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Abstract A novel four-dimensional Einstein-Gauss-Bonnet

gravity was formulated by Glavan and Lin (Phys. Rev. Lett.

124:081301, 2020), which is intended to bypass the Love-

lock’s theorem and to yield a non-trivial contribution to

the four-dimensional gravitational dynamics. However, the

validity and consistency of this theory has been called into

question recently. We study a static and spherically symmet-

ric black hole charged by a Born–Infeld electric field in the

novel four-dimensional Einstein–Gauss–Bonnet gravity. It is

found that the black hole solution still suffers the singular-

ity problem, since particles incident from infinity can reach

the singularity. It is also demonstrated that the Born-Infeld

charged black hole may be superior to the Maxwell charged

black hole to be a charged extension of the Schwarzschild-

AdS-like black hole in this new gravitational theory. Some

basic thermodynamics of the black hole solution is also ana-

lyzed. Besides, we regain the black hole solution in the

regularized four-dimensional Einstein–Gauss–Bonnet grav-

ity proposed by Lü and Pang (arXiv:2003.11552).

1 Introduction

As the cornerstone of modern cosmology, Einstein’s gen-

eral relativity (GR) provides precise descriptions to a vari-

ety of phenomena in our universe. According to the pow-

erful Lovelock’s theorem [1,2], the only field equations of

a four-dimensional (4D) metric theories of gravity that are

second order or less are Einstein’s equations with a cosmo-

logical constant. So in order to go beyond Einstein’s theory,
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one usually modifies GR by adding some higher derivative

terms of the metric or new degrees of freedom into the field

equations, by considering other fields rather than the metric,

or by extending to higher dimensions, etc. [3,4]. A natural

generalization of GR is the Lovelock gravity, which is the

unique higher curvature gravitational theory that yields con-

served second-order filed equations in arbitrary dimensions

[1,2]. Besides the Einstein–Hilbert term plus a cosmological

constant, there is a Gauss–Bonnet (GB) term G allowed in

Lovelock’s action in higher-dimensional spacetime. The GB

term G is quadratic in curvature and contributes ultraviolet

corrections to Einstein’s theory. Moreover, the GB term also

appears in the low-energy effective action of string theory

[7]. However, it is well known that the GB term is a total

derivative in four dimensions, so it does not contribute to the

gravitational dynamics. In order to generate a nontrivial con-

tribution, one usually couples the GB term to a scalar field

[5,6].

In recent Refs. [8–10], the authors suggested that by

rescaling the GB coupling constant α → α/(D − 4) with D

the number of spacetime dimensions, the theory can bypass

the Lovelock’s theorem and the GB term can yield a non-

trivial contribution to the gravitational dynamics in the limit

D → 4. This theory, now dubbed as the novel 4D Einstein–

Gauss–Bonnet (EGB) gravity, will give rise to corrections

to the dispersion relation of cosmological tensor and scalar

modes, and is practically free from singularity problem in

Schwarzschild-like black holes [10]. The novel 4D EGB

gravity has drawn intensive attentions recently [11–44].

However, there are also some debates on whether the novel

gravity is a consistent and well-defined theory in four dimen-

sions [45–53]. Such as, Gurses et al. pointed out that the novel

4D EGB gravity does not admit a description in terms of a

covariantly-conserved rank-2 tensor in four dimensions and

the dimensional regularization procedure is ill-defined, since
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one part of the GB tensor, the Lanczos–Bach tensor, always

remains higher dimensional [46]. So generally speaking, the

theory only makes sense on some selected highly-symmetric

spacetimes, such as the FLRW spacetime and static spheri-

cally symmetric spacetime. Mahapatra found that in the lim-

iting D → 4 procedure, the theory gives unphysical diver-

gences in the on-shell action and surface terms in four dimen-

sions [47]. Shu showed that at least the vacuum of the theory

is either unphysical or unstable, or has no well-defined limit

as D → 4 [48]. Based on studying the evolution of the homo-

geneous but anisotropic universe described by the Bianchi

type I metric, Tian and Zhu found that the novel 4D EGB

gravity with the dimensional-regularization approach is not

a complete theory [49]. On the other hand, some regularized

versions of 4D EGB gravity were also proposed by [51–53],

and the resulting theories belong to the family of Horndeski

gravity.

