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Abstract The aim of the famous Born and Jordan 1925 paper was to put Heisen-
berg’s matrix mechanics on a firm mathematical basis. Born and Jordan showed that
if one wants to ensure energy conservation in Heisenberg’s theory it is necessary and
sufficient to quantize observables following a certain ordering rule. One apparently
unnoticed consequence of this fact is that Schrodinger’s wave mechanics cannot be
equivalent to Heisenberg’s more physically motivated matrix mechanics unless its
observables are quantized using this rule, and not the more symmetric prescription
proposed by Weyl in 1926, which has become the standard procedure in quantum
mechanics. This observation confirms the superiority of Born—Jordan quantization,
as already suggested by Kauffmann. We also show how to explicitly determine the
Born—Jordan quantization of arbitrary classical variables, and discuss the conceptual
advantages in using this quantization scheme. We finally suggest that it might be
possible to determine the correct quantization scheme by using the results of weak
measurement experiments.

Keywords Heisenberg picture - Schrodinger picture - Quantization - Born and
Jordan - Dequantization

1 Introduction

In the Schrodinger picture of quantum mechanics (wave mechanics), the operators
are constant (unless they are explicitly time-dependent), and the states evolve in time:

[ (1)) = U(t, to)|¥ (to)) where

M. A. de Gosson ()

NuHAG, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1,
1090 Vienna, Austria

e-mail: maurice.degosson @ gmail.com; maurice.de.gosson @univie.ac.at

@ Springer



Found Phys (2014) 44:1096-1106 1097

R M

is a family of unitary operators; the time evolution of |y) is thus governed by
Schrodinger’s equation
hd—w = Hsy; @)
! dr SV,
Hgs is an operator associated with the classical Hamiltonian function H by some
“quantization rule”. In the Heisenberg picture (matrix mechanics), the state vectors are
time-independent operators that incorporate a dependency on time, while an observ-
able Ag in the Schrodinger picture becomes a time-dependent operator A4 (¢) in the
Heisenberg picture; this time dependence satisfies the Heisenberg equation

A A
ihdd—tH :ihaa—tHJr[AH,HH]. 3)
Schrodinger [22] (and, independently, Eckart [14]) attempted to prove shortly after
the publication of Heisenberg’s result that wave mechanics and matrix mechanics were
mathematically equivalent. Both proofs contained flaws, and one had to wait until von
Neumann’s [24] seminal work for a rigorous proof of the equivalence of both the-
ories (see the discussions in Madrid Casado [17] and Muller [19,20]; both papers
contain a wealth of historical details; also see van der Waerden’s [23] very interesting
discussion Pauli’s unpublished letter regarding the (non)equivalence of wave mechan-
ics and matrix mechanics). We will not bother with the technical shortcomings of
Schrodinger’s and Eckart’s approaches here, but rather focus on one, perhaps more
fundamental, aspect which seems to have been overlooked in the literature. We observe
that it is possible to go from the Heisenberg picture to the Schrédinger picture (and
back) using the following simple argument (see for instance Messiah [18] or Schiff

[21]): a ket

[Ys(@)) = U, 10)|¥s(10)) “

in the Schrodinger picture becomes, in the Heisenberg picture, the constant ket
V) = U, t0)*[¥s (D) = [¥s(t0) 5

whereas an observable As becomes

Ap(t) = U(t, 10)*AsU 1, to); (6)
in particular the Hamiltonian is

Hy (1) = U(t, 10)"HsU (1, 10). @)
Taking ¢ = 1y this relation implies that Hy(tp) = Hg; now in the Heisenberg picture
energy is constant, so the Hamiltonian operator Hy(#) must be a constant of the

motion. It follows that Hy(t) = Hgs for all times ¢ and hence both operators Hyy
and Hg must be quantized using the same rules. A consequence of this property is
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that if we believe that Heisenberg’s “matrix mechanics” is correct and is equivalent
to Schrodinger’s theory, then the Hamiltonian operator appearing in the Schrodinger
equation (2) must be quantized using the Born—Jordan rule, and not, as is usual in
quantum mechanics, the Weyl quantization rule.

Notation 1 Real position and momentum variables are denoted q, p; more generally,
for systems with n degrees of freedom we write ¢ = (q1, ... qn), p = (P1,-.., Pn)-
The boldface letters q, p are used to denote the corresponding quantum observables.
Similarly, the quantum operator associated with a classical observable A is denoted
by A and we write A <— A. It is assumed throughout that this correspondence
(“quantization”) is linear.

