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Abstract. This paper is concerned with the study of the Borel summability of diver-
gent solutions for singularly perturbed inhomogeneous first-order linear ordinary differential
equations which have a regularity at the origin. In order to assure the Borel summability of
divergent solutions, global analytic continuation properties for coefficients are required despite
the fact that the domain of the Borel sum is local.

1. Introduction and main result. In this paper we are concerned with the following
inhomogeneous first-order linear ordinary differential equation with a parameterε (∈ C):

a(x, ε)Dxu(x, ε) + b(x, ε)u(x, ε) = f (x, ε) ,(1.1)

wherex ∈ C, Dx = d/dx. The coefficientsa, b andf are holomorphic at(x, ε) = (0, 0)

∈ C 2.
First of all we give two fundamental assumptions. The first means thatε is a perturbation

parameter; that is, we assume the following:

a(x, 0) ≡ 0 .(1.2)

The second is

aε(0, 0) �= 0 ,(1.3)

whereaε(x, ε) = (∂/∂ε)a(x, ε). These two assumptions imply thata(0, ε) �= 0 for suffi-
ciently smallε �= 0, which means that (1.1) has a regularity atx = 0.

Throughout this paper we always assume (1.2) and (1.3).
It follows from (1.2) and (1.3) that solutions of (1.1) can be expressed by convergent

power series aroundx = 0. Here, however, let us consider solutions expressed by power
series in the perturbation parameterε. Then, as will be stated later, under a suitable condition
(1.1) has a unique power series solutionu(x, ε) = ∑∞

n=0 un(x)εn (un(x) are holomorphic in
a common neighborhood ofx = 0), but it diverges in general and the rate of divergence is
characterized in terms of the Gevrey index (cf. Definition 1.1 and Theorem 1.1).

So, we would like to study the following problem:
Is there any holomorphic solution U(x, ε) which has the divergent solution u(x, ε)

as an asymptotic expansion of the Gevrey type when ε → 0?
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We have two types of the Gevrey asymptotic expansions: ‘asymptotic expansions in narrow
regions’ and ‘asymptotic expansions in wide regions’. On the first, the above problem has
been already studied by Hibino [8] (cf. Theorem 1.3). Therefore, the subject matter of this
paper is the second expansion, and in particular we are interested in the Borel summability of
the divergent solution stated above (cf. Definition 1.3).Our main purpose in this paper is to
obtain the conditions under which the divergent solution is Borel summable.

The content of this paper is as follows. In Section 1.1 we state the condition which (1.1)
should satisfy in order to assure the unique existence of the power series solutionu(x, ε) =∑∞

n=0 un(x)εn. Moreover, we give the rate of divergence, that is, the Gevrey index ofu(x, ε),
and explain that this Gevrey index is optimal by investigating a simple example. This result
(Theorem 1.1) has been proved by Hibino [7] and it plays the most fundamental role through-
out this paper. In Section 1.2 we briefly explain the Gevrey asymptotic theory in narrow
regions. As will be stated in Theorem 1.3, when the region is narrow, there always exists a
holomorphic solutionU(x, ε) on that region which has the above divergent solutionu(x, ε)

as an asymptotic expansion of the Gevrey type, without any additional condition for coeffi-
cients. This result has been proved in [8]. In Section 1.3 we give the main result in this paper
(Theorem 1.5). When the region is wide, we cannot unconditionally expect the existence of
U(x, ε) stated above. In Theorem 1.5 we give the conditions under which such aU(x, ε)

exists.Global analytic continuation properties for the coefficients will be required. In Sec-
tion 1.4 we introduce literature studying related topics. The proof of Theorem 1.5 is done
through Sections 2, 3 and 4. In Section 2, the proof of Theorem 1.5 is reduced to that of a
global solvability of the initial value problem of some convolution equation. Sections 3 and 4
constitute the main part of the proof. We transform the convolution equation obtained in Sec-
tion 2 into some integral equation, and prove the global solvability of that integral equation by
applying an iteration method. In Section 5, we investigate some special cases in detail. When
an equation has a restricted form, we can obtain a stricter result than Theorem 1.5. Through
these considerations, we will see the essentialness of our global assumptions.

1.1. Existence of a divergent solution. In this section we state the theorem obtained
in [7], which assures the unique existence of divergent power series solution. First, let us give
the definition of divergent power series of the Gevrey type.

DEFINITION 1.1. (1) O[R] denotes the ring of holomorphic functions on the closed
ball B(R) = {x ∈ C ; |x| ≤ R}, whereR is a positive number.

(2) The ring of formal power series inε (∈ C) over the ringO[R] is denoted as
O[R][[ε]]:

O[R][[ε]] =
{
u(x, ε) =

∞∑
n=0

un(x)εn ; un(x) ∈ O[R]
}

.(1.4)

(3) We say thatu(x, ε) = ∑∞
n=0 un(x)εn (∈ O[R][[ε]]) belongs to O[R][[ε]]2, if there

exist some positive constantsC andK such that
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max|x|≤R
|un(x)| ≤ CKnn!(1.5)

for all n = 0, 1, 2, . . . . The suffix 2 ofO[R][[ε]]2 expresses the Gevrey index of power
series. Elements ofO[R][[ε]]2 are divergent power series in general.

Now we already know the following theorem, which will be fundamental in the argument
below.

THEOREM 1.1 ([7]). Let us assume b(0, 0) �= 0. Then (1.1)has a unique power series
solution u(x, ε) = ∑∞

n=0 un(x)εn ∈ O[R][[ε]]2 for some R > 0.

In the following we always assumeb(0, 0) �= 0. On the basis of Theorem 1.1, we can
study the coming problem; that is, the existence of asymptotic solutions of Gevrey type.

REMARK 1.1. The Gevrey index 2 of power series solutionsu(x, ε) (that is, the esti-
mates (1.5)) is optimal. For example, let us consider the following simple equation:

−εDxu(x, ε) + u(x, ε) = f (x) .(1.6)

Equation (1.6) has a unique power series solutionu(x, ε) = ∑∞
n=0 f (n)(x)εn. Hence, if

f (x) = 1/(1− x) for example, it holds thatun(x) ≡ f (n)(x) = n!/(1− x)n+1. Therefore, in
this case, the Gevrey index ofu(x, ε) is exactly 2.

1.2. Gevrey asymptotic expansions in narrow regions. In this section we explain the
result obtained in [8]. First we give the definition of the Gevrey asymptotic expansions in
sectors.

DEFINITION 1.2. (1) Forθ ∈ R, p > 0 and 0< ρ ≤ +∞, the sectorS(θ, p, ρ) in
the universal covering space ofC \ {0} is defined by

S(θ, p, ρ) =
{
ε ; |arg(ε) − θ | <

p

2
, 0 < |ε| < ρ

}
.(1.7)

We refer toθ , p and ρ as thebisecting direction, the opening angle and theradius of
S(θ, p, ρ), respectively.

(2) Let u(x, ε) = ∑∞
n=0 un(x)εn ∈ O[R][[ε]]2 and letU(x, ε) be a holomorphic

function onX = B(R) × S(θ, p, ρ). Then we say thatU(x, ε) has u(x, ε) as an asymptotic
expansion of the Gevrey order 2 in X if the following asymptotic estimates hold: there exist
some positive constantsC andK such that

max|x|≤R

∣∣∣∣U(x, ε) −
N−1∑
n=0

un(x)εn

∣∣∣∣ ≤ CKNN !|ε|N ,(1.8)

for all ε ∈ S(θ, p, ρ) andN = 1, 2,. . . . Then we write this as

U(x, ε) ∼=2 u(x, ε) in X .

