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Abstract. We show that the Borel hierarchy of the class of context
free ω-languages, or even of the class of ω-languages accepted by Büchi
1-counter automata, is the same as the Borel hierarchy of the class of
ω-languages accepted by Turing machines with a Büchi acceptance condi-
tion. In particular, for each recursive non null ordinal α, there exist some
Σ0

α
-complete and some Π0

α
-complete ω-languages accepted by Büchi 1-

counter automata. And the supremum of the set of Borel ranks of context
free ω-languages is an ordinal γ1

2 which is strictly greater than the first
non recursive ordinal ωCK

1 . We then extend this result, proving that the
Wadge hierarchy of context free ω-languages, or even of ω-languages ac-
cepted by Büchi 1-counter automata, is the same as the Wadge hierarchy
of ω-languages accepted by Turing machines with a Büchi or a Muller
acceptance condition.

Keywords: 1-counter Büchi automata; context free ω-languages; Cantor topology;

topological properties; Borel hierarchy; Borel ranks; Wadge hierarchy; Wadge degrees.

1 Introduction

Languages of infinite words accepted by finite automata were first studied by
Büchi to prove the decidability of the monadic second order theory of one suc-
cessor over the integers. The theory of the so called regular ω-languages is now
well established and has found many applications for specification and verifica-
tion of non-terminating systems; see [Tho90,Sta97,PP04] for many results and
references. More powerful machines, like pushdown automata, Turing machines,
have also been considered for the reading of infinite words, see Staiger’s sur-
vey [Sta97] and the fundamental study [EH93] of Engelfriet and Hoogeboom
on X-automata, i.e. finite automata equipped with a storage type X. A way to
study the complexity of ω-languages is to study their topological complexity,
and particularly to locate them with regard to the Borel and the projective hi-
erarchies. On one side all ω-languages accepted by deterministic X-automata
with a Muller acceptance condition are Boolean combinations of Π0

2-sets hence
∆0

3-sets, [Sta97,EH93]. This implies, from Mc Naughton’s Theorem, that all reg-
ular ω-languages, which are accepted by deterministic Muller automata, are also



∆0
3-sets. On the other side, for non deterministic finite machines, the question,

posed by Lescow and Thomas in [LT94], naturally arises: what is the topolog-
ical complexity of ω-languages accepted by automata equipped with a given
storage type X? It is well known that every ω-language accepted by a Turing
machine (hence also by a X-automaton) with a Muller acceptance condition
is an analytic set. In previous papers, we proved that there are context free
ω-languages, accepted by Büchi or Muller pushdown automata, of every finite
Borel rank, of infinite Borel rank, or even being analytic but non Borel sets,
[DFR01,Fin01c,Fin03a,Fin03b]. In this paper we show that the Borel hierarchy
of ω-languages accepted by X-automata, for every storage type X such that
1-counter automata can be simulated by X-automata, is the same as the Borel
hierarchy of ω-languages accepted by Turing machines with a Büchi acceptance
condition. In particular, for each recursive non null ordinal α, there exist some
Σ0

α-complete and some Π0
α-complete ω-languages accepted by Büchi 1-counter

automata, hence also in the class CFLω of context free ω-languages.
We have to indicate here a mistake in the conference paper [Fin05]. We wrote
in that paper that it is well known that if L ⊆ Σω is a (lightface) Σ1

1 set, i.e.
accepted by a Turing machine with a Büchi acceptance condition, and is a Borel
set of rank α, then α is smaller than the Church Kleene ordinal ωCK

1 , which is
the first non recursive ordinal. This fact, which is true if we replace the (light-
face) class Σ1

1 by the (lightface) class ∆1
1, is actually not true. Kechris, Marker

and Sami proved in [KMS89] that the supremum of the set of Borel ranks of
(lightface) Π1

1 , so also of (lightface) Σ1
1 , sets is the ordinal γ1

2 . This ordinal is
precisely defined in [KMS89] and it is strictly greater than the ordinal ωCK

1 . The
proofs we give in this paper show that the ordinal γ1

2 is also the supremum of
the set of Borel ranks of ω-languages accepted by Büchi 1-counter automata, or
of context free ω-languages.
By considering the Wadge hierarchy which is a great refinement of the Borel
hierarchy, [Wad83,Dup01], we show the following strengthening of the preceding
result. The Wadge hierarchy of the class r-BCL(1)ω of ω-languages accepted by
real time 1-counter Büchi automata, hence also of the class CFLω, is the Wadge
hierarchy of the class of ω-languages accepted by Turing machines with a Büchi
acceptance condition.
We think that the surprising result obtained in this paper is of interest for both
logicians working on hierarchies arising in recursion theory or in descriptive set
theory, and also for computer scientists working on questions connected with
non-terminating systems, like the construction of effective strategies in infinite
games, [Wal00,Tho02,Cac02,Ser04b].
The paper is organized as follows. In Section 2 we define multicounter automata
which will be a useful tool in the sequel. Recall on Borel hierarchy is given in
Section 3. In Section 4 is studied the Borel hierarchy of ω-languages accepted
by real time 8-counter automata. The Borel hierarchy of the class r-BCL(1)ω is
studied in Section 5. Results about the Wadge hierarchy of the class r-BCL(1)ω

are given in Section 6.



2 Multicounter automata

We assume the reader to be familiar with the theory of formal (ω)-languages
[Tho90,Sta97]. We shall use usual notations of formal language theory.
When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by λ; its
length is 0. For x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k
and x[0] = λ. Σ⋆ is the set of finite words (including the empty word) over Σ.
The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n)
for all n ≥ 1 and σ[0] = λ.
The prefix relation is denoted ⊑: a finite word u is a prefix of a finite word v
(respectively, an infinite word v), denoted u ⊑ v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u.w. The set of
ω-words over the alphabet Σ is denoted by Σω. An ω-language over an alphabet
Σ is a subset of Σω. The complement (in Σω) of an ω-language V ⊆ Σω is
Σω − V , denoted V −.

Definition 1. Let k be an integer ≥ 1. A k-counter machine (k-CM) is a 4-tuple
M=(K, Σ, ∆, q0), where K is a finite set of states, Σ is a finite input alphabet,
q0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪ {λ})× {0, 1}k ×K × {0, 1,−1}k

is the transition relation. The k-counter machine M is said to be real time iff:
∆ ⊆ K ×Σ × {0, 1}k ×K × {0, 1,−1}k, i.e. iff there are not any λ-transitions.
If the machine M is in state q and ci ∈ N is the content of the ith counter Ci

then the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ Nk such that cj = 0 for j ∈
E ⊆ {1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ where
ij = 0 for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk)

7→⋆
M is the transitive and reflexive closure of 7→M. (The subscript M will be

omitted whenever the meaning remains clear).
Thus we see that the transition relation must satisfy:
if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k}, then
jm = 0 or jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an be a finite word over Σ. An sequence of configurations
r = (qi, c

i
1, . . . c

i
k)1≤i≤p, for p ≥ n + 1, is called a run of M on σ, starting

in configuration (p, c1, . . . , ck), iff:

(1) (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck)

(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k )



(3) a1.a2.a3 . . . an = b1.b2.b3 . . . bp

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations r =
(qi, c

i
1, . . . c

i
k)i≥1 is called a run ofM on σ, starting in configuration (p, c1, . . . , ck),

iff:

(1) (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck)

(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k ) such that either a1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .

The run r is said to be complete when a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run, In(r) is the set of all states entered infinitely often during
run r.
A complete run r of M on σ, starting in configuration (q0, 0, . . . , 0), will be
simply called “a run of M on σ”.

Definition 2. A Büchi k-counter automaton is a 5-tuple M=(K, Σ, ∆, q0, F ),
whereM′=(K, Σ, ∆, q0) is a k-counter machine and F ⊆ K is the set of accept-
ing states. The ω-language accepted by M is

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}

Definition 3. A Muller k-counter automaton is a 5-tupleM=(K, Σ, ∆, q0,F),
whereM′=(K, Σ, ∆, q0) is a k-counter machine and F⊆ 2K is the set of accept-
ing sets of states. The ω-language accepted by M is

L(M)={σ ∈ Σω | there exists a run r of M on σ such that ∃F ∈ F In(r) =
F}

The class of Büchi k-counter automata will be denoted BC(k).
The class of real time Büchi k-counter automata will be denoted r-BC(k).
The class of ω-languages accepted by Büchi k-counter automata will be denoted
BCL(k)ω .
The class of ω-languages accepted by real time Büchi k-counter automata will
be denoted r-BCL(k)ω.

It is well known that an ω-language is accepted by a (real time) Büchi k-counter
automaton iff it is accepted by a (real time) Muller k-counter automaton [EH93].
Notice that it cannot be shown without using the non determinism of automata
and this result is no longer true in the deterministic case.
Remark that 1-counter automata introduced above are equivalent to pushdown
automata whose stack alphabet is in the form {Z0, A} where Z0 is the bottom
symbol which always remains at the bottom of the stack and appears only there
and A is another stack symbol. The pushdown stack may be seen like a counter
whose content is the integer N if the stack content is the word Z0.A

N .
In the model introduced here the counter value cannot be increased by more
than 1 during a single transition. However this does not change the class of ω-
languages accepted by such automata. So the class BCL(1)ω is equal to the class
1-ICLω, introduced in [Fin01d], and it is a strict subclass of the class CFLω of
context free ω-languages accepted by Büchi pushdown automata.



