branch cut
[−im,+im] in which case the shift in the action is given by

∆A1BA2
S =

πm2

2eE
. (2.28)

For a generic sub-barrier motion, corresponding to a repeated wandering of
the particle between the turning points A1 and A2 we may write

2 ImS =

∮

γn

√
p2 + m2 = n

πm2

eE
, n ∈ Z, (2.29)

where γn is a contour encircling n-times the branch cut of the action. One
may notice [36] that this result is in complete agreement with the Schwinger
computation result (2.18).

Naturally, this semiclassical argument may be refined in order to repro-
duce the pre-factors of the exponential term, and also so as to include the effect
of a magnetic field. The point we wanted to make is that, from a semiclassi-
cal perspective, the instanton action describing the pair-production rate as a
tunneling process may be computed via the branch cut discontinuities of the
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multi-valued function S(p). This is a technique that we shall deploy later on
in order to provide for a semiclassical interpretation of nonperturbative effects
in c = 1 matrix models in terms of eigenvalue tunneling.

In this paper, we shall apply the techniques we have just described, Borel
analysis, instanton calculus, and the Schwinger effect, in order to study the
nonperturbative structure of topological strings and c = 1 matrix models. As
such, we now turn to topological string theory with emphasis towards the
integral representation of its free energy.

2.3. The Topological String Free Energy

Asymptotic series and the Schwinger integral representation also appear in
the context of topological string theory (see, e.g., [37] for an introduction).
Let us start by describing the free energy of the A-model. The closed string
sector of the A-model is a theory of maps φ : Σg → X from a genus-g
Riemann surface, Σg, into a CY threefold X , which may be topologically clas-
sified by their homology class β = [φ∗(Σg)] ∈ H2(X , Z). One may expand

β =
∑dim H2(X ,Z)

i=1 ni [Si] on a basis [Si] of H2(X , Z), with associated complex-
ified Kähler parameters ti.

The topological string free energy has a standard genus expansion in
powers of the string coupling gs, as in (1.1), which in the large-radius phase
(i.e., for large values of the Kähler parameters, in units of α′) becomes

F (gs; {ti}) =
+∞∑

g=0

g2g−2
s Fg(ti), Fg(ti) =

∑

β≥0

Ng,β Qβ . (2.30)

Here, the sum over β is a sum over topological sectors or, equivalently, over
world-sheet instantons. We have further introduced Qi = e−ti , with Qβ denot-
ing

∏
i Qni

i , and we have chosen units in which α′ = 2π. The coefficients Ng,β

are the Gromov–Witten invariants of X , counting world-sheet instantons, i.e.,
the number of curves of genus g in the two-homology class β.

The expansion in world-sheet instantons in (2.30), regarded as a power
series in e−ti , generically has a finite convergence radius, tc, that can be esti-
mated from the asymptotic large β behavior of Gromov–Witten invariants
[38]

Ng,β ∼ β(γ−2)(1−g)−1eβtc , β → +∞. (2.31)

In here, γ is a critical exponent. At the critical value of the Kähler parameter,
tc, the so-called conifold point, the geometric interpretation of the A-model
large-radius phase breaks down and the topological string free energy under-
goes a phase transition to a non-geometric phase, nonperturbative in α′. One
may characterize the theory by its critical behavior at the conifold point. In
particular, one can consider the following double-scaling limit

t → tc, gs → 0, μ =
e−tc − e−t

gs
fixed. (2.32)
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In this case, the double-scaled free energy is universal, as first noticed in [39],
and reads

FDSL(μ) = Fc=1(μ) =
1

2
μ2 log μ − 1

12
log μ +

+∞∑

g=2

B2g

2g(2g − 2)
μ2−2g, (2.33)

where Fc=1(μ) is the all-genus free energy of the c = 1 string at the self-dual
radius (for a review on these issues see, e.g., [40]). The critical behavior (2.33)
has been checked in many examples, such as [41,42]. Furthermore, in [20], it
has been shown that certain local CYs have a critical behavior which is in
the universality class of 2d quantum gravity, i.e., they have γ = − 1

2 . Another
feature to notice is that the above genus expansion depends on the alternating
Bernoulli numbers and, thus, is alternating for real μ.

Of particular interest to our present work is the fact that the free energy
Fc=1(μ) has a Schwinger-like nonperturbative integral formulation [25,43],
given by

Fc=1(μ) =
1

4

+∞∫

0

ds

s

(
1

sinh2 s
− 1

s2
+

1

3

)
e−sµ, (2.34)

which coincides, after an appropriate identification of the parameters, with
the one-loop effective Lagrangian for a charged particle in a constant self-
dual background (2.20). This means that Fc=1(μ) enjoys an asymptotic weak
coupling expansion as in (2.21) and further develops a nonperturbative imag-
inary contribution akin to (2.22). In this line of thought, the exploration
of Schwinger-like integral representations for the free energies of topological
strings and c = 1 matrix models is one of the main topics in this paper.

2.4. A Schwinger–Gopakumar–Vafa Integral Representation

As should be clear by now, Schwinger-like integral representations for the free
energy are bound to play a critical role in our analysis. Happily, for topo-
logical string theory, such representations have been provided by Gopakumar
and Vafa [23,24,44]. These works explored both the connection of topological
strings to the physical IIA string, as well as the duality between type IIA com-
pactified on a CY threefold, at strong coupling, and M-theory compactified on
the same CY times a circle, in order to relate topological string amplitudes
to the BPS structure of wrapped M2-branes and thus re-write the topological
string free energy in terms of an integral representation. The final result in
[44] for the all-genus topological string free energy, on a CY threefold X , is

FX (gs; {ti})

=
∑

{di},r,m

n(di)
r (X )

+∞∫

0

ds

s

(
2 sin

s

2

)2r−2

exp

(
−2πs

gs
(d · t + im)

)
.

(2.35)

Let us explain the diverse quantities in this expression. The integers n
(di)
r (X )

are the GV invariants of the threefold X . They depend on the Kähler class di
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and on a spin label r. Later on we shall be focusing on the case where X is the

resolved conifold, for which there is only one non-vanishing integer, n
(1)
0 = 1.

The combination Z = d · t + im represents the central charge of 4D BPS
states obtained in the following fashion [44]. Start with M-theory compactified
on X × S

1 and consider the BPS spectrum of M2-branes wrapped on cycles

of the CY threefold with fixed central charge A = d · t =
∑dim H2(X ,Z)

i=1 diti,
with di as above and ti the complexified Kähler parameters. The mass of the
wrapped M2-branes is 2πA. Upon reduction on S

1 each BPS state may have
in addition an arbitrary (quantized) momentum m around the circle, leading
to BPS states of central charge Z and mass 2πZ. Notice that these 4D BPS
states contributing to the topological string free energy may be understood,
from a IIA point of view, as bound states of D2 and D0-branes, and it is the
physics of this system which can be related to a Schwinger-type computation
and thus to the above integral representation [in fact, thanks to the N = 2
supersymmetry in the problem, the Schwinger calculation one has to perform
in this context turns out to be equivalent to that of a vacuum amplitude for a
charged scalar field in the presence of a self-dual electromagnetic field strength,
as in (2.20)]. Furthermore, the integer m, associated to the winding around S

1,
counts the number of D0 branes in the D2D0 BPS bound state. This should
make (2.35) clear.

One may also recover the perturbative genus expansion from this integral
representation. Using the familiar identity

∑

m∈Z

exp

(
−2πim

s

gs

)
=

∑

n∈Z

δ

(
s

gs
− n

)
, (2.36)

with δ(x) the Dirac delta function, one may explicitly evaluate the sum over
m in (2.35) and thus obtain, after the trivial integration over s,

FX (gs; {ti}) =

+∞∑

r=0

+∞∑

di=1

n(di)
r (X )

+∞∑

n=1

1

n

(
2 sin

ngs

2

)2r−2

e−2πn d·t. (2.37)

This result expresses the topological string free energy, on a CY threefold X ,
in terms of the GV integer invariants [23,24,44]. To be completely precise, it
is important to notice that in order to recover the full topological string free
energy one still has to add to (2.37) the (alternating) constant map contribu-
tion [45,46]

FK(gs) =
+∞∑

g=0

g2g−2
s χK(X )

(−1)g |B2gB2g−2|
4g (2g − 2) (2g − 2)!

, (2.38)

where χK(X ) = 2
(
h1,1 − h2,1

)
is the Euler characteristic of X . This term

can also be given a Schwinger-like integral representation. From the point of
view of the duality between type IIA and M-theory, this amounts to consider-
ing only the contribution arising from the D0-branes, or Kaluza–Klein modes.
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The result is [24]

FK(gs) =
1

8
χK(X )

∑

m∈Z

+∞∫

0

ds

s

1

sinh2
(

s
2

) e−2πim s
gs

=
1

8
χK(X )

+∞∑

n=1

1

n

1

sinh2
(

ngs

2

) . (2.39)

In this paper we shall mainly consider the resolved conifold, a toric CY
threefold for which dimH2(X , Z) = 1 and thus the only non-vanishing integer

GV invariant is n
(1)
0 = 1. In this case, the GV integral representation (2.35)

immediately yields

FX (gs; t) =
1

4

∑

m∈Z

+∞∫

0

ds

s

1

sin2
(

s
2

) e− 2πs
gs

(t+i m), (2.40)

an expression which carries a Schwinger flavor, as we have seen above. It is
also important to point out that the case of r = 0 is the only one in which
the integrand of the GV integral representation will have “interesting” poles,
i.e., poles of the sine function on the real axis. When r > 0 the only poles
of the integrand will be at zero and ∞ in the Borel complex plane. So, in
particular, when studying more complicated CY threefolds where there is a
sum over r ≥ 0, it will always be the contribution from GV invariants with
r = 0 which will be the most relevant for the Schwinger analysis we shall carry
through later in the paper and, as such, the case of the resolved conifold is
a prototypical example for those situations. From the previous expression it
is also simple to obtain the perturbative expansion, by summing over m as
previously described, and one obtains

FX (gs; t) =
1

4

+∞∑

n=1

1

n

1

sin2
(

ngs

2

) e−2πn t. (2.41)

By carrying through this sum, expanding in powers of gs, and adding the
constant map contribution, one finally obtains the resolved conifold genus
expansion as

Fg(t) =
(−1)g|B2gB2g−2|

2g (2g − 2) (2g − 2)!
+

|B2g|
2g (2g − 2)!

Li3−2g

(
e−t

)
. (2.42)

with Lip(x) the polylogarithm function. We shall later see how a Borel analysis
allows for a nonperturbative completion of this expansion and moreover how
to relate this nonperturbative completion to the large-order behavior of the
above genus expansion.

One final word pertains to the matrix model description of strings on the
resolved conifold via a large N duality. It was shown in [47] that there is a
duality between closed and open topological A-model string theory on, respec-
tively, the resolved and the deformed conifold; two smooth manifolds related
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to the same singular geometry. In the resolved conifold case the conifold sin-
gularity is removed by blowing up a two-sphere around the singularity; while
in the deformed conifold case the conifold singularity is removed by growing a
three-sphere around it, which is also a Lagrangian sub-manifold thus providing
boundary conditions for open strings. As it turns out, the full open topological
string field theory in this latter background, T ∗

S
3, where we wrap N D-branes

on the Lagrangian sub-manifold base, S
3, reduces to SU(N) Chern–Simons

gauge theory on S
3 [48], whose partition function further admits a matrix

model description [8]. The matrix model in question, which we shall review in
the next section, has a potential with a single minimum and no local maxima.
In this paper we refer to this type of matrix models (which will also include
the Gaussian and Penner cases) as c = 1 matrix models since, as we shall
see, they all admit a very natural double-scaling limit to the c = 1 string at
self-dual radius. Notice that c = 1 matrix models do not belong to the class of
matrix models for which the off-critical instanton analysis has been carried out
so far. Because understanding nonperturbative corrections to the topological
string free energy on the resolved conifold is undissociated from understand-
ing nonperturbative corrections to c = 1 matrix models, we shall consider this
latter case more broadly in order to shed full light on this class of instanton
phenomena. As such, c = 1 matrix models is the subject we shall turn to next.

3. c = 1 Matrix Models and Topological String Theory

We shall now introduce three distinct matrix models, all in the universality
class of the c = 1 string, and which will be the main focus of our subsequent
discussion. As mentioned in the previous section, one of these models is the
one describing Chern–Simons gauge theory on S

3, known as the Stieltjes–
Wigert matrix model. Another interesting, and rather elementary, matrix
model is the Gaussian model. Yet, we shall find that it already displays many
features that will also appear for the resolved conifold. Finally, we also address
the Penner matrix model, first introduced to study the orbifold Euler charac-
teristic of the moduli space of punctured Riemann surfaces. These three models
have been extensively studied in the literature and in the present section we
will mostly gather some general facts necessary to obtain their topological
large N expansions and their holomorphic effective potentials. Then, in the
following section, we shall analyze their large N asymptotic expansions from
the point of view of Borel analysis.

Let us begin by recalling some basic notions about matrix models (see,
e.g., [1,18,49,50]). The hermitian N × N one-matrix model partition function
is

Z =
1

vol (U(N))

∫
dM e− 1

gs
Tr V (M), (3.1)

with vol (U(N)) the usual volume factor of the gauge group. In the eigenvalue
diagonal gauge this becomes
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Z =
1

N !

∫ N∏

i=1

(
dλi

2π

)
∆2(λ) e− 1

gs

∑N
i=1 V (λi), (3.2)

where ∆(λ) =
∏

i<j (λi − λj) is the Vandermonde determinant. The free
energy of the matrix model is then defined as usual F = log Z and, in the
large N limit, it has a perturbative genus expansion

F =

+∞∑

g=0

g2g−2
s Fg(t), (3.3)

with t = Ngs the ’t Hooft coupling. Multi-trace correlation functions in the
matrix model may be obtained from their generating functions, the connected

correlation functions defined by

Wh(z1, . . . , zh) =

〈
Tr

1

z1 − M
· · · Tr

1

zh − M

〉

(c)

=

+∞∑

g=0

g2g+h−2
s Wg,h(z1, . . . , zh; t). (3.4)

In particular, the generator of single-trace correlation functions is W1(z) =
Nω(z) where ω(z) is the resolvent, i.e., the Hilbert transform of the eigen-
value density ρ(λ) characterizing the saddle-point associated with the matrix
model large N limit. In the most general case, this saddle-point is such that
ρ(λ) has support C, with C a multi-cut region given by an union of s intervals
Ci. At large N , the eigenvalues condense on these intervals Ci in the complex
plane and one may interpret them geometrically as branch cuts of a spec-
tral curve which, in the hermitian one-matrix model, would be a hyperelliptic
Riemann surface corresponding to a double-sheet covering of the complex plane
C, with the two sheets sewed together by the cuts Ci.

The spectral curve, to be denoted by y(z), may be written in terms of
the genus zero resolvent which, for a generic one-cut solution with C = [a, b],
is given by the ansätz

ω0(z) =
1

2t

∮

C

dw

2πi

V ′(w)

z − w

√
(z − a)(z − b)

(w − a)(w − b)
, (3.5)

where one still has to impose that ω0(z) ∼ 1
z as z → +∞, in order to fix the

position of the cut endpoints8. The spectral curve is then defined as

y(z) = V ′(z) − 2t ω0(z) ≡ M(z)
√

(z − a)(z − b). (3.6)

For future reference, it is also useful to define the holomorphic effective
potential, defined as the line integral of the one-form y(z) dz along the spectral

8 This boundary condition states that the eigenvalue density is normalized to one in the
cut,

∫
C dλ ρ(λ) = 1.
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curve,

Vh;eff(λ) =

λ∫

a

dz y(z), (3.7)

which appears at leading order in the large N expansion of the matrix integral
as

Z ∼
∫ N∏

i=1

dλi exp

(
− 1

gs

N∑

i=1

Vh;eff(λi) + · · ·
)

. (3.8)

Because the real part of the spectral curve relates to the force exerted on a given
eigenvalue, it turns out that the effective potential Veff(z) = Re Vh;eff(z) is con-
stant inside the cut C, i.e., inside the cut the eigenvalues are free. The imaginary
part of the spectral curve, on the other hand, relates to the eigenvalue density
as Im y(z) = 2πt ρ(z), thus implying that the imaginary part of Vh;eff(z) is zero
outside the cut and monotonic inside. These two conditions guarantee that the
eigenvalue density is real with support on C. Furthermore, as should be clear
from the expression above, if the matrix integral Z is to be convergent a careful
choice of integration contour for the eigenvalues has to be made based also on
the properties of the holomorphic effective potential [2,3]. In particular, this
contour may be analytically continued to any contour which includes the cut
C and does not cross any region where Veff(z) = Re Vh;eff(z) < 0, thus guar-
anteeing global stability of the saddle-point configuration and convergence of
the matrix integral (as Re Vh;eff(λ) → +∞ at the endpoints of the integration
contour). These properties of Vh;eff(z) ensure that, in the large N limit, the
matrix integral can be evaluated with the steepest-descendant method [2,3].

There are many ways to solve matrix models. In particular, [51] proposed
a recursive method for computing the connected correlation functions (3.4) and
the genus-g free energies, Fg(t), entirely in terms of the spectral curve. This
recursive method, sometimes denoted by the topological recursion, appears to
be extremely general and applies beyond the context of matrix models; see
[52] for a review. For our purposes of computing the genus expansion of the
free energy one of the most efficient and simple methods is that of orthogonal
polynomials [18], which we now briefly introduce. If one regards

dμ(z) ≡ e− 1
gs

V (z) dz

2π
(3.9)

as a positive-definite measure in R, it is immediate to introduce orthogonal
polynomials, {pn(z)}, with respect to this measure as

∫

R

dμ(z) pn(z)pm(z) = hnδnm, n ≥ 0, (3.10)

where one further normalizes pn(z) such that pn(z) = zn + · · ·. Further notic-
ing that the Vandermonde determinant is ∆(λ) = det pj−1(λi), the one-matrix
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model partition function may be computed as

ZN =

N−1∏

n=0

hn = hN
0

N∏

n=1

rN−n
n , (3.11)

where we have defined rn = hn

hn−1
for n ≥ 1. These coefficients also appear in

the recursion relations of the orthogonal polynomials,

pn+1(z) = (z + sn) pn(z) − rn pn−1(z). (3.12)

In the large N limit the recursion coefficients approach a continuous function
rn → R(x), with x = n

N ∈ [0, 1], and one may proceed to compute the genus
expansion of log Z by making use of the Euler–MacLaurin formula; see [18,50]
for details.