The following result is well known as the theorem of Borel-Ritt.
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THEOREM 1.2 (cf. Balser [1, 2]). Let u(x, ε) = ∑∞
n=0 un(x)εn be an arbitrary ele-

ment of O[R][[ε]]2 and let θ be an arbitrary real number. Let us assume 0 < p < π .
Then there always exist infinitely many holomorphic functions U(x, ε) on some X = B(r) ×
S(θ, p, ρ) satisfying U(x, ε) ∼=2 u(x, ε) in X.

Now let u(x, ε) = ∑∞
n=0 un(x)εn ∈ O[R][[ε]]2 be the divergent solution of (1.1). We

recall that the unique existence of such au(x, ε) is ensured by Theorem 1.1. For a given
bisecting directionθ and a given opening anglep, we consider the following problem:is
there a holomorphic solution U(x, ε) on X = B(r) × S(θ, p, ρ) (for some r and ρ) which
satisfies U(x, ε) ∼=2 u(x, ε) in X? As an application of Theorem 1.2, in [8] it was proved that
this problem was solved positively ifp < π .

THEOREM 1.3 ([8]). Let u(x, ε) = ∑∞
n=0 un(x)εn ∈ O[R][[ε]]2 be the divergent

solution of (1.1), and let θ be an arbitrary real number. Let us assume 0 < p < π . Then
there exist some positive constants rp, ρp and a holomorphic solution U(x, ε) of (1.1) on
Xp = B(rp)×S(θ, p, ρp) such that U(x, ε) ∼=2 u(x, ε) in Xp. Moreover, there are infinitely
many such solutions.

The assumptionp < π is significant. Moreover, it should be remarked that we impose
no additional conditions for coefficients. If a region becomes wider, we cannot uncondition-
ally expect the existence of such an asymptotic solutionU(x, ε) as stated in Theorem 1.3.
However, if it exists, then we see that it is unique from a general theory of the Gevrey as-
ymptotic expansions (cf. Balser [1, 2], Lutz et al. [11] and Malgrange [12]). So,when does it
exist? The main purpose of this paper is to answer this question in the case where the region
is an open disk (on the precise definition, see Definition 1.3). Before giving the answer for
the general equation (1.1), here let us try considering the special equation (1.6).

We recall that the divergent solution of (1.6) is given byu(x, ε) = ∑∞
n=0 f (n)(x)εn, and

remark that theformal Borel transform B(u)(x, η) (cf. Definition 2.1) ofu(x, ε) is given
by B(u)(x, η) = ∑∞

n=0 f (n)(x)ηn/n! = f (x + η). Then it follows from Theorems 1.4
and 2.1 thatU(x, ε) exists if and only if f (x) can be continued analytically along the half
line R+eiθ = {reiθ ; r ≥ 0} and it has a exponential growth estimate |f (x)| ≤ Ceδ|x|.
Moreover, U(x, ε) can be represented explicitly by the formula

U(x, ε) = 1

ε

∫
R+eiθ

e−η/εf (x + η)dη .

Consequently, we see, for example, the following facts.
(i) If f (x) = 1/(1−x), thenU(x, ε) exists for allθ exceptθ = 0. Forθ = 0,U(x, ε)

never exists.
(ii) If the existence region off (x) is a bounded one containing the origin, thenU(x, ε)

by no means exists regardless of the choice ofθ .
The above unique asymptotic solutionU(x, ε) is called theBorel sum of u(x, ε). In the

next section, we give the conditions which the coefficients of (1.1) should satisfy in order to
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make certain the existence of the Borel sum. As we see from the above example, there is a
close affinity between the existence of the Borel sum and global properties of coefficients.

1.3. Main result. First we give the precise definition of the Borel sum.

DEFINITION 1.3. (1) Forθ ∈ R andT > 0, we define the regionO(θ, T ) by

O(θ, T ) = {ε ; |ε − T eiθ | < T } .(1.9)

(2) Letu(x, ε) = ∑∞
n=0 un(x)εn ∈ O[R][[ε]]2. We say thatu(x, ε) is Borel summable

in a direction θ if there exists a holomorphic functionU(x, ε) onX = B(r) × O(θ, T ) for
some 0< r ≤ R andT > 0 which satisfiesU(x, ε) ∼=2 u(x, ε) in X ; that is, there exist
some positive constantsC andK satisfying the asymptotic estimates max|x|≤r |U(x, ε) −∑N−1

n=0 un(x)εn| ≤ CKNN !|ε|N for all ε ∈ O(θ, T ) andN = 1, 2, . . . .
We remark that in the case 0< p < π , for any O(θ, T ) it holds thatS(θ, p, ρ) ⊂

O(θ, T ) by taking a suitableρ > 0. In this sense,O(θ, T ) is wider than a sector with an
opening angle less thanπ . Because of this wide property, a given divergent power series
u(x, ε) ∈ O[R][[ε]]2 is not necessarily Borel summable in general. (Compare with Theo-
rem 1.2. In Theorem 2.1, we give the necessary and sufficient condition under which a given
u(x, ε) is Borel summable.) However, as was mentioned in Section 1.2, whenu(x, ε) is Borel
summable in a directionθ , the above holomorphic functionU(x, ε) is unique. So we call this
uniqueU(x, ε) theBorel sum of u(x, ε) in a direction θ .

The problem of the present paper is the existence of a holomorphic solutionU(x, ε)

satisfyingU(x, ε) ∼=2 u(x, ε) in X . Let us divide the problem into the following two parts.
(I) When isu(x, ε) Borel summable?

(II) Is the Borel sumU(x, ε) a solution?
By the following theorem, problem (II) is always solved affirmatively. This is an immediate
consequence of the uniqueness of the Borel sum.

THEOREM 1.4 (cf. Hibino [10]). Let u(x, ε) = ∑∞
n=0 un(x)εn ∈ O[R][[ε]]2 be the

divergent solution of (1.1),and let us assume that u(x, ε) is Borel summable in some direction
θ . Then its Borel sum U(x, ε) is a holomorphic solution of (1.1).

In the remainder of this paper, we consider problem (I). To begin with, let us rewrite
(1.1) to state the main result. By the conditionb(0, 0) �= 0, we see thatb(x, 0) �= 0 in a
neighborhood ofx = 0. Hence, by dividing both sides of (1.1) byb(x, 0), we may assume
thatb(x, 0) ≡ 1. Then it follows from (1.2) and (1.3) that (1.1) is rewritten in the following
form:

{α(x) + β(x, ε)}εDxu(x, ε) + {1 + γ (x, ε)ε}u(x, ε) = f (x, ε) ,(1.10)

where each coefficient is holomorphic at the origin. Moreoverα andβ satisfy

α(0) �= 0 ,(1.11)

β(x, 0) ≡ 0 .(1.12)
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Now let us give additional conditions which the coefficients should satisfy in order to assure
the Borel summability of the divergent solution in a given directionθ .

ASSUMPTIONS. First we state the assumption forα(x). Let us consider the following
initial value problem:

dx

dξ
= −α(x) , x(0) = 0 .(1.13)

(A1) We assume the following:
(i) (1.13) has a holomorphic solutionx = χ(ξ) onE+(θ, κ) for someκ > 0;
(ii) (dχ/dξ)(ξ) �= 0 for ξ ∈ E+(θ, κ).