3 Borel hierarchy

We assume the reader to be familiar with basic notions of topology which may
be found in [Mos80,LT94,Kec95,Sta97,PP04]. There is a natural metric on the
set Σω of infinite words over a finite alphabet Σ which is called the prefix metric
and defined as follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v) where
lpref(u,v) is the first integer n such that the (n + 1)st letter of u is different from
the (n+1)st letter of v. This metric induces on Σω the usual Cantor topology for
which open subsets of Σω are in the form W.Σω, where W ⊆ Σ⋆. A set L ⊆ Σω

is a closed set iff its complement Σω − L is an open set. Define now the Borel
Hierarchy of subsets of Σω:

Definition 4. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of
the Borel Hierarchy on the topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω, Π0
1 is the class of closed subsets of Σω,

and for any countable ordinal α ≥ 2:
Σ0

α is the class of countable unions of subsets of Σω in
⋃

γ<α Π0
γ .

Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ.

For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in
Σ0

α ∪Π0
α but not in

⋃
γ<α(Σ0

γ ∪Π0
γ).

There are also some subsets of Σω which are not Borel. In particular the class of
Borel subsets of Σω is strictly included into the class Σ1

1 of analytic sets which are
obtained by projection of Borel sets, see for example [Sta97,LT94,PP04,Kec95]
for more details.
We now define completeness with regard to reduction by continuous functions.
For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively,
Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α

(respectively, E ∈ Π0
α, E ∈ Σ1

1) iff there exists a continuous function f : Y ω →
Σω such that E = f−1(F ). Σ0

n (respectively Π0
n)-complete sets, with n an

integer ≥ 1, are thoroughly characterized in [Sta86].
The (lightface) class Σ1

1 of effective analytic sets is the class of sets which are
obtained by projection of arithmetical sets. It is well known that a set L ⊆ Σω,
where Σ is a finite alphabet, is in the class Σ1

1 iff it is accepted by a Turing
machine with a Büchi or Muller acceptance condition [Sta97].
As indicated in the introduction, we made a mistake in the conference paper
[Fin05]. We wrote there that it is well known that if L ⊆ Σω is a (lightface) Σ1

1

set, and is a Borel set of rank α, then α is smaller than ωCK
1 . This fact, which is

true if we replace the (lightface) class Σ1
1 by the (lightface) class ∆1

1, is actually
not true. Kechris, Marker and Sami proved in [KMS89] that the supremum of
the set of Borel ranks of (lightface) Π1

1 , so also of (lightface) Σ1
1 , sets is the

ordinal γ1
2 .

This ordinal is precisely defined in [KMS89]. Kechris, Marker and Sami proved
that the ordinal γ1

2 is strictly greater than the ordinal δ1
2 which is the first non

∆1
2 ordinal. Thus in particular it holds that ωCK

1 < γ1
2 . The exact value of the



ordinal γ1
2 may depend on axioms of set theory [KMS89]. It is consistent with

the axiomatic system ZFC that γ1
2 is equal to the ordinal δ1

3 which is the first
non ∆1

3 ordinal (because γ1
2 = δ1

3 in ZFC + (V=L)). On the other hand the
axiom of Π1

1 -determinacy implies that γ1
2 < δ1

3 . For more details, the reader is
referred to [KMS89] and to a textbook of set theory like [Jec02].

Notice however that it seems still unknown whether every non null ordinal
γ < γ1

2 is the Borel rank of a (lightface) Π1
1 (or Σ1

1) set. On the other hand it
is known that every ordinal γ < ωCK

1 is the Borel rank of a (lightface) ∆1
1 set.

Moreover, for every non null ordinal α < ωCK
1 , there exist some Σ0

α-complete and
some Π0

α-complete sets in the class ∆1
1. Louveau gives the following argument:

the natural universal set for the class Σ0
α (respectively, Π0

α), where α < ωCK
1 , is

a Σ0
α-complete (respectively, Π0

α-complete) set and it is in the class ∆1
1, [Lou05].

The definition and the construction of a universal set for a given Borel class may
be found in [Mos80].

4 Borel hierarchy of ω-languages in r-BCL(8)ω

It is well known that every Turing machine can be simulated by a (non real
time) 2-counter automaton, see [HU79]. Thus the Borel hierarchy of the class
BCL(2)ω is also the Borel hierarchy of the class of ω-languages accepted by
Büchi Turing machines. We shall prove the following proposition.

Proposition 5. The Borel hierarchy of the class r-BCL(8)ω is equal to the
Borel hierarchy of the class BCL(2)ω.

We first sketch the proof of this result. We are going to find, from an ω-language
L ⊆ Σω in BCL(2)ω, another ω-language θS(L) which will be of the same Borel
complexity but accepted by a real-time 8-counter Büchi automaton. The idea
is to add firstly a storage type called a queue to a 2-counter Büchi automaton
in order to read ω-words in real-time. Then we shall see that a queue can be
simulated by two pushdown stacks or by four counters. This simulation is not
done in real-time but a crucial fact is that we can bound the number of transitions
needed to simulate the queue. This allows to pad the strings in L with enough
extra letters so that the new words will be read in real-time by a 8-counter Büchi
automaton (two counters are used to check that an ω-word is really obtained
with the good padding which is made in a regular way). The padding is obtained
via the function θS which we define now.

Let Σ be an alphabet having at least two letters, E be a new letter not in Σ, S
be an integer ≥ 1, and θS : Σω → (Σ ∪ {E})ω be the function defined, for all
x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1

. . .

We now state the two following lemmas.



Lemma 6. Let Σ be an alphabet having at least two letters and let L ⊆ Σω be
a subset of Σω which is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank α,
Π0

α of rank α) for some ordinal α ≥ 2. Then the ω-language θS(L) is a subset
of (Σ ∪ {E})ω which is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank α,
Π0

α of rank α).

Proof. Let Σ be an alphabet having at least two letters. It is easy to see that the
function θS is continuous because if two ω-words x and y of Σω have a common
initial segment of length n then the two ω-words θS(x) and θS(y) have a common
initial segment of length greater than n.
Let ϕ : (Σ∪{E})ω → (Σ∪{E})ω be the mapping defined, for all y ∈ (Σ∪{E})ω,
by: ϕ(y) = y(1).y(S + 2).y(S + S2 + 3) . . . y(S + S2 + . . . + Sn + (n + 1)) . . .
It is easy to see that the function ϕ is also continuous and that, for any L ⊆ Σω,
θS(L) = ϕ−1(L) ∩ θS(Σω).
Let now L ⊆ Σω be a Σ0

α (respectively, Π0
α) subset of Σω, hence also of (Σ ∪

{E})ω, for some ordinal α ≥ 2. Then ϕ−1(L) is a Σ0
α (respectively, Π0

α) subset
of (Σ ∪ {E})ω because the class Σ0

α (respectively, Π0
α) is closed under inverse

images by continuous functions. On the other hand θS(Σω) is a closed set thus
θS(L) = ϕ−1(L) ∩ θS(Σω) is a Σ0

α (respectively, Π0
α) subset of (Σ ∪ {E})ω

because the class Σ0
α (respectively, Π0

α) is closed under finite intersection.
Moreover it holds that L = θ−1

S (θS(L)). Thus if L is assumed to be Σ0
α-complete

(respectively, Π0
α-complete) then θS(L) is a Σ0

α-complete (respectively, Π0
α-

complete ) subset of (Σ ∪ {E})ω because it is a Σ0
α (respectively, Π0

α) set, the
function θS is continuous, and L is Σ0

α-complete (respectively, Π0
α-complete).

Assume now that L is a Σ0
α-set of rank α, (respectively, Π0

α-set of rank α). We
have already seen that θS(L) is a Σ0

α (respectively, Π0
α) subset of (Σ∪{E})ω . The

Borel rank of θS(L) cannot be smaller than α because otherwise L = θ−1
S (θS(L))

would be also of Borel rank smaller than α.
�

Lemma 7. Let Σ be an alphabet having at least two letters and let L ⊆ Σω be
an ω-language in the class BCL(2)ω. Then there exists an integer S ≥ 1 such
that θS(L) is in the class r-BCL(8)ω.

Proof. Let Σ be an alphabet having at least two letters and let L ⊆ Σω be an
ω-language accepted by a Büchi 2-counter automaton A.

A way to construct a finite machine accepting the same ω-language but being
real time would be to add a storage type called a queue [EH93].

Configurations of a queue are finite words over a finite alphabet Σ; a letter of
Σ may be added to the rear of the queue or removed from the front; moreover
there are tests to determine the first letter of the queue.

The new machine will read words in real time. At every transition a letter of the
input ω-word is read, is added to the rear of the queue, waiting to be read (and



then removed from the front of the queue) for the simulation of the reading of
the input ω-word by the 2-counter automaton A.

We are going to see that one can simulate a queue with four counters. This
simulation will not be a real time simulation but we shall be able to get an upper
bound on the number of transitions of the four counters which are necessary for
the simulation of one transition of the queue. This upper bound will be useful
in the sequel for our purpose.

Claim 8. A queue can be simulated by two pushdown stacks.

