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BOREL-LAPLACE SUMMATION METHOD USED AS TIME INTEGRATION

SCHEME

Ahmad Deeb1, Aziz Hamdouni1, Erwan Liberge1 and Dina Razafindralandy1

Abstract. A time integration method for the resolution of ordinary and partial differential equations
is proposed. The method consists in computing a formal solution as a (eventually divergent) time
series. Next, the Borel resummation method is applied to deduce an (sectorial) analytical solution.
The speed and spectral properties of the scheme are analyzed through some examples. Applications
to fluid mechanics are presented.

Résumé. On propose une méthode numérique d’intégration temporelle d’équations différentielles ou
aux dérivées partielles. Cette méthode consiste d’abord à calculer une solution sous forme de série
formelle, dont le rayon de convergence peut être nul. Ensuite, la méthode de resommation de Borel-
Laplace est utilisée pour déduire une solution analytique (dans un secteur) de l’équation. La rapidité
et les propriétés géométriques du schéma sont analysées à travers quelques exemples. Des applications
en mécanique des fluides sont présentées.

Introduction

Perturbation theory [5] is a widely used method to approximate solutions of physical problems. In particular,
it has been successfully used as a numerical tool in engineering science for the detection of bifurcations, the
regularization of constitutive laws, fracture problems, . . . [2,3,10,14]. Recently, we proposed to develop a time
integration scheme, based on the perturbation theory, for the numerical resolution of differential equations in
mechanics, especially fluid mechanics [24]. To this aim, a formal solution is sought as a time series.

Care has however to be taken when manipulating time series since they are frequently divergent. Indeed,
divergent series arise naturally in many areas of science, ranging from astronomy [19, 23], through quantum
physics [16,26], to engineering science [12,20]. For example, the formal time-series solution of the heat equation
or that of the Navier-Stokes equations are generally divergent. Fortunately, even diverging, the asymptotic
series contains enough information on the actual solution. One way to compute effectively this actual solution
from the divergent series is the Borel-Laplace resummation method [6, 7].

In [24], the Borel-Laplace resummation method has been transformed into a numerical algorithm and associ-
ated with the numerical asymptotic method [13] to give rise to an efficient time integration scheme. This scheme
has the property to be explicit, in the sense that, at most, only one matrix inversion is needed. Moreover, the
operator is automatically linearized. In the present paper, the speed of this scheme and its “spectral” qualities
are investigated.

In Section 1, the Borel-Laplace theory and the numerical scheme are recalled. In Section 2, the scheme
is analyzed from a qualitative and qualitative (geometric) point of view. Finally, Section 3 is devoted to
applications to fluid mechanics problems.
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1. Numerical scheme

Consider an ordinary differential or a partial derivative equation

∂u

∂t
= A(u), u(0) = u0 (1)

having as formal solution a time-series

û(t) =

∞
∑

n=0

untn. (2)

As mentioned, the first step of the scheme is to compute numerically the series û(t). This step is, in many
applications, straightforward since it simply consists in injecting (2) in equation (1). In many cases, for instance
when the operator A is a (differential) polynomial in u, it results in a recurrence relation of the form:

un+1 = An+1(u0, · · · , un), n ∈ N (3)

where An+1 is another (differential) polynomial operator in u.
Series (2) is either convergent or divergent. When (2) is divergent, the Borel-Laplace resummation procedure

has to be applied. When (2) is convergent, it already provides an analytical solution inside the (possibly
numerically very small) convergence disk. But even in this case, the resummation procedure will be applied
since it will act as a prolongation method outside the convergence disk.

1.1. The Borel-Laplace resummation method

When (2) is divergent and A is meromorphic, there exists a solution Sû(t) of equation (1), holomorphic
in a sectorial neighborhood of the origin, and owning the series û(t) as asymptotics in Gevrey sense [5, 22].
Assume, as it is usually the case for almost all problems met in physics, that û(t) is a Gevrey series, that is
|un| < CAntnn! for some constants C and A. Then Sû(t) may be recovered by applying the Borel-Laplace
method which can be described in three stages as follows:

• First, the Borel transform

Bû(ξ) =
∑

n≥0

un+1

n!
ξn (4)

is computed. This transformed series is analytical at the origin.
• Next, Bû(ξ) is analytically prolongated into a function P (ξ) within a sectorial domain containing an

infinite semi-line d from the origin.
• Lastly, Sû(t) is obtained by computing the Laplace transform of P along the semi-line d:

Sû(t) = u0 +

∫

d

P (ξ) e−ξ/t dξ. (5)

The Laplace transform is the formal inverse of the Borel transform. These three stages are summarized in
Table 1.

