
UCLA
UCLA Previously Published Works

Title
Borel circle squaring

Permalink
https://escholarship.org/uc/item/8f98z63t

Journal
ANNALS OF MATHEMATICS, 186(2)

ISSN
0003-486X

Authors
Marks, Andrew S
Unger, Spencer T

Publication Date
2017

DOI
10.4007/annals.2017.186.2.4
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8f98z63t
https://escholarship.org
http://www.cdlib.org/


BOREL CIRCLE SQUARING

ANDREW S. MARKS AND SPENCER T. UNGER

Abstract. We give a completely constructive solution to Tarski’s circle squar-

ing problem. More generally, we prove a Borel version of an equidecomposi-

tion theorem due to Laczkovich. If k ≥ 1 and A,B ⊆ Rk are bounded Borel
sets with the same positive Lebesgue measure whose boundaries have upper

Minkowski dimension less than k, then A and B are equidecomposable by

translations using Borel pieces. This answers a question of Wagon. Our proof
uses ideas from the study of flows in graphs, and a recent result of Gao, Jack-

son, Krohne, and Seward on special types of witnesses to the hyperfiniteness

of free Borel actions of Zd.

1. Introduction

In 1925, Tarski posed the problem of whether a disk and square of the same
area in the plane are equidecomposable by isometries [T]. That is, can a disk
be partitioned into finitely many pieces which can be rearranged by isometries to
partition a square of the same area? This problem became known as Tarski’s circle
squaring problem. In contrast to the Banach-Tarski paradox in R3, a theorem of
Tarski (see [W]) implies that any two Lebesgue measurable sets in R2 that are
equidecomposable by isometries must have the same Lebesgue measure, even when
the pieces used in the equidecomposition are allowed to be nonmeasurable. Thus,
the requirement that the circle and the square have the same area is necessary.

The idea of comparing the measure of sets by partitioning them into congruent
pieces has a long history, dating back in some form to Euclid. The well known
Wallace-Bolyai-Gerwien theorem states that two polygons in R2 have the same
area if and only if they are dissection congruent, that is, equidecomposable by
polygonal pieces where we may ignore boundaries. Hilbert’s third problem asked
whether any two polyhedra of the same volume are dissection congruent. Dehn
famously gave a negative answer to this problem.

Early work on Tarski’s circle squaring problem established the nonexistence of
certain types of equidecompositions. Dubins, Hirsch, and Karush [DHK] introduced
the notion of scissors congruence in R2, considering equidecompositions using pieces
whose boundaries consist of a single Jordan curve. They showed that a disk in R2

is scissors congruent to no convex set other than translates of itself. So Tarski’s
circle squaring problem has a negative answer for this restrictive type of equide-
composition. Gardner [G] also showed that Tarski’s circle squaring problem cannot
be solved using any locally discrete subgroup of isometries.

Laczkovich answered Tarski’s question positively in 1990 [L90], using only trans-
lations in his equidecomposition. In 1992, he improved this result to give a very
general sufficient condition for when two bounded sets in Rk of the same Lebesgue
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2 ANDREW S. MARKS AND SPENCER T. UNGER

measure are equidecomposable by translations. If X ⊆ Rk, then we let ∂X =
cl(X) \ int(X) indicate its boundary and ∆(X) be the upper Minkowski dimension
of X (see [L92]). Let λ be Lebesgue measure.

Theorem 1.1 ([L92, Theorem 3]). Suppose k ≥ 1 and suppose A,B ⊆ Rk are
bounded sets such that λ(A) = λ(B) > 0, ∆(∂A) < k, and ∆(∂B) < k. Then A
and B are equidecomposable by translations.

Laczkovich’s proofs in [L90] and [L92] are nonconstructive and use the axiom of
choice. It remained an open problem whether such equidecompositions could be
done constructively. In [W, Appendix C, Question 2.a], Wagon made this question
precise by asking whether Tarski’s circle squaring problem could be solved using
Borel pieces. Recall that the Borel sets are the smallest collection of sets obtained
by starting with the open sets and closing under the operations of countable union,
countable intersection, and complementation.

In a recent breakthrough, Grabowski, Máthé, and Pikhurko [GMP] showed that
Tarski’s circle squaring problem can be solved using Lebesgue measurable or Baire
measurable pieces, by proving a version of Theorem 1.1 for Lebesgue measur-
able/Baire measurable equidecompositions. Their proof is also non-constructive
since it uses the axiom of choice to construct the equidecomposition on a null/meager
set. However, their result gave strong evidence that a constructive solution to
Tarski’s circle squaring problem might exist, since it showed that there cannot be
any measure-theoretic or Baire category obstruction.

In this paper, we answer Wagon’s question [W, Appendix C, Question 2.a] and
give a completely constructive solution to Tarski’s circle squaring problem. More
generally, we prove a Borel version of Laczkovich’s Theorem 1.1. This generalizes
the results of [GMP]. It also provides a “Borel solution” to Hilbert’s third problem:
any two bounded Borel sets in Rk with “small boundary” have the same measure
if and only if they are translation equidecomposable using Borel pieces:

Theorem 1.2. Suppose k ≥ 1 and suppose A,B ⊆ Rk are bounded Borel sets
such that λ(A) = λ(B) > 0, ∆(∂A) < k, and ∆(∂B) < k. Then A and B are
equidecomposable by translations using Borel pieces.

The pieces that we use in our equidecomposition are quite simple. Let ΣA,B
1 be

the collection of all open balls in Rk, translates of A, and translates of B. Then

inductively, let BA,Bn be all finite Boolean combinations of ΣA,B
n sets, and let ΣA,B

n+1

be all countable unions of sets in BA,Bn . If A and B are Σ0
m in the usual Borel

hierarchy, then clearly every set in ΣA,B
n is Σ0

n+m−1. The pieces we use in our

equidecomposition are sets in BA,B4 (see Section 7). If A and B are a disk and
a square of the same area in R2, then it is easy to see that A and B are not

equidecomposable using set in BA,B1 , since A and B are not scissors congruent.
A key idea in our proof is to use flows in infinite graphs as an intermediate step

towards constructing equidecompositions. Under the hypotheses of Theorem 1.2,
in Section 4 we give an explicit and simple construction of a bounded “Borel flow”
between A and B. Laczkovich’s discrepancy estimates from [L92] – the central
ingredient in the proof of Theorem 1.1 – are used to show the convergence of this
construction.

Another important tool in our proof comes from the theory of orbit equivalence
and Borel equivalence relations. In particular, we use a result of Gao, Jackson,
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Krohne, and Seward, about special types of witnesses to the hyperfiniteness of free
Borel actions of Zd (see Theorem 5.5). Their theorem is part of an ongoing research
program to understand the complexity of actions of amenable groups in descriptive
set theory and ergodic theory. It builds on the result due to Weiss that every free
Borel action of Zd is hyperfinite, and more recent work of Gao-Jackson [GJ] (see
also [SS]). Gao, Jackson, Krohne, and Seward’s theorem is announced in [GJKS],
but has not yet appeared, and so we include a proof of their result in Appendix A
for completeness. (This proof is different from their forthcoming proof). So our
paper is essentially self-contained except for our use of Laczkovich’s discrepancy
estimates.

In Section 5 we use this hyperfiniteness witness to turn our real-valued Borel
flow between A and B into an integer-valued flow. This step in our proof also relies
on the integral flow theorem which is a corollary of the Ford-Fulkerson proof of the
max-flow min-cut theorem. The last step in our proof in Section 6 uses this integer
valued flow to define a Borel equidecomposition from A to B.

These ideas are very different from the work of [GMP]. The tools they use are
quite specific to the measurable and Baire measurable settings and cannot easily
be adapted to prove Theorem 1.2.

The authors would like to thank Anton Bernshteyn, Clinton Conley, Steve Jack-
son, Alekos Kechris, Igor Pak, Robin Tucker-Drob, and Brandon Seward for helpful
discussions.