HereE+(θ, κ) (κ > 0) is the region defined by

E+(θ, κ) = {
ξ ; dist(ξ, R+eiθ ) ≡ inf{|ξ − ζ | ; ζ ∈ R+eiθ } ≤ κ

}
.(1.14)

It is obvious thatχ(ξ) is unique, if it exists.
Next, in order to state the assumptions for the other coefficients, we introduce the nota-

tion. First, let us define the regionΩθ,κ consisting of solution curves of (1.13) by

Ωθ,κ = {χ(ξ) ; ξ ∈ E+(θ, κ)} .(1.15)

The assumption (A1) implies thatα(x) is analytic onΩθ,κ and thatα(x) �= 0 for all x ∈ Ωθ,κ .
Secondly, let us define the functionA(x) onΩθ,κ by

A(x) = −
∫ x

0

dz

α(z)
, x ∈ Ωθ,κ .(1.16)

Here the path of integration is the solution curve of (1.13). ThenA(x) is well defined onΩθ,κ

and it is analytic there.

REMARK 1.2. It is easy to check

A ◦ χ = IE+(θ,κ) and χ ◦ A = IΩθ,κ .(1.17)

Under the above preparations we give the conditions for the other coefficients. A global
analytic continuation property with respect tox-variable is required:

(A2) β(x, ε), γ (x, ε) andf (x, ε) can be continued analytically toΩθ,κ×{ε ∈ C ; |ε| ≤
c} for somec > 0. Moreover, they satisfy the following estimates there:

sup
x∈Ωθ,κ ,|ε|≤c

∣∣∣∣β(x, ε)

α(x)

∣∣∣∣ < ∞ ;(1.18)

sup
x∈Ωθ,κ ,|ε|≤c

|γ (x, ε)| < ∞ ;(1.19)

max|ε|≤c
|f (x, ε)| ≤ C exp[δ|A(x)|] , x ∈ Ωθ,κ ,(1.20)

whereC andδ are some positive constants independent ofx ∈ Ωθ,κ andε with |ε| ≤ c.
Let us state the main result in this paper.

THEOREM 1.5. Under assumptions (A1) and (A2) the divergent solution u(x, ε) of
(1.10)is Borel summable in the direction θ .
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It should be remarked that the existence of the Borel sum, which is alocal solution, is
ensured by theglobal conditions such as (A1) and (A2).

To end this section, we give some simple examples ofχ(ξ) andA(x).

EXAMPLE 1.1. (1) Whenα(x) ≡ a (�= 0), we haveχ(ξ) = −aξ . Hence, (A1) is
always satisfied for allθ .

(2) Whenα(x) = a+ bx (a, b �= 0), we haveχ(ξ) = (a/b)(e−bξ − 1). Hence, (A1) is
always satisfied for allθ .

(3) Whenα(x) = 1 + x2, we haveχ(ξ) = tan(−ξ). Hence, ifθ �= 0, π , then (A1) is
satisfied.

(4) Whenα(x) = ex , we haveχ(ξ) = − log(ξ + 1). Hence, (A1) is satisfied for allθ
exceptθ = π .

(5) Whenα(x) = 1/(1 + x), we haveχ(ξ) = −1 + √
1 − 2ξ , which implies (A1) for

all θ exceptθ = 0.
(6) Whenα(x) = (x + 1)(x − 1)/2, we haveχ(ξ) = (1 − e−ξ )/(1 + e−ξ ). Hence, if

θ �= π/2, 3π/2, (A1) is satisfied.
(7) Whenα(x) = (x − c)2 (c �= 0), it holds thatχ(ξ) = c2ξ/(cξ − 1). Therefore, if

θ �= arg(1/c), (A1) is satisfied.

EXAMPLE 1.2 (cf. Example 1.1). (1) Whenα(x) ≡ a, we haveA(x) = −x/a.
(2) Whenα(x) = a+ bx, we haveA(x) = −(1/b) log(1 + (b/a)x).
(3) Whenα(x) = 1 + x2, we haveA(x) = − arctanx.
(4) Whenα(x) = ex , we haveA(x) = e−x − 1.
(5) Whenα(x) = 1/(1 + x), we haveA(x) = −x − x2/2.
(6) Whenα(x) = (x + 1)(x − 1)/2, we haveA(x) = log(−(x + 1)/(x − 1)).
(7) Whenα(x) = (x − c)2, we haveA(x) = 1/(x − c) + 1/c.

1.4. Some remarks on related topics. As was mentioned in the beginning of this paper,
our equation hasx = 0 as a regular point. In the case wherex = 0 is a singular point, we can
see some intriguing results in [3] (regular singular) and [4] (irregular singular). We can see
quite different phenomena from ours there.

The present paper gives one of the generalizations of Hibino [6], where the caseα(x) =
a+ bx (a, b: constants; a�= 0), γ (x, ε) ≡ 0 andβ(x, ε) is a polynomial with respect toε, is
dealt with in detail. Moreover, in [6] we investigated partial differential equations such as

ε
∂

∂x
u(x, ε) + ε2 ∂

∂ε
u(x, ε) + u(x, ε) = f (x, ε) .(1.21)

Equation (1.21) also has a unique power series solutionu(x, ε) ∈ O[R][[ε]]2. However, the
conditions under which thisu(x, ε) is Borel summable are different altogether from those
stated in Theorem 1.5.

On the existence of the Gevrey asymptotic solutions in narrow regions such as stated in
Theorem 1.3, we can find some interesting results in Canalis-Durand et al. [5] and Sibuya [14],
where more general systems of singularly perturbed nonlinear ordinary differential equations
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are studied. Also, in the theory of partial differential equations we can find similar studies
in some articles, for example Lutz et al. [11] and̄Ouchi [13]. First-order partial differential
equations of the nilpotent type including (1.21) were also dealt with in [8], where the same
result as Theorem 1.3 was proved.

2. Formal Borel transform of equations. In this section, we reduce the proof of
Theorem 1.5 to that of a global solvability of the initial value problem of some convolution
equation. First we give some preliminaries.

DEFINITION 2.1. Foru(x, ε) = ∑∞
n=0 un(x)εn ∈ O[R][[ε]]2, we define the conver-

gent power seriesB(u)(x, η) in a neighborhood of(x, η) = (0, 0) by

B(u)(x, η) =
∞∑

n=0

un(x)
ηn

n! .(2.1)

We callB(u)(x, η) theformal Borel transform of u(x, ε).

When we would like to check the Borel summability of a given divergent power series
u(x, ε) = ∑∞

n=0 un(x)εn ∈ O[R][[ε]]2, the following theorem plays a fundamental role in
general.