2 The Born and Jordan Argument

We begin by shortly exposing the main arguments in Born and Jordan’s paper [2].
The paper of Born and Jordan was an attempt to put Heisenberg’s “magical paper”

[15] on a firm basis (see Aitchison et al. [1] and van der Waerden [23] for inter-

esting discussions of Heisenberg’s paper from a modern point of view). Following

Heisenberg’s paper [15] Born and Jordan considered in [2] square infinite matrices

a(00) a(01) a(02)
a(10) a(11) a(12)

a=(amm) = 00 a@l) a@2) --- ®)

where the a (nm) are what they call “ordinary quantities”, i.e. scalars; we will call these
infinite matrices (for which we always use boldface letters) observables. In particular
Born and Jordan introduce momentum and position observables p and q and matrix
functions H(p, q) of these observables, which they call “Hamiltonians”. Following
Heisenberg, they assume that the equations of motion for p and q are formally the
same as in classical theory, namely

. 0H . 0H

= —, = —— 9
4=7pP aq (€))

limiting themselves deliberately to Hamiltonians which are polynomials in the observ-
ables p, q, that is linear combinations of monomials which are products of terms

H= psqr (10)

they define the derivatives in (9) by the formulas, and show that the observables p and
q satisfy the commutation relation

pq — qp = —ifil (11D
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where 1 is the identity matrix; from this follows the more general identity
pmqn _qnpm — _ihmzqn—l—ﬁpm—lql' (12)

Born and Jordan next proceed to derive the fundamental laws of quantum mechanics.
In particular, pursuing their analogy with classical mechanics, they want to prove that
energy is conserved; identifying the values of the Hamiltonian H with the energy of
the system, they impose the condition H = 0 and show that this condition requires
that

—ihq=Hq—qH (13)
—ih p = Hp — pH. (14)

Comparing with the Hamilton-like Eq. (9) this condition is in turn equivalent to

. 0H

Hq - qH = —ihi— (15)
ap
_OH

Hp —pH=ii—. (16)
aq

Now comes the crucial step. Given a classical Hamiltonian H (p, g) = p®q" they ask
how one should choose the observable H(p, q) so that these identities hold. Using the
commutation formula (12) Born and Jordan show that the only possible choice is

H(p. q)——ZpY “‘q'p". (17)

3 Born—Jordan Quantization

Born and Jordan thus proved—rigorously—that the only way to quantize polynomials
in a way consistent with Heisenberg’s ideas was to use the rule

s
P = ?J%l > peph (18)
=0
equivalently, using the commutation relations (12):
Y D
P = jzoqr‘«’pxqf. (19)

In their subsequent publication [3] with Heisenberg they show that their constructions
extend mutatis mutandis to systems with an arbitrary number of degrees of freedom.
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We will call this rule (and its extension to higher dimensions) the Born—Jordan (BJ)
quantization rule. Weyl [25] proposed, independently, some time later (1926) another
rule leading to the replacement of (18) with

pa é (j) P g pt. (20)
(=0

It turns out that both rules coincide when s + r < 2, but they are different as soon

as s > 2 and r > 2.! Both quantizations are thus not equivalent; as Kauffmann [16]

observes, Weyl’s rule is the single most symmetrical operator ordering, whereas the

BJ quantization is the equally weighted average of all the operator orderings.

These facts have the following consequence: if we insist that the Heisenberg
and Schrodinger pictures be equivalent, then we must quantize the Hamiltonian in
Schrodinger’s equation using BJ quantization. In fact, recall from formula (7) that the
Heisenberg and Schrédinger Hamiltonians are related by

Hy(t) = U, 19)*HsU (¢, tg).

Since Hy¢(t) is a constant of the motion we have Hp(t) = Hp(tp) and hence Hy(t) =
Hg sothe Heisenberg and Schrodinger Hamiltonians H(¢) and Hy; must be identical.
But the condition Hy(t) = Hy(t9) = Hp means that Hy, and hence Hs must be
quantized using the Born and Jordan prescription.

An obvious consequence of these considerations is that if one uses in the
Schrodinger picture the Weyl quantization rule (or any other quantization rule), we
obtain two different renderings of quantum mechanics. This observation seems to be
confirmed by Kauffmann’s [16] interesting discussion of the non-physicality of Weyl
quantization.

4 Generalization to Arbitrary Observables

We have been considering the quantization of polynomials for simplicity; in de Gosson
and Luef [12] and de Gosson [6] we have shown in detail how to Born—Jordan quantize
arbitrary functions of the position and momentum variables.

To find this general rule, we proceed as follows. Weyl quantization rule (20) can
be viewed as a particular case of a very general rule, which we call the “r-rule”. Let
us first consider a very simple example, that of the monomial p2g (for which both the
BJ and the Weyl quantizations are identical®). We have

By 1
p’q — g(pzq + pap + qp?).

! Ville Turunen, private communication.