Proof. Assume that the queue alphabet is Σ = {Z2, Z3, . . . , Zk−1}, for some
integer k ≥ 3.
The content of the queue can be represented by a finite word Zi1Zi2Zi3 . . . Zim

,
where the letter Zim

is the first letter of the queue and Zi1 is the last letter of
the queue (the last added to the rear).
This content can be stored in a pushdown stack whose alphabet is Γ = Σ∪{Z1},
where Z1 is the bottom symbol which appears only at the bottom of the stack
and always remains there. The stack content representing the queue content
Zi1Zi2Zi3 . . . Zim

will be simply Z1Zi1Zi2Zi3 . . . Zim
, where Z1 is at the bottom

of the stack and Zim
is at the top of the stack.

If the letter Zim
of the front of the queue is removed from the queue, it suffices

to pop the same letter from the top of the stack.
To simulate the addition of a new letter Zr to the rear of the queue we can use
a second pushdown stack whose alphabet is also Γ .
we have in fact to add the letter Zr between the letters Z1 and Zi1 of the first
pushdown stack. To achieve this, we successively pop letters from the top of
the first stack, pushing them in the second stack containing only at the be-
ginning the bottom symbol Z1. After having done this operation for letters
Zim

, Zim−1 , . . . Zi2 , Zi1 , the content of the first stack is Z1 and the content of
the second stack is Z1Zim

Zim−1 . . . Zi2Zi1 . We can then push the letter Zr at
the top of the first stack. Then we successively pop letters Zi1 , Zi2 , Zi3 . . . , Zim

from the top of the second stack, pushing them in the first stack. At the end
of this operation the content of the first stack is Z0ZrZi1Zi2Zi3 . . . Zim

and it
represents the new content of the queue. �

We recall now the following well known property.

Claim 9 ([HU79]). A pushdown stack can be simulated by two counters.

Proof. Consider a stack having k−1 symbols Z1, Z2, . . . , Zk−1. The stack content
Zi1Zi2Zi3 . . . Zim

can be represented by the integer j which is given in base k
by:

j = im + k.im−1 + k2.im−2 + . . . + km−1.i1

Notice that, as remarked in [HU79], not every integer represents a stack content.
In particular an integer whose representation in base k contains the digit 0 does
not represent any stack content.



We are going to see how to use a second counter to determine which is the letter
at the top of the stack, and to simulate the operations of pushing a letter in the
stack or of popping a letter from the top of the stack.

Assume that the integer j representing the stack content Zi1Zi2Zi3 . . . Zim
is

stored in one of the two counters.

In order to determine which is the letter at the top of the stack, we can copy the
content j in the second counter, using the finite control of the finite machine to
compute j modulo k.
The integer j modulo k is equal to the integer im which characterizes the letter
Zim

hence the letter at the top of the stack.
It would be possible to transfer again the integer j in the first counter, but one
can also leave it in the second counter and use the finite control to know in which
counter is stored the integer j.
Notice that this operation needs only j steps (and 2j steps if we transfer again
j in the first counter).

If a letter Zr is pushed into the stack, the content of the stack is now Zi1Zi2Zi3 . . . Zim
Zr

and the integer associated with that content is j.k + r.
It is easy to store the integer j.k in the second counter, by adding k to this
counter each time the first counter is decreased by 1. When the content of the
first counter is equal to zero then the content of the second counter is equal to
j.k. One can then add r to the second counter by using the finite control of the
machine. Again we can use the finite control to know that now the content of
the stack is coded by the integer which is in the second counter.
Notice that the whole operation needs only j.k + r steps.

If instead the symbol Zim
is popped from the top of the stack, then the new

content of the stack is Zi1Zi2Zi3 . . . Zim−1 and it is represented by the integer

[ j
k
] = im−1 + k.im−2 + . . . + km−2.i1 which is the integer part of j

k
.

To get the integer [ j
k
] as content of the second counter, we can decrease the first

counter from j to zero, adding 1 to the second counter each time the first one is
decreased by k.
Notice that this operation needs only j steps.
Remark also that we can achieve this operation in a non deterministic way,
checking at the end of it which was the letter at the top of the stack. �

We have seen above that a queue can be simulated with two pushdown stacks
hence also with four counters.
This simulation is not done in real time but we shall see that we can get an
upper bound on the number of transitions of the four counters simulating one
transition of the queue. This upper bound will be crucial in view of Lemma 7.



Claim 10. Assume as above that the queue alphabet is Σ = {Z2, Z3, . . . , Zk−1},
for some integer k ≥ 3 and that at some time the content of the queue is a finite
word Zi1Zi2Zi3 . . . Zim

. Then the number of transitions of four counters which
are needed to simulate the addition of a letter Zr to the rear of the queue is
smaller than (2.k)m+2.

Proof. Recall that the content of the queue can be stored in a pushdown stack
whose alphabet is Γ = Σ∪{Z1}, where Z1 is the bottom symbol. The stack con-
tent representing the queue content Zi1Zi2Zi3 . . . Zim

is simply Z1Zi1Zi2Zi3 . . . Zim
,

where Z1 is at the bottom of the stack and Zim
is at the top of the stack.

This stack content Z1Zi1Zi2Zi3 . . . Zim
can itself be represented by the integer

j which is given in base k by:

j = im + k.im−1 + k2.im−2 + . . . + km−1.i1 + km.1 ≤ km+1

We have seen that, considering the simulation of the addition of Zr to the rear of
a queue with two pushdown stacks, the first stack containing Z1Zi1Zi2Zi3 . . . Zim

,
we have first to successively pop letters Zim

, . . . , Zi3 , Zi2 , Zi1 , from the top of
the first stack and push them in the second stack.
We have also seen above that popping a letter from the stack whose content is
represented by the integer j needs only j transitions of two counters and that
we can know at the end of this popping simulation which letter has just been
popped.
Moreover to push a letter Zs in the stack whose content is represented by an
integer j′ needs only j′.k + s transitions of two counters.
Thus at most 2.m.km+1 transitions of four counters are necessary to simulate
the operation of successively popping letters Zim

, . . . , Zi3 , Zi2 , Zi1 , from the top
of the first stack and then pushing them in the second stack.
Two transitions of the counters are needed to check that the content of the first
stack is now reduced to Z1, which is simply represented by the integer 1, without
changing this content; in one step the counter is reduced from one to zero then
in a second step the counter is increased from zero to one.
To simulate the addition of the letter Zr to the rear of the queue, we now push
the letter Zr in the first stack; this is simulated by k + r transitions of two
counters.
Now we have to successively pop letters Zi1 , Zi2 , Zi3 , . . . , Zim

, from the top of
the second stack and push them again in the first stack. This whole operation
needs less than m.km+1 + m.km+2 transitions of the four counters.

Finally, to simulate the addition of a letter Zr to the rear of the queue, we need
only

2.m.km+1 + 2 + k + r + m.km+1 + m.km+2

transitions of four counters. This number is smaller than

4.m.km+2 + 3.k ≤ (2.k)m+2.

�



Claim 11. Assume as above that the queue alphabet is Σ = {Z2, Z3, . . . , Zk−1},
for some integer k ≥ 3 and that at some time the content of the queue is a
finite word Zi1Zi2Zi3 . . . Zim

. Then the number of transitions of four counters
which are needed to determine the letter Zim

which is at the front of the queue
is smaller than km+1. And the number of transitions of four counters which are
needed to simulate the operation of removing the letter Zim

from the front of the
queue is smaller than km+1.

Proof. The content Zi1Zi2Zi3 . . . Zim
of the queue is represented by a stack con-

tent Z1Zi1Zi2Zi3 . . . Zim
, where Z1 is at the bottom of the stack and Zim

is at
the top of the stack.
This stack content is itself represented by the integer

j = im + k.im−1 + k2.im−2 + . . . + km−1.i1 + km.1 ≤ km+1

By the proof of Claim 9, j ≤ km+1 transitions of four counters (and even of only
two counters) suffice to determine the letter Zim

which is at the top of the stack
or to pop it from the top of the stack. �

Claim 12. The ω-language θS(Σω) is in the class r-BCL(2)ω.

Proof. Recall that if Σ is an alphabet having at least two letters, E is a new
letter not in Σ, S is an integer ≥ 1, then an ω-word y ∈ (Σ∪{E})ω is in θS(Σω)
iff it is in the form:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1

. . .

for some x ∈ Σω.
It is easy to construct a real time Büchi 2-counter automaton B accepting
θS(Σω). We describe now the behaviour of B when reading an ω-word y ∈
(Σ∪{E})ω . After the reading of the first letter y(1) ∈ Σ, the automaton B adds
one to the first counter for each letter E read, checking with the finite control
that there are S letters E following y(1). Then B reads a second letter of Σ and
next it adds S to the second counter and decreases the first counter by one each
time it reads S letters E. When the first counter content is equal to zero, the
second counter content is equal to S2 and B has read S2 letters E. It then reads
a third letter of Σ, and next it adds S to the first counter and decreases the
second counter by one each time it reads S letters E. When the second counter
content is equal to zero, the first counter content is equal to S3 and B has read
S3 letters E. Then B reads a fourth letter of Σ, and so on. The Büchi acceptance
condition is used to check that the content of the first (and also of the second)
counter takes infinitely many times the value zero. �

End of Proof of Lemma 7. Let L ⊆ Σω be an ω-language accepted by
a Büchi 2-counter automaton A. We are going to explain the behaviour of a
real time Büchi 8-counter automaton A1 accepting θS(L) where S = (3k)3 and
k = cardinal(Σ) + 2.
As explained in the proof of preceding Claim 12, two counters of A1 will be



used, independently of the other six ones, to check that the input ω-word y ∈
(Σ ∪ {E})ω is in θS(Σω).
Consider now the reading by A1 of an ω-word y ∈ (Σ ∪ {E})ω in the form

y = θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n+1).ESn+1

. . . for
some x ∈ Σω.
The automaton A1 will simulate, using four counters, a queue in which will be
successively stored letters x(1), x(2), . . . , x(n), . . . as soon as they will be read.
Two other counters of A1 will be used to simulate the reading of the ω-word x by
the Büchi 2-counter automatonA. Notice that only letters x(1), x(2), . . . , x(n), . . .
will be added to the rear of the queue. Therefore after having read the initial seg-
ment x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

of y the content of the queue
has cardinal smaller than or equal to n.
When A1 reads x(n+1) it will firstly simulate the addition of the letter x(n+1)
to the rear of the queue, using four counters, and doing this in real time while
continuing to read some following letters E. By Claim 10, the number of tran-
sitions of four counters needed to simulate the addition of x(n + 1) to the rear
of the queue is smaller than (2k)n+2 where k = cardinal(Σ) + 2. Next A1 de-
termines which is the letter at the front of the queue. By Claim 11 this needs at
most kn+2 transitions of the four counters (because there are now at most (n+1)
letters in the queue). Now the automaton A1 simulates, using two counters, only
one transition of A. This transition may be a λ-transition or not. In the second
case A1 simulates the reading by A of the letter at the front of the queue so this
letter is removed from the queue; by Claim 11 this needs again at most kn+2

transitions of the four counters. It holds that

(2k)n+2 + kn+2 + kn+2 + 1 ≤ ((3k)3)n

Thus if we set S = (3k)3 then all these transitions of the six counters can be
achieved by the automaton A1 in real-time during the reading of the letters
E following x(n + 1) in y. Not all the Sn+1 letters E are read during these
transitions of the six counters. But A1 will read the other ones without changing
the contents of the six counters, waiting for the reading of the next letter of Σ:
the letter x(n + 2). It will then simulate the addition of this letter to the rear of
the queue, and so on.
A Muller condition can be used to ensure that y ∈ θS(Σω), i.e. y = θS(x) for
some x ∈ Σω, and that x ∈ L = L(A). As mentioned in Section 2, this can also
be achieved with a Büchi acceptance condition. �

Notice that we did not aim to find the smallest possible integer S but only to
find one such integer in order to prove Lemma 7.

5 Borel hierarchy of ω-languages in r-BCL(1)ω

We shall firstly prove the following result.



Proposition 13. Let k ≥ 2 be an integer. If, for some ordinal α ≥ 2, there is
an ω-language in the class r-BCL(k)ω which is Σ0

α-complete (respectively, Π0
α-

complete, Σ0
α of rank α, Π0

α of rank α), then there is some ω-language in the
class r-BCL(1)ω which is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank
α, Π0

α of rank α).

To simplify the exposition of the proof of this result, firstly, we are going to give
the proof for k = 2. Next we shall explain the modifications to do in order to
infer the result for the integer k = 8 which is in fact the only case we shall need
in the sequel. (However our main result will show that the proposition is true
for every integer k ≥ 2).
For that purpose we define first a coding of ω-words over a finite alphabet Σ by
ω-words over the alphabet Σ ∪ {A, B, 0} where A, B and 0 are new letters not
in Σ. We shall code an ω-word x ∈ Σω by the ω-word h(x) defined by

h(x) = A.06.x(1).B.062

.A.062

.x(2).B.063

.A.063

.x(3).B . . . B.06n

.A.06n

.x(n).B . . .

This coding defines a mapping h : Σω → (Σ ∪ {A, B, 0})ω. The function h is
continuous because for all ω-words x, y ∈ Σω and each positive integer n, it
holds that δ(x, y) < 2−n → δ(h(x), h(y)) < 2−n.

Lemma 14. Let Σ be a finite alphabet and (h(Σω))− = (Σ ∪ {A, B, 0})ω −
h(Σω). If L⊆ Σω is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank α, Π0
α

of rank α), for a countable ordinal α ≥ 2, then h(L)∪h(Σω)− is a subset of
(Σ ∪ {A, B, 0})ω which is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank
α, Π0

α of rank α).

Proof. The topological space Σω is compact thus its image by the continuous
function h is also a compact subset of the topological space (Σ ∪ {A, B, 0})ω.
The set h(Σω) is compact hence it is a closed subset of (Σ ∪ {A, B, 0})ω. Then
its complement

(h(Σω))− = (Σ ∪ {A, B, 0})ω − h(Σω)

is an open (i.e. a Σ0

1
) subset of (Σ ∪ {A, B, 0})ω.

On the other hand the function h is also injective thus it is a bijection from
Σω onto h(Σω). But a continuous bijection between two compact sets is an
homeomorphism therefore h induces an homeomorphism between Σω and h(Σω).
Assume that L is a Σ0

α (respectively, Π0
α) subset of Σω. Then h(L) is a Σ0

α

(respectively, Π0
α) subset of h(Σω) (where Borel sets of the topological space

h(Σω) are defined from open sets as in the case of the topological space Σω).

The topological space h(Σω) is a topological subspace of (Σ ∪ {A, B, 0})ω and
its topology is induced by the topology on (Σ ∪ {A, B, 0})ω: open sets of h(Σω)
are traces on h(Σω) of open sets of (Σ ∪ {A, B, 0})ω and the same result holds
for closed sets. Then one can easily show by induction that for every ordinal



α ≥ 1, Π0
α-subsets (resp. Σ0

α-subsets) of h(Σω) are traces on h(Σω) of Π0
α-

subsets (resp. Σ0
α-subsets) of (Σ ∪ {A, B, 0})ω, i.e. are intersections with h(Σω)

of Π0
α-subsets (resp. Σ0

α-subsets) of (Σ ∪ {A, B, 0})ω.

But h(L) is a Σ0
α (respectively, Π0

α)-subset of h(Σω), for some ordinal α ≥ 2,
hence there exists a Σ0

α (respectively, Π0
α) subset T of (Σ∪{A, B, 0})ω such that

h(L)=T∩h(Σω). But h(Σω) is a closed i.e. Π0
1-subset of (Σ∪{A, B, 0})ω and the

class of Σ0
α (respectively, Π0

α) subsets of (Σ ∪ {A, B, 0})ω is closed under finite
intersection thus h(L) is a Σ0

α (respectively, Π0
α) subset of (Σ ∪ {A, B, 0})ω.

Now h(L) ∪(h(Σω))− is the union of a Σ0
α (respectively, Π0

α) subset and of
a Σ0

1-subset of (Σ ∪ {A, B, 0})ω therefore it is a Σ0
α (respectively, Π0

α) subset
of (Σ ∪ {A, B, 0})ω because the class of Σ0

α (respectively, Π0
α) subsets of (Σ ∪

{A, B, 0})ω is closed under finite union.

Assume now firstly that L is Σ0
α-complete (respectively, Π0

α-complete). In order
to prove that h(L)∪(h(Σω))− is Σ0

α-complete (respectively, Π0
α-complete) it

suffices to remark that

L=h−1[h(L)∪(h(Σω))−]

This implies that h(L)∪(h(Σω))− is Σ0
α-complete (respectively, Π0

α-complete)
because L is assumed to be Σ0

α-complete (respectively, Π0
α-complete).

On the other hand if we assume only that L is a Σ0
α-set of rank α (respectively,

Π0
α-set of rank α), then we can infer that h(L)∪(h(Σω))− is also a Σ0

α-set of
rank α (respectively, Π0

α-set of rank α). Indeed if h(L)∪(h(Σω))− was of Borel
rank β < α then L=h−1[h(L)∪(h(Σω))−] would be also of rank smaller than
α because the class Σ0

β (respectively, Π0
β) is closed under inverse images by

continuous functions. �

In order to apply Lemma 14, we want now to prove that if L(A)⊆ Σω is accepted
by a real time 2-counter automaton A with a Büchi acceptance condition then
h(L(A))∪h(Σω)− is accepted by a 1-counter automaton with a Büchi acceptance
condition. We firstly prove the following lemma.

Lemma 15. Let Σ be a finite alphabet and h be the coding of ω-words over Σ
defined as above. Then h(Σω)− = (Σ∪{A, B, 0})ω−h(Σω) is accepted by a real
time 1-counter Büchi automaton.

Proof. We can easily see that h(Σω)− = (Σ ∪ {A, B, 0})ω − h(Σω) is the set of
ω-words in (Σ ∪ {A, B, 0})ω which belong to one of the following ω-languages.

– D1 is the set of ω-words over the alphabet Σ ∪{A, B, 0} which have not any
initial segment in A.06.Σ.B. It is easy to see that D1 is in fact a regular
ω-language.



– D2 is the complement of (A.0+.Σ.B.0+)ω in (Σ∪{A, B, 0})ω. The ω-language
(A.0+.Σ.B.0+)ω is regular thus its complement D2 is also a regular ω-
language.

– D3 is the set of ω-words over the alphabet Σ ∪ {A, B, 0} which contain a
segment in B.0n.A.0m.Σ for some positive integers n 6= m. It is easy to
see that this ω-language can be accepted by a real time 1-counter Büchi
automaton.