As an example, consider the Euler equation

t2
du

dt
+ u = t. (6)

The formal series solution is

û(t) =
∑

k≥0

(−1)nn!tn+1 (7)
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û(t) =
∑

n≥0

untn asymptotics
≃ Sû(t) = u0 +

∫

d

P (ξ) e−ξ/t dξ

Borel











y

x











Laplace

Bû(ξ) =
∑

n≥0

un+1

n!
ξn −−−−−−−−−−−−−−→

Prolongation P (ξ)

Table 1. The 3-stage Borel-Laplace resummation method

This series is a divergent but a Gevrey series. Its Borel transform prolongates naturally into the analytical
function P (ξ) = (1 + ξ)−1. Hence, the Borel sum Sû(t) along the positive semi-line reads:

Sû(t) =

∫ +∞

0

1

1 + ξ
e−ξ/t d ξ. (8)

This function is the solution of the Euler equation (6), holomorphic in the complex right half-plane.
The above presentation of the Borel resummation method is very minimalistic. More complete information

on the theory can be found, for example, in [11,17,21,22].

1.2. Borel-Padé-Laplace algorithm

Numerically, the terms of the series û(t) are computed up to an arbitrary, but finite, order N . The Borel
transform Bû(ξ) is then known at order N − 1. Its prolongation can be materialized with various methods [27].
The one chosen here is the Padé extrapolation [8, 9]. This means that the truncated Borel transform BûN (ξ)
is substituted with a rational function P N (ξ) having BûN (ξ) as Taylor asymptotics at the origin. Finally, the
Laplace transform is performed with a Gauss-Laguerre quadrature. The resulting algorithm, called Borel-Padé-
Laplace algorithm, is summarized in Table 2. In this table, the ξi are the roots of the NG-th Gauss-Laguerre
polynomials, corresponding to the weights wi.

ûN (t) =

N
∑

n=0

untn SûN (t) = u0 +

NG
∑

i=1

P̃ (ξi)wi

Borel











y

x











Gauss-Laguerre

BûN (ξ) =

N−1
∑

n=0

un+1

n!
ξn −−−−−−−−→

Padé P N (ξ) =
A0 + A1ξ + · · · + AN1

ξN1

1 + B1ξ + · · · + BN2
ξN2

Table 2. Borel-Padé-Laplace algorithm

As an illustration, the algorithm is applied to the resolution of Euler equation (6). The truncation order N is
set to 10 and NG = 6. As can be observed in Figure 1 (excerpt from [24]), the Borel-Padé-Laplace algorithm
gives a much better approximation of the analytical solution (8) compared to the asymptotic series. In fact, for
equation (6), P N (ξ) = P (ξ) as soon as N ≥ 2. The only source of error is then the Gaussian quadrature.
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Figure 1. Time evolution of the approximate solutions of Euler equation

In the previous example, the original series is divergent. It has been shown in [24] on other equations that if
the original series has a non vanishing convergence radius, the Borel-Padé-Laplace algorithm can be seen as a
prolongation method, which provides an approximate solution outside the convergence disc. As a consequence,
much less time iterations are needed.

In the next section, we will focus not only on the speed of the algorithm but also on qualitative aspects.

2. Some quantitative and qualitative analysis

Consider an Hamiltonian system






















dq

dt
=

∂H(q, p, t)

∂p
,

dp

dt
= −

∂H(q, p, t)

∂q
.