New black hole solutions in the novel 4D EGB gravity

were also reported recently. In Ref. [54], Fernandes general-

ized the Reissner–Nordström (RN) black hole with Maxwell

electric field coupling to the gravity. The authors in Refs.

[55,56] considered the Bardeen-like and Hayward-like black

holes by interacting the new gravity with nonlinear electro-

dynamics. The rotating black holes were also investigated

in this new theory [57,58]. Some other black hole solutions

were discussed in the Refs. [59–61].

A well-known nonlinear electromagnetic theory, called

Born–Infeld (BI) electrodynamics, was proposed by Born

and Infeld in 1934 [62]. They introduced a force by limiting

the electromagnetic field strength analogy to a relativistic

limit on velocity, and regularized the ultraviolet divergent

self-energy of a point-like charge in classical dynamics. Since

it was found that the BI action can be generated in some limits

of string theory [63], the BI electrodynamics has become

more popular. As an extension of RN black holes in Einstein–

Maxwell theory, charged black hole solutions in Einstein–

Born–Infeld (EBI) theory has received some attentions in

recent years, see Refs. [64–71] for examples.

In this work, we are interested in generalizing the static

spherically symmetric black hole solutions charged by the

BI electric field in the novel 4D EGB gravity. The paper is

organized as follows. In Sect. 2, we solve the theory to get

an exact black hole solution. In Sect. 3, we study some basic

thermodynamics of the black hole and analyze its local and

global stabilities. In Sect. 4, we regain the black hole solution

in the regularized 4D EGB gravity based on the work of Lü

and Pang [51]. Finally, brief conclusions are presented.

2 BI black hole solution in the novel 4D EGB gravity

We start from the action of the D-dimensional EGB gravity

minimally coupled to the BI electrodynamics in the presence

of a negative cosmological constant Λ = − (D−1)(D−2)

2l2 ,

S =
1

16π

∫

d Dx
√

−g

(

R − 2Λ +
α

D − 4
G + LB I

)

, (1)

where the GB term is G = R2 − 4Rμν Rμν + Rμνρσ Rμνρσ ,

and the Lagrangian of the BI electrodynamics reads

LB I = 4β2

(

1 −

√

1 +
Fμν Fμν

2β2

)

. (2)

Here β > 0 is the BI parameter and it is the maximum of the

electromagnetic field strength. The Maxwell electrodynam-

ics is recovered in the limit β → ∞.

The equations of motion of the theory can be obtained by

varying the action with respect to the metric field gμν and

the gauge field Aμ:

Gμν + Λgμν +
α

D − 4

(

δG

δgμν
−

1

2
gμνG

)

+
(

δLB I

δgμν
−

1

2
gμνLB I

)

= 0, (3)

∂μ

( √−gFμν

√

1 + Fρσ Fρσ

2β2

)

= 0, (4)

where

δG

δgμν
= 2R Rμν + 2Rμ

ρσλ Rνρσλ − 4Rμλ Rλ
ν

−4Rρσ Rμρνσ , (5)

δLB I

δgμν
=

2FμλFλ
ν

√

1 + Fρσ Fρσ

2β2

. (6)

Here we consider a static spherically symmetric metric

ansatz in D-dimensional spacetime

ds2 = −a(r)e−2b(r)dt2 +
dr2

a(r)
+ r2dΩ2

D−2, (7)

where dΩ2
D−2 represents the metric of a (D−2)-dimensional

unit sphere. Correspondingly, the vector potential is assumed

to be A = Φ(r)dt .