2. Preliminaries

If a : Γ y X is an action of a group Γ on a set X, then A,B ⊆ X are said
to be a-equidecomposable if there exist a partition {A1, . . . , An} of A and group
elements γ1, . . . , γn ∈ Γ such that γ1 ·A1, . . . , γn ·An is a partition of B. Similarly
we say that A,B ⊆ X are a-equidecomposable using Borel pieces if there exist a
partition {A1, . . . , An} of A into Borel sets and group elements γ1, . . . , γn ∈ Γ such
that γ1 ·A1, . . . , γnAn is a partition of B into Borel pieces.

Suppose A,B ⊆ Rk are bounded, and we wish to show that A and B are equide-
composable by translations using Borel pieces. By scaling and translating A and B,
we may assume that A,B ⊆ [0, 1/2)k which is a subset of the k-torus Tk = Rk/Zk
which we identify with [0, 1)k. Then it is clear that any equidecomposition by
translations between A and B in Tk can also be done in Rk using the same set of
pieces. This idea was used by Laczkovich [L90]. We will work in Tk throughout the
paper and show that A and B are equidecomposable by translations using Borel
pieces in Tk.

Tk inherits both its topology and abelian group structure from Rk. We let λ
be Haar measure on Rk/Zk which we can identify with Lebesgue measure on the
fundamental domain [0, 1)k. If F ⊆ Tk is finite and A ⊆ Tk is λ-measurable, then
the discrepancy of F relative to A is

D(F,A) = ||F ∩A|/|F | − λ(A)| .

Given u = (u1, . . . , ud) ∈ (Tk)d, let au be the action of Zd on Tk defined by

(n1, . . . , nd) ·au x = n1u1 + . . .+ ndud + x

for (n1, . . . , nd) ∈ Zd and x ∈ Tk. Let

RN = {(n1, . . . , nd) ∈ Zd : 0 ≤ ni < N for every i ≤ d}
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and let the image of this set under the action au be

FN (x, au) = RN ·au x.

Laczkovich proved the following crucial estimate on the discrepancies of these
sets, using ideas from Diophantine approximation, and building on work of Schmidt
[S] and Niederreiter and Wills [NW].

Lemma 2.1 (Laczkovich [L92, Proof of Theorem 3], see also [GMP, Lemma 6]).
Suppose A ⊆ Tk is measurable, ∆(∂A) < k and λ(A) > 0. Let d be such that
d > 2k/(k − ∆(∂A)). Then for almost every u ∈ (Tk)d, there is an ε > 0 and
M > 0 such that for every x ∈ Tk and N > 0,

D(FN (x, au), A) ≤MN−1−ε.

The variables u, (x1, . . . , xd), and η in [L92] correspond to our x, u, and ε,
respectively.

Though we will not need this observation for our proof, we remark that the
order of the quantifiers over u and A can be reversed here. Almost every u ∈ (Tk)d

satisfies the lemma for every measurable A ⊆ Tk. This follows from Laczkovich’s
argument.

By a graph G on a set V , we mean a (simple undirected) graph with vertex set
V , so the edge relation of G will be a symmetric irreflexive relation on V . If G is a
graph on a vertex set V and x ∈ V , then we write [x]G for the set of vertices in the
same connected component as x. We let dG be the graph metric on the vertex set
of G. We will write d instead of dG when the graph G is clear from context. Let
NG(x) be the set of neighbors of x, so NG(x) = {y ∈ V : dG(x, y) = 1}. We will
write N(x) when the graph is clear. A graph G is said to be locally finite if NG(x) is
finite for every vertex x of G. If U ⊆ V , then we let G � U be the induced subgraph
of G on the set U . If F is a set of edges of G, we let G− F be the subgraph of G
obtain by removed the edges in F .

If a : Zd y X is an action of Zd on a set X, let Ga be the graph with vertex set X
where there is an edge from x to y if γ ·x = y for some γ ∈ Zd with |γ|∞ = 1. Here
|(γ1, . . . , γd)|∞ = supi |γi| is the sup norm. The bulk of our proof is establishing the
existence of certain types of flows (defined in Section 3) on the graph Gau where
au is as in Lemma 2.1.

Recall that a standard Borel space is a set X equipped with a σ-algebra gen-
erated by a Polish (separable, completely metrizable) topology on X. The space
Tk equipped with its Borel sets is an example of a standard Borel space. If X is a
standard Borel space and n > 0 then we equip Xn with the standard Borel space
arising from the product topology on Xn. We will use [X]<∞ to note the standard
Borel space of all finite subsets of X. Here we use the standard Borel structure
where B ⊆ [X]<∞ is Borel if for every n, {(x1, . . . , xn) ∈ Xn : {x1, . . . , xn} ∈ B}
is a Borel subset of Xn.

In some of our proofs, we will need to make an arbitrary choice between finitely
many elements of some standard Borel space X. In this situation we will fix some
Borel linear ordering < on X, and choose the <-least element. Note that every
standard Borel space admits a Borel linear ordering (one can see this using the
isomorphism theorem for standard Borel spaces and the fact that the usual linear
ordering on R is Borel [K, Theorem 15.6]). In the case when X = Tk, we may
simply use the lexicographic ordering on [0, 1)k.
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A Borel graph is a graph whose vertices are the elements of a standard Borel
space X, and whose edge relation is Borel as a subset of X×X. For a recent survey
of the theory of Borel graphs, see [KM]. If u ∈ (Tk)d, then the graph Gau is an
example of a Borel graph; since the action au is continuous, the edge relation of
Gau is closed. In order to prove Theorem 1.2, we will not need to consider any Borel
graphs other than Gau . However, some of our lemmas are stated in the generality
of any Borel graph of the form Ga, where a is a free Borel action of Zd. If G is a
Borel graph on X, we let [G]<∞ be the set of all finite subsets of X that lie in a
single connected component of G. This is a Borel subset of [X]<∞.

3. Flows in graphs

Our proof will use the following types of flows on graphs. Suppose G is a locally
finite graph with vertex set V , and f : V → R. An f -flow on G is a real-valued
function φ on the edges of G such that φ(x, y) = −φ(y, x) for every edge (x, y) of
G, and such that for every x ∈ V ,

f(x) =
∑

y∈N(x)

φ(x, y).

If ε > 0, then an (ε, f)-flow is a real-valued function φ on the edges of G such
that φ(x, y) = −φ(y, x) for every edge (x, y) of G and such that for every x ∈ V ,∣∣∣∣∣∣f(x)−

∑
y∈N(x)

φ(x, y)

∣∣∣∣∣∣ < ε.

Suppose that c is a nonnegative function on the edges of G (where we may have
c(x, y) 6= c(y, x)). We call c a capacity function on G and we say that an f -flow φ
is bounded by c if φ(x, y) ≤ c(x, y) for every edge (x, y) in G. We say that an f -flow
φ is bounded if it is bounded by a constant capacity function.

If φ1, . . . , φn are f -flows on a graph G, then their average 1
n (
∑
i φi) is also an

f -flow. The average of finitely many (ε, f)-flows is similarly an (ε, f)-flow. At a
key step in our proof of Lemma 4.2, we will need to average over flows in this way.
This is the reason why we have to use real-valued flows (instead of matchings) in
our proof.

A folklore restatement of the max-flow min-cut theorem characterizes exactly
when a finite graph G admits an f -flow bounded by a capacity function c. Roughly,
for every finite set F of vertices,

∑
x∈F f(x) should be at most the capacity of the

edges leaving F .

Theorem 3.1. Suppose G is finite graph on X, f : X → R is a function, and c is
a capacity function for G. Then G has an f -flow bounded by c if and only if for
every set F ⊆ X,

−
∑

{(x,y)∈G:x/∈F∧y∈F}

c(x, y) ≤
∑
x∈F

f(x) ≤
∑

{(x,y)∈G:x∈F∧y/∈F}

c(x, y).