3.1. The Gaussian Matrix Model

Let us first focus on the Gaussian matrix model, defined by the potential
VG(z) = 1

2z2. This case is rather simple as the matrix integral can be straight-
forwardly evaluated via gaussian integration, and the volume of the compact
unitary group follows by a theorem of Macdonald [53] as

vol (U(N)) =
(2π)

1
2 N(N+1)

G2(N + 1)
, (3.13)

where G2(z) is the Barnes function, G2(z + 1) = Γ(z)G2(z). The Gaussian
partition function thus reads

ZG =
g

N2

2
s

(2π)
N
2

G2(N + 1). (3.14)

The same result can be obtained with orthogonal polynomials. With respect to

the Gaussian measure dμ(x) = e−x2

dx one finds Hermite polynomials, Hn(x),
and for the Gaussian matrix model it follows

pn(z) =
(gs

2

)n
2

Hn

(
z√
2gs

)
, hG

n = gn
s n!

√
gs

2π
, (3.15)

indeed reproducing the expected result for the partition function as

Z =

N−1∏

n=0

hG
n =

g
N2

2
s

(2π)
N
2

N−1∏

n=0

n! = ZG, (3.16)

where we have also used that G2(N + 1) =
∏N−1

n=0 n!. The asymptotic genus
expansion of the Gaussian free energy FG = log ZG simply follows from the
asymptotic expansion of the logarithm of the Barnes function and one obtains

FG
0 (t) =

1

2
t2

(
log t − 3

2

)
, (3.17)

FG
1 (t) = − 1

12
log t + ζ ′(−1), (3.18)

FG
g (t) =

B2g

2g(2g − 2)
t2−2g, g ≥ 2, (3.19)
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Figure 2. The Gaussian algebraic curve for values of
t = −0.5,−0.1, 0,+0.1,+0.5, from left to right, respectively.
Notice that the algebraic curve is singular for t = 0

where ζ(z) is the Riemann zeta function. One immediately notices that all free
energies with g ≥ 1 diverge when t → 0. It is then quite obvious to consider
the double-scaling limit, approaching the critical point tc = 0, as

t → 0, gs → 0, μ =
t − tc

gs
fixed, (3.20)

in order to obtain the c = 1 string at self-dual radius behavior

g2g−2
s FG

g (t) → B2g

2g(2g − 2)
μ2−2g, g ≥ 2. (3.21)

Finally, it is very simple to compute the one-form on the spectral curve
of the Gaussian model

y(z) dz =
√

z2 − 4t dz, (3.22)

as well as the holomorphic effective potential

V G
h;eff(z) =

1

2
z
√

z2 − 4t − 2t log

(
z +

√
z2 − 4t

2
√

t

)
, (3.23)

where we have normalized the result such that V G
h;eff(b = 2

√
t) = 0. In Figs. 2

and 3 we plot the Gaussian algebraic curve for different values of t, as well
as the real value of the holomorphic effective potential in the complex plane.
We notice that, with an appropriate identification of parameters, the Gauss-
ian holomorphic effective potential coincides with the action associated to the
semiclassical Schwinger effect (2.25). In the following, we shall further com-
ment about this interesting coincidence.

3.2. The Penner Matrix Model

The second example we wish to address is the Penner matrix model [54]. First
introduced to study the orbifold Euler characteristic of the moduli space of
Riemann surfaces at genus g, with n punctures, it turns out that in the dou-
ble-scaling limit this model is actually related to the usual c = 1 noncritical
string theory, its free energy being a Legendre transform of the free energy of
the c = 1 string compactified at self-dual radius [55,56]. The Penner matrix
model is defined by the potential VP(z) = z − log z and one may simply com-
pute its partition function again using orthogonal polynomials. Indeed, one
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Figure 3. The real part of the Gaussian holomorphic effec-
tive potential in the complex z-plane, for t = 0.2. In
blue is the region Re V G

h;eff(z) < 0, in orange the region

Re V G
h;eff(z) > 0, and the black lines correspond to the Stokes

lines Re V G
h;eff(z) = 0 (which also include the cut of the spec-

tral curve). The white cut corresponds to the logarithmic
branch cut (color figure online)

may write the Penner measure as

dμ(z) = z
1

gs e− z
gs

dz

2π
, (3.24)

which is, up to normalization, the measure for the generalized, or associated,

Laguerre polynomials L
(α)
n (x) = 1

n! exx−α dn

dxn (e−xxn+α). It thus follows for
the Penner matrix model

pn(z) = (−1)ngn
s n!L(1/gs)

n

(
z

gs

)
, hP

n =
1

2π
g
2n+1+ 1

gs
s n! Γ

(
n +

1

gs
+ 1

)
.

(3.25)

This immediately leads to the calculation of the partition function in this
model as

ZP =

N−1∏

n=0

hP
n =

g
N(N+ 1

gs
)

s

(2π)N

G2 (N + 1) G2

(
N + 1

gs
+ 1

)

G2

(
1
gs

+ 1
) , (3.26)



374 S. Pasquetti and R. Schiappa Ann. Henri Poincaré

where we made use of the Barnes function, satisfying

N−1∏

n=0

Γ (n + α + 1) =
G2(N + α + 1)

G2(α + 1)
. (3.27)

The normalized Penner free energy FP = FP − FG = log ZP

ZG
is given by

FP =
1

2
N2 log gs +

N

gs
log gs − 1

2
N log 2π

+ log G2

(
N +

1

gs
+ 1

)
− log G2

(
1

gs
+ 1

)
, (3.28)

and it admits the following genus expansion, obtained from the asymptotic
expansion of the logarithm of the Barnes functions,

FP
0 (t) =

1

2
(t + 1)

2

(
log (t + 1) − 3

2

)
+

3

4
, (3.29)

FP
1 (t) = − 1

12
log (t + 1) , (3.30)

FP
g (t) =

B2g

2g(2g − 2)

(
(t + 1)

2−2g − 1
)

, g ≥ 2. (3.31)

One immediately notices that all free energies with g ≥ 1 diverge when t → −1.
It is then quite obvious to consider the double-scaling limit, approaching the
critical point tc = −1, as

t → −1, gs → 0, μ =
t − tc

gs
fixed, (3.32)

in order to obtain the c = 1 string at self-dual radius [55]

g2g−2
s FP

g (t) → B2g

2g(2g − 2)
μ2−2g, g ≥ 2. (3.33)

Next, let us address the large N expansion of the Penner matrix model
by making use of saddle-point techniques [57,58]. This time around, the ansätz

for the large N , genus zero resolvent is [57]

ω0(z) =
1

2t

(
V ′(z) − 1

z
√

ab

√
(z − a)(z − b)

)
, (3.34)

so that its large z asymptotics, ω0(z) ∼ 1
z + · · · as z → ∞, immediately deter-

mine the endpoints of the cut C = [a, b] to be

a = 1 + 2t − 2
√

t(t + 1), (3.35)

b = 1 + 2t + 2
√

t(t + 1). (3.36)

It is now simple to obtain the one-form on the spectral curve of the Penner
model

y(z) dz =
1

z

√
z2 − 2 (2t + 1) z + 1 dz (3.37)
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Figure 4. The Penner algebraic curve for values of t =
−0.2,−0.01, 0,+0.01,+0.2, from left to right, respectively.
Notice that the algebraic curve is singular for t = 0

as well as the holomorphic effective potential

V P
h;eff(z)

=
√

z2 − 2 (2t + 1) z + 1 + log z

− log
(
1 − (2t + 1) z +

√
z2 − 2 (2t + 1) z + 1

)

− (2t + 1) log
(
z − (2t + 1) +

√
z2 − 2 (2t + 1) z + 1

)

+ (t + 1) log (t(t + 1)) + (t + 1) log 4 + iπ, (3.38)

where we have normalized the result such that V P
h;eff(b) = 0. In Figs. 4 and

5, we plot the Penner algebraic curve for different values of t, as well as the
real value of the holomorphic effective potential in the complex plane. The
structure of Stokes lines for this potential is now more complicated (see, e.g.,
[57,58]) than in the familiar polynomial cases (see, e.g., [2,3]).

3.3. The Chern–Simons Matrix Model

We now turn to the Chern–Simons, or Stieltjes–Wigert, matrix model. As
we previously stated this model is particularly interesting for its relation, via
a large N duality, to topological string theory on the resolved conifold [47].
The SU(N) Chern–Simons gauge theory on a generic three-manifold has been
realized as a matrix model in [8]; see [59] for a review.. Here, we shall focus
on the resolved conifold case, where the partition function of SU(N) Chern–
Simons gauge theory on S

3 is, up to a factor, given by the Stieltjes–Wigert
matrix model [60] defined by the potential VSW(z) = 1

2 (log z)
2
. To be precise,

the Chern–Simons partition function relates to the Stieltjes–Wigert partition
function by the simple expression ZCS = exp

(
− t

12

(
7N2 − 1

))
ZSW, so that

the corresponding free energies equate as

FCS = − 7

12

t3

g2
s

+
t

12
+ FSW. (3.39)

For a review of the main features of this matrix model, including saddle-point
methods and orthogonal polynomial analysis, we refer the reader to, e.g., [50].

Let us start by computing the partition function ZCS using orthogo-
nal polynomials—as we shall see one may regard the Stieltjes–Wigert matrix
model as a q-deformation, in the quantum group sense, of the Gaussian matrix

model. The logarithmic measure dμ(z) = e− 1
2gs

(log z)2 dz
2π is well-known in the
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Figure 5. The real part of the Penner holomorphic effec-
tive potential in the complex z-plane, for t = 0.1. In
blue is the region Re V P

h;eff(z) < 0, in yellow the region

Re V P
h;eff(z) > 0, and the black lines correspond to the Stokes

lines Re V P
h;eff(z) = 0 (which also include the cut of the spec-

tral curve). The white cuts corresponds to the logarithmic
branch cuts (color figure online)

literature precisely because it leads to so-called Stieltjes–Wigert orthogonal
polynomials,

pn(z) = (−1)nqn2+ n
2

n∑

k=0

[
n
k

]

q

q
k(k−n)

2 −k2
(
−q− 1

2 z
)k

,

hSW
n = q

7
4 n(n+1)+ 1

2 [n]q!

√
gs

2π
,

(3.40)

where we have introduced

q = egs , [n]q = q
n
2 − q− n

2 ,

[
n
m

]

q

=
[n]q!

[m]q! [n − m]q!
. (3.41)

With this information at hand, one may now explicitly compute the Stieltjes–
Wigert partition function from definition

ZSW =
N−1∏

n=0

hSW
n =

( gs

2π

)N
2

q
N
12 (7N2−1)

N−1∏

n=0

[n]q!. (3.42)
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A simple glance at (3.16) immediately shows that, up to normalization, one
may indeed regard the Stieltjes–Wigert matrix model as a q-deformation of
the Gaussian matrix model, at least at the level of the partition functions. One
may further define the q-deformed, or quantum Barnes function as

Gq(N + 1) =

N−1∏

n=0

[n]q!, (3.43)

so that the Stieltjes–Wigert partition function is simply ZSW =
(

gs

2π

)N
2

q
N
12 (7N2−1)Gq(N + 1). These expressions may then be used to address the

large N topological expansion of the Stieltjes–Wigert matrix model. Standard
use of orthogonal polynomial techniques [18], as described, e.g., in [50], yield9

FCS
0 (t) =

t3

12
− π2t

6
− Li3

(
e−t

)
+ ζ(3), (3.44)

FCS
1 (t) = − t

24
+

1

12
Li1

(
e−t

)
+ ζ ′(−1), (3.45)

FCS
g (t) =

B2gB2g−2

2g (2g − 2) (2g − 2)!
+

B2g

2g (2g − 2)!
Li3−2g

(
e−t

)
, g ≥ 2,

(3.46)

where Lip(z) is the polylogarithm of index p,

Lip(z) =

+∞∑

n=1

zn

np
. (3.47)

At genus g ≥ 2 of course the topological expansions of Chern–Simons and
Stieltjes–Wigert perturbative free energies coincide, FCS

g (t) = F SW
g (t). Fur-

thermore, after analytical continuation gs → iḡs, the free energies FCS
g (t)

coincide with the free energies of topological strings on the resolved conifold
(2.42), once one identifies ’t Hooft coupling and Kähler parameter. Finally,
notice that all free energies with g ≥ 1 diverge when t → 0 which corresponds
to e−t → 1; with this second variable the natural one as the divergences are
associated to the singular point of the (negative index) polylogarithm, Li−p(1).
It is then quite natural to consider the double-scaling limit, approaching the
critical point e−tc = 1, as

e−t → 1, gs → 0, μ =
e−tc − e−t

gs
fixed, (3.48)

in which case one again obtains the c = 1 string at self-dual radius

g2g−2
s FCS

g (t) → B2g

2g(2g − 2)
μ2−2g, g ≥ 2. (3.49)

Finally, we address the spectral curve and holomorphic effective potential
for the Stieltjes–Wigert matrix model by making use of saddle-point tech-
niques. With potential VSW(z) = 1

2 (log z)
2

and V ′
SW(z) = 1

z log z one must be

9 Notice that, unlike in the previous example of the Penner model, in here we have not

normalized the Chern–Simons free energy by the Gaussian free energy.
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a bit careful in applying (3.5) to compute the resolvent: indeed, the deforma-
tion of the contour around the cut, C = [a, b], must now be done differently due
to the logarithmic branch-cut. Instead of capturing the pole at z and the pole
at ∞, this time around one captures the pole at z and the branch cut along
the negative real axis (zero included); we refer the reader to [50] for further
details. The endpoints of the cut are

a, b = 2e2t − et ± 2e
3t
2

√
et − 1, (3.50)

while the one-form on the spectral curve reads

y(z) dz =
2

z
log

1 + e−tz +

√
(1 + e−tz)

2 − 4z

2
√

z
dz, (3.51)

which coincides with the one-form log Y (Z) dZ
Z on the mirror curve

H(Z, Y ) = 0 of the resolved conifold, written in terms of the C
∗ variables

Z = ez and Y = ey. One further computes the holomorphic effective potential
as

V CS
h;eff(z)

= −1

2
log2 z+log2 ξ−2

(
log ξ log(1 − e−tξ) + Li2(1 − ξ) + Li2(e

−tξ)
)

− V0

= −1

2
log2 z + log2 ξ − 2

(
log ξ log(1 − e−tξ) + Li2(e

−tξ) − Li2 (ξ)

− log (1 − ξ) log ξ +
π2

6

)
− V0, (3.52)

where equality holds due to the Euler’s reflection formula for dilogarithms

Li2(ξ) + Li2(1 − ξ) =
π2

6
− log (1 − ξ) log ξ. (3.53)

In here we have set

ξ(z) =
1 + e−tz +

√
(1 + e−tz)

2 − 4z

2
(3.54)

to simplify notation10 and we have defined

V0 = −1

2
log2

(
2 e2t − et + 2e

3t
2

√
et − 1

)
+ log2

(
et + e

t
2

√
et − 1

)

−2 log
(
et + e

t
2

√
et − 1

)
log

(
−e− t

2

√
et − 1

)
−2Li2

(
1−et − e

t
2

√
et − 1

)

−2Li2

(
1 + e− t

2

√
et − 1

)
, (3.55)

to ensure that the result is normalized such that V CS
h;eff(b) = 0. In Figs. 6 and

7, we plot the Stieltjes–Wigert algebraic curve for different values of t, as
well as the real value of the holomorphic effective potential in the complex

10 Using this variable, the spectral curve is also compactly re-written as y(z) = 2
z

log ξ√
z
.
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Figure 6. The Stieltjes–Wigert algebraic curve for values of
t = −0.1,−0.01, 0,+0.01,+0.05, from left to right, respec-
tively. Notice that the algebraic curve is singular for t = 0
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Figure 7. The real part of the Stieltjes–Wigert holomorphic
effective potential in the complex z-plane, for t = 0.1. The
black lines correspond to the Stokes lines Re V CS

h;eff(z) = 0

(which also include the cut of the spectral curve). The white

cuts and regions correspond to the logarithmic and dilogarith-
mic branch cuts. Because of the choice of principal sheets in
Mathematica the colored regions are now not so clear. Akin
to the Penner model, the region in yellow, to the right of the

vertical black lines, and the region in blue, inside the “closed
bubble”, have Re V CS

h;eff(z) > 0, in the principal sheet. The rest

is Re V CS
h;eff(z) < 0 (color figure online)

plane. Given that Li2(z) is the standard dilogarithm function, with its intricate
branch structure, it is not too hard to realize that the structure of Stokes lines
of the present effective potential is now much more complicated than usual.
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3.4. Double-Scaling Limit and c = 1 Behavior

We have just seen that the Gaussian, Penner and Chern–Simons free energies
admit rather simple double-scaling limits to the c = 1 string at self-dual radius.
In the Chern–Simons case, this relates to our earlier discussion in Sect. 2.3,
where we pointed out that, at the conifold point of moduli space, the A-model
may still be characterized by its critical behavior in the double-scaling limit
(2.32). Free energies of the topological string reduce, in this situation, to free
energies of the c = 1 string. Let us now briefly discuss, in the example of the
Chern–Simons matrix model, how one may also study the destiny of the open
string sector, i.e., of the matrix model correlators Wh(p1, . . . , ph) introduced
in (3.4), in this c = 1 double-scaling limit.