THEOREM 2.1 (Lutz et al. [11] and Malgrange [12]).For a power series u(x, ε) =∑∞
n=0 un(x)εn ∈ O[R][[ε]]2, let us put v(x, η) = B(u)(x, η). Then the following condi-

tions (i) and (ii) are equivalent.
(i) u(x, ε) is Borel summable in a direction θ .
(ii) v(x, η) can be continued analytically to B(r0) × E+(θ, κ0) for some r0 > 0

and κ0 > 0, and has the following exponential growth estimate for some positive constants
C and δ:

max|x|≤r0
|v(x, η)| ≤ Ceδ|η| , η ∈ E+(θ, κ0) .(2.2)

When condition (i) or (ii) ( therefore both) is satisfied, the Borel sum U(x, ε) of u(x, ε)

in the direction θ is given by

U(x, ε) = 1

ε

∫
R+eiθ

e−η/εv(x, η)dη.(2.3)

Thus, in order to prove Theorem 1.5, it is sufficient to prove that the formal Borel trans-
form v(x, η) = B(u)(x, η) of the divergent solutionu(x, ε) satisfies the above condition (ii)
under assumptions (A1) and (A2). In order to do that, first let us write down the equation
whichB(u)(x, η) should satisfy. By operating the formal Borel transform to (1.10), we see
thatB(u)(x, η) is a solution of the following equation:

α(x)

∫ η

0
Dxv(x, t)dt +

∫ η

0
B(β)(x, η − t)Dxv(x, t)dt

+ v(x, η) +
∫ η

0
B(γ )(x, η − t)v(x, t)dt = B(f )(x, η) ,

(2.4)
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whereB(β)(x, η), B(γ )(x, η) andB(f )(x, η) are the formal Borel transforms ofβ(x, ε) =∑∞
n=1 βn(x)εn, γ (x, ε) = ∑∞

n=0 γn(x)εn andf (x, ε) = ∑∞
n=0 fn(x)εn, respectively, that is,

B(β)(x, η) =
∞∑

n=1

βn(x)
ηn

n! , B(γ )(x, η) =
∞∑

n=0

γn(x)
ηn

n! , B(f )(x, η) =
∞∑

n=0

fn(x)
ηn

n! .

Equation (2.4) is obtained by applying the following equality:

B(ym+n+1)(η) = 1

(m + n + 1)!η
m+n+1 = B(m + 1, n + 1)

ηm+n+1

m!n! (Beta integral)

=
∫ 1

0
(1 − s)msnds · ηm+n+1

m!n! =
∫ η

0
(η − t)mtndt · 1

m!n!
=

∫ η

0
B(ym)(η − t)B(yn)(t)dt .

Furthermore, by operatingDη to (2.4) from the left, we see thatB(u)(x, η) is a solution of
the following initial value problem:

Lv(x, η) = −
∫ η

0
B(β)η(x, η − t)vx(x, t)dt − B(γ )(x, 0)v(x, η)

−
∫ η

0
B(γ )η(x, η − t)v(x, t)dt + g(x, η) ,

v(x, 0) = f (x, 0) ,

(2.5)

whereL is the first-order linear partial differential operator defined by

L = α(x)Dx + Dη ,(2.6)

andg(x, η) = B(f )η(x, η). It is easy to prove thatB(u)(x, η) is the unique locally holo-
morphic solution of (2.5). Hence, Theorem 1.5 will be proved by showing that the solution
v(x, η) of (2.5) satisfies condition (ii) in Theorem 2.1.

3. Proof of Theorem 1.5. Let us start the proof of Theorem 1.5.

PROOF OFTHEOREM 1.5. First of all, we transform the convolution equation (2.5) into
the integral equation. We apply the following formula. The solutionV (x, η) of the initial
value problem of the following first-order linear partial differential equation

{α(x)Dx + Dη}V (x, η) = k(x, η) ,

V (x, 0) = l(x)
(3.1)

is given by

V (x, η) = l(χ(A(x) + η)) +
∫ η

0
k(χ(A(x) + η − t), t)dt .(3.2)
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By (3.2), we see that (2.5) is equivalent to the following equation:

v(x, η) = f (χ(A(x) + η), 0) +
∫ η

0
g(χ(A(x) + η − t), t)dt

−
∫ η

0

∫ t

0
B(β)η(χ(A(x) + η − t), t − s)vx(χ(A(x) + η − t), s)dsdt

−
∫ η

0
B(γ )(χ(A(x) + η − t), 0)v(χ(A(x) + η − t), t)dt

−
∫ η

0

∫ t

0
B(γ )η(χ(A(x) + η − t), t − s)v(χ(A(x) + η − t), s)dsdt .

Furthermore, let us transform the third term of the right-hand side. By using Fubini’s theorem,
we write

∫ η

0

∫ t

0 · · · dsdt = ∫ η

0

∫ η

s
· · · dtds. Here we remark that∫ η

s

B(β)η(χ(A(x) + η − t), t − s)vx(χ(A(x) + η − t), s)dt

=
∫ η

s

1

α(χ(A(x) + η − t))
B(β)η(χ(A(x) + η − t), t − s)

∂

∂t
v(χ(A(x) + η − t), s)dt .

Therefore by an integration by parts and Fubini’s theorem again, we see that (2.5) is equivalent
to the following integral equation:

v(x, η) = f (χ(A(x) + η), 0) +
∫ η

0
g(χ(A(x) + η − t), t)dt +

7∑
i=1

Iiv(x, η) ,(3.3)

where each integral operatorIi is given by

I1v(x, η) = − 1

α(x)

∫ η

0
B(β)η(x, η − t)v(x, t)dt ,

I2v(x, η) =
∫ η

0

1

α(χ(A(x) + η − t))
B(β)η(χ(A(x) + η − t), 0)v(χ(A(x) + η − t), t)dt ,

I3v(x, η) =
∫ η

0

∫ t

0

1

α(χ(A(x) + η − t))

× B(β)ηη(χ(A(x) + η − t), t − s)v(χ(A(x) + η − t), s)dsdt ,

I4v(x, η) = −
∫ η

0

∫ t

0

α′(χ(A(x) + η − t))

α(χ(A(x) + η − t))

× B(β)η(χ(A(x) + η − t), t − s)v(χ(A(x) + η − t), s)dsdt ,

I5v(x, η) =
∫ η

0

∫ t

0
B(β)xη(χ(A(x) + η − t), t − s)v(χ(A(x) + η − t), s)dsdt ,

I6v(x, η) = −
∫ η

0
B(γ )(χ(A(x) + η − t), 0)v(χ(A(x) + η − t), t)dt ,

I7v(x, η) = −
∫ η

0

∫ t

0
B(γ )η(χ(A(x) + η − t), t − s)v(χ(A(x) + η − t), s)dsdt .
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In order to prove that the solutionv(x, η) of (3.3) satisfies condition (ii) in Theorem 2.1,
we employ the iteration method. Let us define{vn(x, η)}∞n=0 inductively as follows:

v0(x, η) = f (χ(A(x) + η), 0) +
∫ η

0
g(χ(A(x) + η − t), t)dt ,(3.4)

vn+1(x, η) = v0(x, η) +
7∑

i=1

Iivn(x, η) (n ≥ 0) .(3.5)

Next, we define{wn(x, η)}∞n=0 by w0(x, η) = v0(x, η) andwn(x, η) = vn(x, η)− vn−1(x, η)

(n ≥ 1), and define{Wn(x, η, t)}∞n=0 by

Wn(x, η, t) = wn(χ(A(x) + η − t), t) .(3.6)

Here we break the proof, and provide the notation needed in stating the key lemma later.
SinceA(0) = 0, we can taker0 > 0 andκ0 > 0 such that

{A(x) + ζ ; |x| ≤ r0, ζ ∈ E+(θ, κ0)} ⊂ E+(θ, κ) ,(3.7)

whereκ > 0 is the constant given in assumption (A1). So let us defineβ̃(x, ζ, ε), γ̃ (x, ζ, ε)

andA(x, ζ ) as follows:

β̃(x, ζ, ε) = β(χ(A(x) + ζ ), ε) ,(3.8)

γ̃ (x, ζ, ε) = γ (χ(A(x) + ζ ), ε) ,(3.9)

A(x, ζ ) = 1

α(χ(A(x) + ζ ))
.(3.10)