Proof. The forward direction is clear, so we focus on the reverse. Define G′ to be
the finite graph containing G as a subgraph where we add two vertices to X, a
source s and a sink t, and edges as follows. Add an edge (s, x) to each x ∈ X such
that f(x) > 0 and add an edge (y, t) to each y ∈ X such that f(y) < 0. Define a
capacity function c′ for G′ as follows. Let c′(x, y) = c(x, y) for every edge (x, y) in
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G. For every edge (s, x) incident to s, let c′(s, x) = f(x) and for every edge (y, t)
incident to t, let c′(y, t) = −f(y) and c′(t, y) = 0. Now apply the max-flow min-cut
theorem [D] to the graph G′ with source s, sink t, and capacity function c′.

Take any F ⊆ X, and let {{s} ∪ F, {t} ∪ (X \ F )} be a cut in G′. One can
show using either of the two inequalities on f and c that the capacity of this cut is
greater than or equal to ∑

{x:f(x)>0}

f(x) = −
∑

{x:f(x)<0}

f(x).

which is the capacity of the cut containing just s or just t. This value is therefore
the minimum capacity of a cut in G′, and the restriction to G of the resulting
maximal flow on G′ is as required. �

For finite graphs, there is no real difference in studying f -flows as defined above,
and flows with a single source and single sink. This is because one can easily convert
between these types of problems using the idea in the proof of Theorem 3.1 above.
However, for infinite graphs, it becomes complicated to try and use a single source
and sink to model an f -flow. (See for instance [ABGPS]). For example, if G is the
infinite 3-regular tree and f is the constant function 1 on the vertices of G, then
G admits an f -flow bounded by 1. (Even though every vertex in the graph is a
source, and there are no sinks).

In our proof, we will be constructing flows on infinite graphs. We remark that
by taking ultralimits, one can characterize when a locally finite graph admits an
f -flow bounded by a given capacity function. Note that in this case, we need
both inequalities given in Theorem 3.1. We mention this result as a contrast to
some of our results about Borel flows in infinite graphs. However, we will not use
Theorem 3.2 in our proof of Theorem 1.2.

Theorem 3.2 (Folklore). Suppose G is locally finite graph on X, f : X → R is a
function, and c is a capacity function such that c(x, y) <∞ for every edge (x, y) in
G. Then G has an f -flow bounded by c if and only if for every finite set F ⊆ X,

−
∑

{(x,y)∈G:x/∈F∧y∈F}

c(x, y) ≤
∑
x∈F

f(x) ≤
∑

{(x,y)∈G:x∈F∧y/∈F}

c(x, y)

Proof. By working in each connected component separately, we can assume that G
is connected. (This uses the axiom of choice). Fix a vertex x in G and for each
n ≥ 0 consider the graph Gn which is the induced subgraph of G on the vertex set
{y : dG(x, y) ≤ n}. Let G′n be the graph obtained by adding a single new vertex
to Gn and connecting it to each of the vertices {y : dG(x, y) = n} in Gn. Let fn
be the function on the vertices of G′n which is equal to f on {y : dG(x, y) ≤ n} and
equal to −

∑
{y:dG(x,y)≤n} f(y) at the new vertex. Clearly G′n and fn satisfy the

hypotheses of Theorem 3.1 for the capacity function c′ which is equal to c(x, y) on
edges in Gn, and is infinite on the new edges in G′n. This is because the only sets
F yielding finite total capacities either lie in the interior of the n-ball around x, or
their complement does.

Let φn be an fn-flow for G′n. Let U be a nonprincipal ultrafilter on N. Define
φ on the edges of G by the ultralimit φ(e) = limU φn(e). The limit converges since
|φn(e)| ≤ c(e). It is straightforward to check that φ is an f -flow for G. �
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4. Constructing flows in Ga

For this section, we fix a free action a : Zd y X and a function f : X → R.
Assuming f satisfies the conditions given in Lemma 4.2, we give an explicit con-
struction of an f -flow in the graph Ga. To prove Theorem 1.2, we will eventually
apply Lemma 4.2 when the action a is au for some u satisfying Lemma 2.1, and
f = χA − χB , the difference between the characteristic functions of A and B.
Lemma 2.1 ensures that f satisfies the hypothesis of Lemma 4.2. In this situation,
the flow given by Lemma 4.2 will clearly be Borel (see Section 7).

For every i > 0, let πi : Zd/(2iZ)d → Zd/(2i−1Z)d be the canonical homomor-
phism. This yields the inverse limit

Ẑd = lim←−
i≥0

Zd/(2iZ)d

where elements of Ẑd are sequences (h0, h1, . . .) such that πi(hi) = hi−1 for all i > 0.
We begin by making several definitions which depend on a and f . Below, if

F ⊆ X is finite, we will write
∑
F f instead of

∑
x∈F f(x).

Suppose x ∈ X and h ∈ Zd/(2nZ)d for some n > 0. View h as a coset of 2nZd
and recall that RN = {(n1, . . . , nd) ∈ Zd : 0 ≤ ni < N for every i ≤ d}. If we let

Px,h = {(h′ +R2n) · x : h′ ∈ h} ,

then Px,h is a partition of [x]Ga into sets of size 2nd = |R2n |. For every y ∈ [x]Ga ,
let [y](x,h) be the element of Px,h that contains y. Let

Qx,h(y) = {[z](x,πn(h)) : z ∈ [y](x,h)},

so Qx,h(y) is a partition of [y](x,h) into 2d many pieces.

Suppose γ ∈ Zd is such that |γ|∞ = 1. Let Ux,h(y, γ) be the set of z ∈ [y](x,h)

such that (2n−1γ) · z ∈ [y](x,h) and there exists some 0 ≤ i < 2n−1 such that
y = (iγ) · z. Note that all z ∈ Ux,h(y, γ) must come from a unique element of
Qx,h(y), which we will call Qx,h(y, γ). Let nx,h(y, γ · y) = |Ux,y(y, γ)|.

Define a function φx,h on the edges of Ga � [x]Ga
by

φx,h(y, γ · y) =
1

2nd
nx,h(y, γ · y)

∑
Qx,h(y,γ)

f.

The rough idea is that φx,h is defined by working inside each element of Px,h
and for each z in this set, φx,h moves some mass at z along a path of the form
z, γ · z, . . . , (2n−1γ) · z to the point (2n−1γ) · z. The definition of φx,h at an edge
(y, γ · y) comes from summing the contribution of all the different z’s whose asso-
ciated path includes (y, γ · y).

Finally, for all (h0, h1, . . .) ∈ Ẑd, y ∈ [x]Ga , and γ ∈ Zd with |γ|∞ = 1, let

ψx,(h0,...,hn)(y, γ · y) =

n∑
i=1

(φx,hi(y, γ · y)− φx,hi(γ · y, y)) .

Our definition of ψx,(h0,...,hn) is chosen so that the “error” at y which prevents
ψx,(h0,...,hn) from being a flow is exactly the average value of f over [y](x,hn). This
is the content of Lemma 4.1.
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Lemma 4.1. For every x ∈ X, (h0, h1 . . .) ∈ Ẑd, n > 0 and y ∈ [x]Ga
,

f(y)−
∑
|γ|∞=1

ψx,(h0,...,hn)(y, γ · y) =
1

2nd

∑
[y](x,hn)

f

Proof. We work by induction. For the base case of n = 0, the left hand size is f(y)
since the summation defining ψx,(h0) is empty. The right hand side is also f(y)
since [y](x,h0) = {y}.

Let the left hand size of the above equation be

θn(y) = f(y)−
∑
|γ|∞=1

ψx,(h0,...,hn)(y, γ · y).

Note that

θn(y) = θn−1(y)−

 ∑
|γ|∞=1

φx,hn(y, γ · y)− φx,hn(−γ · y, y)


where we have changed φx,hn

(γ · y, y) to φx,hn
(−γ · y, y) in the second term in the

summation, by using the fact that we are summing over all γ with |γ|∞ = 1. Note
that (−γ · y, y) = (−γ · y, γ · (−γ) · y) is an edge oriented in the “direction” of γ.