Introducing a parameter ζ as

e−t ≡ 1 − ζ, (3.56)

the conifold point of the Chern–Simons model is thus located at ζ = 0. The
expansion of the branch points of the spectral curve (3.51) near the conifold
point yields

a, b = 1 ± 2ζ
1
2 + · · · , (3.57)

in which case it is natural to scale also the z variable in the spectral curve as

z = 1 + ζ
1
2 s (3.58)

in order to appropriately zoom into the critical region. In here, s is the double-
scaled open coordinate. In these variables the Chern–Simons one-form y(z) dz,
at criticality, scales to

y(z) dz → y(s) ds = ζ
√

s2 − 4 ds (3.59)

which one immediately recognizes as the one-form of the Gaussian matrix
model. The interesting point is that, in the same variables, also the two-point
correlator W0(p, q) reduces to the Gaussian one

W0,2(p, q) dp dq → 1

2

1

(s − t)2

(
st − 4√

(s2 − 4) (t2 − 4)
− 1

)
dsdt. (3.60)

In fact, there is a property of the topological recursion, proved in [51], which
states that one may either first compute matrix model amplitudes and then
take their double-scaling limits, or else recursively compute amplitudes directly
from the double-scaled curve, the result being the same (i.e., the operations
commute). As such, in the c = 1 double-scaling limit Chern–Simons open
correlators will all reduce to Gaussian open correlators

WCS
g,h (z1, . . . , zh) dz1 · · · dzh → ζ2−2g−h WG

g,h (s1, . . . , sh) ds1 · · · dsh. (3.61)

Now recall that open topological string amplitudes may be computed from the
matrix model correlators Wg,h(z1, . . . , zh) as [10,11,61,62]

A
(g)
h (p1, . . . , ph) =

p1∫
. . .

ph∫
dz1 . . . dzh Wg,h(z1, . . . , zh), (3.62)
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where the {pi} are the open string parameters which parametrize the moduli
space of the brane. As such (3.61) shows how, near the conifold point, open
amplitudes of topological strings on the resolved conifold reduce to Gaussian
amplitudes. This is actually generic for topological string theory near the con-
ifold point [12]. We shall now relate these Gaussian amplitudes with open
amplitudes in the dual c = 1 model.

We first need to recall some results in non-critical strings, holographi-
cally duals to matrix models. We are interested in minimal models obtained
by coupling 2D gravity to minimal (p, q) matter models, with central charge
cp,q = 1−6(p− q)2/pq. The coupling to gravity leads to the appearance of the
Liouville field, φ, with world-sheet action

SL =

∫
d2z

4π

√
g

(
∂φ2 + QRφ + 4πμLe2bφ

)
, (3.63)

where μL is the bulk cosmological constant. The central charge of the Liouville
sector is cL = 1 + 6Q2, and the parameter b above relates to the background
charge Q as Q = b + 1/b. The bosonic string requirement that the total cen-
tral charge of Liouville theory plus minimal matter equals c = 26 eventually

fixes b =
√

p
q . There are two distinct types of boundary conditions in Liouville

theory [63,64]. There is a one-parameter family of Neumann boundary condi-
tions, the so-called FZZT branes, parameterized by the boundary cosmological
constant μB, usually expressed in terms of a parameter s as

μB =

√
μL

sin (πb2)
cosh (πbs) . (3.64)

Besides FZZT branes, there are also ZZ branes, associated to Dirichlet bound-
ary conditions. These correspond to a two-parameter family, parameterized by
the pair of integers (m,n), and are localized at φ = ∞. At the quantum level
FZZT and ZZ boundary conditions, or, respectively, the 〈Bs| and 〈B(m,n)|
boundary states, are related as [65–67]

〈B(m,n)| = 〈Bs(m,n)| − 〈Bs(m,−n)|, with s(m,n) = i
(m

b
+ bn

)
. (3.65)

Both types of branes have been given a geometrical interpretation in
terms of a complex curve, in [67]. This is accomplished by introducing the
variables

x = μB ∼ cosh (πbs) , y =
∂

∂μB
ZFZZT ∼ sinh

(πs

b

)
. (3.66)

Considered as complex variables, the coordinates {x, y} define an algebraic
curve F (x, y) = 0 embedded into C

2, which is identified with the spectral curve
of the dual matrix model (i.e., a double-scaled hermitian one-matrix model)
[67]. The FZZT brane disk partition function may be equivalently written as
the line integral of the one-form y dx as

ZFZZT(μB) =

µB∫
dx y. (3.67)
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Analogously, the h-point matrix model correlators (3.4) are identified with
open amplitudes with FZZT boundary conditions, e.g., the two-point function
W0,2 (p, q) is identified as the annulus amplitude for FZZT branes and so on.
The ZZ brane disk partition function is instead defined as the line integral of
y dx over a closed contour

ZZZ
(m,n) =

∮

γm,n

dx y, (3.68)

where γm,n is a non-contractible contour conjugate to a “pinched cycle”,
starting and ending at the singular point x(m,n) = x (s(m,n)) and y(m,n) =
y (s(m,n)) [67].

The case of c = 1 is a bit more subtle since one has to consider the sin-
gular b → 1 limit. It is first necessary to introduce the renormalized couplings

μc=1 = lim
b→1

(
π

(
1 − b2

)
μL

)
, μB,c=1 = lim

b→1

(
π

(
1 − b2

)
μB

)
. (3.69)

Furthermore, an appropriate subtraction is required in order to define the
FZZT disk partition function. This may be expressed in terms of the one-form
w(s) dμB,c=1(s) with

w(s) ≡ lim
b→1

(
∂µB

ZFZZT

π (1 − b2)
+

4

π
ZD μB

)
, (3.70)

where ZD is the disk partition function in the c = 1 CFT. The relevant c = 1
curve then reads

x(s) = μB,c=1(s) =
√

μc=1 cosh (πs) ,

y(s) = w(s) = −D
√

μc=1 πs sinh (πs) ,
(3.71)

where D is some constant. The identification of the curve (3.71), arising from
CFT considerations, with the curve of the dual matrix model is another deli-
cate point. Here, the relevant matrix model is a double-scaled version of Matrix
Quantum Mechanics (MQM) with a Sine–Liouville perturbation. It is know for
quite some time [49] that the singlet sector of this MQM can be reduced to a
system of free fermions, in an inverted harmonic oscillator. In the semiclassical
limit, the ground state of this system is completely determined by the shape
of the Fermi sea, which can be parameterized in terms of an uniformization
parameter τ as [40]

x(τ) =
√

2μ cosh(τ), y(τ) =
√

2μ sinh(τ), (3.72)

where μ denotes the Fermi level. In analogy with the c < 1 case, one would like
to identify the above MQM curve with the CFT curve (3.71). However, these
two curves are clearly distinct. A solution to this puzzled has been offered
in [68–70], where it was proposed that one should instead identify w(s) with
the resolvent, rather than directly with the spectral curve of the dual matrix
model. The spectral curve can then be extracted, following a very standard
matrix model procedure, from the discontinuity of w(s),

ρ(s) ≡ − 1

2πi
(w(s + iǫ) − w(s − iǫ)) = −D

√
μc=1 sinh (πs) . (3.73)
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Clearly the new CFT curve, defined as

x(s) = μB,c=1(s), y(s) = ρ(s), (3.74)

agrees with the one-matrix model spectral curve (3.72) after an appropriate
identification of parameters. The FZZT brane partition function can then be
obtained from the line integral of the one-form y(τ) ∂τx(τ) dτ , while the ZZ
brane partition function can be defined by the following closed integral on the
MQM curve [69]

ZZZ
(n,1) = i

∮

γn

dx y = i

iπn∫

−iπn

dτ ∂τx(τ) y(τ) = 2πnμ, n ∈ Z, (3.75)

corresponding to a (n, 1) ZZ brane partition function. Indeed, it has been
shown that only an one-parameter set of the c = 1 ZZ branes may be identi-
fied in the dual MQM [71].

Let us further notice that the above matrix quantum mechanics spectral
curve (3.72), with the uniformization parameter τ , is just an infinite covering
of the hyperboloid

x2 − y2 = 2μ, (3.76)

which is precisely the spectral curve of the Gaussian matrix model. In partic-
ular, this explains how open matrix model correlators of the Gaussian model,
WG

g,h, get identified with D-brane amplitudes with FZZT boundary conditions

in the c = 1 model at self-dual radius. Indeed, in [72] it was checked that the
double-scaled Gaussian correlators are related to macroscopic loop operators
in the c = 1 theory. Finally, the limit (3.61) shows that topological string
amplitudes with toric-brane boundary conditions reduce to c = 1 amplitudes
for FZZT branes. Hence, and as already pointed out in a related context in
[10], toric branes reduce to FZZT branes in the double-scaling limit, at the
conifold point.

4. Nonperturbative Effects, Large Order and the Borel

Transform

We may now turn to the study of the asymptotic perturbative expansions for
the free energies of the matrix models and topological strings we are interested
in. In particular, we shall perform a detailed Borel analysis of each case, and
thus understand what type of nonperturbative effects control the large-order
behavior of the distinct perturbative expansions.

4.1. The Gaussian Matrix Model and c = 1 Strings

Let us begin with the Gaussian matrix model. The genus expansion of its free
energy (3.19), is clearly an asymptotic expansion with FG

g ∼ (2g − 3)!, given
the growth of Bernoulli numbers as B2g ∼ (2g)!. Recalling our discussion in
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Sect. 2, we may then consider the Borel transform of the divergent Bernoulli
sum, i.e., restricting to genus g ≥ 2, and obtain

B[FG](ξ) =

+∞∑

g=2

FG
g (t)

(2g − 3)!
ξ2g−2 = − 1

12
+

t2

ξ2
− 1

4

1

sinh2
(

ξ
2t

) . (4.1)

This function has no poles on the positive real axis, for real argument (the
genus expansion (3.19) is an alternating series). As such, one can define its
inverse Borel transform11

F̃G(gs) = −1

4

+∞∫

0

ds

s

(
1

sinh2
(

gs

2t s
) −

(
2t

gs

)2
1

s2
+

1

3

)
e−s, (4.2)

providing a nonperturbative completion for the asymptotic expansion of the
free energy in the Gaussian matrix model. It is quite interesting to notice that,
upon the trivial change of variables s → σ = gs

2t s, this expression precisely
coincides with the one-loop effective Lagrangian for a charged scalar particle
in a constant self-dual electromagnetic field (of magnetic type) introduced in
Sect. 2.2. Comparing with (2.20) we see that in here

γ =
2eF
m2

=
1

N
. (4.3)

If one instead considers imaginary string coupling, ḡs = igs, the asymp-
totic expansion (4.2) will coincide with the one-loop effective Lagrangian cor-
responding to a self-dual background of electric type, which is exactly the same
as that for c = 1 strings at self-dual radius. This time around the perturbative
series is not alternating in sign, and the Borel integral representation

F̃c=1(ḡs) =
1

4

+∞∫

0

dσ

σ

(
1

sin2 σ
− 1

σ2
− 1

3

)
e− 2tσ

ḡs (4.4)

has an integrand with poles on the positive real axis, in principle leading to
ambiguities in the reconstruction of the function, as discussed in an earlier
section. However, we may now use the analogy of this expression to the results
in Sect. 2.2 in order to use the unitarity prescription to perform an unambig-
uous calculation, which basically yields an iǫ prescription which reduces the
imaginary part of the integral to a sum over the residues of its integrand. The
nonperturbative imaginary contribution to the above free energy is thus simple

11 Notice that since FG
g ∼ (2g−3)! the inverse of the Borel transform will now have an extra

factor of 1
s

with respect to the definition of Sect. 2, which dealt with asymptotic growths of

the type ∼ (βn)!.
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to compute as12

Im F̃c=1(ḡs) =
π

4

+∞∑

n=0

∮

nπ

dσ

2πi

1

σ

(
1

sin2 σ
− 1

σ2
− 1

3

)
e− 2tσ

ḡs

= − 1

4πḡs

+∞∑

n=1

(
2πt

n
+

ḡs

n2

)
exp

(
−2πt n

ḡs

)
. (4.5)

As expected from the discussion above, this formula precisely matches with
the Schwinger result in a self-dual background, expressed in (2.22). It can also
be obtained from the “alternating” result (4.2) by analytic continuation and
contour rotation. Furthermore, as discussed in Sect. 2.1, it follows that the
discontinuity of the free energy across its branch cut consists of an instanton
expansion given by

Disc F̃c=1(ḡs) = − i

2πḡs

+∞∑

n=1

(
2πt

n
+

ḡs

n2

)
e− 2πt n

ḡs

= F (1)(ḡs) + F (2)(ḡs) + · · · . (4.6)

We may now relate this instanton series to the full c = 1 perturbative
expansion (2.33), by means of the Cauchy formula (2.8). One first observes
that the integral over the contour at infinity in (2.8) has, in here, no con-
tribution, since the Barnes function is regular at infinity (see, e.g., [73]). As
such, the dispersion relation (2.8) reads,13 after power series expansion of the
integrand’s denominator,

F̃c=1(ḡs) = −
+∞∑

n=1

+∞∑

k=0

ḡ2k
s

(2πn)
2

0∫

−∞

dz

zk+1

(
1 +

2πt n√
z

)

e
− 2πt n√

z =
+∞∑

n=1

+∞∑

k=1

2 (2k + 1)

(2πn)
2k+2

( ḡs

t

)2k

(4.7)

Γ(2k) =
+∞∑

g=2

2 (2g − 1)

(2π)
2g ζ(2g)Γ(2g − 2)

( ḡs

t

)2g−2

,

where we used the definition of the Riemann zeta function as

ζ(z) =

+∞∑

n=1

1

nz
. (4.8)

Notice that, from the first to the second line, we truncated k = 0 from the
k sum. Indeed, for this particular value of k the integral would require reg-
ularization. However, this would only contribute to terms at genus zero and
one, which we are not considering here in any case. As such we shall simply
truncate the k = 0 contribution from the sum, without the need to regularize
the divergence, and focus on the genus g ≥ 2 contributions. In this way, if in

12 Notice that the pole at σ = 0 has vanishing residue.
13 Recall that for matrix models and strings one uses z = ḡ2

s ; see Sect. 2.1.
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the above formula for F̃c=1(ḡs) we further relate the Riemann zeta function to
the Bernoulli numbers via

ζ(2n) = (−1)−(n+1) (2π)2n

2 (2n)!
B2n, (4.9)

it immediately follows

F̃c=1(ḡs) =
+∞∑

g=2

|B2g|
2g (2g − 2)

( ḡs

t

)2g−2

(4.10)

which is indeed the c = 1 perturbative expansion, for genus g ≥ 2, with μ = t
ḡs

.

In some sense, (4.10) takes us back to where we started the discussion,
i.e., the Gaussian matrix model perturbative series. Indeed we have seen that
the alternating Gaussian perturbative series admits a simple Borel transform,
which may be inverted unambiguously to provide a nonperturbative comple-
tion of the theory. Upon “Wick rotation” of the coupling constant, this com-
pletion also describes the non-alternating c = 1 string theory alongside with its
instanton effects (obtained in a fashion very similar to our earlier discussion
of the Schwinger effect). Of course that a key aspect of this analysis is the
fact that the integral representation of the free energy, provided by the inverse
Borel transform, precisely coincides with the nonperturbative integral formu-
lation of the c = 1 theory put forward in [25,43]. One may thus consistently
pick either starting point and obtain the very same results.

To end our analysis, we shall now address the large-order behavior of per-
turbation theory and see that it is controlled—as expected—by one-instanton
contributions, i.e., by the closest pole to the origin in the complex Borel plane.
If one considers the first term in the instanton expansion (4.6) and, following
the discussion in Sect. 2.1, one sets

F (1)(ḡs) = − i

ḡs

(
t +

ḡs

2π

)
e− 2πt

ḡs , (4.11)

a comparison with (2.10) immediately yields

A = 2πt, b = −1, F
(1)
1 = t, F

(1)
2 =

1

2π
, (4.12)

thus identifying the instanton action, the characteristic exponent, and the
loop expansion around the one-instanton configuration. In fact, it is rather
interesting to observe that in this situation the loop expansion around each
ℓ-instanton sector is finite. This is quite unusual; typically the ℓ-instanton loop
expansion is itself asymptotic, with its large-order behavior being controlled
by the (ℓ + 1)-instanton configuration. What we observe is that in this case
only the zero-instanton sector displays non-trivial large-order behavior. Now,
with the identifications (4.12) the large-order equation (2.11) implies

F (0)
g (t) ∼ (2g − 1) (2g − 3)!

2π2 (2πt)
2g−2 . (4.13)
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Checking the expected large-order behavior in this case is straightforward, as
one simply needs to use the standard relation

|B2g| =
2 (2g)!

(2π)
2g ζ(2g) =

2 (2g)!

(2π)
2g

(
1 + e−2g log 2 + e−2g log 3 + · · ·

)
(4.14)

in the asymptotic series (4.10) and the above (4.13) immediately follows; expo-
nentially suppressed contributions in (4.14) are not contributing to the large
order of the zero-instanton sector. If one is instead interested in the large-order
behavior of the Gaussian matrix model, one essentially just needs to use the
analytically continued instanton action A = 2πit and everything else follows
in a similar fashion.

4.2. The Penner Matrix Model

Having worked out the Borel analysis of the free energy in the Gaussian matrix
model, which essentially reduces to the Borel analysis of the logarithm of the
Barnes function G2(z), we have all we need in order to write down the nonper-
turbative part of the free energy of the Penner model (3.31). In fact the whole
procedure is essentially the same as before and we shall leave most calculations
to the reader. The Borel transform is now

B[FP](ξ)=

+∞∑

g=2

FP
g (t)

(2g − 3)!
ξ2g−2 =

t (t + 2)

ξ2
+

1

4

1

sinh2
(

ξ
2

) − 1

4

1

sinh2
(

ξ
2(t+1)

) .

(4.15)

It should be simple to spot the similarities to the Gaussian case, as the free
energy of the Penner model may be written in terms of Barnes functions as in
(3.28). As such, the total discontinuity (for gs → iḡs) is now given by the sum

of the discontinuities of log G2

(
t+1
gs

+ 1
)

and log G2

(
1
gs

+ 1
)
, which yields

Disc F̃P(ḡs)

= − i

2πḡs

[
+∞∑

n=1

(
2π(t + 1)

n
+

ḡs

n2

)
e− 2π(t+1)n

ḡs −
+∞∑

m=1

(
2π

m
+

ḡs

m2

)
e− 2πm

ḡs

]
.