Instead of solving the equations of motion directly, it

would be more convenient to start from the following reduced

action to get the solution, i.e.,

S =
�D−2

16π

∫

dtdr(D − 2)e−b

[(

r D−1ψ(1 + α(D − 3)ψ)

+
r D−1

l2

)′
+

4β2r D−2

D − 2

(

1 −
√

1 − β−2e2bΦ ′2
)]

, (8)

where the prime denotes the derivative respect to the radial

coordinate r , �D−2 = 2π
D−1

2 /Ŵ[ D−1
2

] is the area of a unit

(D − 2)-sphere, and ψ(r) = (1 − a(r))/r2. By varying
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the action with respect to a(r), b(r) and Φ(r), one can easily

obtain the field equations and hence the solutions in arbitrary

dimensions. Here we are interested in the case of D = 4. The

solution can be found in a closed form:

b(r) = 0, (9)

Φ(r) =
Q

r
2 F1

(

1

4
,

1

2
,

5

4
,−

Q2

β2r4

)

, (10)

a(r) = 1 +
r2

2α

{

1 ±
[

1 + 4α

(

2M

r3
−

1

l2

−
2β2

3

(

1 −

√

1 +
Q2

β2r4

)

−
4Q

3r3
Φ(r)

)]

1
2
}

, (11)

where we have chosen the integration constants to recover

a proper asymptotic limit, and 2 F1 is the hypergeometric

function.

In the limit of β → ∞, the solution recovers the Maxwell

charged RN-AdS-like black hole solution in the novel 4D

EGB gravity [54],

a(r) = 1 +
r2

2α

⎡

⎣1 ±

√

1 + 4α

(

2M

r3
−

Q2

r4
−

1

l2

)

⎤

⎦ . (12)

Moreover, the Schwarzschild-AdS-like black hole solution in

the novel 4D EGB gravity is recovered by closing the electric

charge [10],

a(r) = 1 +
r2

2α

[

1 ±

√

1 + 4α

(

2M

r3
−

1

l2

)

]

. (13)

On the other hand, in the large distance, the metric function

a(r) (11) has the asymptotic behavior

a(r) = 1 +
r2

2α

(

1 ±
√

1 −
4α

l2

)

±
2Mr − Q2

r2
√

1 − 4α

l2

+O(r−4). (14)

So in order to have a real metric function in large distance, it

is clear that we require 0 < α ≤ l2/4 or α < 0. Further, by

taking the small α limit, the solution of the plus-sign branch

reduces to a RN-AdS solution with a negative gravitational

mass and imaginary charge, and only the minus-sign branch

can recover a proper RN-AdS limit,

a(r) = 1 −
2M

r
+

Q2

r2
+

r2

l2
+ O(α). (15)

So we only focus on the solution of the minus-sign branch

in the rest of the paper.

We illustrate the minus-sign branch of the metric function

a(r) in Fig. 1 for some parameter choices, where the solutions

of the BI charged black hole in GR and the Maxwell charged

(a) (b)

Fig. 1 The metric function a(r) for some parameter choices

black holes in the novel 4D EGB gravity and GR are also

plotted for comparison. As shown in the figures, similar to

the RN black hole, the solution (11) can have zero, one, or two

horizons depending on the parameters. However, the metric

function a(r) always approaches a finite value a(0) = 1

at the origin r → 0 in the novel 4D EGB gravity. This

property is different from the BI charged AdS black hole in

EBI theory [70], where there are different types of solutions

relying on the parameters: a “Schwarzschild-like” type for

β < βB (only one horizon with a(0) → −∞), an “RN” type

for β > βB (naked singularity, one or two horizons with

a(0) → +∞), and a “marginal” type for β = βB (naked

singularity or one horizon with a finite value a(0) = 1 −
2βB Q). Interestingly, as shown in Fig. 1(b), even the solution

coupled to the Maxwell field becomes naked singularities, the

ones coupled to the BI field are still regular black holes.