– D4 is the set of ω-words over the alphabet Σ ∪ {A, B, 0} which contain a
segment in A.0n.Σ.B.0m.A for some positive integers n and m with m 6=
6n. Again this ω-language can be accepted by a real time 1-counter Büchi
automaton.

The class r-BCL(1)ω is closed under finite union because it is the class of ω-
languages accepted by non deterministic real time 1-counter Büchi automata.
On the other hand it holds that h(Σω)− = (Σ∪{A, B, 0})ω−h(Σω) = ∪1≤i≤4Di

thus h(Σω)− is accepted by a real time 1-counter Büchi automaton. �

We would like now to prove that if L(A)⊆ Σω is accepted by a real time 2-
counter automaton A with a Büchi acceptance condition then h(L(A)) is in
BCL(1)ω. We cannot show this, so we are firstly going to define another ω-
language L(A) accepted by a 1-counter Büchi automaton and we shall prove
that h(L(A))∪h(Σω)− = L(A)∪h(Σω)−.
We shall need the following notion. Let N ≥ 1 be an integer such that N =
2x.3y.N1 where x, y are positive integers and N1 ≥ 1 is an integer which is nei-
ther divisible by 2 nor by 3. Then we set P2(N) = x and P3(N) = y. So 2P2(N)

is the greatest power of 2 which divides N and 2P3(N) is the greatest power of 3
which divides N .
Let then a 2-counter Büchi automaton A= (K, Σ, ∆, q0, F ) accepting the ω-
language L(A)⊆ Σω. The ω-language L(A) is the set of ω-words over the alpha-
bet Σ ∪ {A, B, 0} in the form

A.u1.v1.x1.B.w1.z1.A.u2.v2.x2.B.w2.z2.A . . . A.un.vn.xn.B.wn.zn.A . . .

where, for all integers i ≥ 1, vi, wi ∈ 0+, ui, zi ∈ 0⋆, xi ∈ Σ, |u1| = 5, |ui+1| = |zi|
and there is a sequence (qi)i≥0 of states of K and integers ji, j

′
i ∈ {−1; 0; 1}, for

i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, P2(|vi|), P3(|vi|)) 7→A (qi, P2(|vi|) + ji, P3(|vi|) + j′i)

and
|wi| = |vi|.2

ji .3j′i

Moreover some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.
Notice that the state q0 of the sequence (qi)i≥0 is also the initial state of A.

Lemma 16. Let A be a real time 2-counter Büchi automaton accepting ω-words
over the alphabet Σ and L(A)⊆ (Σ∪{A, B, 0})ω be defined as above. Then L(A)
is accepted by a 1-counter Büchi automaton B.



Proof. We shall explain informally the behaviour of a 1-counter Büchi automaton
B accepting the ω-language L(A).
We firstly consider the reading of an ω-word x ∈ (A.0⋆.Σ.B.0⋆)ω in the form

x = A.0n1x1.B.0m1 .A.0n2x2.B.0m2 .A . . . A.0npxp.B.0mp .A . . .

where, for all integers i ≥ 1, ni, mi, are positive integers and xi ∈ Σ.
Using the finite control the automaton B first checks that the six first letters
of x form the initial segment A.05. Then, when reading the following (n1 − 5)
letters 0, the automaton B, using the finite control, checks that (n1 − 5) > 0
and determines whether P2(n1 − 5) = 0 and whether P3(n1 − 5) = 0. Moreover
the counter content is increased by one for each letter 0 read. The automaton B
reads now the letter x1 and it guesses a transition of A leading to

x1 : (q0, P2(n1 − 5), P3(n1 − 5)) 7→A (q1, P2(n1 − 5) + j1, P3(n1 − 5) + j′1)

We set v1 = 0n1−5 and w1 = 0(n1−5).2j1 .3j′1 . The counter value is now equal
to (n1 − 5) and, when reading letters 0 following x1, the automaton B checks
that m1 ≥ (n1 − 5).2j1 .3j′1 in such a way that the counter value becomes 0 after
having read the (n1−5).2j1 .3j′1 letters 0 following the first letter B. For instance
if j1 = j′1 = 1 then |w1| = |v1|.6 so this can be done by decreasing the counter
content by one each time six letters 0 are read. The other cases are treated in a
similar way. Details are here left to the reader.
Notice also that the automaton B has kept in its finite control the value of the
state q1.
We set now 0m1 = w1.z1. We have seen that after having read w1 the counter
value is equal to zero. Now when reading z1 the counter content is increased
by one for each letter read so that it becomes |z1| after having read z1. The
automaton B reads now a letter A and next decreased its counter by one for
each letter 0 read until the counter content is equal to zero. We set 0n2 = u2.v2

with u2 = z1. The automaton B reads now the segment v2. Using the finite
control, it checks that |v2| > 0 and determines whether P2(|v2|) = 0 and whether
P3(|v2|) = 0. Moreover the counter content is increased by one for each letter 0
read. The automaton B reads now the letter x2 and it guesses a transition of A
leading to

x2 : (q1, P2(|v2|), P3(|v2|)) 7→A (q2, P2(|v2|) + j2, P3(|v2|) + j′2)

We set w2 = 0|v2|.2
j2 .3j′2 . The counter value is now equal to |v2|. The automaton

B reads now the second letter B and, when reading the m2 letters 0 following
this letter B, the automaton B checks that m2 ≥ |v2|.2

j2 .3j′2 in such a way that
the counter value becomes 0 after having read the |v2|.2j2 .3j′2 letters 0 following
the second letter B.
For instance if j2 = 0 and j′2 = −1 then |w2| = |v2|.3−1 so this can be done by
decreasing the counter content by three each time one letter 0 is read.
And if j2 = −1 and j′2 = −1 then |w2| = |v2|.2−1.3−1 = |v2|.6−1 so this can be
done by decreasing the counter content by six each time one letter 0 is read. The



other cases are treated in a similar way. Details are here left to the reader.
Notice that these different cases can be achieved with the use of λ-transitions
but in such a way that there will be at most 5 consecutive λ-transitions during
a run of B on x. This will be an important useful fact in the sequel.
Notice also that the automaton B has kept in its finite control the value of the
state q2.
The reading of x by B continues in the same way. A Büchi acceptance condition
can be used to ensure that some state qf ∈ K occurs infinitely often in the
sequence (qi)i≥0.
To complete the proof we can remark that R=(A.0⋆.Σ.B.0⋆)ω is a regular ω-
language so we have considered only the reading by B of ω-words x ∈ R. Indeed
if the ω-language L(B) was not included into R we could replace it by L(B)∩R
because the class BCL(1)ω is closed under intersection with regular ω-languages
(by a classical construction of product of automata, the ω-language R being
accepted by a deterministic Muller automaton). �

Lemma 17. Let A be a real time 2-counter Büchi automaton accepting ω-words
over the alphabet Σ and L(A)⊆ (Σ∪{A, B, 0})ω be defined as above. Then L(A)
= h−1(L(A)), i.e. ∀x ∈ Σω h(x) ∈ L(A)←→ x ∈ L(A).

Proof. Let A be a real time 2-counter Büchi automaton accepting ω-words over
the alphabet Σ and L(A)⊆ (Σ ∪ {A, B, 0})ω be defined as above. Let x ∈ Σω

be an ω-word such that h(x) ∈ L(A). So h(x) may be written

h(x) = A.06.x(1).B.062

.A.062

.x(2).B.063

.A.063

.x(3).B . . . B.06n

.A.06n

.x(n).B . . .

and also

h(x) = A.u1.v1.x1.B.w1.z1.A.u2.v2.x2.B.w2.z2.A . . .A.un.vn.xn.B.wn.zn.A . . .

where, for all integers i ≥ 1, vi, wi ∈ 0+, ui, zi ∈ 0⋆, xi = x(i) ∈ Σ, |u1| = 5,
|ui+1| = |zi| and there is a sequence (qi)i≥0 of states of K and integers ji, j

′
i ∈

{−1; 0; 1}, for i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, P2(|vi|), P3(|vi|)) 7→A (qi, P2(|vi|) + ji, P3(|vi|) + j′i)

and
|wi| = |vi|.2

ji .3j′i

some state qf ∈ F occurring infinitely often in the sequence (qi)i≥0.
In particular, u1 = 05 and u1.v1 = 06 thus |v1| = 1 = 20.30. We are going to
prove by induction on the integer i ≥ 1 that, for all integers i ≥ 1, |wi| = |vi+1| =
2P2(|wi|).3P3(|wi|). Moreover, setting ci

1 = P2(|vi|) and ci
2 = P3(|vi|), we are going

to prove that for each integer i ≥ 1 it holds that

xi : (qi−1, c
i
1, c

i
2) 7→A (qi, c

i+1
1 , ci+1

2 )

We have already seen that |v1| = 1 = 20.30. By hypothesis there is a state
q1 ∈ K and integers j1, j

′
1 ∈ {−1; 0; 1} such that x1 : (q0, P2(|v1|), P3(|v1|)) 7→A



(q1, P2(|v1|) + j1, P3(|v1|) + j′1), i.e. x1 : (q0, 0, 0) 7→A (q1, j1, j
′
1). Then |w1| =

|v1|.2j1 .3j′1 = 2j1 .3j′1 .