(4.16)

This is quite simple to obtain by following a procedure identical to what we
used in the Gaussian case, but starting from the above Penner Borel-transform.
Notice that in this case we have two sets of nonperturbative contributions, with
instanton actions 2π (t + 1) and 2π, respectively. The large-order behavior of
the theory is controlled, as usual, by the closest pole to the origin in the Borel
plane. For t ≥ 0 the relevant pole is located at 2π; however, close to criticality
t → −1, the first instanton tower in (4.16) is the relevant one.

4.3. The Chern–Simons Matrix Model and the Resolved Conifold

We may now turn to the Chern–Simons matrix model, holographically describ-
ing topological strings on the resolved conifold. The genus expansion of its free
energy (3.46), is asymptotic, and in here we wish to analyze this divergent



388 S. Pasquetti and R. Schiappa Ann. Henri Poincaré

series from the viewpoint of Borel analysis, as we did earlier with both the
Gaussian and the Penner matrix models.

Let us start with the Chern–Simons genus expansion (3.46) where, for the
moment, we drop the constant map contribution and focus on genus g ≥ 2.
This will allow us to better understand the divergence of the series arising
from the term with both a Bernoulli number and a polylogarithm function
contributions. One has in this case14

FCS(gs) =

+∞∑

g=2

g2g−2
s

B2g

2g (2g − 2)!
Li3−2g

(
e−t

)

=

+∞∑

g=2

g2g−2
s

B2g

2g (2g − 2)

∑

m∈Z

1

(t + 2πim)
2g−2 , (4.17)

where we have used an integral representation of the polylogarithm in terms
of a Hankel contour, re-written as a sum over residues [74], to express

Li3−2g

(
e−t

)
= Γ (2g − 2)

∑

m∈Z

1

(t + 2πim)
2g−2 , g ≥ 2. (4.18)

Now, since the Bernoulli numbers grow as B2g ∼ (2g)! and the polyloga-
rithm functions behave, in worse growth scenario,15 as lim|t|→0 Li3−2g (e−t) ∼
Γ (2g − 2) t2−2g, this series is asymptotic and, like in Gaussian and Penner
models, its coefficients grow factorially as (2g − 3)!. In this case one is led to
the Borel transform

B[FCS](ξ) =
+∞∑

g=2

FCS
g (t)

(2g − 3)!
ξ2g−2 =

+∞∑

g=2

B2g

2g (2g − 2)!

∑

m∈Z

ξ2g−2

(t + 2πim)
2g−2

=
∑

m∈Z

⎛
⎝− 1

12
+

(t + 2πim)
2

ξ2
− 1

4

1

sinh2
(

ξ
2(t+2πim)

)

⎞
⎠ . (4.19)

This function has no poles in the positive real axis, for real argument. This is
expected since we started off with an alternating sign expansion and, in this
case, we may define the free energy via the inverse Borel transform

F̃CS(gs) = −1

4

∑

m∈Z

+∞∫

0

ds

s

×

⎛
⎝ 1

sinh2
(

gs

2(t+2πim) s
) −

(
2 (t + 2πim)

gs

)2
1

s2
+

1

3

⎞
⎠ e−s. (4.20)

14 Notice that the m = 0 contribution, in the sum in the second expression, equals∑+∞
g=2

B2g

2g(2g−2)

(
gs
t

)2g−2
, which is of course the Gaussian free energy at genus g ≥ 2. This is

a consequence of working with a Chern–Simons free energy which is not normalized against
the Gaussian free energy; see Sect. 3.3.
15 At large t the polylogarithm’s growth is not factorial in genus, as one has
limRe t→±∞ Li3−2g

(
e−t

)
= 0.
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This provides an unambiguous nonperturbative completion for the asymptotic
expansion of the free energy in the Chern–Simons model. Interestingly enough,
and like in previous examples, for each distinct m a trivial change of variables
turns the corresponding expression into the one-loop effective Lagrangian for
a charged scalar particle in a constant self-dual electromagnetic field (of mag-
netic type) introduced in Sect. 2.2, the sum over all integer m thus correspond-
ing to a sum over an infinite number of Lagrangians of this type. If we further
report to the discussion in Sect. 2.4, we see that our Borel resummation is
essentially (up to analytic continuation, as we move between alternating and
non-alternating perturbative series) equal to the GV integral representation
of the free energy of topological strings on the resolved conifold.

Let us thus consider the case of the resolved conifold in greater detail,
which is obtained by the simple analytic continuation gs → iḡs, and corre-
sponds to the electric version of the above result. In this case the free energy
perturbative series is non-alternating and the Borel transform has poles on
the positive real axis, making the reconstruction of the free energy possibly
affected by nonperturbative ambiguities, which we may, however, understand
in the computation of the imaginary part of the integral,

F̃conif(ḡs) =
1

4

∑

m∈Z

+∞∫

0

dσ

σ

(
1

sin2 σ
− 1

σ2
− 1

3

)
e− 2(t+2πim)

ḡs
σ. (4.21)

Moreover, since (4.21) agrees, after a simple change of variables, with the GV
integral representation (2.35), at least for genus g ≥ 2, we have a physical
interpretation for the nonperturbative terms we find: as observed earlier, in
Sect. 2.4, the imaginary part of the integral will compute the BPS pair-pro-
duction rate in the presence of a constant self-dual graviphoton background.

The imaginary part of the integral (4.21) may be computed by the use of
the unitarity +iǫ prescription, yielding a sum over residues of the integrand.
Equivalently it equals one-half of the integral over the whole real axis (the
imaginary part is symmetric), which may be computed by closing the con-
tour on the upper half of the complex plane, thus enclosing the poles of the
hyperbolic sine; see Fig. 8. It follows

Im F̃conif(ḡs)

=
π

4

+∞∑

n=1

∑

m∈Z

∮

nπ

dσ

2πi

1

σ

(
1

sin2 σ
− 1

σ2
− 1

3

)
e− 2(t+2πim)

ḡs
σ

= − 1

4πḡs

+∞∑

n=1

∑

m∈Z

(
2π (t + 2πim)

n
+

ḡs

n2

)
exp

(
−2π (t+2πim) n

ḡs

)
. (4.22)

One observes without surprise that this formula matches (an infinite sum of)
the Schwinger result in a self-dual background. The discontinuity of the free
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energy across its branch cut is thus given by the instanton expansion

Disc F̃conif(ḡs) = − i

2πḡs

+∞∑

n=1

∑

m∈Z

(
2π (t + 2πim)

n
+

ḡs

n2

)
e− 2π(t+2πim)n

ḡs

= F (1)(ḡs) + F (2)(ḡs) + · · · . (4.23)

Making use of
∑

m∈Z

exp

(
−2πim

2πn

gs

)
=

∑

k∈Z

δ

(
2πn

gs
− k

)
(4.24)

this discontinuity may also be written as

Disc F̃conif(ḡs) = − i

2πḡs

+∞∑

n=1

∑

k∈Z

×
[(

2πt

n
+

ḡs

n2

)
δ

(
2πn

ḡs
− k

)
+

ḡ2
s

n2

∂

∂ḡs
δ

(
2πn

ḡs
− k

)]
e− 2πt n

ḡs . (4.25)

As we did in the previous cases, we may now use the Cauchy formula
to relate this instanton series to the perturbative expansion of the resolved
conifold’s free energies. Once again, the integral over the contour at infinity in
(2.8) has no contribution (see “Appendix”), and the dispersion relation thus
reads, successively,

F̃conif(ḡs) = −
+∞∑

n=1

∑

k∈Z

+∞∑

m=0

ḡ2m
s

(2πn)
2

0∫

−∞

dz

zm+1

[(
1 +

2πt n√
z

)
δ

(
2πn√

z
− k

)

+
√

z
∂

∂
√

z
δ

(
2πn√

z
− k

)]
e

− 2πt n√
z

=

+∞∑

n=1

+∞∑

k=1

+∞∑

m=0

2 (2m + 1) ḡ2m
s

(2πn)
2m+2

(e−t)
k

k1−2m

=

+∞∑

g=1

ḡ2g−2
s

2 (2g − 1)

(2π)
2g ζ(2g) Li3−2g

(
e−t

)

=

+∞∑

g=1

ḡ2g−2
s

|B2g|
2g (2g − 2)!

Li3−2g

(
e−t

)
. (4.26)

where we made use of
+∞∫

−∞

dx f(x) δ (g(x)) =
∑

i

f(xi)

|g′(xi)|
, (4.27)

with xi the real simple roots of g(x); of the definition of the polylogarithm of
index p

Lip(z) =
+∞∑

n=1

zn

np
; (4.28)
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Figure 8. Poles in the complex Borel plane, for the case of
the resolved conifold free energy. The poles in red coincide
with the spurious c = 1 string contribution, arising from the
Gaussian normalization (color figure online)

and the definition of the Riemann zeta function alongside with its relation to
the Bernoulli numbers. This result shows that the instanton expansion (4.23)
indeed has enough information to completely rebuild the full free energy per-
turbative expansion for topological strings on the resolved conifold, at genus
g ≥ 2 (at genus 0 and 1 one still needs to take into consideration the relation
between Chern–Simons and Stieltjes–Wigert perturbative free energies, and
additional regularizations may be needed as, e.g., in the Gaussian case).

One may further show that, in particular, the closest pole to the origin
in the Borel complex plane controls the large-order behavior of perturbation
theory, corresponding to the familiar one-instanton contribution. A glance at
Fig. 8 makes it clear that the closest pole to the origin corresponds to the one-
instanton contribution of the c = 1 string. This, of course, is due to the fact
that the Chern–Simons free energy in (3.46) is not normalized by the Gaussian
free energy. This is easily corrected by considering, in the following, the nor-
malized free energy

Fconif(ḡs) = Fconif(ḡs) − Fc=1(ḡs). (4.29)

This will guarantee that our large-order tests will precisely look at the true
“resolved conifold contribution”, without being plagued by ghost effects due
to the Gaussian measure. In this normalized case, and as is simple to check
by looking at Fig. 8 again, we have two complex conjugate poles equally dis-
tant from the origin, at ξ = 2π (t ± 2πi) /ḡs, and we have to consider the
contributions from them both. Let us consider the first terms in the instanton
expansion (4.23)

F (1)(ḡs) = − i

ḡs

∑

m∈{±1}

(
t + 2πim +

ḡs

2π

)
e− 2π(t+2πim)

ḡs , (4.30)
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and thus define, following Sect. 2.1,

A± = 2π (t ± 2πi) ⇒ A± = |A|e±iθA = 2π
√

t2 + 4π2 exp

(
±i arctan

2π

t

)
,

(4.31)

F
(1)
1± = t ± 2πi ⇒ F

(1)
1± = |F (1)

1 |e±iθF =
√

t2 + 4π2 exp

(
±i arctan

2π

t

)
,

(4.32)

F
(1)
2 =

1

2π
, b = −1. (4.33)

Again, as in the previous examples, the loop expansion around each ℓ-instanton
sector is finite. Thus, also for the resolved conifold only the zero-instanton
sector displays non-trivial large-order behavior. In particular, the large-order
equation (2.11) implies

F (0)
g (t) ∼ Γ(2g − 1)

π2|A|2g−2

(
1 +

1

2g − 2

)
cos ((2g − 2) θA) . (4.34)

The check of this behavior is now harder than before, and we shall need to
perform numerical tests to confirm its validity. In this sense, one constructs
the test ratio

Rg ≡ π F (0)
g |A|2g−1

2 |F (1)
1 |Γ(2g − 1)

= cos

(
(2g − 2) arctan

2π

t

) (
1 + O

(
1

g

))
, (4.35)

where equality holds at large g due to (4.34). In Fig. 9, we can see that numer-
ical analysis undoubtedly confirms our prediction.

The analysis so far has focused only on the contribution to the resolved
conifold free energy arising from the D2D0 bound states of branes. As is clear
in (3.46), to this term one must still add the contribution from bound states
of D0-branes, i.e., the contribution of constant maps. As it turns out, in this
case the discontinuity is obtained from (4.23) by simply setting t = 0 in that
expression, i.e.,

Disc F̃K(ḡs) = − i

ḡs

+∞∑

n=1

∑

m∈Z

(
2πim

n
+

ḡs

2πn2

)

(4.36)

e− 4π2i m n
ḡs = F

(1)
K (ḡs) + F

(2)
K (ḡs) + · · · .

A procedure that should be familiar by now yields back the perturbative expan-
sion (2.38) or (3.46) via the Cauchy formula and an integration of the above
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Figure 9. Test of large-order behavior for the resolved con-
ifold. The plots represent the test ratio Rg(t), in red, versus
the expected behavior cos

(
(2g − 2) arctan 2π

t

)
, in blue, as a

function of genus g, and for t = 20, 40, 60, 80, from left top

to right bottom, respectively. The matching at high genera is
evident (color figure online)

discontinuity over the free energy branch cut:

F̃K(ḡs)

= −
+∞∑

n=1

∑

k∈Z

+∞∑

m=0

ḡ2m
s

(2πn)
2

0∫

−∞

dz

zm+1

[
δ

(
2πn√

z
−k

)
+

√
z

∂

∂
√

z
δ

(
2πn√

z
− k

)]

=

+∞∑

n=1

+∞∑

k=1

+∞∑

m=0

2 (2m + 1) ḡ2m
s

(2πn)
2m+2

1

k1−2m
=

+∞∑

g=1

ḡ2g−2
s

2 (2g − 1)

(2π)
2g ζ (2g) ζ (3−2g)

=

+∞∑

g=1

ḡ2g−2
s

(−1)g B2g B2g−2

2g (2g − 2) (2g − 2)!
, (4.37)

where we have used familiar properties of the zeta function and Bernoulli
numbers, including

ζ(−n) =
(−1)n

n + 1
Bn+1. (4.38)

The last thing we want to show is that, as expected, it is the closest pole
to the origin in the Borel complex plane that controls the large-order behav-
ior of the theory. Repeating our earlier discussion we find the one-instanton
contribution
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F (1)(ḡs) = − i

ḡs

∑

m∈{±1}

(
2πim +

ḡs

2π

)
e− 4π2im

ḡs , (4.39)

leading to

A± = ±4π2i, b = −1,

F
(1)
1± = ±2πi, F

(1)
2 =

1

2π
.

(4.40)

In this case the large-order equation (2.11) yields

F (0)
g (t) =

Γ(2g − 1)

π2 (4π2i)
2g−2

(
1 +

1

2g − 2

)
= (−1)

g−1 16π2

(2π)
4g (2g − 3)! (2g − 1) .

(4.41)

To check that this is the right answer all one has to do is to use

(−1)g B2g B2g−2

= (−1)g+1 16π2

(2π)
4g (2g)! (2g − 2)! ζ(2g) ζ(2g − 2)

= (−1)g−1 16π2

(2π)
4g (2g)! (2g − 2)!

(
1 + 20 e−6g log 2 + 4 e−4g log 2 + · · ·

)
.

(4.42)

Notice that the above exponentially suppressed contributions do not contrib-
ute to the large order of the zero-instanton sector.

5. Stokes Phenomena and Instantons from Hyperasymptotics

Having understood the Borel analysis of topological strings and c = 1 matrix
models, benefiting in this course of the identification of instanton effects in
these models, we shall now make a brief detour into the realm of hyperasy-
mptotics, as first introduced in [75] (see, e.g., [76] for a review), i.e., a series of
techniques to refine optimally truncated asymptotic expansions by the inclu-
sion of exponentially small contributions. In particular, our focus will concern
hyperasymptotic approximations for integrals with saddles [77,78], the proto-
typical example for problems dealing with the calculation of partition func-
tions or free energies. In this case, the exponentially suppressed contributions
arise from saddles other than the one chosen in the steepest–descent asymp-
totic approximation. The main interest of this analysis for the present work is
that the Stokes phenomenon—certain “discontinuities” which we shall explain
below and later relate to instanton effects—is automatically incorporated into
the hyperasymptotic scheme.

Suppose one wants to use the method of steepest descents in order to find
an asymptotic expansion, as |κ| → ∞ with κ = |κ| eiθ, of the 1D “partition
function”

Z(κ) =

∫

C

dz e−κW (z), (5.1)
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where C is a contour we specify below. A typical calculation goes as follows:
one begins with the calculation of the saddle points of the “potential function”
W (z), computed as the set of points {zk}k=1,2,... such that W ′(zk) = 0; then,
chosen a reference saddle-point zn, the contour of integration C is deformed
to the infinite oriented path of steepest descent through zn, which we shall
denote by Cn(θ). This contour is defined as

Im[κ (W (z) − W (zn))] = 0 (5.2)

and with κ (W (z) − W (zn)) increasing away from zn. This immediately implies
that the phase of W (z)−W (zn) must equal −θ +2πm, m ∈ Z. We then intro-
duce the “partition function” Zn(κ) evaluated on the nth saddle

Zn(κ) ≡ 1√
κ

e−κW (zn) Zn(κ), (5.3)

Zn(κ) =
√

κ

∫

Cn(θ)

dz e−κ(W (z)−W (zn)). (5.4)

As we shall see, Zn(κ) will display Stokes phenomena in the form of a discon-
tinuity associated to a jump in the steepest–descent path whenever it passes
through one of the other saddles, k �= n. The integral (5.4) can be evaluated via
the steepest–descent method and one obtains a function of κ for each saddle,
n, given by a series in negative powers of κ

Zn(κ) ∼
+∞∑

g=0

ζg(n)

κg
, (5.5)

with (see [77,78] for details)

ζg(n) = Γ

(
g +

1

2

) ∮

zn

dz

2πi

1

(W (z) − W (zn))
g+ 1

2

. (5.6)

The series in (5.5) is asymptotic. The point of view of [77] is to understand this
divergence as a consequence of the existence of other saddles {zk �=n}, through
which Cn does not pass. Because one is free to choose the reference saddle
n at will, all possible asymptotic series are thus related by a requirement of
mutual consistency, also known as the principle of resurgence: each divergent
series will contain, in its late terms, and albeit in coded form due to their
divergent nature, all the terms associated with the asymptotic series from all
other saddles.