(9)

For the test, the Hamiltonian H is chosen such that the solution is periodic. An approximate solution is
computed within a period. The Euler explicit, a second and a forth Runge-Kutta, and the Borel-Padé-Laplace
schemes are used. Table 3 shows the number of iterations of each method for some fixed precision. For example,
to obtain a 10−6-precise solution, the resummation method requires 9 iterations. The other methods need far
more iterations. Data on Table 3 are plotted in Figure 2. The latter shows that the curve corresponding to
the resummation-based scheme has the slowest slope when the precision is increased.

Precision Explicit RK2 RK4 BPL

10−2 1904 65 10 3
10−3 19042 199 17 4
10−4 190400 629 30 5
10−6 1.9 107 6284 96 9

Table 3. Required iteration numbers for 10−2, 10−3, 10−4 and 10−6-precise solutions

These tests shows that the resummation-base time-integration scheme is potentially very fast compared to
the classical explicit numerical integrators. However, since the speed is not the only criterion for a good scheme,
some geometric qualities of the scheme are analyzed.
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Figure 2. Evolution of the iteration numbers with increasing precision

Consider again the Hamiltonian system (9). With H = 1
2
(p2 + q2), the trajectory of each point is a closed

circle. A non-optimized scheme may not be able to reproduce this property. For example, as seen in Figure 3,
left, the Euler explicit scheme introduces an error such that, at the end of each period, there is a shift and
the trajectory looks more like a growing spiral rather than a circle. With the Borel-Padé-Laplace method, the
non-closure of the trajectory is still almost invisible after 10 periods. The shape of the circle is well reproduced.
For the figure, the initial point is (q, p) = (1, 0).
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Figure 3. 10-period trajectory. Left, with the Euler explicit method. Right, with the
resummation-based scheme.

Another important property of an Hamiltonian system is that any volume in the phase space is conserved
along the time (Liouville’s theorem). We check how good the resummation-based scheme respects this property.

We take as initial volume a 20-vertex regular polygonal, drawn in red in Figure 4. The evolution of the
polygonal within ten periods is plotted in black. As seen on the left of the figure, the volume grows bigger and
bigger with the Euler explicit method. With the resummation-based scheme, the polygonal does not exactly
stay unchanged, but its volume remains approximately constant. This test shows the symplectic property of
the scheme.

Note that the scheme was used as-is and, contrarily to other schemes (such as the symplectic Runge-Kutta),
no effort has been made to make the scheme symplectic.



ESAIM: PROCEEDINGS AND SURVEYS 323

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.2 -0.1  0  0.1  0.2

Figure 4. Evolution of a polygonal (in red) during 10 periods. Left, with the Euler explicit
method. Right, with the Borel-Laplace-Padé scheme.

In the next test, we assume that system (9) is Liouville integrable. In this case, there exists a pair of operators
L and M , called a Lax pair, such that the Hamiltonian system is equivalent to

dL

dt
= [L, M ]. (10)

In this equation, the brackets represent the commutator. It can be proven that L is isospectral, that is, the
eigenvalues of L are time-independent.

For the test, L, M and the initial condition are chosen such that the solution is

L(t) =





tan
(

t + π
4

)

1

− cos−2
(

t + π
4

)

− tan
(

t + π
4

)



 (11)

The eigenvalues are λ1 = i and λ2 = −i. Figure 5 represents the numerical evolution of the module of λ1 with
various schemes. It shows that, when t gets close to the irregularity π/4, the Euler explicit and the Runge-
Kutta curves move away from the exact value |λ1| = 1. On the contrary, the resummation scheme crosses the
irregularity without altering the module of λ1.
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Figure 5. Module of eigenvalue λ1
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More generally, when M is time independent, it is straightforward to prove the isospectrality of the scheme.
Indeed, the formal series solution of (10) is

L̂ =
∑

n≥0

Lntn with Ln =
1

n!

n
∑

k=0

(−1)k

(

n

k

)

Mn−kL0Mk. (12)

Hence,

tr(Ln) = tr(MnL0)

n
∑

k=0

(−1)k

(

n

k

)

= 0 ∀n ≥ 1. (13)

Consequently, tr[L̂(t)] = tr L0 is time-independent. Similarly, it can be shown that tr[L̂m] = tr[Lm
0 ] for any

m ∈ N. Since the eigenvalues are linear combinations of tr[L̂m], the approximate solution obtained with the
asymptotic method is isospectral.