2 We thank Maciej Blaszak for having pointed out this fact, thus correcting an error in an earlier draft.
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Let now 7 be an arbitrary real number and consider the following quantization rule

p’q — (1 —1)’p’q +2(1 — 7)Tpgp + >qp* 1)

(it reduces to Weylo quantization if we choose 7 = %). If we integrate the right-hand
side from O to 1 in T we get

1
1
/0 [(1 —1)’p’q +2(1 — t)Tpgp + rquz] dr = g(pzq + pgp + qp*)

which is precisely the BJ quantization of the monomial p?q. More generally, we define
the “r-quantization rule” for monomials by

N

1 K 05—
£=0

Again it reduces to the Weyl quantization when t = %; if we integrate the right-hand
side from O to 1 in T while observing that it follows from the properties of the beta
function that

0(s — £)!

1
_ st _ _ _
/0(1 )t dt =B+ 1,s —¢) = G

we recover the BJ quantization rule (18). This essential observation allows us to define
the BJ quantization of an arbitrary classical observable. While we have done this from
an operator-theoretical point of view in de Gosson [6] and de Gosson and Luef [12],
we will follow here a more physical approach, along the lines of Kauffmann [16] with
some modifications. We are working in n-dimensional configuration space, since it
does not add any difficulty. The Weyl quantization Aw (q, p) of a general observable
A(q, p) is unambiguously defined in its configuration space representation by the
Fourier transform

n i _
@iavian = (55)" [ e Pad@ o pd'p. @3
Define similarly t-quantization A > A, in the configuration representation by

n i
(@2|Aclqr) = (ﬁ) /eﬁ”(‘”““)A(rql + (1 = 1)qa, p)d" p; 24)

of course Aj/» = Aw. The BJ quantization Agj is then defined as being the average
of all the T-quantizations of A(g, p) when the parameter t goes from O to 1:

1
Apy = / Adr: 25)
0
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it follows from formula (24) that Agj has the following configuration representation:
n i _ ~
@imlan = (s4)" [ e g g piap (26)

1
with A(q1, g2, p) = / Az + (1 = Daa, pyde. @7)
0

The correspondence A E) Apj thus defined reduces to the correspondence (18),
(19) in the monomial case; it moreover has the property (shared with Weyl quantiza-
tion) that to a real classical observable A it associates a self-adjoint operator Agy (this
property, which is essential for any honest quantization theory, is not satisfied by the
“r-quantization rule” A SLIN A, which is hence unphysical). It is easy to show using
the formulas above that the BJ and Weyl quantization of Hamiltonians of the usual
type “kinetic energy plus potential” are the same; we have shown in [6,12] that BJ
and Weyl quantization coincide for all Hamiltonians of the type

S
H = Z—z (pj —Aj(q.0)*+U(g.1) (28)
j=1 M

where the vector and scalar potentials A; and U depend on ¢ = (g1, ..., g») (and
possibly on time ¢); this quantization is given by the usual formula

n 1 9 2
i 3Xj

(Messiah [18], Schiff [21]).

Let us briefly discuss in this context the property of canonical covariance. This
property singles out Weyl quantization among all possible quantizations; it is probably
thanks to this peculiarity that Weyl quantization superseded (at least among mathe-
matical physicists) the BJ (and other possible quantization schemes). It is a very strong
property (see the discussion at the end of the paper); it has allowed us to prove in [11]
that Hamiltonian mechanics and quantum mechanics (when quantized using Weyl’s
rule) are mathematically equivalent theories, i.e. that one can derive Schrodinger’s
equation from Hamilton’s equations of motion, and vice versa. Canonical covariance
means the following: let Sp(n) be the symplectic group of the n-dimensional config-
uration space; it consists of all linear canonical transformations of the corresponding
2n-dimensional phase space (we have given an elementary construction of Sp(n) in de
Gosson [8]). The elements of Sp(n) are identified with 2n x 2n matrices S (“symplec-
tic matrices”) satisfying the condition ST JS = J where the superscript 7 indicates

_OI (I)) where 0 and [ are the zero and identity n x n matri-

ces. Now, to every symplectic matrix S one can associate two unitary operators +5
acting on L2(R") (the square integrable functions); the set of all these operators form
a group, the metaplectic group Mp(n) (see de Gosson [4] for a detailed study of that

transposition and J = (
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group). The property of canonical covariance for a quantization rule A <— A means
that for every symplectic matrix S we must have A o § «— SAS! (A o S is the
new observable Ao S(q, p) = A(S(gq, p)))- (Thus, a symplectic transformation of the
coordinates in a classical observable corresponds at the operator level to conjugation
by the corresponding metaplectic operator.) Now it is a mathematical theorem that
there is only one quantization rule which enjoys this property: namely Weyl quanti-
zation. Therefore, if we use BJ quantization in place of Weyl quantization, we will
lose canonical covariance for all observables which are not quantized the “Weyl way”.
But this observation has no drastic consequences because, as we just mentioned, the
Weyl and BJ quantizations of all physical Hamiltonians (28) are the same, and will
thus have the property of canonical covariance. And there is another case where this
remains true: formula (20) implies that monomials qj2., p?, pjq; (and, of course pq)
have the same quantization in both schemes; it easily follows that the same is true for
the generalized harmonic oscillator