Another important point concerning the asymptotic series (5.5) dwells
with the fact that this expression only holds in a wedge of the complex
κ-plane, i.e., for a restricted range of θ, a property which is associated to
Stokes phenomena. Suppose that in the above set-up, and once (5.5) has been
computed, we start varying θ in such a way that we always choose the contour
of integration to be the steepest–descent through the saddle zn. As it turns
out, this is a continuous process only for a finite range of θ: indeed, one faces
a discontinuity if θ reaches a value such that the contour of integration passes
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Figure 10. On the left, the complex κ plane, showing a
region −σnm1

< θ < −σnm2
. On the right, the equiva-

lent region in z space, with saddle zn, adjacent saddles zm1

and zm2
, and respective steepest–descent contours through zn

(red) hitting the adjacent saddles. In blue, we plot the adjacent
contours (color figure online)

through a second saddle, zm. This will happen when θ reaches the value −σnm,
with

− σnm = − arg (W (zm) − W (zn)) . (5.7)

For this value of θ the steepest–descent contour will change discontinuously
and exponentially suppressed contributions to (5.4) will “suddenly” become
of order one. In this case, and in order for the steepest–descent contour to go
through a single saddle, one must restrict θ to an interval −σnm1

< θ < −σnm2
,

where zm1
and zm2

are saddles adjacent to zn, i.e., saddles which may be
reached from zn through steepest–descent paths.16 This is illustrated in Fig. 10.
One of the goals of hyperasymptotics [75] is to deploy resurgence in order to
better understand Stokes phenomena, and this is the aspect we shall be mostly
interested in.

Let us make these ideas more precise. In hyperasymptotics one begins
with (optimal) truncation of the asymptotic series (5.5). In this case,

Zn(κ) =

N−1∑

g=0

ζg(n)

κg
+ R(N)

n (κ), (5.8)

where R(N)
n (κ) is the remainder associated to the finite truncation. The main

contribution of the hyperasymptotic calculation in [77] was to produce an

16 A saddle zm is said to be adjacent to the saddle zn iff there is a path of steepest

descent from zn to zm, i.e., zm will be adjacent to zn whenever θ = −σnm and thus
arg (W (z) − W (zn)) = σnm (naturally this is also the condition that defines the Stokes
lines for Zn(κ)). One similarly defines the adjacent contour through the adjacent saddle as
the steepest–descent contour Cm(−σnm), through zm.
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expression for the reminder which led to an exact resurgence formula for (5.5),
and we shall now present these results. Let us first define the singulant, for
every adjacent saddle zm, as

Wnm ≡ W (zm) − W (zn) ≡ |Wnm| eiσnm . (5.9)

In this case the remainder term (see [77,78] for details) can be expressed as a
sum over integrals through all adjacent saddles to zn, {zm}:

R(N)
n (κ) =

1

2πi

1

κN

∑

m

∞·e−iσnm∫

0

dη
ηN−1

1 − η
κ

e−ηWnm Zm(η), (5.10)

where the Zm(η) are defined on the adjacent contours Cm(−σnm). There are
several interesting points to this formula. First, it provides an exact and
explicit expression for the reminder and one now explicitly sees that the diver-
gence of the asymptotic series (5.5) is directly related to the existence of adja-
cent saddles. Second, inserting the above expression back in (5.8), one obtains
the exact resurgence formula

Zn(κ) =

N−1∑

g=0

ζg(n)

κg
+

1

2πi

1

κN

∑

m

∞·e−iσnm∫

0

dη
ηN−1

1 − η
κ

e−ηWnm Zm(η), (5.11)

which is the basis for the hyperasymptotic analysis of [77]: indeed, each Zm(η)
in the above integrands may itself be expanded as an asymptotic series lead-
ing, via iterations of the above formula, to exponentially improved asymptotic
results for the original Zn(κ) (in the sense that the error associated to the
approximation is reduced from polynomially small to exponentially small17).
Third, as the resurgent formula holds for any N , one may write it down for
N = 0, obtaining either the resurgent expression [78]

Zn(κ) =
1

2πi

∑

m

∞·e−iσnm∫

0

dη
e−ηWnm

η − η2

κ

Zm(η), (5.12)

which leads to interesting functional relations in selected examples; or the
(formal) resurgent relation [77]

ζg(n) =
1

2πi

∑

m

+∞∑

h=0

(g − h − 1)!

Wg−h
nm

ζh(m), (5.13)

which expresses the late terms (g ≫ 1) of the asymptotic series at a given
saddle as a sum over the early terms of the corresponding asymptotic series
at the adjacent saddles. In particular, the leading contribution arises from the
adjacent saddle m∗ with smallest singulant, i.e., to leading order one obtains

ζg(n) ∼ (g − 1)!

Wg
nm∗

ζ0(m
∗), (5.14)

17 For a recent discussion in the field theoretic context see [79].
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Figure 11. Crossing the Stokes line, between the saddle zn

and the adjacent saddle zm

which makes manifest the characteristic factorial behavior of asymptotic series.
Fourth, and finally, the resurgence formula (5.11) precisely incorporates Stokes
phenomenon [77]; the appearance of suppressed exponential terms as the steep-
est–descent contour Cn(θ) sweeps through one of the adjacent saddles, m
(see Fig. 11). This, as we mentioned, will happen as θ crosses the Stokes line
Cn(−σnm), in which case the asymptotic expansion (5.5) will have a disconti-
nuity

∆Zn(κ)
∣∣∣
θ=−σnm

≡ Zn

(
|κ| ei(−σnm+0+)

)
− Zn

(
|κ| ei(−σnm+0−)

)
�= 0. (5.15)

It is not too hard to compute the precise value of this discontinuity straight
from the resurgence formula for the remainder (5.11). One obtains, without
surprise,

∆Zn(κ)
∣∣∣
θ=−σnm

=
1

κN−1

∮

κ

dη

2πi

1

η − κ
ηN−1 e−ηWnm Zm(η)

= e−κWnm Zm(κ), (5.16)

where, naturally, any further asymptotic expansion on the adjacent saddle,
i.e., for Zm(κ), is to be evaluated precisely along the Stokes line θ = −σnm.
This discontinuity is exponentially small as, on the Stokes line, κWnm is real
and positive.

The Stokes discontinuity is particularly relevant to us as we later wish
to identify it with instanton effects and, as such, we shall dwell upon it later
in this section. An important thing to notice is that this is actually not a dis-
continuity of the function Z(κ) but rather a discontinuity of the asymptotic
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approximation to Z(κ). A trivial example is the function sinh 1
z . In the right

half-plane Re z > 0 its asymptotic behavior as z → 0+ is well described by
1
2 exp

(
1
z

)
, with the error being exponentially suppressed. However, should we

try to rotate this asymptotic approximation to the left half-plane Re z < 0, it
would no longer be valid as the subdominant error − 1

2 exp
(
− 1

z

)
will no longer

be small! This is clearly a discontinuity of the asymptotic approximation we
chose, and not of the function itself.

We shall next see how to apply this formalism within the case of the
Gamma function, which will later lead to a hyperasymptotic understanding of
the free energies in the Gaussian and Penner matrix models. In particular, we
shall build up our analysis in order to see how to obtain the multiple instanton
sectors of these models straight out of the above resurgence formulae.

5.1. Stokes Phenomena in the Gamma Function

Consider the “Gamma partition-function”

ZΓ(κ) ≡ Γ(κ). (5.17)

One usually defines the Gamma function via Euler’s integral [80]

Γ(κ) =

+∞∫

0

dw wκ−1e−w, Re (κ) > 0, (5.18)

where the contour of integration is the positive real axis. The logarithm of the
Gamma function, the “Gamma free-energy”, has a well-known representation
[80]

FΓ(κ) ≡ log Γ(κ) =

(
κ − 1

2

)
log κ − κ +

1

2
log 2π + Ω(κ), (5.19)

where Ω(κ) is meromorphic with simple poles at κ = −n, n ∈ N0. One then
obtains asymptotic expansions for the Gamma function by first obtaining
asymptotic expansions for the function Ω(κ). One such familiar case is the
Stirling series, which is the Poincaré asymptotic expansion

Ω(κ) ∼
+∞∑

g=1

B2g

2g (2g − 1)

1

κ2g−1
, (5.20)

valid as |κ| → +∞, in the sector | arg(κ)| < π. Our goal in the following is to
obtain an exponentially improved version of this asymptotic expansion, in the
spirit of our previous discussion on hyperasymptotics and Stokes phenomena,
along the guidelines in [80,81].

Let us begin with the “Gamma partition-function”, applying the hyperas-
ymptotic analysis in the preceding section as in [81]. One first changes variables
as w = κ ez and then re-writes Euler’s integral (5.18) as

Γ(κ) = κκ

+∞∫

−∞

dz e−κW (z), (5.21)
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where W (z) = ez − z. The saddle points of this function are zk = 2πik, for
k ∈ Z, with W (zk) = 1−2πik. We may now apply the machinery we previously
described, with the nuance that one now has an infinite number of saddles.
We first select the reference saddle z0 = 0 and define

Γ0(κ) ≡
√

2π κκ− 1
2 e−κ G0(κ), (5.22)

G0(κ) =

√
κ

2π

∫

C0(θ)

dz e−κ(W (z)−1), Re (κ) > 0, (5.23)

with log G0(κ) = Ω(κ). It is not too hard [81] to identify all saddles {zm}m �=0

as adjacent saddles to z0: the singulants are now

W0m = −2πim = 2π |m| exp
(
i(−1)

1
2 (1+sgn(m)) π

2

)
(5.24)

and the steepest–descent contour from z0 to each zm is that for which θ =
−σ0m, i.e.,

arg (ez − z − 1) = (−1)
1
2 (1+sgn(m)) π

2
. (5.25)

As such, for m > 0 the Stokes line is at θ = π
2 and for m < 0 the Stokes

line is at θ = −π
2 , so that the imaginary axis is a Stokes line for the Gamma

function. Parametrizing z = x+iy, this contour may also be written as cos y =
(1 + x) e−x with e−x < sin y

y if m < 0 and greater than if m > 0 (see Fig. 12).

As such, the remainder associated to the finite truncation of the asymptotic
series for G0(κ) follows from (5.11) as

R(N)
0 (κ) =

1

2πiκN

+∞∑

m=1

⎧
⎨
⎩

+i∞∫

0

dη
ηN−1

1 − η
κ

e2πiηm Gm(η)

−
0∫

−i∞

dη
ηN−1

1 − η
κ

e−2πiηm G−m(η)

⎫
⎬
⎭ , (5.26)

where one should recall that the Gm(η) are to be evaluated over the adjacent
steepest–descent contours Cm(−σ0m), e.g., for m > 0,

Gm(η) =

√
η

2π

∫

Cm(π
2 )

dz e−η(W (z)−W (zm)). (5.27)

In this integral, consider the shift w = z − 2πim, where we move the con-
tour downwards in the complex z-plane by 2πim. It is simple to see that the
shifted contour C̄m

(
π
2

)
will now go through z0 rather than zm and the integral

becomes

Gm(η) =

√
η

2π

∫

C̄m(π
2 )

dw e−η(W (w)−1) = G0(η). (5.28)
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Figure 12. Paths of steepest descent for the Gamma func-
tion, in the (x, y) plane, starting at z0 = 0

The exact same reasoning applies if m < 0, in which case one just shifts the
adjacent contours upwards. Thus

R(N)
0 (κ) =

1

2πiκN

+∞∑

m=1

⎧
⎨
⎩

+i∞∫

0

dη
ηN−1

1 − η
κ

e2πiηm G0(η)

−
0∫

−i∞

dη
ηN−1

1 − η
κ

e−2πiηm G0(η)

⎫
⎬
⎭ . (5.29)

One may now address Stokes phenomena for the “Gamma partition-
function” and simply confirm that indeed the imaginary axis in the complex
κ-plane is a Stokes line for G0(κ): as κ becomes purely imaginary, one of the
two integrals above will have a pole. As we have seen before, this leads to the
discontinuities

∆G0(κ)
∣∣∣
θ=± π

2

= ±
+∞∑

m=1

e±2πiκm G0(κ) = ∓ 1

1 − e∓2πiκ
G0(κ). (5.30)

Notice that the discontinuities are evaluated on the Stokes lines, κ = ±i|κ|,
and are thus always exponentially suppressed. We will interpret these terms as
nonperturbative “instanton” contributions to the “Gamma partition-
function”.

As we turn to the “Gamma free-energy”, the same nonperturbative cor-
rections can be obtained very easily from the reflection formula
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Γ (κ) Γ (−κ) = − π

κ sin πκ
. (5.31)

Indeed, one may now obtain the final result from a two line calculation [82].
The idea is to directly find the (exponentially) improved version of the asymp-
totic expansion (5.20), in the sector π

2 < θ < π, and which we name Ω+(κ).

Upon the analytic continuation −κ = e−iπκ to the sector π
2 < θ < π, where

−π
2 < arg (−κ) < 0, one may use the expansion (5.19) for Γ(−κ) in (5.31) to

obtain, upon taking the logarithm of (5.31),

Ω+(κ) = Ω(κ) − log
(
1 − e2πiκ

)
, (5.32)

where the plus subscript refers to the sector past +π
2 . In the sector −π <

θ < −π
2 one still obtains the above expression (5.32), but with e2πiκ replaced

by e−2πiκ instead (and the plus subscript naturally gets replaced by a minus
subscript). Thus, in both sectors the corrections to the expansion (5.19) are
always exponentially suppressed, with the discontinuity across the Stokes lines
θ = ±π

2 given by

∆Ω(κ)
∣∣∣
θ=± π

2

= − log
(
1 − e±2πiκ

)
=

+∞∑

m=1

e±2πiκm

m
, (5.33)

which is, as expected, essentially related to the logarithm of the Stokes dis-
continuity for the “Gamma partition-function”, (5.30). It is rather tempt-
ing to understand these terms as instanton contributions, with “instanton

action” S
(m)
inst = W (zm) − W (z0) = W0m = −2πim. For this identification to

be valid, one expects that the instanton(s) with least action, S(−1) = 2πi and
S(1) = −2πi, will yield the leading contributions controlling the large-order
behavior of the perturbative expansion (5.20), as we have discussed before in
Sect. 2.1. Setting as usual

1

κ
Ω(0)(κ) ∼

+∞∑

g=1

κ−2g Ω(0)
g , Ω(0)

g ≡ B2g

2g (2g − 1)
, (5.34)

and

1

κ
Ω(1)(κ) ∼ iκb e−κA

+∞∑

g=0

κ−g Ω
(1)
g+1, (5.35)

the standard large-order analysis yields

Ω(0)
g ∼ Γ (2g + b)

πA2g+b

(
Ω

(1)
1 +

Ω
(1)
2 A

2g + b − 1
+ · · ·

)
(5.36)

and, consequently,

Ω
(0)
g+1

4g2 Ω
(0)
g

=
1

A2
+ O

(
1

g

)
. (5.37)
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From the exact expression for the Ω
(0)
g coefficients it immediately follows

Ω
(0)
g+1

4g2 Ω
(0)
g

=
B2g+2

4g2 B2g

(
1 − 2

g
+ O

(
1

g2

))
= − 1

(2π)
2 + O

(
1

g

)
, (5.38)

so that A = ±2πi just as expected from the instanton analysis. Thus, we see
that indeed the one-instanton contributions control the large-order behavior
of the perturbation theory, supporting the important identification of Stokes
discontinuities with instanton contributions.

An interesting property of our instanton actions is that S(m) = mS(1)

so that the action of the mth one-instanton equals the mth multi-instanton
action. In this case, one could interpret the result (5.33) as being exact, in the
sense of including all multi-instanton corrections, and to all loop orders. For
this identification to be valid, one expects to fully reconstruct the perturbative
coefficients of the “Gamma free-energy” out of its complete multi-instanton
series, as in (see, e.g., [13])

Ω(0)
g =

1

2πi

+i∞∫

−i∞

dξ ξ2g−2 ∆Ω(ξ)

=
(−1)g+1

2π

+∞∑

m=1

1

m

⎛
⎝

+∞∫

0

dx x2g−2 e−2πmx +

0∫

−∞

dx x2g−2 e2πmx

⎞
⎠ .

(5.39)

This is actually just one of the few examples on resurgent relations we have
obtained in our earlier hyperasymptotic discussion. It is simple to see that the
precise result is obtained, in full accordance with our multi-instanton expec-
tations:

Ω(0)
g =

2(−1)g+1(2g − 2)!

(2π)
2g

+∞∑

m=1

1

m2g
, (5.40)

where one just needs to use the representation of even Bernoulli numbers in
terms of the zeta function, that we have used several times before, in order to
check the result.

We have thus seen very clearly, at the familiar free-energy level, that
the contributions arising from the Stokes line discontinuities are precisely the
usual nonperturbative instanton contributions. The exact matching within the
matrix model examples we consider in this work will be made complete in
the next section.

5.2. Instantons as Stokes Phenomena in Matrix Models

In the previous section, we have identified the Stokes discontinuities of the
Gamma function with instanton effects of the corresponding 1D integral, defin-
ing either a partition function or a free energy. We shall now see how this anal-
ysis carries through to the matrix models we are interested in. Let us start by
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considering the Gaussian and Penner matrix models, and how their instantonic
sectors follow from a Stokes analysis of the corresponding free energies.

