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Borna disease virus
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Borna disease virus, a negative-strand RNA virus, infects a wide variety of
warm-blooded animals. Depending on the age of the host and the integrity of
its immune response, infection may be asymptomatic or cause a broad spec-
trum of behavioral disorders. Unusual features of Borna disease virus biology
include nuclear localization of replication and transcription; diverse strategies
for regulation of gene expression; and interaction with signaling pathways re-
sulting in subtle neuropathology. Although the question of human infection
remains unresolved, burgeoning interest in this unique pathogen has provided
tools for exploring the pharmacology and neurochemistry of neuropsychiatric
disorders potentially linked to infection. Analysis of rodent models of infec-
tion has yielded insights into mechanisms by which neurotropic agents and/or
immune factors may impact developing or mature central nervous system cir-
cuitry to effect complex disturbances in movement and behavior. Journal of
NeuroVirology (2003) 9, 259–273.

Keywords: animal model; Borna disease virus; neuropharmacology; neuropsy-
chiatric disease; RNA virus

Introduction

It is more than a decade since nucleic acids of
Borna disease virus (BDV) were cloned (Lipkin et al,
1990; VandeWoude et al, 1990). The BDV subtrac-
tive cloning project, initiated to develop the tools
required to assess the role of BDV in human dis-
ease, opened up a new field in molecular virology
and pathogenesis, but failed in its primary objective.
Despite the introduction of diagnostic polymerase
chain reaction (PCR) assays, and serologic methods
based on recombinant proteins and peptides, the epi-
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demiology of BDV remains obscure and controver-
sial (Bode et al, 2001; Lipkin et al, 2001; Staeheli
and Lieb, 2001). This review summarizes recent ad-
vances in BDV research, with emphasis on molec-
ular biology; virus/host cell interactions; epidemio-
logic data indicating the occurrence of natural BD
outside of endemic Central European areas, and high-
lighting controversy regarding its role in human neu-
ropsychiatric disease; and experimental models of
infection that provide insights into developmental
neurobiology.

Molecular biology

Borna disease virus (BDV) is the prototype of a new
family Bornaviridae, genus Bornavirus, within the
nonsegmented negative-strand RNA viruses (order
Mononegavirales). Although similar in genomic or-
ganization to other nonsegmented negative-strand
(NNS) RNA viruses, BDV is distinctive in its nu-
clear localization of replication and transcription
(Briese et al, 1992; Carbone et al, 1991a; Cubitt
and de la Torre, 1994). This feature is shared with
plant nucleorhabdoviruses; it is, however, unique
amongst NNS RNA animal viruses. The molecular
biology of BDV is complex, and includes overlap of
open reading frames (ORFs) and transcription units,
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Figure 1 BDV genomic map and transcripts. Abbreviations: S1 through S3, initiation sites of transcription; T1 through T4, and t6,
termination sites of transcription. Readthrough at termination signals T2 and T3 are indicated by dashed lines; ESS, exon-splicing
suppressor.

transcriptional read-through of termination signals,
and differential use of initiation codons (Briese
et al, 1994; Schneemann et al, 1994, 1995). BDV uses
cellular splicing machinery to generate some of its
mRNAs (Figure 1) (Cubitt et al, 1994; Schneider et al,
1994b), an aspect consistent with its nuclear localiza-
tion of transcription and replication. Although splic-
ing is also found in Orthomyxoviridae (segmented,
negative-strand RNA viruses), it is unprecedented in
Mononegavirales.

BDV encodes at least six proteins. Five proteins
correspond to the nucleoprotein (N, p40), phospho-
protein (P, p23), matrix protein (M, p16), glycoprotein
(G, p57), and L-polymerase (L, p190) found in other
Mononegavirales. The sixth, p10 (X protein), does not
have a clear homologue in other NNS RNA viral sys-
tems. Data on alternative splicing indicate that the