We now compute this sum. Fix z ∈ Ux,hn(y, γ) so that z ∈ [y](x,hn), 2n−1γ · z ∈
[y](x,hn) and y = (iγ) · z for some 0 ≤ i < 2n−1. If y 6= z, then z is counted in
both nx,hn(y, γ · y) and nx,hn(−γ · y, y). Moreover it contributes the same amount
to φx,hn(y, γ · y) and φx,hn(−γ · y, y). Using this fact to cancel corresponding terms
and summing over γ, we get∑
|γ|∞=1

φhn,x(y, γ · y)− φhn,x(−γ · y, y)

=
1

2nd

|Sy| ∑
[y](x,hn−1)

f −
∑

z∈{(2n−1γ)·y:γ∈Sy}

∑
[z](x,hn−1)

f

 .

where Sy = {γ : |γ|∞ = 1∧ (2n−1γ) ·y ∈ [y](x,hn)}. Note that {[(2n−1γ) ·y](x,hn−1) :

γ ∈ (Sy ∪ {0})} = Qx,hn(y) and so Sy has 2d − 1 elements since Qx,h(y) has 2d

many elements.
Using our induction hypothesis that θn−1(y) = 1

2(n−1)d

∑
[y](x,hn−1)

f and simpli-

fying, we get:

θn(y) =
1

2nd

 ∑
[y](x,hn−1)

f +
∑

z∈{(2n−1γ)·y:γ∈Sy}

∑
[z](x,hn−1)

f


which is equal to 1

2nd

∑
[y](x,hn)

f using the fact from above that {[(2n−1γ)·y](x,hn−1) :

γ ∈ (Sy ∪ {0})} = Qx,hn
(y) is a partition of [y](x,hn). �

Lemma 4.1 implies that for every x ∈ X and (h0, h1 . . .) ∈ Ẑd, the function
limn→∞ ψx,(h0,...,hn)(y, z) will be an f -flow provided it converges everywhere and

limn→∞
1

2nd

∑
[y](x,hn)

f → 0 everywhere. However, if a : Zd y X is a Borel action,

then we cannot hope to pick a single point x out of each connected component of
Ga in a Borel way to use as a base point in this construction. (For example, for the
action au, a set which meets Tk exactly once in each orbit must be nonmeasurable).
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Instead, we will average the above construction over every possible element of Ẑd,
and then use the fact that the resulting function does not depend on the base point
x that we choose.

For every x ∈ X, define

ψx(y, z) =
∑
n>0

1

2nd

∑
h∈Zd/(2nZ)d

φx,h(y, z)− φx,h(z, y).

Finally, let ψ be defined on every edge (y, z) in Ga by

ψ(y, z) = ψy(y, z).

Lemma 4.2. Suppose there is a function Φ: N→ R such that for every y ∈ X∣∣∣∣∣∣
∑
R2n ·y

f

∣∣∣∣∣∣ < Φ(2n)

and

c =
1

2d−1

∞∑
n=0

Φ(2n)

2n(d−1)

is finite. Then ψ is an f -flow bounded by c.

Proof. We begin by showing that for every x ∈ X, ψx is an f -flow of G � [x]Ga

bounded by c.
If hn ∈ Zd/(2nZ)d, then since nx,hn(y, s) ≤ 2n−1, and |

∑
Qx,h(y,γ) f)| ≤ Φ(2n−1),

we get |φx,h(y, γ · y)| ≤ 2n−1 Φ(2n−1)
2nd Hence,

|ψx(y, z)| ≤
∞∑
n=1

2 · 2n−1 Φ(2n−1)

2nd
=

1

2d−1

∞∑
n=1

Φ(2n−1)

2(n−1)(d−1)
= c.

If we consider the first n terms in the summation defining ψx, this is equal
to the average of ψx,(h0,...,hn) over all sequences (h0, . . . , hn) with hi ∈ Zd/(2iZ)d

and πi(hi) = hi−1. This is because there are the same number of these sequences
(h0, . . . , hn) containing any given hi ∈ Zd/(2iZ)d. Each such ψx,(h0,...,hn) is an

(ε, f)-flow for ε = Φ(2n)/2nd by Lemma 4.1. Since the average of finitely many
(ε, f)-flows is an (ε, f)-flow, it follows that ψx is a limit of (ε, f)-flows with ε =
Φ(2n)/2nd, which approaches 0 as n goes to ∞. Finally, ψx(y, z) = −ψx(z, y) by
definition. This finishes the proof that ψx is an f -flow bounded by c.

To show that ψ is an f -flow of Ga, it is enough to show that for all x ∈ X and
g ∈ Zd, ψx = ψg·x. Now Pg·x,−g+h = Px,h and so φg·x,−g+h = φx,h. From this
we can conclude that ψg·x = ψx, since each term in the summation defining ψx
averages φx,h over all h ∈ Zd/(2nZ)d, which is equal to the average of φg·x,−g+h
over all h ∈ Zd/(2nZ)d, and hence the average of φg·x,h over all h ∈ Zd/(2nZ)d.

�

5. Integral Borel flows

Suppose G is a graph on X, and f : X → Z is a function. An integral f -flow is
an f -flow φ so that φ(x, y) is an integer for every edge (x, y) in G. In this section,
we consider the problem of turning real-valued f -flows into integral f -flows.

Classically, the question of when a locally finite graph admits an integral f -flow
is easy to answer. It is usually called the integral flow theorem.
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Theorem 5.1 (The integral flow theorem [D]). Suppose G is a locally finite graph
on X, c is a capacity function for G that takes integer values, and f : X → Z also
takes integer values. If there is an f -flow bounded by c, then there is an integral
f -flow bounded by c.

Proof. Suppose first that G is a finite graph. Consider the graph G′ defined in the
proof of Theorem 3.1. If we use the Ford-Fulkerson algorithm (see [D]) to find a
maximal flow for G′, it will make a flow with only integer values.

For infinite graphs, the theorem follows from the finite case using the same idea as
the proof of Theorem 3.2. This is because an ultralimit of integer valued functions
is integer valued. �

We also have the following folklore theorem which shows that if f takes integer
values, then we can find an integral f -flow “close” to any real-valued f -flow.

Corollary 5.2. Suppose G is locally finite graph on X and f : X → Z takes integer
values. If φ is an f -flow, then there is an integral f -flow ψ such that

|φ(x, y)− ψ(x, y)| < 1

for every edge (x, y) in G.

Proof. Let

φ′(x, y) =

{
bφ(x, y)c if φ(x, y) ≥ 0

dφ(x, y)e if φ(x, y) < 0

Then φ′(x, y) = −φ′(x, y), and φ′ is an integral f ′-flow for the function f ′(x) =∑
y∈N(x) φ

′(x, y). Thus, (φ−φ′) is an (f−f ′)-flow which is bounded by the capacity

function where c(x, y) = 0 if φ(x, y) − φ′(x, y) ≤ 0 and c(x, y) = 1 otherwise.
Now applying Theorem 5.1, there is an integral (f − f ′)-flow φ′′ which is bounded
by c. Finally, adding again we see that ψ = φ′′ + φ′ is an integral f -flow, and
|φ(x, y)− ψ(x, y)| < 1. �

Note that since |φ(x, y) − ψ(x, y)| < 1 in Corollary 5.2, if φ(x, y) is already an
integer, then ψ(x, y) = φ(x, y).

Now in the Borel setting, we have the following corollary of [L88] which implies
that we cannot always turn a real valued Borel f -flow into an integral Borel f -flow.

Corollary 5.3 ([L88]). There is a 2-regular acyclic Borel graph G on X and a
Borel function f : X → Z such that G has a Borel f -flow, but does not have an
integral Borel f -flow.