We have now |w1.z1| = |u2.v2| = 062

and |u2| = |z1| thus |v2| = |w1| = 2j1 .3j′1 .
Setting c1

1 = 0, c1
2 = 0, c2

1 = j1 = P2(|v2|) and c2
2 = j′1 = P3(|v2|), it holds that

x1 : (q0, c
1
1, c

1
2) 7→A (q1, c

2
1, c

2
2).

Assume now that, for all integers i, 1 ≤ i ≤ n− 1, it holds that |wi| = |vi+1| =
2P2(|wi|).3P3(|wi|) and xi : (qi−1, c

i
1, c

i
2) 7→A (qi, c

i+1
1 , ci+1

2 ) where ci
1 = P2(|vi|)

and ci
2 = P3(|vi|).

We know that there is a state qn ∈ K and integers jn, j′n ∈ {−1; 0; 1} such
that xn : (qn−1, P2(|vn|), P3(|vn|)) 7→A (qn, P2(|vn|) + jn, P3(|vn|) + j′n), i.e. xn :
(qn−1, c

n
1 , cn

2 ) 7→A (qn, cn
1 +jn, cn

2 +j′n). Then |wn| = |vn|.2jn .3j′n = 2cn
1 +jn .3cn

2 +j′n .

On the other hand |wn.zn| = |un+1.vn+1| = 06n+1

and |un+1| = |zn| thus

|vn+1| = |wn| = 2cn
1 +jn .3cn

2 +j′n = 2c
n+1
1 .3c

n+1
2 by setting cn+1

1 = P2(|vn+1|) and
cn+1
2 = P3(|vn+1|). So we have xn : (qn−1, c

n
1 , cn

2 ) 7→A (qn, cn+1
1 , cn+1

2 ).

Finally we have proved by induction the announced claim. If for all integers
i ≥ 1, we set ci

1 = P2(|vi|) and ci
2 = P3(|vi|), it holds that

xi : (qi−1, c
i
1, c

i
2) 7→A (qi, c

i+1
1 , ci+1

2 )

But there is some state qf ∈ K which occurs infinitely often in the sequence
(qi)i≥1. This implies that (qi−1, c

i
1, c

i
2)i≥1 is a successful run of A on x thus

x ∈ L(A).
Conversely it is easy to see that if x ∈ L(A) then h(x) ∈ L(A). This ends the
proof of Lemma 17. �

Remark 18. The simulation, during the reading of h(x) by the 1-counter Büchi
automaton B, of the behaviour of the real time 2-counter Büchi automaton A
reading x, can be achieved, using a coding of the content (c1, c2) of two counters
by a single integer 2c1 .3c2 and the special shape of ω-words in h(Σω) which
allows the propagation of the counter value of B. This will be sufficient here,
because of the previous lemmas, and in particular of the fact that h(Σω)− is in
the class r-BCL(1)ω, and we can now end the proof of Proposition 13.

End of Proof of Proposition 13. Let α ≥ 2 be an ordinal. Assume that there
is an ω-language L(A)⊆ Σω which is Σ0

α-complete (respectively, Π0
α-complete,

Σ0
α of rank α, Π0

α of rank α) and is accepted by a real time 2-counter Büchi
automaton A. By Lemma 14, h(L)∪h(Σω)− is a subset of (Σ∪{A, B, 0})ω being
Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank α, Π0
α of rank α) . On the

other hand Lemma 17 states that L(A) = h−1(L(A)) and this implies that
h(L(A))∪h(Σω)− = L(A)∪h(Σω)−. But we know by Lemmas 15 and 16 that
the ω-languages h(Σω)− and L(A) are in the class BCL(1)ω thus their union
is also accepted by a 1-counter Büchi automaton. Therefore h(L(A))∪h(Σω)−

is an ω-language in the class BCL(1)ω which is Σ0
α-complete (respectively, Π0

α-
complete, Σ0

α of rank α, Π0
α of rank α).



We want now to find an ω-language in the class r-BCL(1)ω which is Σ0
α-complete

(respectively, Π0
α-complete, Σ0

α of rank α, Π0
α of rank α).

On one side we have proved that h(Σω)− is accepted by a real time 1-counter
Büchi automaton. On the other side we have proved that L(A) is accepted by
a (non real time) 1-counter Büchi automaton B. However we have seen, in the
proof of Lemma 16, that at most 5 consecutive λ-transitions can occur during
the reading of an ω-word x by B.
Consider now the mapping φ : (Σ ∪ {A, B, 0})ω → (Σ ∪ {A, B, F, 0})ω which is
defined, for all x ∈ (Σ ∪ {A, B, 0})ω by:

φ(x) = F 5.x(1).F 5.x(2).F 5.x(3) . . . F 5.x(n).F 5.x(n + 1).F 5 . . .

The function φ is continuous and separates two successive letters of x by five
letters F . We can prove, as in the proof of Lemma 6, that if L ⊆ (Σ∪{A, B, 0})ω

is Σ0
α-complete (respectively, Π0

α-complete, Σ0
α of rank α, Π0

α of rank α), for
some ordinal α ≥ 2, then φ(L) is a subset of (Σ ∪ {A, B, F, 0})ω which is Σ0

α-
complete (respectively, Π0

α-complete, Σ0
α of rank α, Π0

α of rank α).

Thus the ω-language φ(L(A)∪h(Σω)−) is Σ0
α-complete (respectively, Π0

α-complete,
Σ0

α of rank α, Π0
α of rank α).

Moreover it is easy to see that φ(L(A)) is accepted by a real time 1-counter
Büchi automaton B′. The automaton B′ checks with its finite control that an
input ω-word is in the form φ(x) for some x ∈ (Σ∪{A, B, 0})ω. And B′ simulates
the reading of x by B, the λ-transitions of B occuring during the reading, in real
time, of letters F of the ω-word φ(x).
Finally φ(L(A)∪h(Σω)−) = φ(L(A))∪φ(h(Σω)−)) is the union of two ω-languages
in r-BCL(1)ω thus it is in r-BCL(1)ω and it is Σ0

α-complete (respectively, Π0
α-

complete, Σ0
α of rank α, Π0

α of rank α).
This ends the proof of Proposition 13 for the integer k = 2.

We explain now the modifications to do in order to prove Proposition 13 for
the integer k = 8. We assume that α ≥ 2 is an ordinal and that there is an
ω-language L(A)⊆ Σω which is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of
rank α, Π0

α of rank α) and is accepted by a real time 8-counter Büchi automaton
A.
We first modify the coding of ω-words which was given by the mapping h. We
replace the number 6 = 2.3 by the product of the eight first prime numbers:

K = 2.3.5.7.11.13.17.19 = 9699690

Then an ω-word x ∈ Σω will be coded by the ω-word

hK(x) = A.0K .x(1).B.0K2

.A.0K2

.x(2).B.0K3

.A.0K3

.x(3).B . . . B.0Kn

.A.0Kn

.x(n).B . . .

The mapping hK : Σω → (Σ ∪ {A, B, 0})ω is continuous and we can prove, as
in Lemma 14, that hK(L(A))∪hK(Σω)− is a subset of (Σ ∪ {A, B, 0})ω which
is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank α, Π0
α of rank α). As in



Lemma 15, we can prove that hK(Σω)− is in the class r-BCL(1)ω .
Next, for each prime number p ∈ {2; 3; 5; 7; 11; 13; 17; 19}, and each positive
integer N ≥ 1, we denote Pp(N) the positive integer such that pPp(N) is the
greatest power of p which divides N .
We define the ω-language L(A) as the set of ω-words over the alphabet Σ ∪
{A, B, 0} in the form

A.u1.v1.x1.B.w1.z1.A.u2.v2.x2.B.w2.z2.A . . . A.un.vn.xn.B.wn.zn.A . . .

where, for all integers i ≥ 1, vi, wi ∈ 0+, ui, zi ∈ 0⋆, |u1| = K−1, |ui+1| = |zi| and
there is a sequence (qi)i≥0 of states of K and integers j1

i , j2
i , . . . , j8

i ,∈ {−1; 0; 1},
for i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, P2(|vi|), P3(|vi|), . . . , P19(|vi|)) 7→A (qi, P2(|vi|)+j1
i , P3(|vi|)+j2

i , . . . , P19(|vi|)+j8
i )

and
|wi| = |vi|.2

j1
i .3j2

i . . . . .19j8
i

and some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.

Applying the same ideas as in the proofs of Lemmas 16 and 17 we can prove that
L(A) is accepted by a 1-counter Büchi automaton and that L(A)= h−1

K (L(A)).
The essential change is that now the content (c1, c2, . . . , c8) of eight counters is
coded by the product 2c1 .3c2 . . . . .(17)c7.(19)c8 .
Notice that again L(A) is accepted by a (non real time) 1-counter Büchi au-
tomaton B. However there are now at most (K − 1) consecutive λ-transitions
which can occur during the reading of an ω-word x by B.
So we define now the mapping φK : (Σ ∪ {A, B, 0})ω → (Σ ∪ {A, B, F, 0})ω by:
for all x ∈ (Σ ∪ {A, B, 0})ω,

φK(x) = FK−1.x(1).FK−1.x(2).FK−1.x(3) . . . FK−1.x(n).FK−1.x(n+1).FK−1 . . .

The function φK is continuous as the function φ was. The end of the proof is
unchanged so we infer that φK(hK(L(A))∪hK(Σω)−) is an ω-language in the
class r-BCL(1)ω which is Σ0

α-complete (respectively, Π0
α-complete, Σ0

α of rank
α, Π0

α of rank α). �

From the results of Section 4 and Proposition 13, we can now state the following
result.