As computed at an earlier stage, the exact free energy for the Gaussian
matrix model is given by

FG =
1

2
N2 log gs − 1

2
N log 2π + log G2(N + 1), (5.41)

and the exact free energy for the Penner matrix model (normalized against
the Gaussian measure) is

FP =
N

gs
log gs +

1

2
N2 log gs − 1

2
N log 2π

+ log G2

(
N +

1

gs
+ 1

)
− log G2

(
1

gs
+ 1

)
. (5.42)

It is rather evident from these expressions that both cases have their asymp-
totic expansions associated to Poincaré asymptotic expansions of the Barnes
function. As such, the instanton sectors of these two matrix models will be
dictated by the Stokes structure of the logarithm of the Barnes function. But
due to the integral representation [73]

log G2(N + 1) =
1

2
N log 2π − 1

2
N(N − 1) + N log Γ(N) −

N∫

0

dn log Γ(n)

(5.43)

the Stokes structure of the Barnes free-energy is given in terms of the Stokes
structure of the Gamma free-energy, which we have previously analyzed in
greater detail. In particular,

∆ log G2(N + 1)
∣∣∣
θ=± π

2

= N ∆Ω(N)
∣∣∣
θ=± π

2

−
N∫

0

dn∆Ω(n)
∣∣∣
θ=± π

2

=

+∞∑

m=1

(
N

m
∓ 1

2πim2

)
e±2πiNm ∓ iπ

12
. (5.44)

At the Stokes lines N = ±i|N | and the discontinuities are exponentially sup-
pressed as expected. It immediately follows18

∆FG =
i

2πḡs

+∞∑

m=1

(
2πt

m
+

ḡs

m2

)
e− 2πt m

ḡs (5.45)

18 Notice that the factor iπ
12

is a genus one artifact and we drop it in the following. Indeed,

when computing the Borel transform of the Gaussian free energy (equivalently, of the log-
arithm of the Barnes function), we start the sum at genus g = 2 in order to avoid the

problematic logarithmic terms at genus zero and one, which do not contribute to the large-

order behavior in any case. If one were to—incorrectly—start the sum at genus g = 1, while
still making use of the Bernoulli expression (3.19) in order to compute this genus g = 1 term

in the sum, one would precisely find this spurious 1
12

contribution.
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and

∆FP =
i

2πḡs

+∞∑

m=1

(
2π (t + 1)

m
+

ḡs

m2

)

×e− 2π(t+1)m
ḡs − i

2πḡs

+∞∑

m=1

(
2π

m
+

ḡs

m2

)
e− 2πm

ḡs . (5.46)

These results, where we have used t = gsN and restricted to the Stokes line
at θ = +π

2 , and upon the identification of the ∆ discontinuity with −Disc,
precisely match our results for the full instanton sector of both Gaussian and
Penner matrix models, obtained earlier in Sect. 4 via Borel summation (or to
be later analyzed via the use of trans-series methods). We have not addressed
the case of the Chern–Simons matrix model, as its free energy is given by the
logarithm of the quantum Barnes function, for which we do not know of any
appropriate hyperasymptotic framework which would allow for a derivation of
its Stokes discontinuities. However, we believe it should be possible to study
the hyperasymptotics of the quantum Barnes function in a similar fashion to
the one above (see also [83]).

Some interesting lessons may be drawn from our Stokes analysis. Because
the appearance of the nonperturbative ambiguity of the matrix models’ free
energies is related to Stokes phenomena, intimately associated to discontinu-
ities of the asymptotic approximation, we see that this nonperturbative ambi-
guity is in fact an artifact of the semiclassical, large N analysis. Clearly, the
exact free energies, (5.41) and (5.42), are given by the logarithm of entire func-
tions in the complex plane, with no discontinuities. The Stokes lines, and thus
the instanton corrections, appear only at the very moment we select a particu-
lar saddle and semiclassically evaluate the partition functions or free energies.
On the other hand, it is also clear that it is just in this semiclassical limit
that the notion of target space in the holographically dual theory emerges. For
instance, we have seen in an earlier section that, in the c = 1 case, the geome-
try of the target space arises from the matrix model spectral curve, which gets
identified with the derivative of the FZZT disk partition function. Even more
manifestly, in the case of the Chern–Simons matrix model the spectral curve
of the matrix model coincides with the mirror curve of the mirror CY to the
resolved conifold. One is led to conclude that if one is to consider the exact
free energies, (5.41) and (5.42), as the nonperturbative definitions of the holo-
graphically dual models, then it appears the “exact quantum” target spaces
are very different from the semiclassical ones; basically at the nonperturbative
level the notion of target space as a smooth geometry is lost. Interestingly
enough, this discrepancy between “semiclassical” and “exact quantum” target
spaces has also been advocated in [84], focusing on the example of non-critical
strings with c < 1. In particular, Stokes phenomena was also identified therein
as a source of instanton corrections.

As we shall review in the upcoming Sect. 6.1, in the context of matrix
models the nonperturbative partition function is obtained by summing over
all saddles of the matrix integral. In particular, it is the averaging over all
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possible semiclassical geometries that leads to the background independence
of the nonperturbative partition function, as described in [19,85].

5.3. Smoothing the Nonperturbative Ambiguity

As we have explained, the Stokes discontinuities are discontinuities of the
asymptotic expansions and not of the functions under approximation, and we
have made this clear in some examples. It so happens that in most cases one
does not know the function we wish to approximate and, as such, one needs
to devise methods to smooth the Stokes discontinuity [86]. The need for the
smoothing should be clear: it maintains the validity of the asymptotic expan-
sions even as we cross the Stokes lines. This is what we shall describe now:
the universal smoothing proposed in [86], given by an uniform approximation
involving the error function, and universally describing Stokes phenomena,
which naturally makes the strength of the subdominant contribution grow
smoothly from 0 to 1 across the Stokes line (upon where it equals 1

2 ).
The idea goes as follows. Hoping to maintain the validity of our asymp-

totic expansions as we cross Stokes lines, let us write these as

Zn(κ) ∼
+∞∑

g=0

ζg(n)

κg
+ i

∑

m

Sm(κ)∆Zn(κ)
∣∣∣
θ=−σnm

, (5.47)

where we have implicitly included the remainder associated to optimal trun-
cation within the infinite sum, and where we have introduced the Stokes mul-
tiplier function Sm(κ) weighting the subdominant exponentials and which will
smooth the transitions across the Stokes lines. The true power of the Stokes
multiplier function arises from the fact that, if the appropriate variables are
chosen to cross the Stokes lines, then this function is universal, within a wide
class of problems.19 This appropriate “universal” variable involves the sing-
ulant Wnm, specifying contours through adjacent saddles, i.e., specifying the
location of the Stokes lines. The Stokes multiplier function may thus be written
as [86]

Sm(κ) =
1

2
(1 + erf (snm(κ))) , (5.48)

with erf(x) the error function and where we defined the Stokes variable

snm(κ) ≡ Im(κWnm)√
2 Re (κWnm)

. (5.49)

Observe that this is not a solution to the nonperturbative ambiguity problem
as there is a choice of a real constant implicit in this result: the choice that
before the Stokes line the exponentially suppressed contributions actually van-
ish. This is of course related to a choice of integration contour in the inverse
Borel transform used in the calculation of the Stokes multiplier [86]. What the
Stokes multiplier function does is to reduce the nonperturbative ambiguity
to the choice of the real constant describing the intensity of the exponentially
suppressed terms before the Stokes line, describing the crossing in an universal

19 But see [87] for a counter example.
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fashion. For a recent discussion of the nonperturbative ambiguity and choice
of inverse Borel transform, within the matrix model context, see [14].

For the “Gamma partition-function” with singulant κW0m = −2πiκm,
the Stokes variable becomes

s0m(κ) =
Im (−2πiκm)√
2 Re (−2πiκm)

= −
√

π|κ||m| cos θ√
sin θ

ei π
4 (1−sgn(m)) (5.50)

and the smoothing becomes implemented by the Stokes multiplier

Sm>0(κ) =
1

2

(
1 + erf

(
−

√
π|κ|m cos θ√

sin θ

))
, (5.51)

where we have explicitly written the case where one crosses the upper imag-
inary axis. Notice that in the immediate vicinity of the Stokes line one has
− cos θ√

sin θ
=

(
θ − π

2

)
+ · · ·, simplifying the argument of the error function in

that region. At the level of the “Gamma free-energy”, completely analogous
to the partition function analysis as the singulants are precisely the same, this
result was interpreted in [82] as a distinct—but universal—Stokes smoothing
for each mth small exponential. One may, in this light, separately understand
the appearance of each exponential.

For both Gaussian and Penner models, the discontinuity’s singulants are
the same as for the Gamma function and, akin to the previous discussion, one
is in the presence of infinitely many smoothings [82] with Stokes multipliers

Sm>0(N) =
1

2

(
1 + erf

((
θ − π

2

) √
π|N |m

))
, (5.52)

near the Stokes line θ = π
2 . This explains the appearance of each suppressed

exponential, or each distinct instanton contribution, in a separate but universal
and smooth manner. In this way, one may readily obtain formal expressions
for the Stokes smoothing, also yielding formal expressions for the free energies
of these models which allow, for instance, one to cross the Stokes lines and
reach any nonperturbative point in the complex N -plane.

6. Semiclassical Interpretation of Instantons

At this stage we have a very good understanding of nonperturbative phenom-
ena in c = 1 matrix models and topological strings, with all the information
we have gathered both from Borel and Stokes analysis. However, and because
at the end of the day we are analyzing large N matrix models in a saddle-point
approximation, we would like to understand these nonperturbative instanton
corrections directly from a semiclassical large N point of view, i.e., directly
in the matrix model language. This is what we shall do in this section, as
we provide a semiclassical interpretation of instantons in terms of eigenvalue
tunneling, across a multi-sheeted effective potential, and we also suggest a
spacetime interpretation for the nonperturbative effects we have just obtained
in the preceding sections.
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6.1. Instantons as Eigenvalue Tunneling

We shall begin by recalling how instanton effects, which control the large-order
behavior of the 1/N expansion, are interpreted as an eigenvalue tunneling
effect, within the matrix model context. Recalling our discussion on matrix
models, in diagonal gauge the one-matrix model partition functions is

Z =
1

N !

∫ N∏

i=1

(
dλi

2π

)
∆2(λ) e− 1

gs

∑N
i=1 V (λi). (6.1)

As it stands this definition cannot be complete, as the integration contours for
each eigenvalue λi still need to be specified. It may happen that the above inte-
gral is not well-defined as a convergent, real integral, in which case the model
needs to be properly defined by analytic continuation, i.e., by the choice of an
appropriate contour in the complex plane such that the integral becomes con-
vergent. Indeed, in general, the various phases of matrix models are separated
by singular domains (in the space of complex potentials), where no large N
limit exists [2,3,88]. Removal of the “divergent regions” where Re V (z) → −∞
as |z| → ∞ corresponds to holes in the complex plane, in which case one is
led to decompose a generic integration path γ on a homological basis of paths
{γ1, . . . , γs} as20

γ =
s∑

k=1

ζk γk, (6.2)

where we shall place Ni eigenvalues on the path γi, with arbitrary distribution
{Ni} but such that

∑s
i=1 Ni = N . As we shall make clear in the following,

the coefficients ζk may be regarded as theta-parameters leading to different
theta-vacua [3]. We may then define, with the appropriate symmetrizations,

Ẑ(N1, . . . , Ns)

=
1

N1! · · · Ns!

∫

γ1

N1∏

i1=1

dλi1

2π
. . .

∫

γs

Ns∏

is=1

dλis

2π
∆2(λ) e− 1

gs

∑N
i=1 V (λi). (6.3)

For particular choices of the integration contours and particular choices of the

filling fractions ǫi = Ni

N , with i = 1, . . . , s, the free energy log Ẑ(N1, . . . , Ns)

may have a perturbative large N expansion21

log Ẑ(N1, . . . , Ns) = F̂ (N1, . . . , Ns) =

+∞∑

g=0

N2−2g Fg(t), (6.4)

where one finds the usual large-order behavior of Fg ∼ (2g)! rendering the
topological 1/N expansion asymptotic. Nonperturbative effects associated to

20 For a polynomial potential of degree d there will be d holes in the complex plane, in which
case the dimension of the homological basis will be s = d − 1.
21 While in general there is no topological large N expansion, there are of course some cases
where this may be achieved: for instance in the case of degree d polynomial potential one
may choose as homological basis the d − 1 steepest–descents paths which go through each
of the d − 1 critical points of the potential [2,3].
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singularities in the complex Borel plane are interpreted as instanton configu-
rations as follows.

Regarding Ẑ(N1, . . . , Ns) as the partition function associated to a specific
topological sector, characterized by the filling fraction ǫ1, . . . , ǫs, it becomes
natural to consider the general partition function where one sums over all
possible ways of distributing the N eigenvalues

Z(ζ1, . . . , ζs) =
∑

∑s
i=1 Ni=N

ζN1
1 · · · ζNs

s Ẑ(N1, . . . , Ns), (6.5)

and where it is now clear that the ζk play the role of theta-parameters. This
expression has been proposed by Marino [14], Eynard and Marino [19], and
Eynard [85] to provide a nonperturbative partition function for the matrix
model. That (6.5) realizes such a nonperturbative completion of the theory
is made clear by understanding how it encodes all possible multi-instanton
corrections. It was pointed out in [15] that if one is to consider the partition
functions associated to two distinct topological sectors, with distinct fillings,
{Ni} and {N ′

i}, one finds [15]

Ẑ(N ′
1, . . . , N

′
s)

Ẑ(N1, . . . , Ns)
∼ e

− 1
gs

∑s
i=1(Ni−N ′

i)
∂F0
∂ti , ti = gsNi, (6.6)

implying that once one selects a reference background, {Ni} say, all other
sectors are different instanton sectors of the matrix model. Let us consider
the one-cut cubic matrix model in the following, in order to be a bit more
concrete. The cubic potential V (z) = 1

2z2 + g
3z3 has two critical points; the

maximum located at z = z∗ and the metastable minimum z = 0, as illustrated
in Fig. 13. There are two steepest–descent paths naturally associated to these
critical points, γ0 through z = 0 and γ1 through z = z∗. While the lowest
energy configuration is associated to having all eigenvalues integrated along
γ0, this is an unstable configuration due to tunneling mediated by instanton
configurations, which correspond to the integration of eigenvalues along γ1

[13]. In particular, the partition function in the one-instanton sector is given
by Marino et al. [13]

Z
(1)
N =

1

2π
Z

(0)
N−1

∫

x∈γ1

dx
〈
det(x1 − M ′)2

〉(0)

N−1
e− 1

gs
V (x). (6.7)

Let us explain this expression. We removed one out of the N eigenvalues in
the cut, x, and we are integrating it over the non-trivial saddle-point, γ1. The
remaining N − 1 eigenvalues are, of course, still integrated over the leading

saddle, associated to γ0, and Z
(0)
N is the zero-instanton partition function eval-

uated around this standard saddle-point. Finally, M ′ is an (N − 1) × (N − 1)
hermitian matrix, all of its eigenvalues still integrated around the standard
saddle-point in the zero-instanton correlation function. We refer the reader
to [13] for the details on the explicit computation of the quantity above. As
it turns out this expression implies that, at leading order, the one-instanton
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Figure 13. The real part of the holomorphic effective poten-
tial for the one-cut cubic matrix model, in blue, and the simple
cubic potential, in purple, for the values g = 0.1 and t = 3
(color figure online)

contribution to the free energy is given by

F (1) =
Z

(1)
N

Z
(0)
N

=
1

2π

Z
(0)
N−1

Z
(0)
N

∫

x∈γ1

dx
〈
det(x1 − M ′)2

〉(0)

N−1
e− 1

gs
V (x) ∼ i e− A

gs ,

(6.8)

where the instanton action is [13]

A = Vh,eff(x0) − Vh,eff(b) =

x0∫

b

dz y(z), (6.9)

with b the endpoint of the single cut C = [a, b]. This formula has an obvious
semiclassical interpretation, as the instanton action (6.9) is nothing but the
height of the potential barrier under which instantons are tunneling. Further-
more, a configuration where N1 eigenvalues are integrated along the contour
γ1, and N0 = N − N1 along γ0, can be naturally regarded either as a two-cut
solution with filling fractions N0 and N1, or as a N1-instanton excitation above
the reference one-cut solution [15]. It has thus become clear that the general
partition function (6.5) provides the nonperturbative completion of the matrix
model since, by summing over all the filling fractions, it naturally encompasses
all the multi-instanton configurations of the theory.

What we shall see in the following is that, for our class of c = 1 matrix
models and topological strings, one also has to allow for generalized integration
contours which contain copies of the leading saddle-point and which find them-
selves going through different sheets of the multi-valued holomorphic effective
potential.
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Figure 14. The real part of holomorphic effective potentials
for Gaussian, Penner and Chern–Simons matrix models, from
left to right, respectively, when t = 0.2

6.2. Instantons and the Multi-Sheeted Effective Potential

Let us now turn to the c = 1 matrix models we are considering in this work.
A quick glance at the real part of the holomorphic effective potentials for the
three models, plotted in Figure 14, is enough to realize that there are no criti-
cal points of these potentials outside their single cuts. While this may not seem
surprising for real and positive gs, as the asymptotic expansions are Borel sum-
mable and there are no nonperturbative ambiguities in the reconstruction of
the partition functions, we also know that when allowing for imaginary values
of the string coupling our topological expansions become non-Borel summable,
with instantons controlling large order. As such, and given that the discussion
in the previous section cannot be applied, at least not in a straightforward
fashion, in what follows we shall have to define the instanton actions for our
models by exploiting the structure of the holomorphic effective potentials in
the complex plane.

Let us have a closer look at the holomorphic effective potentials for
Gaussian, (3.23), Penner, (3.38), and Chern–Simons, (3.52), matrix models.
Due to the presence of either logarithmic or dilogarithmic functions these
holomorphic effective potentials have a multi-sheeted branch structure in all
examples, a clear feature from the structure of their Stokes lines (recall Figures
3, 5 and 7). As one takes the derivative of the effective potential, in order to
obtain the spectral curve, all logarithmic or dilogarithmic sheets artificially
collapse on top of each other. As such, the spectral curve cannot explicitly see
this structure. One way to lift this artificial degeneracy and make the multi-
sheeted structure of the effective potentials manifest, is to repeat what we did
in Sect. 5.1, in the context of hyperasymptotic analysis.

Let us start with the Gaussian model. Akin to what we did for the
“Gamma partition-function” it is useful to first change variables from z to

eu = z +
√

z2 − 4t, (6.10)

in which case the Gaussian holomorphic effective potential gets written as

V G
h;eff(u) =

1

8
e2u − 2t2e−2u − 2t u + 2t log 2

√
t. (6.11)
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In this new variable the critical points (or saddles) of the potential are located
at22

e2u = 4t ⇒ u
(n)
± = log(±2

√
t) + iπn, n ∈ Z, (6.12)

which is just the solution of a, b = eu. The interesting property of the u var-
iable is that it lifts the aforementioned artificial degeneracy where all sheets
have collapsed on top of each other, and insures that one identifies all possi-
ble critical points of the holomorphic effective potential in its fully unfolded
multi-sheet domain. One furthermore selects n = 0 for the reference saddle
and identifies all saddles m �= 0 as adjacent saddles to n = 0.