In the small distance limit, the hypergeometric function

behaves like

2 F1

(

1

4
,

1

2
,

5

4
,−

Q2

β2r4

)

=

√

β

π Q

Ŵ2(1/4)

4
r −

β

Q
r2

+O(r6). (16)

Then the formula in the square root of a(r) can be rearranged

as

1 + 4α

[

2M

r3

(

1 −

√

β

βB

)

+
4βQ

3r2
−

1

l2

−
2β2

3

⎛

⎝1 −

√

1 +
Q2

β2r4

⎞

⎠

]

+ O(r2), (17)

where βB ≡ 36π M2

Ŵ(1/4)4 Q3 . One special case appears at β = βB ,

where the metric function a(r) (11) in the small distance limit

behaves like

a(r) = 1 −
√

2βB Q

α
r +

r2

2α
+ O(r3), (18)
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(a) (b)

(a) (b)

Fig. 2 The parameter space for the case of M = 1, Q = 0.8, 1, and

l = 2, where the shaded area represents available parameter region

and the Ricci scalar R ≈
√

2βB Q
α

6
r

is divergent. However, if

β 	= βB , a(r) behaves like

a(r) = 1 −
√

Kr
1
2

α
−

βQr
3
2

√
K

+
r2

2α
+ O(r

5
2 ), (19)

where K = 2Mα

(

1 −
√

β
βB

)

. Now the Ricci scalar reads

R ≈ 15
8α

√
K

r3/2 . So, by considering Eqs. (18) and (19), we

require α > 0, 0 < β ≤ βB or α < 0, β > βB in order

to have a real metric function.

The above constraints 0 < α ≤ l2/4, 0 < β ≤ βB or α <

0, β > βB are not enough to guarantee a real metric function

in the whole parameter space. More accurate constraints can

be worked out by requiring the formula under the square root

of the metric function a(r) (11) to be positive. Moreover, in

order to ensure the existence of the black hole horizon, there

are further constraints on α and β, as shown in Fig. 1. Due

to the complicated form of a(r), we fail to get the analytic

full constraints. Nevertheless, we can numerically solve the

constraints for fixed Q, M , and l. For example, we show the

results for the cases of Q = 0.8 and Q = 1 with M = 1

and l = 2 in Fig. 2. As shown in the figures, regular black

hole solution only exists in the shaded parameter region, and

the solution turns into a naked singularity above the shaded

region. Especially, on the border, the two horizons degenerate

and the solution corresponds to an extremal black hole.

Since the leading term 8αM/r3 under the square root of

Eq. (13) is negative at short radius for α < 0, a real metric

function is present only for positive α [10]. However, for the

charged solution (12), the leading term −4αQ2/r4 under the

square root is always negative at small radius for positive α,

so one requires α < 0 to get a real metric function. Therefore,

by “throwing” electric charges into the Schwarzschild-AdS-

like black hole (13) with positive α, it would not be deformed

into the Maxwell charged RN-AdS-like black hole (12) with

positive α. However, as illustrated in Fig. 2, the BI charged

black hole solution (11) can be real for both positive and

negative α. In the limit of Q → 0, βB = 36π M2

Ŵ(1/4)4 Q3 → ∞,

the BI charged black hole with positive α can be continuously

deformed into the Schwarzschild-AdS-like black hole (13).

This is a hint that the BI charged black hole may be superior

to the Maxwell charged black hole in the novel 4D EGB

gravity.

Note that the metric (19) approaches a finite value a(0) =
1 as r → 0, and it is similar to the behavior of (13) in Ref. [10]

for positive α. So in this case, an infalling particle would feel

a repulsive gravitational force when it approaches the singu-

lar point r = 0. However, for the solution with negative α, the

infalling particle would feel an attractive gravitational force

in short distance. Interestingly, for the critical case (18) with

α > 0 and β = βB , there is a maximal repulsive gravita-

tional force when the particle approaches the singular point.

However, whether the particle can reach the singularity or

not depends on its initial conditions.