repertoire of BDV proteins may be larger still. Alter-
native splicing is a cardinal feature of BDV molecu-
lar biology. Splicing to remove approximately 100 bp
of M ORF sequence (intron I; Cubitt et al, 1994;
Schneider et al, 1994b) from some mRNAs allows
expression of the surface glycoprotein G by leaky ri-
bosomal scanning (Schneider et al, 1997b); splicing
to remove approximately 1.3 kb of G ORF sequence
allows fusion of a small upstream ORF with the large,
last ORF (intron II; Cubitt et al, 1994; Schneider
et al, 1994b), to generate the full-length L-polymerase
protein (Walker et al, 2000). Recently, an additional
splice acceptor site (nucleotide [nt] 4559) has been
characterized that may allow translation of two ad-
ditional viral proteins (see Figure 1; Cubitt et al,
2001; Tomonaga et al, 2000). However, because this
splice acceptor site is not conserved in the BDV No/98
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Figure 2 Functional motifs identified in BDV proteins. Abbreviations: M1 and M14 in N, and M1 and M56 in P, represent start sites
of p40 and p38, and P or P′ respectively; NLS, nuclear localization signal; NES, nuclear export signal; Pbind, P binding site; Xbind,
X binding site; Nbind, N binding site; PKC, PKCε phosphorylation site; CKII, casein kinase phosphorylation site; SIG, signal peptide;
TM, transmembrane domain; ATT+ FUS, attachment and fusion domain; Furin, furin cleavage site; a, A, B, C, D, conserved L-polymerase
motifs.

isolate, the function of these proteins is unlikely to
be essential in the basic life cycle of BDV (Pleschka
et al, 2001).

Motifs are characterized on some BDV proteins,
including nuclear localization signals (NLSs) on N
(Kobayashi et al, 1998; Pyper and Gartner, 1997),
P (Schwemmle et al, 1999b; Shoya et al, 1998), L
(Walker and Lipkin, 2002), and presumably X (Wolff
et al, 2002), as well as a nuclear export sequence
(NES) on N (Kobayashi et al, 2001) (see Figure 2).
Sites of interaction between N, P, and X (Berg et al,
1998; Kobayashi et al, 2001; Schwemmle et al, 1998),
and the phosphorylation sites of P (Schwemmle et al,

1997) have been mapped. Further, the viral G protein
has recently been analyzed in more detail. Nonethe-
less, the proposed functions of BDV proteins are still
hypothetical and based primarily on analogy to other
NNS RNA viruses.

The BDV G protein is a type I glycoprotein of
94 kDa (Kiermayer et al, 2002; Richt et al, 1998;
Schneider et al, 1997a). Proteolytic processing by the
cellular protease furin (Richt et al, 1998) yields two
fragments, GP-N and GP-C (Kiermayer et al, 2002;
Richt et al, 1998) (Figure 2). The 94-kDa precursor
accumulates in the endoplasmic reticulum, whereas
the GP-C cleavage product is transferred to the cell
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membrane. However, both the glycosylated 94-kDa
precursor and glycosylated GP-C (gp43) are found
associated with infectious particles (Gonzalez-Dunia
et al, 1997). The second cleavage product, glycosy-
lated GP-N (gp51), was elusive until recently, when
it was shown to be present in infected cells and infec-
tious particles by enzymatic deglycosylation on blot
(Kiermayer et al, 2002).

BDV enters the host cell by receptor-mediated en-
docytosis, and membrane fusion occurs in the acidic
environment of the endosome (Gonzalez-Dunia et al,
1998). Cleavage of the 94-kDa precursor is essential
for virus infectivity, and it has been speculated that
proteolytic processing might activate a sequence rem-
iniscent of fusion peptides of other viruses located
close to the N-terminus of gp43 (Richt et al, 1998).
Recent analyses by pseudotyping, however, indicate
that the N-terminal portion of G alone is sufficient
to mediate virus attachment and entry into the cell
(Perez et al, 2001).

BDV is still the sole known example of the fam-
ily Bornaviridae. Reported sequences have less than
6% divergence at the nt level, a remarkable de-
gree of conservation for an RNA virus (Kilbourne,
1991; Schneider et al, 1994a). The extent to which
this represents selective pressure or fidelity of the
BDV RNA-dependent RNA polymerase is unclear.
Resolution of this question awaits establishment of
in vitro transcription and/or reverse genetic sys-
tems. Interestingly, BDV replication and spread
were recently found to be inhibited by Ara-C (1-β-
D-arabinofuranosylcytosine), a nucleoside analogue
that specifically inhibits DNA polymerase enzymes.
The mechanism of action remains unclear, but is pos-
tulated to be direct inhibition of the viral polymerase
rather than an indirect effect mediated by host cell
factors (Bajramovic et al, 2002).