In this new variable the multi-sheeted structure of the holomorphic effec-
tive potential is much simpler to visualize: one finds an infinite number of
copies of the original single cut (with each distinct degenerate sheet param-

etrized by n), with endpoints u
(n)
− and u

(n)
+ , and where V G

h;eff(u) is constant
on each replica of the cut. This, of course, has dramatic implications: as we
proceed to evaluate the instanton action via A = Vh;eff(x0) − Vh;eff(b) the
sheets are no longer degenerate and we shall find non-zero values every time
we place an eigenvalue in another sheet. The placing of the eigenvalue is sim-
ple and totally analogous to the previous discussion of eigenvalue tunneling:
one removes the single eigenvalue from the endpoint of the cut and places it
at the starting point of the “next” cut, in the following sheet (in such a way
that the spectral curve cannot “see” any difference in the configuration, only
the holomorphic effective potential can), an idea first suggested in [26]. We
conclude that the multi-instanton action (the singulant, in the hyperasymp-
totic language we used earlier, e.g., in section 5.1) is given by the difference
between the holomorphic effective potential evaluated on the principal sheet
(corresponding to the choice n = 0 and denoted with a ⋆ in the following) and
its value on a generic sheet,

AG
n = V G

h;eff(u
(n)
+ ) − V G

h;eff(u⋆
+) = −2πint =

1

2

∮

γn

dz y(z). (6.13)

In the last equality we compute the instanton action as the integral of y(z) dz
along γn, a non-contractible contour encircling the eigenvalue cut n times23.
Analogously, the instanton action may be regarded as half the shift due to
the additive monodromy of the logarithm present in V G

h;eff(x) (recall equation

(3.23)). The action (6.13) we have just obtained from a semiclassical view-
point coincides with the one previously obtained with either Borel or Stokes
analysis. It is also important to notice that the definition we are now sug-
gesting for the instanton action is in perfect analogy with the one that we
have previously described when addressing the semiclassical derivation of the

22 We use the standard definition of the logarithm, log z ≡ log |z|+ i arg z, and make explicit
its multi-sheeted structure by defining arg z up to 2πi, i.e., arg z|n ≡ arg z+2πin with n ∈ Z.
23 Here, γ1 is the contour used to define the filling fraction in matrix models, i.e., the A-cycle.
The factor of 1

2
insures that the action describes moving an eigenvalue from the endpoint of

the cut to the beginning of the “next” cut in the multi-sheeted structure, i.e., that we keep
the standard eigenvalue tunneling picture.
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Schwinger pair-production effect, in Sect. 2.2. With an appropriate identifica-
tion of the parameters, one may identify the semiclassical Schwinger effective
action (2.25) with the matrix model effective potential (3.23). As such, in here
one may still interpret the instantons as an eigenvalue tunneling process, with
the sub-barrier motion consisting of multiple windings in the complex plane
around the eigenvalue cut, as in the discussion of Sect. 2.2.

As we move to the Penner model the holomorphic effective potential
becomes more intricate, as displayed in (3.38), and we shall focus on obtaining
the instanton action straight out of the monodromy shift of (3.38) around the
cut C = [a, b]. There are now contributions from more than one logarithmic
branch cut and one needs to properly consider them all. In this case, there are
two possible ways to choose the contour: one may encircle the eigenvalue cut
without crossing the log z cut in (3.38), in which case one is forced to cross
the other two logarithmic branch cuts; or one may encircle the eigenvalue cut
crossing the log z cut. In the first option, clockwise winding n times around
the cut C = [a, b] one will cross two logarithmic branch cuts and obtain the
global shift −(2t + 1)2πin − 2πin = −4πin (t + 1)24. This immediately yield
the multi-instanton action

AP
n = −2πi (t + 1)n =

1

2

∮

γn

dz y(z), (6.14)

a result which agrees with the one we have previously obtained via Borel
and Stokes analysis. If, instead, one chooses the second option, which involves
crossing the log z cut, this will naturally yield an additional contribution of
2πim (a result we expected to find from Borel or Stokes analysis in any case),
but it is not entirely clear to us how this relates to a cycle of the curve.

Finally, we need to confirm the validity of our proposal within the Chern–
Simons matrix model. In this case, the holomorphic effective potential (3.52) is
rather complex, involving both logarithmic and dilogarithmic branch cuts. As
such, we shall restrain to computing the instanton action from the monodromy
around the cut C = [a, b]. If the cut C = [a, b] is placed on the positive real
axis, we may choose our contour γn such that Re (z) ≥ 0 when contouring the
cut, in which case one also finds Re (ξ) > 0 and both log z and log ξ will have
no monodromy. We will then be left with the contributions of log (1 − ξ) and
log (1 − e−tξ). Since both e−tξ and ξ will be bigger than one on the right hand
side of the cut, on the real axis, then both these logarithms will produce the
same shift of 2πi, at each winding. Turning to the dilogarithmic dependence,
we find a more complicated monodromy structure and we refer the reader to,
e.g., [89,90] for a more in depth analysis, or to “Appendix A” for a brief review
of this topic. The dilogarithm Li2(z) has a branch cut starting at z = 1, and

24 The reader may be puzzled by the fact the integral of the curve around the cut, i.e.,
the A-cycle

∮
A

dz y(z), yields 2(t + 1) instead of 2t (as one would have expected from the

normalization of the genus-zero resolvent at infinity, ω0(z) ∼ 1
z

+ · · · as z → ∞). The reason
for this is that, when deforming the contour back from infinity to the cut C, we still have
to pick the residues at z = 0. This unusual feature is, of course, due to the fact that we are
not dealing with a polynomial potential.
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we choose it to be on the positive real axis. However, as one moves from the
principal sheet to a generic sheet, by crossing the principal branch cut, a new
branch cut will emerge from z = 0 to the right. As such, we shall need two
distinct integers in order to specify the value of Li2(z) on a generic sheet, in
terms of its value on the principal sheet, Li⋆2(z). This turns out to be [89,90]

Li2(z) = Li⋆2(z) + 2πin log(z) − 4π2kn, n ∈ N+, k ∈ Z. (6.15)

In here, the integer n counts how many times we wound clockwise in the com-
plex plane, by crossing the principal branch cut, while the integer k counts
how many times we crossed the “hidden” branch cut. Putting it all together,
it follows

Vh;eff |CS = V ⋆
h;eff

∣∣
CS

+ 4πin log
(
e−tξ

)
− 8π2nk1 − 4πin log ξ + 8π2nk2

= V ⋆
h;eff

∣∣
CS

− 4πitn − 8π2n (k1 − k2) . (6.16)

Setting k = k1 −k2, with k1 and k2 being the two, a priori different, windings
around the “hidden” branch cut of the two dilogarithms in (3.52), one may
write ∮

γn,k

dz y(z) = −4πitn − 8π2nk (6.17)

where γn,k is a contour winding around the cut C until it reaches the (n, k)
sheet. Again, on each (n, k) sheet we find a copy of C, with the effective poten-
tial being constant on each replica of the cut. The instanton action is thus
given by

ACS
n,k = −2πitn − 4π2nk =

1

2

∮

γn,k

dz y(z). (6.18)

Once again the instanton action we have obtained with our proposed semiclas-
sical reasoning precisely matches the one we previously obtained from Borel
or Stokes analysis.

It is interesting to note that in all cases above the instanton action is
essentially given by the integral of the spectral curve along the A-cycle of the
single cut, while in the cases considered in [13,15] the instanton action was
given by the integral of the spectral curve along the B-cycle of the cut(s). This
complete our matrix model derivation of the instanton action. In the follow-
ing we focus on the spacetime interpretation of the nonperturbative effects we
have discussed do far.

6.3. Spacetime D-Instanton Interpretation

Nonperturbative effects in hermitian matrix models have been realized in terms
of D-brane instanton effects in the holographically dual minimal models with
c < 1. In particular, in [6] matrix model instantons, as described by eigenvalue
tunneling, have been shown to match the disk contribution of ZZ branes. An
analogous situation takes place in the case of c = 1 where the ZZZ

(k,1) disk con-

tribution (3.75) coincides with the instanton action obtained from the MQM
nonperturbative integral formula [43,25,69]. In this case, the singularities of
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the curve leading to the ZZ brane disk amplitude are not pinched cycles, but
instead are points where the curve has self-intersections, as described in [69].

As usual, let us first analyze the Gaussian matrix model, or, equiva-
lently, the c = 1 string at self-dual radius. We have already observed that the
MQM spectral curve is just an infinite covering of the hyperboloid defining
the Gaussian spectral curve and identified correlators in the Gaussian matrix
model with open amplitudes with FZZT boundary conditions. The natural
next step is to identify the instanton action (6.13) with the ZZ brane partition
function in the dual c = 1 theory. Moreover, considering the relation (3.65)
between FZZT and ZZ boundary states, one may write the instanton action
as the difference between two FZZT branes located at the branch point u⋆

+,

on the principal sheet, and its replica u
(n)
+ , on the n sheet,

Ac=1
n

(
=

AG
n

iḡs

)
= ZFZZT(u

(n)
+ ) − ZFZZT(u⋆

+)

= ZZZ =
1

2iḡs

∮

γn

dz y(z) = 2πnμ. (6.19)

A very similar story goes through for the Penner model, thus completing the
identification of the (double-scaled) Gaussian and Penner matrix model non-
perturbative effects as ZZ brane D-instantons, in the dual c = 1 string theory.

Let us now turn to the case of the Chern–Simons matrix model where,
much as in the local curve backgrounds studied in [10], the instanton action
may be interpreted, in the dual large N description on the resolved conifold,
in terms of toric branes. In this case, the disk amplitude with (mirror of) toric-
brane boundary conditions may be written, in terms of the mirror curve,25 as
[61,62]

A
(0)
1 (x) =

x∫
ds y(s). (6.20)

It thus follows that one may write the instanton action as the difference of two
disk amplitudes; simply set

Aconif
(n,k)

(
=

ACS
(n,k)

iḡs

)
=

i

ḡs
A

(0)
1 (u⋆

+) − i

ḡs
A

(0)
1 (u

(n,k)
+ )

= − i

2ḡs

∮

γn,k

dz y(z) =
2πn

ḡs
(t + 2πik) , (6.21)

where the toric branes have been place at the endpoint u⋆
+ and at its copy,

u
(n,k)
+ , on the sheet labelled by n and k (recall our previous discussion). The

instanton action is in this way given by the tension of the domain wall inter-
polating in between the two branes (see as well [13]).

25 For backgrounds with a matrix model dual, this mirror curve precisely coincides with the
spectral curve.



416 S. Pasquetti and R. Schiappa Ann. Henri Poincaré

At this point, two comments are in order. First, when we discussed the
c = 1 double-scaling limit we also checked that the spectral curve—alongside
with all the open correlators—of the Chern–Simons model collapse, at the
conifold point, to their corresponding c = 1 values. In particular, this implies
that in this limit also the instanton action reduces to the c = 1 one which
indicates, as also observed in [10], that in the double-scaling limit nonpertur-
bative effects due to toric branes reduce to the ones due to Liouville branes in
minimal models. The second observation we want to make is that the instan-
ton effects leading to the above action (6.21) involve vector multiplet moduli.
This can be realized by simply noting that the instanton action (6.21) is given
by the integral of the one-form y dz on the contour γ, which are, respectively,
reductions of the complex structure three-form Ω and of the three-cycle Γ for
a local CY,

Aconif
(n,k) = i

∫

Γ

Ω, Γ = C⋆
+ − C

(n,k)
+ , (6.22)

where the two-cycles C⋆
+ and C

(n,k)
+ are given by line-bundles, with base points

u⋆
+ and u

(n,k)
+ on the spectral curve. The instanton action may in this way be

identified with the tension of the domain wall interpolating in-between the two
branes (see as well [13]).

So far we provided a spacetime interpretation of nonperturbative effects
in c = 1 matrix models and topological strings in terms of Liouville and toric
branes. However, there is a further, obvious, spacetime interpretation of the
instanton expansion as due to BPS particle production, via the Schwinger
effect that we have discussed earlier in this paper. Furthermore, it is possible
to relate these particle production effects to spacetime D-brane instantons via
a compactification to three dimensions, followed by a T -duality [91]. Recently,
in [92], this connection has been exploited in order to study the continuity,
across walls of marginal stability, of nonperturbative effects in type II com-
pactifications.

7. Trans-Series and the Toda Equation

Another approach to the calculation of instanton corrections to the free energy
of matrix models and topological strings, and first developed away from crit-
icality in [14], deals with trans-series solutions in the orthogonal polynomial
framework, rather than the spectral geometry as in the preceding section. In
this section we wish to learn what this approach has to say on what considers
Gaussian, Penner and Chern–Simons matrix models; in particular, we wish to
confirm our instanton results in yet a novel setting. Let us begin by briefly
reviewing the ideas behind the trans-series approach, and then apply it within
our interests.

Let us first recall that in the orthogonal polynomial formalism one may
compute the partition function via (3.11) once one knows the recursion coef-
ficients {rn}. Making use of the definition (3.11) it is not too hard to obtain
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ZN+1ZN−1

Z2
N

= rN . (7.1)

In the continuum N → ∞ limit the coefficients rn become a function rn →
R(x, gs) of the variable x = t n

N ∈ [0, t], where the function R(x, gs) can be
determined by solving the so-called pre-string equation, a finite difference equa-
tion obtained from the continuum limit of the recursion for the coefficients {rn}
[18]. Analogously, the continuum limit of equation (7.1) produces the following
Toda-like equation for the free energy, FN = log ZN → F (t, gs),

exp (F (t + gs, gs) − 2F (t, gs) + F (t − gs, gs)) = R(t, gs). (7.2)

Given a solution to the recursion coefficients R(x, gs), this equation then deter-
mines the free energy of our model as a solution to the Toda hierarchy.

Let us now consider trans-series solutions (in the sense of exponential
asymptotics) to the equations above.26 For that, consider the trans-series
ansätz for the recursion coefficients

R(x, gs) =

+∞∑

ℓ=0

CℓR(ℓ)(x, gs), (7.3)

with the zero-instanton contribution given by

R(0)(x, gs) =

+∞∑

n=0

g2n
s R

(0)
2n (x) (7.4)

and the ℓ-instanton contributions given by

R(ℓ)(x, gs) = R
(ℓ)
1 (x) e− ℓA(x)

gs

(
1 +

+∞∑

n=1

gn
s R

(ℓ)
n+1(x)

)
, ℓ ≥ 1. (7.5)

Plugging this ansätz into the pre-string equations one may, in principle, deter-

mine recursively both the instanton action A and all the loop terms R
(ℓ)
n (x).

Once this is done, one finally plugs the trans-series solution for R(t, gs) on the
right-hand side of equation (7.2) and solves it with a trans-series ansätz for
the free energy

F (t, gs) =

+∞∑

ℓ=0

CℓF (ℓ)(t, gs), (7.6)

where

F (0)(t, gs) =

+∞∑

g=0

g2g−2
s F (0)

g (t), (7.7)

and

F (ℓ)(t, gs) = F
(ℓ)
1 (t) e− ℓA(t)

gs

(
1 +

+∞∑

n=1

gn
s F

(ℓ)
n+1(t)

)
, ℓ ≥ 1. (7.8)

26 Notice that these trans-series solutions will only be valid in a specific region of the com-

plex plane; as we change sectors and cross a Stokes line the asymptotics will change. This

change will be given by a shift in the nonperturbative ambiguity parameter, C, as C → C+S

with S the Stokes multiplier.
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Again, at least in principle, all the coefficients F
(ℓ)
n (t) may be determined

recursively.
In [14], this formalism has been applied and checked against a large-order

analysis in several matrix models. Remarkably, this method appears to work
beyond the context of matrix models: for instance, in [14], the full instanton
series has been obtained for the case of Hurwitz theory, which is also controlled
by a Toda-like equation.

7.1. The Trans-Series Approach for c = 1 Matrix Models

Let us now try to apply the trans-series method to solve our c = 1 models. As
we have just learned, the first thing to do is to look for a trans-series solution
to the pre-string equation. But it so happens that it is a common feature of all
our c = 1 models that the recursion relations for the coefficients {rn} may be
solved exactly, without a genus expansion. In particular, for Gaussian, Penner
and Chern–Simons models we find

rG
n = gsn → RG(x, gs) = x, (7.9)

rP
n = gsn (1 + gsn) → RP(x, gs) = x (1 + x) , (7.10)

rCS
n = q3n (qn − 1) with q = egs → RCS(x, gs) = e3x (ex − 1) . (7.11)

Since we have exact solutions for the functions R(x, gs) ≡ R(x), without a
genus expansion, there is clearly no asymptotics and thus no trans-series expan-
sion for R(x). Thus, for all three cases that we are considering, we only have
to worry about the trans-series ansätz (7.8) and plug into the homogeneous
Toda equation

F (t + gs) − 2F (t) + F (t − gs) = 0. (7.12)

This is a rather interesting point, also implying that all Borel poles are con-
trolled by the Toda equation (and not by the pre-string equations). In hindsight
this is not so surprising, as at criticality all our examples are in the univer-
sality class of the c = 1 string, and it is precisely the case that the partition
function of c = 1 string theory is a τ -function of the Toda hierarchy, satisfying
the Toda equation [93]. In some sense, the above Toda equation plays a role
very analogous to the one played by the Painlevé I equation in c = 0 string
theory, and which was also studied in connection to the large-order behavior
of topological strings in [13,15].