Proof. Let G be the graph defined by Laczkovich in [L88]. This graph is a 2-regular
acyclic Borel graph G on a standard Borel space X, that admits a bipartition into
two Borel sets X0 and X1. By [L88] this graph has no Borel (or even Lebesgue-
measurable) perfect matching. Now let f : X → {−1, 1} be the function where
f(x) = 1 if x ∈ X0 and f(x) = −1 if x ∈ X1. If we let φ(x, y) = 1/2 and
φ(y, x) = −1/2 for every edge (x, y) in G where x ∈ X0 and y ∈ X1, then φ is
clearly a Borel f -flow.

However, G does not have an integer-valued Borel f -flow. For a contradiction,
suppose ψ was in integer-valued Borel f -flow for G. Then the set of edges (x, y)
such that x ∈ X0 and y ∈ X1 and ψ(x, y) > 0 would be a Borel perfect matching
of G. �



BOREL CIRCLE SQUARING 11

Despite this, we do have the following “Borel integral flow theorem” for graphs
induced by free Borel actions of Zd for d ≥ 2.

Lemma 5.4. Suppose d ≥ 2, a : Zd y X is a free Borel action, and Ga is the
associated graph. Then if f : X → Z is a Borel function and φ is a Borel f -flow
for G, then there is an integral Borel f -flow ψ such that |φ− ψ| ≤ 3d.

In our proof of Theorem 1.2, we will use Lemma 5.4 to turn the real-valued Borel
flow constructed in Lemma 4.2 into an integral Borel flow.

Our proof of Lemma 5.4 uses the following result of Gao, Jackson, Krohne, and
Seward (see Appendix A). Their theorem answers a question originally due to Ben
Miller.

Suppose F is a finite set of vertices in a graph G, let ∂F be the set of edges that
are incident on one vertex in F and one vertex not in F . Now let ∂1F = ∂F , and
let ∂n+1F be the set of edges that are in ∂nF or share a vertex with an edge in
∂nF . Finally, let ∂vis(∞)F ⊆ ∂F be the set of edges in the boundary of F that are
“visible from infinity”. That is, ∂vis(∞)F is the set of edges e ∈ ∂F such that the
unique x /∈ F incident to e is such that the connected component of x in G − ∂F
is infinite.

Theorem 5.5 (Gao, Jackson, Krohne, and Seward). Suppose d ≥ 1, n > 0, and
a : Zd y X is a free Borel action of Zd on a standard Borel space X, and Ga is the
associated graph. Then there is a Borel set C ⊆ [X]<∞ such

⋃
C = X, for every

distinct R,S ∈ C, ∂nR and ∂nS are disjoint, and every S ∈ C is connected and
has ∂S = ∂vis(∞)S.

For an annoucement of this theorem, see the paragraph following Corollary 1.8
in [GJKS].

The point of this theorem is that the elements of C cover the whole space X,
and their boundaries can be chosen to be arbitrarily far apart. The condition that
∂S = ∂vis(∞)S is incidental and is included just to make Lemma 5.6 a little simpler.

Given any connected S ⊆ X, let S̃ be the set of vertices in S together with all x ∈ X
that are in some finite connected component of G − ∂S. The idea here is that S̃
is obtained by filling in any “holes” inside S. It is clear that ∂S̃ ⊆ ∂S, and that
∂vis(∞)S̃ = ∂S̃. Hence, if C ⊆ [G]<∞ satisfies all the conditions of the theorem

except the condition on ∂vis(∞), then we can simply replace C with {S̃ : S ∈ C} to
satisfy this last condition.

We need a short combinatorial lemma. Recall than an Euler cycle in a finite
graph is a closed walk that includes each edge in the graph exactly once.

Lemma 5.6. Suppose d ≥ 2, a : Zd y X is a free action, Ga is the associated
graph, and F ⊆ X is a finite Ga-connected set with ∂vis(∞)F = ∂F . Let H∂F be the
graph whose vertex set is the unordered edges in ∂F , that is, {{x, y} : (x, y) ∈ ∂F}
and where distinct {x, y}, {z, w} are adjacent in H∂F if there is a 3-cycle in Ga
that includes them both. Then H∂F has an Euler cycle.

Proof. By Euler’s theorem, we need to show that H∂F is connected and every vertex
of H∂F has even degree.

We begin by showing every edge has even degree. Fix (x, y) ∈ ∂F . Any 3-cycle
in Ga that contains (x, y) must contain exactly one other edge in ∂F . Thus, it
suffices to show that there are an even number of 3-cycles in Ga containing the
edge (x, y). Let (x, y) = (x, γ · x) where |γ|∞ = 1. Then the number of 3-cycles
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containing (x, y) is equal to the number of δ with |δ|∞ = 1 and |γ − δ|∞ = 1. If
γ = (γ1, . . . , γd), then this δ = (δ1, . . . , δd) must have δi ∈ {−1, 0, 1} if γi = 0,
δi ∈ {0, 1} if γi = 1, and δi ∈ {−1, 0} if γi = −1. Thus, if there are k many values
of i such that γi = 0, then the number of δ with this property is 3k2d−k − 2, where
we subtract 2 since neither δ nor γ − δ can be equal to 0. To finish, note that
3k2d−k − 2 is even since k < d.

Next, we claim that H∂F is connected. To see this will use [Ti]. First, we claim
that the set of all 3-cycles in Ga generates the cycle space of Ga. That is, every cycle
in Ga is a sum of finitely many 3-cycles, where we add edges in the cycles modulo 2
(see [Ti]). This is easy to see, and we sketch an argument in the case where a is the
translation action of Zd on itself. Let ei be the ith element of the usual basis for
Zd. Let T be the spanning subtree of Ga where for each x = (x1, x2, . . . , xd) ∈ Zd,
we have (x, ei · x) ∈ T if xj = 0 for all j > i. Given an edge (x, y) ∈ Ga such that
(x, y) /∈ T , let C(x,y) be the unique cycle created by adding (x, y) to T . An easy
induction shows that every such C(x,y) is a sum of 3-cycles, but clearly any cycle
in Ga is a sum of cycles of the form C(x,y).

Since F is connected and ∂vis(∞)F = ∂F , if we choose any x ∈ F and y /∈ F
where y ∈ [x]Ga

, then ∂F is a minimal set of edges separating x and y in the sense
that any proper subset of ∂F does not separate x and y. Hence, by [Ti, Lemma 1],
if H∂F had two connected components Π1 and Π2, then there would be some 3-cycle
in Ga that intersects both Π1 and Π2. But this is clearly a contradiction. �

We are now ready to prove Lemma 5.4.

Proof of Lemma 5.4. Let φ be a Borel f -flow for Ga. Let C ⊆ X∞ be as in Theo-
rem 5.5, with n = 3. We use n = 3 here for the following reason: if R,S ∈ C and
we change φ separately on ∂2R and ∂2S in a such a way that it remains a flow after
each individual modification, then if we combine both modifications the result will
also be a flow.

We define another Borel f -flow φ′ as follows. Let φ′(x, y) = φ(x, y) if (x, y) is not
in ∂2F for any F ∈ C. If (x, y) ∈ ∂2F for some F ∈ C, then there is a unique such
F . Let ((e1, e

′
1, e
′′
1), . . . , (en, e

′
n, e
′′
n)) be the sequence of 3-cycles in Ga associated

to the lexicographically least Euler cycle of H∂F , where we are representing each
3-cycle by the edges contained in it. An Euler cycle of H∂F exists by Lemma 5.6.
We may arrange these 3-cycles so that for all i, we have ei, e

′
i ∈ ∂F , e′′i /∈ ∂F , and

e′i = ei+1. Orient the edges so that (ei, e
′
i, e
′′
i ) = ((xi, yi), (yi, zi), (zi, xi)).

Let φF0 = φ. Given (ei, e
′
i, e
′′
i ), let αi = φFi (ei) − bφFi (ei)c. Then define

φFi+1(u, v) = φFi (u, v) if (u, v) is not an edge in the cycle (ei, e
′
i, e
′′
i ), and otherwise

let φFi+1(u, v) = φFi (u, v) − αi if (u, v) is oriented the same direction as the cycle

ei, e
′
i, e
′′
i , and φFi+1(u, v) = φFi (u, v)+αi if (u, v) is oriented in the opposite direction.