When the particle starts at rest at the radius R and freely

falls radially toward the black hole, its velocity is given by

[72]

dr

dτ
= ±

√

a(R) − a(r), (20)

where a(R) = Ẽ2 with Ẽ the energy per unit rest mass, and

the plus (minus) sign refers to the infalling (outgoing) par-

ticle. For simplicity we consider the case of asymptotically

Minkowski space, i.e., l → ∞. As illustrated in Fig. 3, if the

the radius R is finite, the particle can not reach the singularity

for the solution with positive α, but it can reach the singular-

ity in short distance for the solution with negative α, since

the particle feels an attractive gravitational force when it gets

close to the singularity. However, if the particle starts at rest

at infinity, i.e., Ẽ2 = a(R → ∞) = 1, since a(r → 0) = 1

as seen in Eqs. (18) and (19), it will just reach the singularity

with zero speed [50]. So if the particle has a kinetic energy

at infinity, namely, Ẽ2 = a(R → ∞) > 1, it will reach the

singularity with a nonzero speed. Therefore, in this sense,

the black hole solution still suffers the singularity problem.

3 Thermodynamics

Black holes are widely believed to be thermodynamic

objects, which possess the standard thermodynamic variables
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(a) (b)

Fig. 3 The velocity v(r) of an infalling particle for starting at rest at

different radii R, where the dot represents the initial position and the

arrow represents the direction in which the velocity starts to increase

Fig. 4 The mass of the black hole for positive α (a) and negative α (b)

and satisfy the four laws of black hole thermodynamics. In

this section, we explore some basic thermodynamics of the

BI charged black hole in the novel 4D EGB gravity.

By setting a(r) = 0 in Eq. (11), the black hole mass can

be expressed with the radius of the event horizon rh , namely,

M =
rh

2

[

1 +
r2

h

l2
+

α

r2
+

2β2r2
h

3

(

1 −
√

1 +
Q2

β2r4
h

)

+
4Q2

3r2 2 F1

(

1

4
,

1

2
,

5

4
,−

Q2

β2r4
h

)]

, (21)

where the horizon radius has to satisfy rh >
√

−2α for neg-

ative α, since the square root of metric function (11) must be

positive. So there is a minimum horizon radius r∗
h =

√
−2α

for negative α. As shown in Fig. 4, for a given mass, the num-

ber of horizons depends on the parameters α and β, and the

corresponding parameter space is explicitly shown in Fig. 2.

The critical case, i.e., an extremal black hole, just happens

when M ′(rh) = 0, which yields

1 +
3r2

h

l2
−

α

r2
h

+ 2β2r2
h

(

1 −
√

1 +
Q2

β2r4
h

)

= 0. (22)

In the presence of the GB term and BI electrodynamics, the

dimensionful GB coupling parameter α and BI parameter β

should be also treated as new thermodynamic variables [70].

Now the generalized Smarr formula is given by

M = 2(T S − V P + Aα) + ΦQ − Bβ. (23)

The electrostatic potential Φ given in (10) is measured at the

horizon rh in this formula.

The Hawking temperature can be obtained from the rela-

tion T = κ
2π

with the surface gravity κ = − 1
2

∂gt t

∂r

∣

∣

∣

r=rh

, and

reads

T =
1

4πrh

[3r4
h − 3αl2 + 2β2l2r4

h

(

1 −
√

1 + Q2

β2r4
h

)

l2(r2
h + 2α)

+1

]

. (24)

The temperature vanishes for the extremal black hole, which

can be easily proved with the critical condition (22). In the

large β and small α limits, the temperature reduces to

T =
1

4πrh

(

1 −
Q2

r2
h

+
3r2

h

l2

)

−
α

4πr+

(

6

l2
+

3

r2
h

−
2Q2

r4
h

)

+
Q4

16πβ2r7
h

+ O

(

α2,
α

β2
,

1

β4

)

, (25)

where the first term is the standard Hawking temperature of

the RN-AdS black hole, the second term is the leading order

correction from the Gauss-Bonnet term, and the third term is

the leading order Born-Infeld correction.