n
H(p.q)= Y a;jp+2bjpjq +c;q;. (30)
j.k=1

5 Discussion

One might wonder at this point whether it is even at all possible to distinguish between
these two quantization schemes. It follows from the discussion above that as far as
ordinary Hamiltonians (28) or generalized oscillators (30) are concerned, we cannot.
However, conceptually, there is an extremely important reason for which BJ quan-
tization should be taken very seriously; it is related to the issue of dequantization
(or “classicization”). Besides being canonically covariant, the Weyl rule has a very
important, but rather unwelcome, property: it is one-to-one invertible because every
continuous operator can be written uniquely as a Weyl operator (for a mathematical
proof see e.g. de Gosson [4,5]). This invertibility means that every quantum observable
has a (unique) classical counterpart, and this is physically not tenable. The situation
is very different when one uses BJ quantization. Let us explain this in some detail.
We begin with the following observation, which is simple and subtle at the same time.

. . BJ .
Consider the BJ quantization Agy <— A of some classical observable A. Born—
Jordan operators are continuous operators, hence we can also view Agy as a Weyl

operator: Ag; = Bw <L B where B is generally different from A. In de Gosson [6]
and de Gosson and Luef [12] we have proven that the phase space Fourier transforms
F A and F B of the classical observables A and B are related by the formula

FB(q, p) =0(q, p)FA, p) 3D
where © is the real function given by

2h
0(q. p) = —sin 22, (32)
Pq 2h
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This formula implies that BJ quantization is neither one-to-one, nor invertible. In

C BJ . .
fact, every operator A has infinitely many precursors A <— Agyj. Since quantization
is linear, it is sufficient to verify this statement for Agy = 0; writing again Agy; =

Bw Y. Bwemusthave B = 0 (and hence F B = 0) since the Weyl correspondence
is one-to-one. In view of formula (31) this implies that A is any observable such that

2%
L sin 29 Fag, p) =o.
Pq 2h

Since the function ® (g, p) vanishes for all (¢, p) such that pg = 2Nz h (N an integer
# 0), this equality will hold for any classical observable whose Fourier transform
vanishes outside the sets of phase space defined by these conditions; there is of course
an infinite number of such choices. (See the interesting potential consequences for
the limit # — O discussed by Kauffmann [16]). Similar considerations show that

the correspondence A <E> Agp;j is in general not invertible. In fact, if it were, then
to each Weyl operator By would correspond a Born—Jordan operator Ay such that
Apj = Bw. The corresponding classical observable A would then be determined by
(31), but this is generally not possible because of the zeroes of the function ®.

It would certainly be interesting and useful to have explicit examples; the calcula-
tions are rather technical, and part of work in progress [13].

To conclude, if we believe in the equivalence of Heisenberg’s matrix mechanics and
Schrodinger’s wave mechanics, then we must quantize both theories using the same
correspondence. Matrix mechanics seems to be more physically motivated, being
based on a natural notion, that of conservation of energy, which leads mathematically
to the BJ quantization scheme, while there is no reason in Schrodinger’s theory to
choose one particular quantization. This provides strong evidence that Born—Jordan
quantization might very well be the right choice in quantum mechanics. Of course, to
sustain this conjecture, it would be of primordial importance to test it experimentally.
We suggest this could be done using weak measurements: as we have shown in [9],
the notion of weak value can be expressed in two different ways, yielding different
numerical results, depending on whether one uses Weyl or BJ quantization. Suppose
in fact we have a classical observable A; we denote by Aw and Agj the corresponding
Weyl and BJ quantizations. Let |yr) be a pre-selected state and |¢) a post-selected
state; if these states are non-orthogonal the weak values of Aw and Apj with respect
to the pair (¢, ¥) are the complex numbers

A A
(Aw>$gfk= (@] wllﬁ)’ ( BJﬁggk: (@] BJ|¢>'

(@) (¢ly)

In [10] we have shown that <Aw>f/;£k can be calculated by averaging A over the
complex phase space function

_ Wi, ¥)(q, p)

0¥
@) (Pl¥)

I
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where
W@ p) = () [ H7 0+ bt - S

N

weak

is the cross-Wigner transform [4,5], and in ([9]) that (Aw)
but by averaging A this time over

is obtained similarly,

Wai(9, ¥) (g, p)

pgj"’(q,p) = @)

where Wgj(¢, ¥) is the modified cross-Wigner transform defined by (formula (46) in
de Gosson [7])

Wai(9. ¥) = W(g, ¥) x 7O

where F© is the Fourier transform of the function (32).
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