Theorem 19. Let C be a class of ω-languages such that:

r-BCL(1)ω ⊆ C⊆ Σ1
1 .

(a) The Borel hierarchy of the class C is equal to the Borel hierarchy of the class
Σ1

1 .
(b) γ1

2 = Sup {α | ∃L ∈ C such that L is a Borel set of rank α}.
(c) For every non null ordinal α < ωCK

1 , there exists some Σ0
α-complete and

some Π0
α-complete ω-languages in the class C.

Notice that above (b) and (c) just follow from (a) and from the known results
about the Borel hierarchy of the class Σ1

1 .



6 Wadge hierarchy of ω-languages in r-BCL(1)ω

We now introduce the Wadge hierarchy, which is a great refinement of the Borel
hierarchy defined via reductions by continuous functions, [Dup01,Wad83].

Definition 20 (Wadge [Wad83]). Let X, Y be two finite alphabets. For L ⊆
Xω and L′ ⊆ Y ω, L is said to be Wadge reducible to L′ (L ≤W L′) iff there
exists a continuous function f : Xω → Y ω, such that L = f−1(L′).
L and L′ are Wadge equivalent iff L ≤W L′ and L′ ≤W L. This will be denoted
by L ≡W L′. And we shall say that L <W L′ iff L ≤W L′ but not L′ ≤W L.
A set L ⊆ Xω is said to be self dual iff L ≡W L−, and otherwise it is said to be
non self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called Wadge degrees.
The Wadge hierarchy WH is the class of Borel subsets of a set Xω, where X is
a finite set, equipped with ≤W and with ≡W .
For L ⊆ Xω and L′ ⊆ Y ω, if L ≤W L′ and L = f−1(L′) where f is a continuous
function from Xω into Y ω, then f is called a continuous reduction of L to L′.
Intuitively it means that L is less complicated than L′ because to check whether
x ∈ L it suffices to check whether f(x) ∈ L′ where f is a continuous function.
Hence the Wadge degree of an ω-language is a measure of its topological
complexity.
Notice that in the above definition, we consider that a subset L ⊆ Xω is given
together with the alphabet X .
We can now define the Wadge class of a set L:

Definition 21. Let L be a subset of Xω. The Wadge class of L is :

[L] = {L′ | L′ ⊆ Y ω for a finite alphabet Y and L′ ≤W L}.

Recall that each Borel class Σ0

α and Π0

α is a Wadge class. A set L ⊆ Xω is a Σ0

α

(respectively Π0

α)-complete set iff for any set L′ ⊆ Y ω, L′ is in Σ0

α (respectively
Π0

α) iff L′ ≤W L .

There is a close relationship between Wadge reducibility and games which we
now introduce.

Definition 22. Let L ⊆ Xω and L′ ⊆ Y ω. The Wadge game W (L, L′) is a
game with perfect information between two players, player 1 who is in charge of
L and player 2 who is in charge of L′.
Player 1 first writes a letter a1 ∈ X, then player 2 writes a letter b1 ∈ Y , then
player 1 writes a letter a2 ∈ X, and so on.
The two players alternatively write letters an of X for player 1 and bn of Y for
player 2.
After ω steps, the player 1 has written an ω-word a ∈ Xω and the player 2 has
written an ω-word b ∈ Y ω. The player 2 is allowed to skip, even infinitely often,
provided he really writes an ω-word in ω steps.
The player 2 wins the play iff [a ∈ L↔ b ∈ L′], i.e. iff :



[(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].

Recall that a strategy for player 1 is a function σ : (Y ∪ {s})⋆ → X . And a
strategy for player 2 is a function f : X+ → Y ∪ {s}.
σ is a winning stategy for player 1 iff he always wins a play when he uses the
strategy σ, i.e. when the nth letter he writes is given by an = σ(b1 . . . bn−1),
where bi is the letter written by player 2 at step i and bi = s if player 2 skips at
step i.
A winning strategy for player 2 is defined in a similar manner.

Martin’s Theorem states that every Gale-Stewart Game G(X) (see [Kec95]),
with X a borel set, is determined and this implies the following :

Theorem 23 (Wadge). Let L ⊆ Xω and L′ ⊆ Y ω be two Borel sets, where X
and Y are finite alphabets. Then the Wadge game W (L, L′) is determined : one
of the two players has a winning strategy. And L ≤W L′ iff the player 2 has a
winning strategy in the game W (L, L′).

Theorem 24 (Wadge). Up to the complement and ≡W , the class of Borel
subsets of Xω, for a finite alphabet X, is a well ordered hierarchy. There is an
ordinal |WH |, called the length of the hierarchy, and a map d0

W from WH onto
|WH | − {0}, such that for all L, L′ ⊆ Xω:
d0

W L < d0
W L′ ↔ L <W L′ and

d0
W L = d0

W L′ ↔ [L ≡W L′ or L ≡W L′−].

The Wadge hierarchy of Borel sets of finite rank has length 1ε0 where 1ε0

is the limit of the ordinals αn defined by α1 = ω1 and αn+1 = ωαn

1 for n a
non negative integer, ω1 being the first non countable ordinal. Then 1ε0 is the
first fixed point of the ordinal exponentiation of base ω1. The length of the
Wadge hierarchy of Borel sets in ∆0

ω = Σ0

ω ∩Π0

ω is the ωth
1 fixed point of the

ordinal exponentiation of base ω1, which is a much larger ordinal. The length
of the whole Wadge hierarchy of Borel sets is a huge ordinal, with regard to
the ωth

1 fixed point of the ordinal exponentiation of base ω1. It is described in
[Wad83,Dup01] by the use of the Veblen functions.

It is natural to ask for the Wadge hierarchy of classes of ω-languages accepted by
finite machines, like X-automata. The Wadge hierarchy of regular ω-languages,
now called the Wagner hierarchy, has been effectively determined by Wagner; it
has length ωω [Wag79,Sel95,Sel98]. Wilke and Yoo proved in [WY95] that one
can compute in polynomial time the Wadge degree of an ω-regular language.
The Wadge hierarchy of ω-languages accepted by Muller deterministic one blind
(i. e. without zero-test) counter automata is an effective extension of the Wag-
ner hierarchy studied in [Fin01a]. Its extension to deterministic context free

ω-languages has been determined by Duparc, its length is ω(ω2) [DFR01,Dup03]
but we do not know yet whether it is effective. Selivanov has recently determined
the Wadge hierarchy of ω-languages accepted by deterministic Turing machines;
its length is (ωCK

1 )ω [Sel03a,Sel03b].



In previous papers we have inductively constructed, using the work of Du-
parc on the Wadge hierarchy of Borel sets [Dup01], some ∆0

ω context free
ω-languages in εω Wadge degrees, where εω is the ωth fixed point of the or-
dinal exponentiation of base ω, and also some Σ0

ω-complete context free ω-
languages, [Fin01c,Fin01b,Fin03a,Fin03b]. Notice that the Wadge hierarchy of
non-deterministic context-free ω-languages is not effective.

We are going to show here the very surprising following result, which extends
Theorem 19.

Theorem 25. The Wadge hierarchy of the class r-BCL(1)ω, hence also of the
class CFLω, or of every class C such that r-BCL(1)ω ⊆ C⊆ Σ1

1 , is the Wadge
hierarchy of the class Σ1

1 of ω-languages accepted by Turing machines with a
Büchi acceptance condition.

To prove this result, we are going to consider first non self dual sets. We recall
the definition of Wadge degrees introduced by Duparc in [Dup01] and which is
a slight modification of the previous one.

Definition 26.

(a) dw(∅) = dw(∅−) = 1
(b) dw(L) = sup{dw(L′) + 1 | L′ non self dual and L′ <W L}

(for either L self dual or not, L >W ∅).

We are going now to introduce the operation of sum of sets of infinite words
which has as counterpart the ordinal addition over Wadge degrees.

Definition 27 (Wadge, see [Dup01]). Assume that X ⊆ Y are two finite
alphabets, Y − X containing at least two elements, and that {X+, X−} is a
partition of Y −X in two non empty sets. Let L ⊆ Xω and L′ ⊆ Y ω, then

L′+L =df L∪{u.a.β | u ∈ X⋆, (a ∈ X+ and β ∈ L′) or (a ∈ X− and β ∈ L′−)}

This operation is closely related to the ordinal sum as it is stated in the following:

Theorem 28 (Wadge, see [Dup01]). Let X ⊆ Y , Y −X containing at least
two elements, L ⊆ Xω and L′ ⊆ Y ω be non self dual Borel sets. Then (L + L′)
is a non self dual Borel set and dw(L′ + L) = dw(L′) + dw(L).

A player in charge of a set L′ + L in a Wadge game is like a player in charge
of the set L but who can, at any step of the play, erase his previous play and
choose to be this time in charge of L′ or of L′−. Notice that he can do this only
one time during a play. We shall use this property below.

Lemma 29. Let L ⊆ Σω be a non self dual Borel set such that dw(L) ≥ ω.
Then it holds that L ≡W ∅+ L.



Notice that in the above lemma, ∅ is viewed as the empty set over an alphabet
Γ such that Σ ⊆ Γ and cardinal (Γ −Σ) ≥ 2.