Then it follows from the assumptions of Theorem 1.5 and (3.7) thatβ̃(x, ζ, ε) andγ̃ (x, ζ, ε)

are holomorphic on{x ∈ C ; |x| ≤ r0} × E+(θ, κ0) × {ε ∈ C ; |ε| ≤ c}, and thatA(x, ζ ) is
holomorphic on{x ∈ C ; |x| ≤ r0} × E+(θ, κ0). Moreover, it holds that

sup
|x|≤r0,ζ∈E+(θ,κ0),|ε|≤c

|A(x, ζ )β̃(x, ζ, ε)| < ∞(3.11)

and

sup
|x|≤r0,ζ∈E+(θ,κ0) ,|ε|≤c

|γ̃ (x, ζ, ε)| < ∞ .(3.12)

Next we defineB(β̃)(x, ζ, η) andB(γ̃ )(x, ζ, η) by

B(β̃)(x, ζ, η) = B(β)(χ(A(x) + ζ ), η)

(
=

∞∑
n=1

βn(χ(A(x) + ζ ))
ηn

n!
)

(3.13)

and

B(γ̃ )(x, ζ, η) = B(γ )(χ(A(x) + ζ ), η)

(
=

∞∑
n=0

γn(χ(A(x) + ζ ))
ηn

n!
)

,(3.14)
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respectively. Then it follows from (3.11), (3.12) and Cauchy’s integral formula that
B(β̃)(x, ζ, η) andB(γ̃ )(x, ζ, η) are holomorphic on{x ∈ C ; |x| ≤ r0} × E+(θ, κ0) × C
and that there exist some positive constantsM andδ0 satisfying

sup
|x|≤r0,ζ∈E+(θ,κ0)

|A(x, ζ )B(β̃)η(x, ζ, η)| ≤ Meδ0|η| , η ∈ C ,

sup
|x|≤r0,ζ∈E+(θ,κ0)

|A(x, ζ )B(β̃)ηη(x, ζ, η)| ≤ Meδ0|η| , η ∈ C ,

sup
|x|≤r0,ζ∈E+(θ,κ ′

0)

∣∣∣∣ ∂

∂ζ
{A(x, ζ )B(β̃)η(x, ζ, η)}

∣∣∣∣ ≤ Meδ0|η| , η ∈ C ,

sup
|x|≤r0,ζ∈E+(θ,κ0)

|B(γ̃ )(x, ζ, η)| ≤ Meδ0|η| , η ∈ C ,

sup
|x|≤r0,ζ∈E+(θ,κ0)

|B(γ̃ )η(x, ζ, η)| ≤ Meδ0|η|, η ∈ C ,

(3.15)

whereκ ′
0 = κ0/2.

Finally, we give the following definition.

DEFINITION 3.1.
(1) Forλ ≥ 0 andρ > 0, Uρ [0, λ] denotes theρ-neighborhood of[0, λ] in C. Pre-

cisely,

Uρ[0, λ] = {τ ∈ C ; dist(τ, [0, λ]) < ρ} .

(2) Forη ∈ C, we define the functionGη(τ) by

Gη(τ) = τei arg(η) , τ ∈ C ,

and defineGη andG
η
ρ as follows:

Gη = {Gη(R) ∈ C ; 0 ≤ R ≤ |η|} ,

Gη
ρ = {Gη(τ) ∈ C ; τ ∈ Uρ[0, |η|]} .

We remark thatGη is the segment from 0 toη and thatGη
ρ is theρ-neighborhood ofGη.

Under these preparations let us take a monotonically decreasing positive sequence
{ρn}∞n=0 satisfying

κ̃ = κ ′
0 −

∞∑
n=0

ρn > 0 .(3.16)

Then we obtain the following lemma.

LEMMA 3.1. Wn(x, η, t) is continued analytically to {(x, η, t) ; |x| ≤ r0, η ∈
E+(θ, κ ′

0 − ∑n
j=0 ρj ), t ∈ G

η
ρn}. Moreover, on {(x, η, t) ; |x| ≤ r0, η ∈ E+(θ, κ ′

0 −∑n
j=0 ρj ), t ∈ Gη} we have the following estimate. For some positive constant C1,

|Wn(x, η,Gη(R))| ≤ C1e
δ1|η|(3M)n

2n∑
k=n

(
n

k − n

)
Rk

k! , 0 ≤ R ≤ |η| ,(3.17)
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where δ1 = max{δ, δ0} (δ is the constant given in (1.20)).

We prove Lemma 3.1 in Section 4. For the present, we admit it and let us continue the
proof of Theorem 1.5.

It follows from Lemma 3.1 thatwn(x, η) (= Wn(x, η, η)) is continued analytically to
B(r0) × E+(θ, κ ′

0 − ∑n
j=0 ρj ) with the estimate

|wn(x, η)| = |Wn(x, η,Gη(|η|))|

≤ C1e
δ1|η|(3M)n

2n∑
k=n

(
n

k − n

) |η|k
k!

= C1e
δ1|η|(3M)n

1

2πi

∮
|z|=p

(1 + z)nez|η| 1

z2n+1
dz ,

wherep is an arbitrary positive number. Hence, by taking a suitably largep, we obtain on
B(r0) × E+(θ, κ̃) that

∞∑
n=0

|wn(x, η)| ≤ C1e
δ1|η|

∞∑
n=0

(3M)n · 1

2πi

∮
|z|=p

(1 + z)nez|η| 1

z2n+1dz

= C1e
δ1|η|M+eM+|η| − M−eM−|η|

M+ − M−

≤ C1M+√
9M2 + 12M

e(δ1+M+)|η| ,

whereM± = (1/2)(3M ± √
9M2 + 12M). This shows thatvn(x, η) (= ∑n

k=0 wk(x, η))
converges to the solutionV (x, η) of (3.3) uniformly onB(r0) × E+(θ, κ̃). Consequently,
V (x, η) is an analytic continuation ofv(x, η), and it holds that

max|x|≤r0
|V (x, η)| ≤ C1M+√

9M2 + 12M
e(δ1+M+)|η|, η ∈ E+(θ, κ̃) .

It follows from the above argument thatv(x, η) satisfies condition (ii) in Theorem 2.1. This
completes the proof of Theorem 1.5. �

4. Proof of Lemma 3.1. Let us prove Lemma 3.1. It is proved by the induction with
respect ton.

PROOF OFLEMMA 3.1. First we consider the casen = 0. By (3.4) and (3.6), we see
thatW0(x, η, t) has the following form:

W0(x, η, t) = f (χ(A(x) + η), 0) +
∫ t

0
g(χ(A(x) + η − s), s)ds

≡ J1(x, η, t) + J2(x, η, t) .
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Before proving the lemma forW0, we remark the following. It follows from assumption (A2)
and Cauchy’s integral formula thatg(x, η) is analytic onΩθ,κ × C with the estimate

|g(x, η)| ≤ C′ exp[δ|A(x)|] · eδ′|η| , (x, η) ∈ Ωθ,κ × C ,(4.1)

for some positive constantsC′ andδ′.
Now let us prove thatJ1(x, η, t) andJ2(x, η, t) are well defined on{(x, η, t) ; |x| ≤

r0, η ∈ E+(θ, κ ′
0 − ρ0), t ∈ G

η
ρ0}. Let |x| ≤ r0, η ∈ E+(θ, κ ′

0 − ρ0), t ∈ G
η
ρ0, and let us

write t ∈ G
η
ρ0 ast = Gη(τ) (τ ∈ Uρ0[0, |η|]).