Hence, φFi+1 is still an f -flow since we are modifying ψFi only by adding the same

amount to each edge going around a single cycle. Finally, let φ′(x, y) = φFn (x, y).
We claim that if e ∈ ∂F , then φ′(e) will be an integer. First suppose that e 6= e′n.

Then if j is the largest number such that e = ej (up to direction), we define φFj (e)
to be an integer, and e cannot equal e′k for any k > i since e′k = ek+1, hence
φFk (e) = φFj (e) for all k > i. Thus φ′(e) is an integer. If e = e′n, then since f is
integer valued, the total flow out of F must be an integer. So since φ′ takes integer
values on all the other edges in ∂F , φ′(e) must also be an integer.
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Note that |φ′(x, y)−φ(x, y)| ≤ 3d−1 for every edge (x, y). This is because every
node in H∂F has degree at most 3d− 1, and we change the flow on each edge by at
most 1 as we go around the Euler cycle.

Now let D be the set of edges (x, y) in Ga such that (x, y) ∈ ∂F for some F ∈ C.
Ga − D has finite connected components, since

⋃
C = X. Let K be a connected

component of Ga − D. If θ is an integer-valued function defined on the edges of
K, let φ′θ(x, y) = θ(x, y) if the edge (x, y) is in K, and φ′(x, y) otherwise. By
Corollary 5.2, there is a integer valued function θ defined on the edges of K so that
φ′θ(x, y) is an f -flow, and |φ′θ − φ′| < 1.

Let ψ be the Borel f -flow on Ga defined as follows. Let ψ(x, y) = φ′(x, y) if
(x, y) ∈ D. If (x, y) /∈ D, then let K be the connected component of Ga − D
containing (x, y), let θ be the lexicographically least integer-valued function on
the edges of K such that φ′θ is an f -flow where |φ′θ − φ′| < 1, and let ψ(x, y) =
φ′θ(x, y). �

6. Proof of Theorem 1.2

In order to prove Theorem 1.2 using the fewest number of pieces in our equide-
composition, we use the following lemma due to Gao and Jackson, which was an
important ingredient in their proof that Borel actions of abelian groups are hyper-
finite. In Remark 6.2, we describe how one can prove Theorem 1.2 without using
this black box.

Lemma 6.1 ([GJ]). Suppose a : Zd y X is a free Borel action of Zd on a standard
Borel space X and n > 0. Then there is a Borel set C ⊆ [X]<∞ such that C
partitions X and every S ∈ C is a set of the form {(n1, . . . , nd) · x : 0 ≤ ni < Ni}
for some x ∈ X and sequence N1, . . . , Nd where Ni = n or Ni = n+ 1.

Roughly, the above lemma states that there is a Borel tiling of the action a using
rectangles each of whose side lengths is n or n+ 1.

Proof of Theorem 1.2. As discussed at the beginning of Section 2, we may assume
that A,B ⊆ Tk. Let d ≥ 2 be such that d > 2k/(k −∆(∂A)) and pick u ∈ (T k)d

such that the action au is free and satisfies Lemma 2.1 for both sets A and B.
Hence, there is some M and ε > 0 such that

D(FN (x, au), A) ≤MN−1−ε and D(FN (x, au), B) ≤MN−1−ε

for every x ∈ Tk and N > 0.
Now consider the graph Gau and the function f = χA − χB , the difference

between the characteristic functions of A and B. Since λ(A) = λ(B), by the
definition of discrepancy and f , for every x ∈ Tk and n > 0,∣∣∣∣∣∣

∑
F2n (x,au)

f

∣∣∣∣∣∣ = 2nd |D(F2n(x, au), A)−D(F2n(x, au), B)| ≤ 2M2n(d−1−ε).

Thus, by Lemma 4.2, letting Φ(2n) = M2n(d−1−ε)+1, there is a bounded Borel
f -flow for the graph Gau . By Lemma 5.4, there is a bounded integral Borel f -flow
for the graph Gau . Call this integral Borel flow ψ, and suppose that ψ is bounded
by the constant c.

For each n, by Lemma 6.1, let Cn ⊆ (Tk)<∞ be a Borel tiling of the action au
by rectangles of side lengths n or n+ 1. For each x ∈ Tk, let Vn(x) be the unique



14 ANDREW S. MARKS AND SPENCER T. UNGER

element of Cn that contains x. Now for every x ∈ Tk, |∂Vn(x)| ≤ 2d ·3d · (n+ 1)d−1

which is O(nd−1). Next, since there is some x′ ∈ Vn(x) such that Fn(x′, au) ⊆
Vn(x), we have that |A ∩ Vn(x)| ≥ λ(A)nd −Mnd−1−ε. Hence, there is some K so
that

c|∂VK(x)| ≤ |A ∩ VK(x)| and c|∂VK(x)| ≤ |B ∩ VK(x)|
for every x ∈ Tk. Fix this K and let C = CK .

For each R ∈ C, let N(R) be the set of S ∈ C such that S 6= R and ∂S∩∂R 6= ∅.
Note that N(R) is finite. Given S ∈ N(R), let

Ψ(R,S) =
∑

{(x,y):x∈R∧y∈S}

ψ(x, y)

so Ψ(R,S) is integer-valued, Ψ(R,S) = −Ψ(S,R) and∑
S∈N(R)

Ψ(R,S) = |R ∩A| − |R ∩B|.

Note also that
∑
S∈N(R) |Ψ(R,S)| is less than |R ∩ A| and |R ∩ B| by our choice

of K and if S ∈ N(R), then for any x ∈ R and y ∈ S, there is a γ ∈ Zd with
|γ|∞ < 2K + 4 such that γ · x = y.

Essentially, if we let GC be the graph with vertex set C where R is adjacent to
S if ∂R∩ ∂S, then Ψ is a flow on this graph for the function f(R) =

∑
R χA − χB ,

and N is the neighborhood relation on this graph.
To show that A and B are au-equidecomposable using Borel pieces, it suffices

to construct a Borel bijection g : A → B such that for all x ∈ A, g(x) = γ · x for
some γ such that |γ|∞ < 2K+ 4. Then the pieces in our equidecomposition will be
{x ∈ A : g(a) = γ · x} for each γ with |γ|∞ < 2K + 4.

Our idea for constructing g is that for every R,S ∈ C, if Ψ(R,S) > 0 we should
map Ψ(R,S) many points from A ∩ R to point of B ∩ S. After doing this for all
pairs R,S, there will be an equal number of points of A and B left in each R ∈ C,
so we map the remaining points in A ∩R to the points of B ∩R.

Fix a Borel linear ordering <C of C, and a Borel linear ordering < of Tk. For
each R ∈ C, inductively let A(R,S) ⊆ A ∩ R be the least Ψ(R,S) many elements
of A ∩ R that are not in A(R,S′) for any S′ ∈ N(R) where S′ <C S. Similarly,
for each R ∈ C, let B(R,S) ⊆ B ∩R be the first Ψ(R,S) many elements of B ∩R
that are not in B(R,S′) for any S′ ∈ N(R) with S′ <C S. Finally, let A′(R) =
A∩R\

⋃
{S∈N(R):Ψ(R,S)>0}A(R,S)} and B′(R) = B∩R\

⋃
{S∈N(R):Ψ(R,S)}B(R,S).