Let us start with the one-instanton sector. By plugging into the homoge-
neous Toda equation the ℓ = 1 term in (7.8), at first order in gs one obtains

4F
(1)
1 (t) e− A(t)

gs sinh2

(
A′(t)

2

)
= 0, (7.13)

and setting F
(1)
1 (t) �= 0 it follows

sinh

(
A′(t)

2

)
= 0 ⇔ A′(t)

2
= iπk, k ∈ Z. (7.14)
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It is quite remarkable that the solution to the above equation already includes
all k-instanton actions

Ak(t) = 2πit k + α(k), (7.15)

where we have also allowed the integration constant to depend on k. Making
further use of the trans-series ansätz we may compute

F (k)(t ± gs, gs) = F
(k)
1 (t) e− Ak(t)

gs

(
1 +

+∞∑

n=1

gn
s F (k)

(n+1)

)
, (7.16)

where, for example,

F (k)
(2) = F

(k)
2 (t) ± ∂tF

(k)
1

F
(k)
1

(t), (7.17)

F (k)
(3) = F

(k)
3 (t) ± F

(k)
2 ∂tF

(k)
1

F
(k)
1

(t) ± ∂tF
(k)
2 (t) +

1

2

∂2
t F

(k)
1

F
(k)
1

(t). (7.18)

We now insert these expressions into the Toda equation, and solve it pertur-
batively in gs. At second order in the string coupling it follows,

∂2
t F

(k)
1 (t) = 0 ⇒ F

(k)
1 (t) = Φ1(k) + Φ2(k) t. (7.19)

In fact, solving the infinite chain of differential equations one perturbatively
obtains, in a recursive fashion, one is always led to second order differential
equations. All the higher order terms are then fixed to be

F
(k)
n+1(t) = − Φ

(n+1)
1 (k)

Φ2(k)F
(k)
1 (t)

+ Φ
(n+1)
2 (k), n ≥ 1. (7.20)

The k-instanton contribution in (7.8) is thus given by

F (k)(t, gs) = (Φ1(k) + Φ2(k) t) e− 2πit k+α(k)
gs

×
(

1 +

+∞∑

n=1

gn
s

(
− Φ

(n+1)
1 (k)

Φ2(k) (Φ1(k) + Φ2(k) t)
+ Φ

(n+1)
2 (k)

))
.

(7.21)

It is now simple to see that the instanton series of our three models, that
we have computed either via Borel or Stokes analysis, (4.6), (4.16) and (4.23),
are all solutions to the homogeneous Toda equation.27 This confirms, within
the trans-series setting, the validity of our results. However, it is not equally
clear how to flow in the other direction, i.e., how to obtain our results, (4.6),
(4.16) and (4.23), starting from the trans-series formalism. In particular, it is
not obvious to us how to provide enough boundary conditions in order to fix,
for each distinct case, the integration constants of the general solution (7.21).
A natural boundary condition is to impose matching to the c = 1 solution, in
the double-scaling limit [94]. But this cannot be quite enough off-criticality: in

27 Because the Toda equation is linear, linear combinations of (7.21) are also a solution to
the problem, in particular linear combinations where α also depends on an integer m and
we sum over m ∈ Z as in the conifold.
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fact all our distinct examples are satisfying the same difference equation with
the same aforementioned boundary condition. Thus, one is forced to demand,
as a final boundary condition and in order to obtain a unique solution in each
case, a comparison with the large-order behavior of perturbation theory, in
each distinct model we wish to study. So, at least for these models, Borel or
saddle-point methods seem more powerful and efficient ways to proceed.

7.2. A Comment on Parametric Resurgence

In many cases it is not possible to resum the Borel transform of an asymptotic
series, or even to explicitly compute this Borel transform, and thus one cannot
locate the singularities in the Borel complex plane (some of which, in particu-
lar, control the large-order behavior of the perturbation theory). However, it
may be the case that, even if we are not able to resum the Borel transform, we
may know that the asymptotic series arises as a solution to a finite difference
equation (where we are, of course, interested in the example of the Toda equa-
tion). In this case we may still obtain some interesting information, as shown
in [95]. Let us quickly apply [95] to our problem.

Consider the asymptotic series

F (t, gs) ∼
+∞∑

n=0

g2n
s Fn(t), (7.22)

which we take as a perturbative solution to the finite difference equation

F (t + gs)−2F (t)+F (t − gs)=g2
s G(t) ⇔ 4 sinh2

(
gs

2

∂

∂t

)
F (t)=g2

s G(t).

(7.23)

Then, it is possible to formally solve this differential equation [95], with the
formal solution being expressed in terms of the power-series coefficients of the
function

H(x) = −1 +
x2

4 sinh2
(

x
2

) =
+∞∑

n=0

Hn x2n+2. (7.24)

Furthermore, the poles of the Borel transform B[F ](ξ) may be related to the
poles of the Borel transform of H(x). In particular [95] this implies that in
this case the Borel poles are located at 2πint, with n ∈ Z. It is indeed the case
that the instanton actions for the three matrix models we have studied in this
paper are of this kind.

8. Conclusions and Outlook

In this paper we have addressed the nonperturbative structure of topological
strings and c = 1 matrix models, focusing on Gaussian, Penner and Chern–
Simons matrix models together with their holographic duals, c = 1 minimal
strings and topological strings on the resolved conifold. Making use of either
Borel or Stokes analysis, we have uncovered the nature of instanton effects
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in these models, and have further explored the relation of these nonpertur-
bative phenomena to the large-order behavior of the 1/N expansion. While
this builds up on previous work along the same direction [13–15,19], clarifying
the discussion for a big class of models, we believe there is still much work to
be done. In particular, let us end by listing several issues raised in this paper
which we believe deserve further and immediate investigation (in no particular
order):

• While our results were checked in the trans-series formalism, we have seen
that it is not obvious how to obtain these results for the multi-instan-
ton series starting straight from within the trans-series set up. In partic-
ular, the choice of boundary conditions is not completely clear. It would
be interesting to further explore and better understand the trans-series
ansätz in this context, possibly solving the questions we have just
mentioned.

• In the Gaussian and Penner models, we have explicitly shown that inst-
anton effects may be understood as Stokes phenomena for the logarithm
of the G2(z) Barnes function. However, we could not say much along these
lines for the Chern–Simons model, as we do not know of any appropriate hy-
perasymptotic framework for the quantum Barnes function, Gq(z). It would
be very interesting to study the hyperasymptotics of Gq(z) and show that
Stokes phenomena in this case is also related to the instanton effects of the
Chern–Simons model.

• In our matrix model derivation of the instanton effects, in terms of eigen-
value tunneling, we have obtained the instanton action expressed in terms
of the spectral curve (a cycle of the y dz one-form). It would be rather inter-
esting to extend this calculation in order to contemplate loop corrections.
Indeed, in [13,15], higher loop terms around the multi-instanton configura-
tions were computed, in terms of matrix model open correlators. Extending
that calculation to the present set up would be very interesting, since these
correlators can be computed entirely in terms of the spectral curve and, as
such, this formalism could be extended to other topological string scenarios
where a dual matrix model description is not available. In particular, this
could allow for a direct understanding—from a spectral geometry point of
view—of why the loop expansion around an one/multi-instanton configura-
tion truncates in all our examples. Furthermore, this would also provide an
explanation of the instanton expansion in terms of open string amplitudes
with either Liouville or toric boundary conditions, for the c = 1 string and
the resolved conifold, respectively.

• Much of our Borel analysis was very much related to the existence of a GV
integral representation for the free energies of our models. Since also on
a generic CY background the topological string free energy admits a GV
integral representation, one is led to wonder if our approach may be applied
to other, more general cases. Recall that on a general CY threefold X , the
topological string free energy is given in terms of GV integer invariants by
the expansion
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FX (gs) =

+∞∑

r=0

+∞∑

di=1

n(di)
r (X )

∑

m∈Z

+∞∫

0

ds

s

(
2 sin

s

2

)2r−2

e− 2πs
gs

(d·t+im). (8.1)

When r = 0 the zeros of the sine will be poles of the integrand and this con-
tribution to the total sum will, as in the case of the resolved conifold which
we address in the paper, yield a nonperturbative contribution to the free
energy. However, for generic CY backgrounds, one will also have to consider

the summation over the Kähler classes {di}, as weighted by n
(di)
0 . In this

way, one is led to write (we neglect the pole at zero)

DiscF̃X (ḡs) = − i

2πḡs

+∞∑

di=1

n
(di)
0 (X )

+∞∑

n=1

∑

m∈Z

×
(

(2π)
2
(d · t + im)

n
+

ḡs

n2

)
e− (2π)2n

ḡs
(d·t+im). (8.2)

Higher terms with r > 0 in (8.1) have no poles in the complex plane and
will only contribute to the nonperturbative corrections through the residues
at infinity (recall (2.8) and our discussion in the appendix). What role they
might play is beyond the scope of our analysis.

It seems likely that nonperturbative corrections obtained from the GV
representation actually provide the full nonperturbative corrections to the
topological string free energy, in those cases where the number of GV invari-

ants n
(di)
r (X ) is finite (as in our example of the resolved conifold). Indeed,

in these cases (8.2) may provide the complete tower of nonperturbative cor-
rections to the topological string free energy, as (8.1) is basically given by a

finite sum, not a power series expansion. In particular, the number of n
(di)
0

invariants is finite for non-singular curves of any genus [96], for rational
curves with nodal singularities [97], and for the configurations studied in
[98] (among which are the CY threefolds which are Ak-type ALE spaces,
times C). Further notice that in (8.2) the loop expansion around multi-inst-
anton configurations truncates. In this case, and if indeed (8.2) turns out to
be the full answer for backgrounds with a finite number of GV invariants,
then it must also be the case that these backgrounds will display no non-
trivial large-order behavior in their multi-instanton sectors. Finally, observe
that the Ak-type ALE backgrounds have also been studied in the context of
the OSV conjecture [21], in [99]. The OSV conjecture [21] relates the topo-
logical string partition function to the partition function of a configuration
of branes in type II string theory, giving rise to a 4D BPS black hole. The
brane partition function was further suggested to provide a nonperturbat-
ive completion of topological string theory. For Ak-type ALE spaces, times
C, it would thus be interesting to compare OSV and Schwinger comple-
tions.

• When the number of GV invariants n
(di)
r (X ) is infinite, it seems very unlikely

that the GV integral representation can still provide the full set of nonper-
turbative corrections to the topological string free energy. Indeed, it is now
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the case that n
(d)
0 ∼ ed, for large d, and it seems to be the case that (8.2)

cannot provide the complete nonperturbative information. A particularly
interesting example to further explore this issue is that of the local curve,
which indeed has an infinite number of GV invariants. The good news is
that this background has been extensively studied in [13], with instanton
configurations identified and checked against the large-order behavior. As
such, it would be extremely interesting to analyze the relation between the
nonperturbative corrections arising due to the GV representation, with the
ones derived in [13]. In particular, the analysis of [13,15] seems to indi-
cate that, for the local curve, the loop expansion around multi-instanton
configurations will not truncate, which is to say that (8.2) cannot be the
full correct answer. On the other hand, and as we have already remarked,
the local curve is in the universality class of 2D gravity, with c = 0, and
as such it should better be understood as a first step to understand back-
grounds with an infinite number of GV invariants. A second natural step
in this direction would be looking at the case of local P

2, a c = 1 toric
geometry with an infinite number of GV invariants. Indeed, the free energy
of this model can be computed very efficiently to all genus, by means of
direct integration of the holomorphic anomaly equations as shown in [100],
and would thus provide for a natural testing ground for our aforementioned
questions.

• Besides an explicit check against the large-order behavior of the theory,
another way to test the Schwinger completion of topological string the-
ory, for generic backgrounds, would be to study the modular properties
of its nonperturbative free energy. In fact, it is expected that modular
invariance may be recovered at the nonperturbative level [19], an impor-
tant issue also in the context of large N dualities. Clearly, for the case of
the resolved conifold, which we studied in this paper, there are no con-
straints arising from modularity since the moduli space is trivial, with
the mirror geometry having genus zero, but this will not be the case for,
e.g., local P

2, whose mirror geometry has a spectral curve of genus one.
Notice that backgrounds with a finite number of GV invariants seem not
to give rise to mirror geometries with spectral curves of genus one and,
as such, modularity should become an issue precisely when (8.2) ceases
to be the full correct answer. In particular, modularity may play a key
role in order to understand exactly what type of information is (8.2) miss-
ing in general backgrounds, and these issues should be addressed in future
work.
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Mourão, Nicolas Orantin, Christoffer Petersson, Domenico Seminara, Jorge
Drumond Silva, Angel Uranga, Marcel Vonk and, specially, Marcos Mariño, for
useful discussions, comments and/or correspondence. RS would like to thank
CERN TH, Division for hospitality, where a part of this work was conducted.



424 S. Pasquetti and R. Schiappa Ann. Henri Poincaré

Appendix A. The Polylogarithm: Branch Points and

Monodromy

This appendix is devoted to the study of the polylogarithm, with emphasis
towards its branch points and monodromy. This function is defined by

Lip(z) =

+∞∑

n=1

zn

np
, (A.1)

and on its principal sheet it has a branch point at z = 1 leading, by convention,
to a branch cut discontinuity in the complex z plane running from 1 to infinity.
As one starts “exploring” the multi-sheeted structure of the polylogarithm and
moves off its principal sheet, one finds that there exists another branch point,
at z = 0. In this case, the resulting monodromy group will be generated by
two elements, acting on the covering space of the bouquet S1∨S1 of homotopy
classes of loops in C\{0, 1}, passing around the branch points z = 0 or z = 1.
For further details, we refer the reader to the very thorough explanations that
can be found in, e.g., [89,90].

For our purposes in this paper, a simple analysis in terms of explicit topo-
logical language will suffice. Let m1 represent the homotopy class of all loops
based at some point z in C, which wind once, clockwise around the branch
point at z = 1. The action of m1 on the polylogarithm has the effect of car-
rying this function from one sheet to the next. It was shown in [90] that one
may write

m1 · Lis(z) = Lis(z) − ∆1, (A.2)

where ∆1 is a function, whose specific form is not important at the moment,
but which includes a logarithm with a branch point at z = 0. This implies that,
after acting once with m1, one finds oneself on a sheet which has a branch cut
discontinuity running from 0 to minus infinity. If we now let m0 represent the
homotopy class of all loops based at some point z in C, which wind once,
clockwise around this new branch point at z = 0, its action on the logarithm
is the familiar one:

m0 · log z = log z + 2πi. (A.3)

Now, because the principal sheet of the polylogarithm has no branch point at
z = 0, it simply follows

m0 · Lis(z) = Lis(z). (A.4)

If one now winds with m1 in the opposite direction, one is led to write instead

m−1
1 · Lis(z) = Lis(z) − ∆−1, (A.5)

where again ∆−1 is a function we shall leave unspecified; see [90] for details.
If m1 is to be properly considered the group-theoretic inverse of m1 it better
be the case that m1 ·m−1

1 = 1 = m−1
1 ·m1, when acting on Lis(z). This imme-

diately implies, e.g., m−1
1 ∆1 = −∆−1, where we recall that ∆1 includes the

standard logarithmic branch cut discontinuity starting off at z = 0. This rela-
tion thus seems odd, as the logarithm has no branch point at z = 1 and there
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should be nothing to wind around. This is a subtle point, further explained
in [90], and it should be stressed that it is the joining of polylogarithmic and
logarithmic cuts that causes this effect. One way to capture the idea of there
being no obstruction for the logarithm at z = 1 is [90] to define group elements
g1 = m1 · m−1

0 and g0 = m0, such that g1 · log z = log z and

g0 · Lis(z) = Lis(z), (A.6)

g1 · Lis(z) = Lis(z) − ∆1. (A.7)

We shall explore this monodromy group for the dilogarithm in the following.
The free combinations of powers of the two generators g0 and g1 form

the monodromy group of the polylogarithm. If s is a positive integer, this mo-
nodromy group has a finite-dimensional representation with dimension s + 1.
A particularly well-known case is the dilogarithm s = 2, also further discussed
in [89]. In this case, the monodromy group is the discrete Heisenberg group
[90]. In particular, one finds

∆n = 2πi (log z + 2πi (n − 1)) . (A.8)

As such, repeated applications of g0 and g1 will only result in linear combina-
tions of the dilogarithm Li2(z), the logarithm log z, and the identity operator.
Indeed, one could further take each of these three elements as a basis of a 3D
vector space, e1 = 4π2, e2 = −2πi log z and e3 = Li2(z), in which case the
matrix representation of the monodromy group would become

g1 =

⎡
⎣

1 0 0
0 1 1
0 0 1

⎤
⎦ and g0 =

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦ . (A.9)

These two matrices are in fact the generators of the discrete Heisenberg group
H3(Z), see [90] for full details on this discussion.

In this paper, we are interested in the following action (see [90] for any
missing details)

gk
0 · gn

1 · Li2(z) = gk
0 · (Li2(z) − n∆1)

= Li2(z) − n∆k+1 = Li2(z) − 2πi n log z + 4π2 k n,

(A.10)

and we make use of this result in the main body of the paper.

Appendix B. Dispersion Relation for Topological Strings

In this appendix we address the Cauchy dispersion relation (2.8) for the case
of general topological string theories on a CY threefold X , whose free energy
is given in terms of GV integer invariants by the expansion (2.37), and which
we recall in here as

FX (gs) =

+∞∑

r=0

+∞∑

di=1

n(di)
r (X )

+∞∑

n=1

1

n

(
2 sin

ngs

2

)2r−2

e−2πn d·t. (B.1)
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In particular, we wish to evaluate
∮

(∞)

dw

2πi

FX (w)

w − g
, (B.2)

and show that this vanishes in the case of the resolved conifold, a result we
have used in the main body of the paper. Notice that one cannot compute the
pole at infinity straight: infinity is an essential singularity of the integrand in
the GV representation and, as such, residue calculus does not apply. None-
theless, for r = 0 one may decompose the contour C∞ into the sum of two
contours in upper and lower hemispheres, C+ and C−, respectively,

∮

C∞

dw

2πi

1

w − g

1
(
2 sin nw

2

)2

=

∫

C+

dw

2πi

einw

(w − g) (1 − einw)
2 +

∫

C−

dw

2πi

e−inw

(w − g) (1 − e−inw)
2 , (B.3)

and then use Jordan’s lemma—applicable as

lim
R→+∞

max
θ∈[0,π]

∣∣∣∣∣
1

(Reiθ − g)
(
1 − einReiθ

)2

∣∣∣∣∣ = 0 (B.4)

in the upper hemisphere, and analogously in the lower—in order to find that
this implies that the integral vanishes at infinity, and it thus follows that for

the resolved conifold, where only n
(1)
0 = 1 is non-zero, the (B.2) contribution

indeed vanishes. For more complicated CY threefolds with r ≥ 1, it seems
rather likely that there will be a Cauchy contribution at infinity, and a com-
plete analysis of this situation is beyond the scope of the present work.
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