On the well-definedness ofJ1(x, η,Gη(τ )): it is clear from the assumption (A2) and
(3.7).

On the well-definedness ofJ2(x, η,Gη(τ )): in the integral expression ofJ2(x, η,Gη(τ )),
by taking a path of integration as

s(σ ) = σei arg(η) (σ ∈ [0, τ ]) ,(4.2)

where[0, τ ] is the segment from 0 toτ , it holds thatη − s(σ ) ∈ E+(θ, κ ′
0) (⊂ E+(θ, κ0)).

Hence, it follows from (3.7) and the above remark thatJ2(x, η,Gη(τ )) is well defined.
Therefore,W0(x, η, t) is well defined on{(x, η, t) ; |x| ≤ r0, t ∈ E+(θ, κ ′

0 − ρ0), t ∈
G

η
ρ0}. Moreover, on{(x, η, t) ; |x| ≤ r0, t ∈ E+(θ, κ ′

0−ρ0), t ∈ Gη} we have the following
representation:

W0(x, η,Gη(R)) = f (χ(A(x) + η), 0)

+
∫ R

0
g(χ(A(x) + (|η| − R1)e

i arg(η)), R1e
i arg(η))ei arg(η)dR1

≡ J1(x, η,R) + J2(x, η,R) .

Let us estimateJ1(x, η,R) andJ2(x, η,R).
OnJ1(x, η,R): by (1.20), we have

|J1(x, η,R)| = |f (χ(A(x) + η), 0)|
≤ C exp[δ|A(χ(A(x) + η))|] = C exp[δ|A(x) + η|]
≤ C′′eδ|η| ,

whereC′′ = C · max|x|≤r0 exp[δ|A(x)|].
OnJ2(x, η,R): it follows from (4.1) that

|g(χ(A(x) + (|η| − R1)e
i arg(η)), R1e

i arg(η))| ≤ C′′′eδ|η|e−δR1eδ′R1 = C′′′eδ|η|e−(δ−δ′)R1 ,

whereC′′′ = C′ ·max|x|≤r0 exp[δ|A(x)|]. Here we may takeδ > 0 so large thatδ′′ = δ − δ′ >

0. Hence, we obtain

|J2(x, η,R)| ≤ C′′′eδ|η|
∫ R

0
e−δ′′R1dR1 ≤ C′′′

δ′′ eδ|η| .

By the above argument, it holds that

|W0(x, η,Gη(R))| ≤ C1e
δ|η| ≤ C1e

δ1|η| ,
whereC1 = C′′ + C′′′/δ′′. Therefore, the lemma has been proved forW0.
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Next, we assume that the claim of the lemma is proved up ton and prove it forn+ 1. By
(3.5) and (3.6) we have the following relation betweenWn andWn+1:

Wn+1(x, η, t) =
6∑

i=1

IiWn(x, η, t) ,(4.3)

where

I1Wn(x, η, t) = I1wn(χ(A(x) + η − t), t)

= −A(x, η − t)

∫ t

0
B(β̃)η(x, η − t, t − s)Wn(x, η − t + s, s)ds ,

I2Wn(x, η, t) = I2wn(χ(A(x) + η − t), t)

=
∫ t

0
A(x, η − s)B(β̃)η(x, η − s, 0)Wn(x, η, s)ds ,

I3Wn(x, η, t) = I3wn(χ(A(x) + η − t), t)

=
∫ t

0

∫ s

0
A(x, η − s)B(β̃)ηη(x, η − s, s − y)Wn(x, η − s + y, y)dyds ,

I4Wn(x, η, t) = I4wn(χ(A(x) + η − t), t) + I5wn(χ(A(x) + η − t), t)

= −
∫ t

0

∫ s

0

∂

∂ζ
{A(x, ζ )B(β̃)η(x, ζ, s − y)}|ζ=η−sWn(x, η − s + y, y)dyds ,

I5Wn(x, η, t) = I6wn(χ(A(x) + η − t), t)

= −
∫ t

0
B(γ̃ )(x, η − s, 0)Wn(x, η, s)ds ,

I6Wn(x, η, t) = I7wn(χ(A(x) + η − t), t)

= −
∫ t

0

∫ s

0
B(γ̃ )η(x, η − s, s − y)Wn(x, η − s + y, y)dyds .

Let us prove that eachIiWn(x, η, t) (i = 1–6) is well defined on{(x, η, t) ; |x| ≤ r0, η ∈
E+(θ, κ ′

0 − ∑n+1
j=0 ρj ), t ∈ G

η
ρn+1} by taking suitable paths of integration. Let|x| ≤ r0, η ∈

E+(θ, κ ′
0−∑n+1

j=0 ρj ), t ∈ G
η
ρn+1, and let us writet ∈ G

η
ρn+1 ast = Gη(τ) (τ ∈ Uρn+1[0, |η|]).

On I1Wn(x, η,Gη(τ)): let us take a path of integration as (4.2). Then we haveη −
Gη(τ) + s(σ ) ∈ E+(θ, κ ′

0 − ∑n
j=0 ρj ) and s(σ ) ∈ G

η−Gη(τ)+s(σ )
ρn . Hence,Wn(x, η −

Gη(τ) + s(σ ), s(σ )) is well defined. It is obvious thatA(x, η − Gη(τ)) andB(β̃)η(x, η −
Gη(τ),Gη(τ ) − s(σ )) are well defined. Therefore,I1Wn(x, η,Gη(τ)) is well defined.

OnI2Wn(x, η,Gη(τ)) andI5Wn(x, η,Gη(τ)): let us take a path of integration as (4.2).
Then we haveη ∈ E+(θ, κ ′

0 − ∑n
j=0 ρj ) ands(σ ) ∈ G

η
ρn . Hence,Wn(x, η, s(σ )) is well

defined. It is clear thatA(x, η − s(σ )), B(β̃)η(x, η − s(σ ), 0) andB(γ̃ )(x, η − s(σ ), 0) are
well defined. Therefore,I2Wn(x, η,Gη(τ)) andI5Wn(x, η,Gη(τ)) are well defined.
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OnIiWn(x, η,Gη(τ )) (i = 3, 4, 6): we only state paths of integration. By taking paths
of integration as

s(σ ) = σei arg(η) (σ ∈ [0, τ ]) ,

y(λ) = λei arg(η) (λ ∈ [0, σ ]) ,
(4.4)

we see that allIiWn(x, η,Gη(τ )) (i = 3, 4, 6) are well defined.
Therefore,Wn+1(x, η, t) is well defined on{(x, η, t) ; |x| ≤ r0, η ∈ E+(θ, κ ′

0 −∑n+1
j=0 ρj ), t ∈ G

η
ρn+1}. Moreover, on{(x, η, t) ; |x| ≤ r0, η ∈ E+(θ, κ ′

0 − ∑n+1
j=0 ρj ), t ∈

Gη} we have the following representations:

I1Wn(x, η,Gη(R)) = −A(x, (|η| − R)ei arg(η))

×
∫ R

0
B(β̃)η(x, (|η| − R)ei arg(η), (R − R1)e

i arg(η))

× Wn(x, η,R,R1)e
i arg(η)dR1 ,

I2Wn(x, η,Gη(R)) =
∫ R

0
A(x, (|η| − R1)e

i arg(η))B(β̃)η(x, (|η| − R1)e
i arg(η), 0)