By the properties of Ψ listed above, |A′(R)| = |B′(R)| for every R ∈ C. Define
g : A→ B as follows. Given x ∈ A, let R be the unique element of C containing x.
If there is some S ∈ N(R) such that x ∈ A(R,S), and x is the lth-least element of
A(R,S), then let g(x) be the lth-least element of B(S,R). If not, then x ∈ A′(R).
If x is the lth-least element of A′(R), then let g(x) be the lth-least element of
B′(R). �

Remark 6.2. We sketch an alternate proof of Theorem 1.2 without using Lemma 6.1.
By Theorem A.1, for each n, there is a Borel maximal n-discrete set Cn for Gau .
Note that the n/2-balls around points in Cn are pairwise disjoint. Given x ∈ Cn,
let Vn(x) be the Voronoi cell determined by the seed x in the graph Gau . That
is, Vn(x) is the set of y ∈ Tk such that x is the <-least element of Vn such that
d(y, x) ≤ d(y, z) for all z ∈ Tk. Note that {Vn(x) : x ∈ Cn} is a Borel partition of
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Tk. Since the n/2-balls around points in Cn are pairwise disjoint, every set Vn(x)
contains a set of the form Fn(x′, au) (where x′ is a point of distance n/2 from x).

Next, we compute an upper bound on the size of ∂Vn(x). Fix x ∈ X. The 3n-ball
around x has size (6n + 1)d ≤ (7n)d. Since the n/2-balls around points in B are
disjoint and have size (n+ 1)d ≥ nd, there are at most (7n)d/nd = 7d many points
y of distance ≤ 2n from x, since the n/2-ball around y must be contained in the
3n-ball around x. Now given any two points x, y ∈ B such that d(x, y) ≤ 2n, the
set of z such that d(x, z) = d(y, z) ≤ n has size O(n(d−1)). Since there are at most
7d such y ∈ B in the 2n-ball around x, the boundary of Vn(x) has size O(n(d−1)).
Thus, we can find some K such that for every x ∈ X,

c|∂VK(x)| ≤ |VK(x) ∩A| and c|∂VK(x)| ≤ |VK(x) ∩B|

Now finish as before using these Voronoi cells {VK(x) : x ∈ CK} instead of the
Gao-Jackson tiling.

7. The Borel complexity of our equidecompositions

In this section, we make some remarks about the complexity of the Borel pieces
used in the proof of Theorem 1.2. The task of computing these complexities is
standard, and we merely sketch a outline of the argument to show the pieces are

BA,B4 . Fix A,B ⊆ Tk and the action au : Zd y Tk from the proof of Theorem 1.2.
We begin with a remark we will use several times when computing complexities.

Remark 7.1. Suppose C ⊆ Tk is defined in terms of some sets D1, . . . , Dn ⊆ Tk.
If there is some m and a deterministic algorithm which decides if x ∈ C based on
inspecting what vertices of the m-ball around x in the graph Gau lie in D1, . . . , Dn,
then C is a finite boolean combination of the sets g · Di where |g|∞ ≤ k and
1 ≤ i ≤ n. Hence, if D1, . . . , Dn ∈ BA,Bm , then we also have C ∈ BA,Bm .

In the cases where we apply Remark 7.1 to compute complexities, such an algo-
rithm will be clear from the proof where we construct the corresponding set.

We now proceed to calculate the complexity of the sets at each step in our
argument. Recall from Section 4 that

ψ(x, γ · x) =
∑
n>0

1

2nd

∑
h∈Zd/(2nZ)d

φx,h(x, γ · x)− φx,h(x, γ · x).

Let ψk(x, γ · x) be the first k many terms of this summation, so

ψk(x, γ · x) =

k∑
n=1

1

2nd

∑
h∈Zd/(2nZ)d

φx,h(x, γ · x)− φx,h(x, γ · x).

Then it is clear that ψk can take only finitely many rational values, and for each
γ ∈ Zd with |γ|∞ = 1, and every possible value a, by Remark 7.1,

{x : ψk(x, γ · x) = a} ∈ BA,B1 .

Define

εk =
1

2d−1

∞∑
n=k−1

Φ(2n)

2n(d−1)
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to be the tails of the summation defining the constant c in Lemma 4.2, where Φ is
as in the proof of Theorem 1.2. Then |ψk(x, y)−ψ(x, y)| < εk for every edge (x, y)
in Gau . Hence, for each real number a,

{x : ψ(x, γ · x) < a} ∈ ΣA,B
2

since x is in this set if and only if ψk(x, γ · x) + εk < a for some k. Indeed, for any
finite sequence (g1, γ1), . . . , (gn, γn), where gi, γi ∈ Zd and |γi|∞ = 1, we have that{

x :

(
n∑
i=1

ψ(gi · x, γi · (gi · x))

)
< a

}
∈ ΣA,B

2

by the same argument.
In Section 2, we discussed how at some points in our proof, we use a Borel linear

ordering on Tk to make an arbitrary choice in our construction. In order to obtain
pieces in our decomposition with the lowest possible complexity, we need to use a
particular ordering. Since the comparisons we make in our proof are only between
points in the same orbit of au, it is enough to have a Borel partial order which is
linear on each orbit. So given x, g · x in the same orbit of au, define x < g · x if
g is greater than 0 in the lexicographic ordering on elements of Zd. We use this
ordering because it combines well with Remark 7.1.

Next, we consider the proof of Theorem 5.5 in Appendix A. The maximal ri-

discrete sets constructed after our statement of Theorem A.1 are BA,B1 . It is

straightforward to see that the sets Ci constructed by Lemma A.2 are each BA,B3 ; the
complicated part of their definition is finding the least g such thatD∗(x)∩(g+[0, 1]d)
is nonempty. Hence, for the sets Di constructed in the proof of Theorem 5.5, for
any g1, . . . , gn ∈ Zd,

{x ∈ Tk : {g1 · x, . . . , gn · x} ∈ Di} ∈ BA,B3

by Remark 7.1. Note that for each i, there is an upper bound on the size of all
elements of Di.

Now consider Lemma 5.4 where we turn our real-valued flow ψ into an integral
Borel flow, which we will call ψ′. (Our variable choices here differ from the φ and
ψ in the statement of Lemma 5.4). We claim that for each i, letting Di be as in
the proof of Theorem 5.5 as above, for every m,

{x ∈ Tk : x ∈
⋃
Di ∧ ψ′(x, γ · x) = m} ∈ BA,B3 .

This is by combining the fact that for each i, the elements of Di have bounded size

with the fact proved above that {x : (
∑n
i=1 ψ(gi · x, γi · (gi · x))) < a} ∈ ΣA,B

2 , and

then using Remark 7.1. Thus, taking the union of these BA,B3 sets, we see that for
every m,

{x ∈ Tk : ψ′(x, γ · x) = m} ∈ ΣA,B
4 .

in our integral Borel flow ψ′.
Finally, consider the argument in Section 6 which uses Remark 6.2 to define the

equidecomposition. Since our equidecomposition just uses the value of ψ′ (whose

complexity has been computed above), and a maximal K-discrete set which is BA,B1 ,

the resulting pieces will be BA,B4 by Remark 7.1. (Similarly, inspecting the proof of
Lemma 6.1 in [GJ] also yields pieces with the same complexity at this last step).
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A. Proof of Theorem 5.5

In this appendix, we give a proof of Theorem 5.5. If d is a metric on a set X,
then we say that Y ⊆ X is r-discrete (with respect to d) if d(x, y) > r for all distinct
x, y ⊆ Y . We further say that Y ⊆ X is a maximal r-discrete set if Y is r-discrete
and for every x ∈ X there is a y ∈ Y with d(x, y) ≤ r. If G is a graph on X then
by an r-discrete set of vertices in X, we mean with respect to the graph metric G
induces on X.

We will need the following theorem of Kechris, Solecki, and Todorcevic.

Theorem A.1 ([KST, Theorem 4.2]). Every locally finite Borel graph G has a
maximal r-discrete Borel set.

In the specific case of the graph Gau we can give a short proof of this fact. Given
any r > 0, for sufficiently small ε > 0, the ε-ball around any point x ∈ Tk will be
an r-discrete Borel set. Thus, we can find a maximal r-discrete Borel set C for
Gau as follows. Let B0, B1, . . . , Bn be finitely many ε-balls which cover Tk. Define
C0 = B0 and let Ci+1 = Bi+1 \

⋃
{g ·Cj : j ≤ i∧|g|∞ ≤ r}. So inductively,

⋃
i≤k Ci

is an r-discrete set and for every x ∈ Bk, there is a y ∈ Ck such that d(x, y) ≤ r.
Now finish by letting C =

⋃
i≤n Ci.