In the last section, some results on fluid mechanics problems are presented.

3. Application to fluid mechanics problems

In [24], some tests on realistic fluid mechanics problem was presented. The Navier-Stokes equation was
then reduced into a system of ordinary differential equations, thanks to the Proper Orthogonal Decomposition
method [4, 25]. And it was shown that the Borel-Padé-Laplace algorithm allows much bigger time steps than
the Euler explicit scheme. In the present paper, we deal with the non reduced problem.

Consider the incompressible Navier-Stokes equations















∂u

∂t
+ div(u ⊗ u) + ∇p − ν∆u = 0,

div u = 0,

(14)

along with an initial condition

u(t = 0) = u0 (15)

and boundary conditions.
We seek for a formal solution

u(t) =
∑

n≥0

untn, p(t) =
∑

n≥0

pntn. (16)

As proven by Costin [12], the velocity and pressure series (16) are Gevrey series. When inserted in (14), series
developments (16) lead to the recurrence relation:























(n + 1)un+1 + ∇pn = −

n
∑

k≥0

div(uk ⊗ un−k) + ν∆un,

div un+1 = 0.

(17)

A projection-correction method is used for the computation of un+1 and pn. The following pseudo-code shows
how this is implemented.
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Solve u∗ =
1

n + 1



−
n

∑

k≥0

div(uk ⊗ un−k) + ν∆un



.

Solve ∆pn = (n + 1) div u∗.

Update un+1 = u∗ −
1

n + 1
∇pn.

u∗ is an auxiliary variable. The terms un are computed up to the desired order N , and pn up to N − 1. And
then, the resummation procedure is applied.

We choose a sized channel flow, periodic in stream- and spanwise directions (see Figure 6). A finite difference
method is used for the space discretization.

2

2

Figure 6. Channel flow configuration

In a first test, a source term is added such that the solution is periodic in time. More precisely,

u = cos(πt)ū (18)

where ū has a Poiseuille profile. The approximate solution given by the series resummation approach is pre-
sented in Figure 7 where N = 8. The solution obtained with an Adams-Bashforth scheme is also plotted for
comparison.

In a second test, the source term is such that the solution is quasi-periodic in time:

u = [cos(10πt) + cos(10π2t) − 1]ū. (19)

Figure 8 shows the approximate solutions. In these two test cases the series-based approximate solution is in
a very good agreement with the exact one. Due to its high order, it is more precise than the Adams-Bashforth
solution, especially near points where the curvature is high.

4. Conclusion

We showed that a time-integration scheme based on a series development and the Borel-resummation has
interesting “spectral” properties. Moreover, tests on model differential equations shows that such an algorithm
requires generally less time iterations than other classical explicit methods (see also [24]). However, for the non
reduced Navier-Stokes equations, the number of iterations was not reduced. This is due to numerical difficulties
to handling big numbers in the terms of the series. Optimization has to be carried out to overcome this problem.
Other points can also be optimized. For example, the strength of the Borel-Padé-Laplace algorithm relies on
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Figure 7. Time evolution of the approximate solutions in periodic case. Left: Adams-
Bashforth, right: Borel-Padé-Laplace
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Figure 8. Time evolution of the approximate solutions in quasi-periodic case. Left: Adams-
Bashforth, right: Borel-Padé-Laplace

the efficiency of the Padé approximation in prolonging the Borel transformed series. This Padé approximation
is however also an obstacle in the speed of the method. Indeed, in some cases, it has to be combined to other
techniques (such as singular value decomposition method [1, 18]) to avoid the apparition of a singular matrix.
As an alternative, factorial series may be used [15,27,28].
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ESAIM: PROCEEDINGS AND SURVEYS 327

[7] E. Borel. Leçons sur les séries divergentes. J. Gabay edition, 1928.
[8] C. Brezinski. Rationnal approximation to formal power serie. Journal of Approximation Theory, (25):295–317, 1979.
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[22] J-P. Ramis. Séries divergentes et théories asymptotiques. In Journées X-UPS 1991, pages 7–67, 1991.
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