× Wn(x, η,R1, R1)e
i arg(η)dR1 ,

I3Wn(x, η,Gη(R)) =
∫ R

0

∫ R1

0
A(x, (|η| − R1)e

i arg(η))

× B(β̃)ηη(x, (|η| − R1)e
i arg(η), (R1 − R2)e

i arg(η))

× Wn(x, η,R1, R2){ei arg(η)}2dR2 dR1 ,

I4Wn(x, η,Gη(R)) = −
∫ R

0

∫ R1

0

∂

∂ζ
{A(x, ζ )

× B(β̃)η(x, ζ, (R1 − R2)e
i arg(η))}|ζ=(|η|−R1)e

i arg(η)

× Wn(x, η,R1, R2){ei arg(η)}2dR2dR1 ,

I5Wn(x, η,Gη(R)) = −
∫ R

0
B(γ̃ )(x, (|η| − R1)e

i arg(η), 0)Wn(x, η,R1, R1)e
i arg(η)dR1 ,

I6Wn(x, η,Gη(R)) = −
∫ R

0

∫ R1

0
B(γ̃ )η(x, (|η| − R1)e

i arg(η), (R1 − R2)e
i arg(η))

× Wn(x, η,R1, R2){ei arg(η)}2dR2dR1 ,

where

Wn(x, η, µ, ν) = Wn(x, (|η| − µ + ν)ei arg(η),G(|η|−µ+ν)ei arg(η)

(ν)) .(4.5)

Let us estimate eachIiWn(x, η,Gη(R)).
OnI1Wn(x, η,Gη(R)): it follows from the assumption of the induction that

|Wn(x, η,R,R1)| ≤ C1e
δ1|η|e−δ1Reδ1R1(3M)n

2n∑
k=n

(
n

k − n

)
R1

k

k! .(4.6)
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Hence (3.15) andδ0 ≤ δ1 imply that

|I1Wn(x, η,Gη(R))| ≤ C1e
δ1|η|(3M)nM

2n∑
k=n

(
n

k − n

)∫ R

0

R1
k

k! dR1

= C1e
δ1|η|(3M)nM

2n+1∑
k=n+1

(
n

k − 1 − n

)
Rk

k! .

OnI2Wn(x, η,Gη(R)): let us considerR1 instead ofR in (4.6). Then we have

|Wn(x, η,R1, R1)| ≤ C1e
δ1|η|(3M)n

2n∑
k=n

(
n

k − n

)
R1

k

k! .

Hence, we see by (3.15) andδ0 ≤ δ1 thatI2Wn(x, η,Gη(R)) has the same estimate as that
of I1Wn(x, η,Gη(R)). Similarly, we can obtain the same estimate forI5Wn(x, η,Gη(R)).
Therefore, it holds that

|I1Wn(x, η,Gη(R))| + |I2Wn(x, η,Gη(R))| + |I5Wn(x, η,Gη(R))|

≤ C1e
δ1|η|(3M)n+1

2n+1∑
k=n+1

(
n

k − 1 − n

)
Rk

k! .
(4.7)

OnI3Wn(x, η,Gη(R)): it follows from the assumption of the induction that

|Wn(x, η,R1, R2)| ≤ C1e
δ1|η|e−δ1R1eδ1R2(3M)n

2n∑
k=n

(
n

k − n

)
R2

k

k! .

Hence, (3.15) andδ0 ≤ δ1 imply that

|I3Wn(x, η,Gη(R))| ≤ C1e
δ1|η|(3M)nM

2n∑
k=n

(
n

k − n

) ∫ R

0

∫ R1

0

R2
k

k! dR2dR1

= C1e
δ1|η|(3M)nM

2(n+1)∑
k=n+2

(
n

k − 2 − n

)
Rk

k! .

Similarly, we can prove thatI4Wn(x, η,Gη(R)) andI6Wn(x, η,Gη(R)) have the same esti-
mate as that ofI3Wn(x, η,Gη(R)). Therefore, it holds that

|I3Wn(x, η,Gη(R))| + |I4Wn(x, η,Gη(R))| + |I6Wn(x, η,Gη(R))|

≤ C1e
δ1|η|(3M)n+1

2(n+1)∑
k=n+2

(
n

k − 2 − n

)
Rk

k! .
(4.8)

Finally let us combine (4.7) and (4.8). Then we obtain

|Wn+1(x, η,Gη(R))|

≤
6∑

i=1

|IiWn(x, η,Gη(R))|
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≤ C1e
δ1|η|(3M)n+1

×
{

Rn+1

(n + 1)! +
2n+1∑

k=n+2

{(
n

k − 1 − n

)
+

(
n

k − 2 − n

)}
Rk

k! + R2(n+1)

{2(n + 1)}!
}

= C1e
δ1|η|(3M)n+1

2(n+1)∑
k=n+1

(
n + 1

k − (n + 1)

)
Rk

k! ,

which implies the lemma forn + 1. The proof has been completed. �

5. Special cases.
5.1. Necessary and sufficient condition. Theorem 1.5 gives only the sufficient condi-

tion on the Borel summability. When an equation has a restricted form, we can obtain the
necessary and sufficient condition under which the divergent solution is Borel summable.
Here we consider the caseβ(x, ε) ≡ γ (x, ε) ≡ 0. Moreover, we assume thatf (x, ε) is a
polynomial with respect toε-variable. Precisely, we consider the following equation:

α(x)εDxu(x, ε) + u(x, ε) =
k∑

l=0

fl(x)εl ,(5.1)

where eachfl(x) (l = 0, 1, 2, . . . , k) is holomorphic atx = 0.
In order to state the theorem, we introduce the notation. We define the first-order differ-

ential operatorΘ by

Θ = −α(x)
d

dx
,(5.2)

and define the functioñf (x) by

f̃ (x) =
k∑

l=0

Θk−lfl (x) .(5.3)

Then we have the following theorem.

THEOREM 5.1. Let us assume (A1). Then the following two statements (1) and (2) are
equivalent.

(1) The divergent solution u(x, ε) of (5.1) is Borel summable in the direction θ .
(2) f̃ (x) can be continued analytically to Ωθ,κ , and it satisfies the following estimate

for some positive constants C and δ:

|f̃ (x)| ≤ C exp[δ|A(x)|] , x ∈ Ωθ,κ .(5.4)

PROOF. Foru(x, ε) = ∑∞
n=0 un(x)εn, let us definẽu(x, ε) by

u(x, ε) =
k−1∑
n=0

un(x)εn + εkũ(x, ε) .(5.5)
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We remark thatu(x, ε) is Borel summable if and only if̃u(x, ε) is Borel summable. More-
over, we have the following relation between the Borel sumU(x, ε) of u(x, ε) and the Borel
sum Ũ(x, ε) of ũ(x, ε): U(x, ε) = εkŨ(x, ε) + ∑k−1

n=0 un(x)εn. So let us write down the
equation which̃u(x, ε) should satisfy. By an easy calculation, it follows thatũ(x, ε) satisfies
the following equation:

α(x)εDxũ(x, ε) + ũ(x, ε) = f̃ (x) .(5.6)

Hence, by Theorem 1.5, if we assume the condition (2), we can obtain the Borel summability
of ũ(x, ε) in the directionθ . This shows (2)⇒ (1).