By following the approach of Ref. [73], the entropy of the

black hole can be worked out from

S =
∫

1

T

(

∂ M

∂rh

)

P,Q,α,β

drh + S0, (26)

where S0 is an integration constant. Then it yields

S = πr2
h + 2πα ln r2

h + S0 =
Ah

4
+ 2πα ln

Ah

A0
, (27)

where Ah = 4πr2
h is the horizon area and A0 is a constant

with dimension of area, which is not determined from first

principle [51]. By considering that the black entropy is gen-

erally independent of the black hole charge and cosmologi-

cal constant but is relevant to the GB coupling parameter α,

which has the dimension of area, we simply fix the undeter-

mined constant as A0 = 4π |α| [19]. Here a logarithmic term

associated with the GB coupling parameter α arises as a sub-

leading correction to the Bekenstein-Hawking area formula,

which is universal in some quantum theories of gravity [74].

Since the novel 4D EGB gravity is considered as a classical

modified gravitational theory [10], the logarithmic correction

appears at classical level here.
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Fig. 5 The specific heat a for some parameter choices and b for the BI

charged and Maxwell charged solutions in the novel 4D EGB gravity

and GR

The pressure P = 3
8πl2 is associated with the cosmologi-

cal constant [75,76], and the corresponding thermodynami-

cal volume V is given by

V =
(

∂ M

∂ P

)

S,Q,α,β

=
4πr3

h

3
. (28)

By noting that the entropy is associated with the horizon

rh and GB coupling parameter α, the conjugate quantity A

of α can be obtained from Eqs. (21) and (27) as

A =
1

2rh
+

⎡

⎣

3r3

2l2
+

r2 − α

3r
+ β2r3

⎛

⎝1 −

√

1 +
Q2

β2r4

⎞

⎠

⎤

⎦

×
1 − ln r2

|α|
r2 + 2α

. (29)

Finally, we can calculate the BI vacuum polarization B

from Eq. (21):

B=
2r3

h

3

⎛

⎝1−

√

1 +
Q2

β2r4

⎞

⎠+
Q2

3βr
2 F1

(

1

4
,

1

2
,

5

4
,−

Q2

β2r4
h

)

.

(30)

With all the above thermodynamic quantities at hand, it

is easy to verify the validity of Smarr formula (23). Further,

it is also straightforward to verify that the first law of black

hole

d M = T d S − V d P + Adα + Φd Q − Bdβ (31)

holds as expected.

The specific heat is helpful to analyze the local stability

of a black hole solution, and it can be evaluated by

CQ =
(

∂ M

∂T

)

Q

=
(

∂ M

∂rh

)

Q

(

∂rh

∂T

)

Q

. (32)

Instead of bothering to list the cumbersome result, we plot the

specific heat in Fig. 5. As is shown in Fig. 5a, it is evident that

(a) (b)

Fig. 6 The critical size r s
c of specific heat a for negative α and b for

positive α in the novel 4D EGB gravity

the black hole has a negative specific heat when the horizon

radius is smaller than some critical size r s
c . So only large

black holes are stable against fluctuations. A black hole with

positive α has larger stable region than that with negative

α. Moreover, for a given α, the smaller the parameter β,

the larger the stable region is. We also show the specific

heats for the BI charged and Maxwell charged solutions in

the novel 4D EGB gravity and GR in Fig. 5b. What they

have in common is that large black holes are stable against

fluctuations in these theories, since all kinds of black hole

solutions shown in Fig. 5b are asymptotic AdS and have the

behavior of a(r) ∝ r2 at large r .

In order to investigate the effect of the GB term on the

specific heat, we depict the critical size r s
c with varying GB

parameter α in Fig. 6. When the GB term is switched off,

i.e., α = 0, the BI black hole solution a(r) in the novel 4D

EGB gravity will recover the BI black hole solution obtained

in EBI theory [66]. So as shown in Fig. 6, the BI black hole

solution with a negative α in the novel 4D EGB gravity has a

larger stable region than that in EBI theory, but the solution

with a positive α has a smaller region than that in EBI theory.