Epidemiology

Natural BD has been well known as a fatal behav-
ioral and movement disorder of horses and sheep in
endemic areas of Central Europe for more than a cen-
tury (Ludwig et al, 1988). Outbreaks of severe dis-
ease are infrequent and remain restricted to this re-
gion; however, recent studies suggest a larger host as
well as geographic range of BDV infection (Bahmani
et al, 1996; Caplazi et al, 1994; Dauphin et al, 2001;
Galabru et al, 2000; Hagiwara et al, 1996, 1997a,
1997b, 2001; Helps et al, 2001; Horii et al, 2001;
Kao et al, 1993; Lundgren et al, 1993; Malkinson et
al, 1993; Nakamura et al, 1995, 1996; Reeves et al,
1998; Yilmaz et al, 2002). Enhanced case ascertain-
ment due to surging interest in BDV and the intro-
duction of sensitive serologic and nucleic acid–based
diagnostic assays for infection almost certainly con-
tribute to these findings; however, dissemination of
the virus has not been excluded comparing archived
materials to more recently collected specimens. With

a few notable exceptions, including reports of disease
in Japan in horses (Hagiwara et al, 2000); domestic
cats (Nakamura et al, 1999); and dogs (Okamoto
et al, 2002); and in Austria and France in dogs
(Weissenbock et al, 1998) and lynxes (Degiorgis et al,
2000), investigators reporting infection in new re-
gions or host species do not typically pursue studies
of virus isolation, experimental infection, or detailed
neuropathology. This is unfortunate as the credibil-
ity of BDV epidemiology would be enhanced by more
comprehensive analyses.

Neither the reservoir nor the mode for transmission
of natural infection is known. An olfactory route for
transmission has been proposed because intranasal
infection is efficient and the olfactory bulbs of natu-
rally infected horses show inflammation and edema
early in the course of disease (Ludwig et al, 1988).
Reports of BDV nucleic acid and proteins in periph-
eral blood mononuclear cells also indicate the pos-
sibility of hematogenous transmission (Rubin et al,
1995; Sierra-Honigmann et al, 1993). There is one
report suggesting potential for vertical transmission
(Hagiwara et al, 2000). Rodents are proposed as a
candidate for BDV reservoirs because experimental
infection of neonatal rats results in virus persistence
and is associated with the presence of virus in saliva,
urine, and feces (Sierra-Honigmann et al, 1993).
The one reported study examining natural infection
of wild rodents has not supported this hypothesis
(Tsujimura et al, 1999). BDV has been reported in
bird excrement, suggesting the possibility of an avian
reservoir (Berg et al, 2001). Rigorous epidemiologic
investigation of the global distribution and ecology
of BDV should be emphasized in future research.

Sequence conservation amongst isolates is a ma-
jor confounding factor in BDV epidemiology. Infec-
tion is frequently diagnosed by detecting BDV tran-
scripts in clinical materials such as peripheral blood
mononuclear cells or tissues following amplification
by nested reverse transcriptase–polymerase chain re-
action (nRT-PCR). This method, although sensitive,
is prone to artifact due to inadvertent introduction of
template from laboratory isolates or cross contami-
nation of samples (Schwemmle et al, 1999a). In most
viral systems, specific signatures readily facilitate de-
termination of provenance; however, in BDV, similar-
ities in sequence between putative new isolates and
confirmed isolates cannot be used to exclude the for-
mer as artifacts.

Unique sequence variations specific for a partic-
ular host species, time point of isolation, or geo-
graphic origin are not yet defined (Binz et al, 1994;
Schneider et al, 1994a; Zimmermann et al, 1994). One
isolate from a horse in Austria was found to have a
higher level of divergence at the nt level than others
(strain No/98; Nowotny et al, 2000; Pleschka et al,
2001). Protein sequence was highly conserved (93%
to 96% over the entire genome). Biological charac-
terization of this isolate is pending; it remains to
be determined whether phenotypic features warrant
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classification of this isolate as a new strain of BDV.
Laboratory isolates may differ in virulence in an-
imal models depending on their passage history
(Hirano et al, 1983; Kao et al, 1984); however, the first
evidence to indicate a molecular basis for such dif-
ferences was reported only recently when enhanced
neurovirulence was associated with two amino acid
changes each in the G protein and the polymerase
genes (Nishino et al, 2002). Another phenotypic dif-
ference, sensitivity to amantadine sulfate, is reported
for some human isolates (Bode et al, 1997; Dietrich
et al, 2000; Ferszt et al, 1999). Other isolates ap-
pear to be resistant to amantadine sulfate in vitro and
in vivo (Cubitt and de la Torre, 1997; Hallensleben
et al, 1997; Stitz et al, 1998b). It is unclear whether
sensitivity to this drug is specific to the isolates
studied by Bode and coworkers. The authors are
not aware of similar data for other human isolates
(Nakamura et al, 2000; Planz et al, 1999). The
epidemiology of human disease is unresolved
(Tables 1 and 2) (Bode et al, 2001; Lipkin et al, 2001;
Schwemmle, 2001). Reports of international collab-
orative studies based on standardized diagnostic in-
struments and molecular and serological assays are
anticipated in 2003.