Proof. Assume that L ⊆ Σω is a non self dual Borel set and that dw(L) ≥ ω. We
know that ∅ is a non self dual Borel set and that dw(∅) = 1. Thus, by Theorem
28, it holds that dw(∅ + L) = dw(∅) + dw(L) = 1 + dw(L). But by hypothesis
dw(L) ≥ ω and this implies that 1 + dw(L) = dw(L). So we have proved that
dw(∅+ L) = dw(L).
On the other hand L is non self dual and dw(∅ + L) = dw(L) imply that only
two cases may happen : either ∅+ L ≡W L or ∅+ L ≡W L−.
But it is easy to see that L ≤W ∅+L. For that purpose consider the Wadge game
W (L, ∅ + L). Player 2 has clearly a winning strategy which consists in copying
the play of Player 1 thus L ≤W ∅ + L. This implies that ∅ + L ≡W L− cannot
hold so ∅+ L ≡W L. �

Lemma 30. Let L ⊆ Σω be a non self dual Borel set acccepted by a Turing
machine with a Büchi acceptance condition. Then there is an ω-language L′ ∈
r-BCL(8)ω such that L ≡W L′.

Proof. It is well known that there are regular ω-languages of every finite Wadge
degree, [Sta97,Sel98]. These ω-languages are Boolean combinations of open sets.
So we have only to consider the case of non self dual Borel sets of Wadge degrees
greater than or equal to ω.

Let then L ⊆ Σω be a non self dual Borel set acccepted by a Turing machine
with a Büchi acceptance condition ( in particular L is in the class BCL(2)ω )
such that dw(L) ≥ ω.
Lemma 7 states that there exists an integer S ≥ 1 such that θS(L) is in the class
r-BCL(8)ω, where E is a new letter not in Σ and θS : Σω → (Σ ∪ {E})ω is the
function defined, for all x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1

. . .

We are going to prove that θS(L) ≡W L.

Firstly, it is easy to see that L ≤W θS(L). In order to prove this we can consider
the Wadge game W (L, θS(L)). It is easy to see that Player 2 has a winning
strategy in this game which consists in copying the play of Player 1, except
that Player 2 adds letters E in such a way that he has written the initial word
x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

while Player 1 has written the ini-
tial word x(1).x(2).x(3).x(4) . . . x(n). Notice that one can admit that a player
writes a finite word at each step of the play instead of a single letter. This does
not change the winner of a Wadge game.

To prove that θS(L) ≤W L, it suffices to prove that θS(L) ≤W ∅ + L because
Lemma 29 states that ∅+ L ≡W L. Consider the Wadge game W (θS(L), ∅+ L).
Player 2 has a winning strategy in this play which consists first in copying the



play of player 1 except that Player 2 skips when player 1 writes a letter E. He
continues forever with this strategy if the word written by player 1 is always a
prefix of some ω-word of θS(Σω). Then after ω steps Player 1 has written an
ω-word θS(x) for some x ∈ Σω, and Player 2 has written x. So in that case
θS(x) ∈ θS(L) iff x ∈ L iff x ∈ ∅+ L.
But if at some step of the play, Player 1 “goes out of” the closed set θS(Σω)
because the word he has now written is not a prefix of any ω-word of θS(Σω),
then its final word will be surely outside θS(Σω) hence also outside θS(L). Player
2 can now writes a letter of Γ − Σ in such a way that he is now like a player
in charge of the emptyset and he can now writes an ω-word u so that his final
ω-word will be outside ∅+ L. Thus Player 2 wins this play too.

Finally we have proved that L ≤W θS(L) ≤W L thus it holds that θS(L) ≡W L.
This ends the proof.

�

Lemma 31. Let L ⊆ Σω be a non self dual Borel set in the class r-BCL(8)ω.
Then there is an ω-language L′ ∈ r-BCL(1)ω such that L ≡W L′.

Proof. As in the preceding proof we can consider only ω-languages of Wadge
degrees greater than or equal to ω.

Let then L = L(A)⊆ Σω be a non self dual Borel set acccepted by a real
time 8-counter Büchi automaton A such that dw(L) ≥ ω. We have shown in
the preceding section that φK(hK(L(A))∪hK(Σω)−) is in the class r-BCL(1)ω,
where hK is the continuous mapping hK : Σω → (Σ ∪ {A, B, 0})ω defined by :
for all x ∈ Σω,

hK(x) = A.0K .x(1).B.0K2

.A.0K2

.x(2).B.0K3

.A.0K3

.x(3).B . . . B.0Kn

.A.0Kn

.x(n).B . . .

and the mapping φK : (Σ ∪ {A, B, 0})ω → (Σ ∪ {A, B, F, 0})ω is defined by: for
all x ∈ (Σ ∪ {A, B, 0})ω,

φK(x) = FK−1.x(1).FK−1.x(2).FK−1.x(3) . . . FK−1.x(n).FK−1.x(n+1).FK−1 . . .

We can now prove, by a very similar reasoning as in the proof of the preceding
Lemma 30, using the fact that dw(L) ≥ ω, that

L ≡W hK(L(A))∪hK(Σω)− ≡W φK(hK(L(A))∪hK(Σω)−)

But φK(hK(L(A))∪hK(Σω)−) is in the class r-BCL(1)ω, and this ends the
proof.

�

End of Proof of Theorem 25. Let L ⊆ Σω be a Borel set acccepted by a
Turing machine with a Büchi acceptance condition (in particular L is in the
class BCL(2)ω). If the Wadge degree of L is finite, it is well known that it is
Wadge equivalent to a regular ω-language, hence also to an ω-language in the



class r-BCL(1)ω . If L is non self dual and its Wadge degree is greater than or
equal to ω, then we can infer from Lemmas 30 and 31 that there is an ω-language
L′ ∈ r-BCL(1)ω such that L ≡W L′.
It remains to consider the case of self dual Borel sets. The alphabet Σ being
finite, a self dual Borel set L is always Wadge equivalent to a Borel set in the
form Σ1.L1∪Σ2.L2, where (Σ1, Σ2) form a partition of Σ, and L1, L2 ⊆ Σω are
non self dual Borel sets such that L1 ≡W L−

2 . Moreover L1 and L2 can be taken
in the form L(u1) = u1.Σ

ω ∩L and L(u2) = u2.Σ
ω ∩L for some u1, u2 ∈ Σ⋆, see

[Dup03]. So if L ⊆ Σω is a self dual Borel set accepted by a Turing machine with
a Büchi acceptance condition then L ≡W Σ1.L1 ∪Σ2.L2, where (Σ1, Σ2) form a
partition of Σ, and L1, L2 ⊆ Σω are non self dual Borel sets accepted by a Turing
machine with a Büchi acceptance condition. We have already proved that there
is an ω-language L′

1 ∈ r-BCL(1)ω such that L′
1 ≡W L1 and an ω-language L′

2 ∈
r-BCL(1)ω such that L′−

2 ≡W L2. Thus L ≡W Σ1.L1∪Σ2.L2 ≡W Σ1.L
′
1∪Σ2.L

′
2

and Σ1.L
′
1 ∪Σ2.L

′
2 is in the class r-BCL(1)ω. �

Remark 32. We have only considered above the Wadge hierarchy of Borel
sets. If we assume the axiom of Σ1

1-determinacy, then Theorem 24 can be ex-
tended by considering the class of analytic sets instead of the class of Borel sets.
In fact in that case any set which is analytic but not Borel is Σ1

1-complete, see
[Kec95]. So there is only one more Wadge degree containing Σ1

1-complete sets.
It was already proved in [Fin03a] that there is a Σ1

1-complete set accepted by a
Büchi 1-counter automaton and it is easy to see from the proof that one can find
such a Σ1

1-complete set accepted by a Büchi 1-counter real-time automaton.

Remark 33. The result given by Theorem 19 can now be deduced from Theorem
25 and it can be seen as a particular case of this last result, because the Wadge
hierarchy is a refinement of the Borel hierarchy and, for each countable non
null ordinal γ, Σ0

γ-complete sets (respectively, Π0
γ-complete sets) form a single

equivalence class of ≡W , i.e. a single Wadge degree, [Kec95]. However we have
preferred to expose the results given in this paper by considering firstly the Borel
hierarchy. This way the reader who is just interested by the Borel hierarchy of
ω-languages can read this part and skip Section 6 about the Wadge hierarchy.

7 Concluding remarks

We have proved that the Borel and the Wadge hierarchies of classes r-BCL(1)ω

and CFLω are also the Borel and the Wadge hierarchies of the class Σ1
1 . The

methods used in this paper are different from those used in previous papers
on context free ω-languages [Fin01c,Fin01b,Fin03a,Fin03b], where we gave an
inductive construction of some ∆0

ω context free ω-languages of a given Borel
rank or Wadge degree, using work of Duparc on the Wadge hierarchy of ∆0

ω

Borel sets, [Dup01]. However it will be possible to combine both methods for the
effective construction of ω-languages in the class r-BCL(1)ω, and of 1-counter
Büchi automata accepting them, of a given Wadge degree among the εω degrees
obtained in [Fin01b] for ∆0

ω context free ω-languages.



Finally we mention that in another paper, using the results of this paper and
applying similar methods to the study of topological properties of infinitary
rational relations, we prove that their Wadge and Borel hierarchies are equal to
the corresponding hierarchies of the classes r-BCL(1)ω, CFLω or Σ1

1 , [Fin06].
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