Next, we need the following lemma which is a rephrasing of an idea due to Boykin
and Jackson. They used it to give a new proof of the theorem originally due to
Weiss that free Borel actions of Zd are hyperfinite.

Lemma A.2 ([BJ]). Suppose d ≥ 1, n > 0, a : Zd y X is a free Borel action of
Zd on a standard Borel space X, and r0 < r1 < . . . is an increasing sequence of
natural numbers. Then there is a sequence C0, C1, . . . ⊆ X of Borel sets such that
Ci is Borel maximal ri-discrete set for Ga, and for every ε > 0 and every x ∈ X,
there are infinitely many i such that d(x,Ci) < εri.

Proof. For each i, by Theorem A.1, let C ′i be a Borel maximal ri-discrete set for
the graph Ga. To each x ∈ X, we associate a sequence D0(x), D1(x) . . . of subsets
of Rd. Let

Di(x) = {g/ri : g ∈ Zd ∧ (−g) · x ∈ C ′i}
So each set Di(x) is a maximal 1-discrete subset of Rd, with respect to metric |·|∞
on Rd. Now let D∗(x) ⊆ Rd be the set of accumulation points of the sequence
D0(x), D1(x), . . ., so D∗(x) is a closed subset of Rd. D∗(x) is nonempty since each
set Di(x) contains at least one point in the set [0, 1]d which is compact. Now if
x, y ∈ X are in the same orbit of a, then D∗(x) = D∗(y), since the set Di(x) can
be shifted by a distance of d(x, y)/ri to become equal to Di(y), and d(x, y)/ri → 0
as i→∞.

Recall that a function f on X is said to be a-invariant if f(x) = f(y) for all x, y in
the same a-orbit of X. We claim that there is an a-invariant Borel function f : X →
Rd such that f(x) ∈ D∗(x) for every x ∈ T k. Let fn(x) be the lexicographically
least g ∈ {0, . . . , rn − 1}d such that D∗(x) ∩ (g + [0, 1]d)/rn is nonempty. Then
each function fn is a-invariant, and by the definition of the lexicographic order, the
lexicographically least element of D∗(x)∩ [0, 1]d is contained in (fn(x)+ [0, 1]d)/rn.
If we let f(x) = limn→∞ fn(x)/ri, then f(x) is the lexicographically least element
of D∗(x)∩ [0, 1]d, and |f(x)− fi(x)|∞ < 1/ri for every i. Note that f is a-invariant.

For every x ∈ X and ε > 0 there are infinitely many i such that d(f(x), Di(x)) <
ε/2, since f(x) is an accumulation point of the Di(x). Hence, there are infinitely
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many i such that d(fi(x)/ri, Di(x)) < ε/2 + 1/ri. Using the definition of Di(x),
this means there are infinitely many i such that there exists some y ∈ C ′i such that
d((−fi(x)) · x, y) < εri/2 + 1.

Now if we define
Ci = {fi(y) · y : y ∈ C ′i},

then using the a-invariance of fi, we see that there are infinitely many i such that
d(x,Ci) < εri/2 + 1 which suffices to prove the theorem. �

It seems likely that one can prove an analogous result for any finitely generated
nilpotent group Γ instead of Zd by using the Mal’cev completion of Γ in place of
Rd in the argument above. However, the analogous problem for arbitrary finitely
generated amenable groups is open. A positive answer would imply that every
free Borel action of a finitely generated amenable group is hyperfinite, which is a
well-known open problem (see [JKL], [GJ], and [SS]).

Problem A.3. Let Γ be a finitely generated amenable group with symmetric gen-
erating set S, and a : Γ y X be a free Borel action of Γ on a standard Borel space
X. Let Ga,S be the Borel graph on X where there is an edge between x and y if
there exists a γ ∈ S such that γ ·x = y. Must it be the case that for every increasing
sequence r0 < r1 < . . ., there is a sequence C0, C1, . . . of Borel subsets of X such
that Ci is a Borel maximal ri-discrete set, and for every ε > 0 and x ∈ X, there
are infinitely many i such that dGa,S

(x,Ci) < εri?

Lemma A.2 will be used in our proof of Lemma 5.5 to ensure that the elements
of C cover X. The next definition and lemma will be used to ensure that elements
of C have disjoint boundaries.

Definition A.4. Suppose S is a set of vertices in a graph G on X. Then let
Br(S) = {x : d(x, S) ≤ r} be the “ball” of radius r around S. Abusing notation, if
Y ⊆ [G]<∞, let Br(Y ) = {Br(S) : S ∈ Y }. Finally, if Y,Z ⊆ [G]<∞, let

Br(Y, Z) =
{
S ∪

⋃
{Br(R) : R ∈ Z ∧ d(R,S) ≤ r} : S ∈ Y

}
.

That is, for each S ∈ Y , Br(Y, Z) contains the set consisting of S together with the
r-balls around all elements of Z of distance at most r from S.

We have the following triviality

Lemma A.5. Suppose Y, Z ⊆ [G]<∞ are such that diam(R) ≤ r for every R ∈ Z,
for all distinct R,R′ ∈ Z, d(R,R′) > 2r, and d(S, S′) > 6r for every S, S′ ∈ Y .
Then

(1) For every Q ∈ Br(Y, Z) there is an S ∈ Y such that S ⊆ Q ⊆ B3r(S).
(2) Every element of Br(Y,Z) is finite and connected, and the elements of

Br(Y,Z) are pairwise disjoint.
(3) If R ∈ Z and Q ∈ Br(Y,Z), then either Br(R) ⊆ Q, or d(R,Q) > r.

�

We now use Lemma A.2 to prove Theorem 5.5.

Proof of Theorem 5.5. Let ri = n12i+1, and let C0, C1, . . . ⊆ X be Borel maximal
4ri-discrete sets satisfying the conclusion of Lemma A.2. We now define sets Di ⊆
[G]<∞. Given that we have defined Dj for j < i, we define Di by constructing
a sequence Ai0, . . . , A

i
i ⊆ [G]<∞, and letting Di = Aii at the end. To begin, let
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Ai0 = Bri/4(Ci). Hence, by the definition of Ci, the elements of Ai0 are connected,

have diameter ≤ ri/2, and for all distinct R,R′ ∈ Ai0 we have d(R,R′) > 3ri.
For 0 < j ≤ i, let

Aij = Bri−j
(Aij−1, Di−j).

We claim that at the end of this construction, the elements ofDi = Aii have diameter
≤ ri and are pairwise of distance at least 2ri. This is easy to prove by induction
using Lemma A.5, since for every Q ∈ Di = Aii, there is some S ∈ Ai0 such that

Q ⊆ B3r0(. . . B3ri−2(B3ri−1(S)) . . .)

and so diam(Q) ≤ ri/2 + 6ri−1 + . . .+ 6r0 which is at most ri by our definition of
ri. Next, note that for each 0 < j ≤ i, if R ∈ Di−j and Q ∈ Di, then by induction
using Lemma A.5, either Bri−j (R) ⊆ Q, or d(Q,R) > ri−j − 3ri−j−1 − . . . − 3r0.
Note that ri−j − 3ri−j−1 − . . .− 3r0 ≥ r0 for all 0 < j ≤ i.

To finish, let C = {S̃ : S ∈
⋃
iDi}, where S̃ is the set of vertices in S together

with all x ∈ X that are in some finite connected component of G − ∂S. It is
clear that ∂S̃ ⊆ ∂S, and that ∂vis(∞)S̃ = ∂S̃ as described in the paragraph after
the statement of Theorem 5.5. It follows from the previous paragraph that all
distinct R,S ∈

⋃
iDi have ∂nR ∩ ∂nS = ∅, since r0 > 2n. Finally,

⋃
C = X since⋃

(
⋃
iA

i
0) = X by our choice of the sequence Ci.

�
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