We further evaluate the Gibb’s free energy of the black

hole in order to investigate its global stability, which in the

canonical ensemble is written as

F = M − T S

=
rh

2
+

r3
h

2l2
+

α

2rh
+

β2r3
h

3

(

1 −
√

Q2

1 + β2r4
h

)

+
2Q2

3rh
2 F1

(

1

4
,

1

2
,

5

4
,−

Q2

β2r4
h

)

−
[

rh

2
+

r3
h

2l2
−

α

2rh

+β2r3
h

(

1 −
√

1 +
Q2

β2r4
h

)

]

r2
h + 2α ln

r2
h

|α|

2(r2
h + 2α)

. (33)

The behavior of the free energy is illustrated in Fig. 7

for different parameter choices and different black hole solu-

tions. A black hole with a negative free energy is globally

stable, but a black hole with a positive one is globally unsta-

ble. So as shown in Fig. 7a, for the black hole solution with
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(a) (b)

Fig. 7 The Gibb’s free energy a for some parameter choices and b for

the BI charged and Maxwell charged solutions in the novel 4D EGB

gravity and GR

(a) (b)

Fig. 8 The critical size r
f

c of free energy a for negative α and b for

positive α in the novel 4D EGB gravity

α < 0, only when its radius is larger than some critical size

r
f

c , the black hole is globally stable, while for the solution

with α > 0, both larger and smaller black holes are glob-

ally stable. However, smaller black holes with positive α

are locally unstable due to their negative specific heat, as

is shown in Fig. 5a. Moreover, black holes with positive α

have larger stable region than that with negative α. Further,

as shown in Fig. 7b, BI charged black holes with positive α

in the novel 4D EGB gravity have the largest stable region

than the others.

In particular, we illustrate the relationship between the

critical size r
f

c and the GB parameter α in Fig. 8, where

a non-vanishing α corresponds to the BI black hole in the

novel 4D EGB gravity and a vanishing α corresponds to the

BI black hole in EBI theory. Therefore, it is shown that the

BI black hole solution with α > 0 in the novel 4D EGB

gravity has a larger stable region than that in EBI theory, but

the solution with α < 0 has a smaller region than that in EBI

theory.

4 Regain the solution in the regularized 4D EGB gravity

In order to get a well defined action principle, Lü and Pang

proposed a procedure for D → 4 limit of EGB gravity [51].

They started from a D-dimensional EGB gravity on a maxi-

mally symmetric space of (D−4)-dimensions with the metric

ds2
D = ds2

4 + e2φd�2
D−4,λ, (34)

where the breathing scalar φ depends only on the exter-

nal 4-dimensional coordinates, ds2
4 is the 4-dimensional

line element, and d�2
D−4,λ is the line element of the inter-

nal maximally symmetric space with the curvature tensor

Rabcd = λ(gacgbd − gad gbc). Further, by redefining the GB

coupling parameter α as α → α
D−p

, and then taking the

limit D → 4, they obtained a special scalar-tensor theory

that belongs to the family of Horndeski gravity. In this sec-

tion, we show that the black hole solution (9), (10) and (11)

we obtained in the novel 4D EGB gravity is also the solution

of this regularized 4D EGB gravity.

The 4-dimensional regularized gravitational action is

given by [51]

Sreg =
∫

d4x
√

−g

[

R +
6

l2
+ α

(

φG + 4Gμν∂μφ∂νφ

−2λRe−2φ − 4(∂φ)2
✷φ + 2((∂φ)2)2

−12λ(∂φ)2e−2φ − 6λ2e−4φ
)

]

. (35)

By including the Lagrangian of the BI electrodynamics (2),

and substituting the ansatzes for the scalar filed φ = φ(r)

and the 4D static spherically symmetric metric

ds2 = −a(r)e−2b(r)dt2+
dr2

a(r)
+r2(dθ2+sin θ2dϕ2), (36)

into the action, the effective Lagrangian reads

Leff = e−b

[

2

(

1 +
3r2

l2
− a − ra′

)

+
2

3
αφ′
(

3r2a2φ′3

−2r f φ′2 (4a + ra′ − 2rab′)− 6aφ′(1 − a − ra′

+2rab′) + 6(1 − a)(a′ − 2ab′)
)