In order to prove (1)⇒ (2), let us adopt Theorem 2.1. First we remark that the formal
Borel transformṽ(x, ε) = B(ũ)(x, ε) of ũ(x, ε) can be written explicitly as follows:

ṽ(x, η) = f̃ (χ(A(x) + η)) .(5.7)

Therefore, it follows from (1) and Theorem 2.1 thatṼ (η) = ṽ(0, η) = f̃ (χ(η)) can be con-
tinued analytically toE+(θ, κ0) for someκ0 > 0, and that there exist some positive constants
C andδ satisfying

|Ṽ (η)| ≤ Ceδ|η| , η ∈ E+(θ, κ0) .(5.8)

Here we may takeκ > 0 so small thatκ ≤ κ0. Thenf̃ (x) = Ṽ (A(x)) can be continued
analytically toΩθ,κ , and it holds that|f̃ (x)| = |Ṽ (A(x))| ≤ C exp[δ|A(x)|] for x ∈ Ωθ,κ .
Consequently, (1)⇒ (2) has been proved. �

REMARK 5.1. In (5.1), eachun(x) (n = 0, 1, 2,. . . ) can be written explicitly as

un(x) =




n∑
l=0

Θn−lfl (x) (n = 0, 1, 2, . . . , k − 1) ,

k∑
l=0

Θn−lfl (x) (n = k, k + 1, . . . ) .

Therefore, it follows from the above proof that the Borel sumU(x, ε) (in the directionθ ) of
u(x, ε) has the following form:

U(x, ε) = εk−1
∫

R+eiθ

e−η/εf̃ (χ(A(x) + η))dη +
k−1∑
n=0

{ n∑
l=0

Θn−lfl(x)

}
εn.

Theorem 5.1 does not require the analytic continuation property forf (x, ε) itself, as will
be shown in the following example.

EXAMPLE 5.1. Letθ = 0.
(1) We consider the following equation:

−(1 + x)εDxu(x, ε) + u(x, ε) = f (x, ε) = f0(x) + f1(x)ε

= 1

1 − x
+

{√
1 + log(1 + x) − 1 + x

(1 − x)2

}
ε .

(5.9)
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Equation (5.9) has the divergent solution

u(x, ε) = 1

1 − x
+ √

1 + log(1 + x)ε + 1

2

1√
1 + log(1 + x)

ε2

+
∞∑

n=3

(−1)n

2n−1 (2n − 5)!!{1 + log(1 + x)}−(n−3/2)εn .

α(x) = −(1+x) impliesχ(ξ) = eξ −1 andA(x) = log(1+x). Hence, condition (A1) is sat-
isfied. Sincef (x, ε) cannot be continued analytically along the positive real axis with respect
to x, it does not satisfy condition (A2), but̃f (x) = (1+ x)f ′

0(x)+f1(x) = √
1 + log(1 + x)

clearly satisfies condition (2) in Theorem 5.1. Therefore, the aboveu(x, ε) is Borel summable
in the direction 0 and its Borel sumU(x, ε) in the direction 0 is given by

U(x, ε) =
∫ ∞

0
e−η/ε

√
1 + log(1 + x) + ηdη + 1

1 − x
.

(2) Let us consider the following equation:

−e−xεDxu(x, ε) + u(x, ε) = f (x, ε) = f0(x) + f1(x)ε + f2(x)ε2

= 1

1 − x
+ e−x

(1 − x)2ε +
{

1

ex + 1
− 2e−2x(1 + x)

(1 − x)3

}
ε2 .

(5.10)

Equation (5.10) has the divergent solution

u(x, ε) = 1

1 − x
+ 2e−x

(1 − x)2ε +
∞∑

n=2

(−1)n(n − 2)!
(ex + 1)n−1 εn .

Sinceα(x) = −e−x , we haveχ(ξ) = log(1 + ξ) andA(x) = ex − 1. Hence, condition
(A1) is satisfied. In this case also,f (x, ε) itself does not satisfy condition (A2), but̃f (x) =
e−x(d/dx){e−xf ′

0(x)}+e−xf ′
1(x)+f2(x) = 1/(ex+1) satisfies condition (2) in Theorem 5.1.

Therefore,u(x, ε) is Borel summable in the direction 0 and its Borel sumU(x, ε) in the
direction 0 is given by

U(x, ε) = ε

∫ ∞

0
e−η/ε 1

1 + ex + η
dη + 1

1 − x
+ 2e−x

(1 − x)2ε .

Here we deal with the casek = 0; that is, we consider the following equation:

α(x)εDxu(x, ε) + u(x, ε) = f (x) .(5.11)

Furthermore we assume thatthe existence domain of f (x) is bounded. By using Theorem 5.1,
let us try investigating the Borel summability ofu(x, ε) concretely.

EXAMPLE 5.2. (1) α(x) = −(1 + x): in this case we haveχ(ξ) = eξ − 1, and
assumption (A1) is satisfied for allθ . If 0 ≤ θ < π/2 or 3π/2 < θ < 2π , then the region
Ωθ,κ is unbounded for allκ > 0. Hence,u(x, ε) is never Borel summable in these directions
θ . If π/2 ≤ θ ≤ 3π/2, we see that for anyρ > 0 there exists someκ > 0 such thatΩθ,κ ⊂
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{x ∈ C ; |x| ≤ 2+ ρ}. Therefore, iff (x) is holomorphic on{x ∈ C ; |x| ≤ 2 + ρ} for some
ρ > 0, thenu(x, ε) is always Borel summable in the directionθ satisfyingπ/2 ≤ θ ≤ 3π/2.

(2) α(x) = −e−x : in this case we haveχ(ξ) = log(1 + ξ). Hence, assumption (A1)
is satisfied for allθ exceptθ = π , and the regionΩθ,κ is always unbounded for allκ > 0
andθ �= π . Therefore,u(x, ε) is by no means Borel summable in the directionθ satisfying
θ �= π .

(3) α(x) = (x − 1)2: in this case it holds thatχ(ξ) = ξ/(ξ − 1). Hence, ifθ �= 0, then
condition (A1) is satisfied. Moreover, ifθ �= 0, we see that for anyρ > 0 there exists some
κ > 0 such thatΩθ,κ ⊂ {x ∈ C ; |x| ≤ 1 + ρ + 1/ minξ∈R+eiθ |ξ − 1|}. Therefore iff (x) is
holomorphic on{x ∈ C ; |x| ≤ 1 + ρ + 1/ minξ∈R+eiθ |ξ − 1|} for someρ > 0, thenu(x, ε)

is always Borel summable in all directionsθ �= 0.

5.2. Another example. Both in Theorem 1.5 and in Theorem 5.1 we imposed assump-
tion (A1) for the coefficientα(x). In the case where (A1) is not satisfied, it is in general dif-
ficult to give conditions for the other coefficients because we cannot define the regionΩθ,κ .
However, it is within possibility that the divergent solution is Borel summable even if (A1) is
not fulfilled. Last of all, we give such an example.

Let us consider the following equation:

−(1 + x2)εDxu(x, ε) + u(x, ε) = 1

1 − arctanx
.(5.12)

Equation (5.12) has the divergent solution

u(x, ε) =
∞∑

n=0

n!
(1 − arctanx)n+1εn .

Sinceα(x) = −(1 + x2), we haveχ(ξ) = tanξ . Hence, condition (A1) is not satisfied for
θ = 0, π . However, we can prove that the aboveu(x, ε) is Borel summable in the direction
π by means of the formulaB(u)(x, η) = 1/(1− arctanx − η). Moreover, we see thatu(x, ε)

is Borel summable in all directionsθ exceptθ = 0, and that it is never Borel summable in the
direction 0.
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