− 6αλ2r2e−4φ

−4αλe−2φ(1 − a − ra′ − r2a′φ′ + 2r2ab′φ′

+3r2aφ′2) + 4β2r2

(

1 −
√

1 − β−2e2bΦ ′2
)]

. (37)

The corresponding equations of motion can be obtained by

varying the effective acton with respect to a(r), b(r), φ(r)

and Φ(r). Further, it is easy to see that b′(r) satisfies the

equation

b′ =

[

a
(

rφ′ − 1
)2 − λr2e−2φ − 1

]

(

φ′′ + φ′2)

φ′ [1 − a (3 + rφ′ (rφ′ − 3))] + λr
(rφ′−1)

e2φ + r
2α

. (38)

So following the similar analysis in Ref. [51], b(r) = 0 is

a consistent truncation. In this case, a(r), φ(r) and Φ(r)
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satisfy the equations

1 − a − ra′ +
2α(a − 1)a′

r
−

α(a − 1)2

r2
+

3r2

l2

+2β2r2

⎛

⎝1 −

√

1 +
Q2

r4β2

⎞

⎠ = 0, (39)

1 + r2λe−2φ − a
(

rφ′ − 1
)2 = 0, (40)

2β2Φ ′ − 2Φ ′3 + rβ2Φ ′′ = 0. (41)

It is obviously that b′(r) = 0 when Eq. (40) holds, hence

b(r) = 0 is indeed a consistent choice. By solving the equa-

tions, we have the solution

Φ(r) =
Q

r
2 F1

(

1

4
,

1

2
,

5

4
,−

Q2

β2r4

)

, (42)

a(r) = 1 +
r2

2α

{

1 ±
[

1 + 4α

(

2M

r3
−

1

l2

−
2β2

3

⎛

⎝1 −

√

1 +
Q2

β2r4

⎞

⎠−
4Q

3r3
Φ

⎞

⎠

]

1
2

⎫

⎬

⎭

(43)

φ(r)± = ln
r

L
+ ln

[

cosh ψ ±
√

1 + λL2 sinh ψ

]

, (44)

where L is an arbitrary integration constant and ψ(r) =
∫ r

rh

du

u
√

a[u] [51]. So we regain the black hole solution in this

regularized 4D EGB gravity. Note that the electrostatic poten-

tial Φ(r) and the metic function a(r) are independent of the

parameter λ, which is associated with the curvature of the

internal maximally symmetric space.

5 Conclusions

In this work, we obtained the BI electric field charged black

hole solution in the novel 4D EGB gravity with a negative

cosmological constant. In order to have a real black hole solu-

tion, the GB coupling parameter α and BI parameter β have to

be constrained in some regions. It is known that the Maxwell

charged solution is real only for negative α. While the BI

charged black hole solution found in this paper can be real for

both positive and negative α. Therefore, the BI charged black

hole may be superior to the Maxwell charged black hole to

be a charged extension of the Schwarzschild-AdS-like black

hole in the novel 4D EGB gravity. The black hole has zero,

one, or two horizons depending on the parameters. However,

since particles incident from infinity can reach the singularity,

the black hole solution still suffers the singularity problem.

We also explored some simple thermodynamic properties of

the BI charged black hole solution. The Smarr formula and

the first law of black hole thermodynamics were verified.

By evaluating the specific heat and Gibb’s free energy, we

showed that the black hole is thermodynamically stable when

the horizon radius is large, but is unstable when it is small.

This is a well-known property of the AdS black holes. More-

over, a black hole with positive α has larger stable region

than that with negative α. At last, we also regained the black

hole solution in the regularized 4D EGB gravity proposed by

H. Lü and Y. Pang.

Black hole thermodynamics in AdS space has been of

great interest since it possesses some interesting phase tran-

sitions and critical phenomena as seen in normal thermody-

namic systems. Further thermodynamic properties of the BI

charged black hole in the novel 4D EGB gravity is left for

our future investigations.
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