Animal and tissue culture models
of pathogenesis

Once inside the host cell, mechanisms for BDV
pathogenicity remain poorly defined. Virus infec-
tion is noncytopathic and persistent. Mechanisms of
pathogenicity in the brain may include direct inter-
action with intracellular signaling and function, or
interference with intercellular communication essen-
tial to brain function, probably through soluble fac-
tors such as cytokines, neurotrophins, and/or neu-
rotransmitters (Gosztonyi and Ludwig, 2001; Hornig
et al, 2001). The best studied systems are the
adult- and the neonatally-infected Lewis rat models.

Infection of adult Lewis rats produces a promi-
nent neurobehavioral disorder and is characterized
by pronounced immunopathology. In the acute phase
(4 to 8 weeks post infection), cellular infiltrates
(CD4+ and CD8+ T cells, natural killer [NK] cells,
macrophages) and Th1-type cytokines are prominent
in perivascular and parenchymal regions of the cen-
tral nervous system (CNS); in the chronic phase
(15 weeks post infection and beyond), a decline in
infiltrates is accompanied by an increase in Th2-type
cytokines and a shift to a humoral immune response
(Hatalski et al, 1998). CD8+ T cells mediate destruc-
tion of virus-infected cells in the CNS, whereas CD4+
T cells promote production of antiviral antibodies.
Although antibodies to N and P generated during the
acute phase of disease are non-neutralizing (Furrer
et al, 2001), antibodies with neutralizing capacity in-
crease dramatically after the acute phase (Hatalski
et al, 1995) and likely participate in restriction of

virus to neural tissues (Stitz et al, 1998a). Mecha-
nisms contributing to viral persistence are as yet un-
certain. Altered viral gene expression is an unlikely
explanation as there is little substantive change in the
CNS over the course of disease in viral titers (Carbone
et al, 1987; Narayan et al, 1983), transcripts coding
for BDV proteins, or levels of BDV N and P proteins
(Hatalski, 1996). Modulation of immune responses as
BD progresses to the chronic phase may exert some
influence on BDV persistence. BDV-specific Th1 tol-
erance appears to be induced; as rats progress to the
chronic stage of infection, the capacity of lympho-
cytes isolated from acute phase CNS to lyse BDV-
specific target cells is lost (Sobbe et al, 1997). These
changes in BDV-specific tolerance during chronic in-
fection may result from presentation of BDV anti-
gens in brain without essential costimulatory signals
(Karpas et al, 1994; Khoury et al, 1995; Schwartz,
1992), allowing Th1 cells to become anergic or un-
dergo apoptosis. Indeed, apoptosis of perivascular in-
flammatory cells is most apparent at 5-6 weeks post
infection, coincident with the onset of the chronic
phase and the decline in encephalitis (Hatalski et al,
1997).

The distinct clinical and behavioral features of the
immune-mediated adult rat model closely parallel
the CNS pathology of the acute and chronic phases.
In the acute phase, coinciding with monocyte infil-
tration in CNS regions of early viral burden, such
as hippocampus, amygdala, and other limbic struc-
tures (Carbone et al, 1987), animals demonstrate ex-
aggerated startle responses and hyperactivity. As ani-
mals enter the chronic phase of infection, high-grade
stereotyped motor behaviors (continuous repetition
of behavioral elements, including sniffing, chew-
ing, scratching, grooming, and self-biting), dyskine-
sias, dystonias, and flexed seated postures appear
(Solbrig et al, 1994), in parallel with the spread of
virus throughout limbic and prefrontal circuits. Up
to 10% of animals become obese, achieving body
weights up to 300% of normal (Ludwig et al, 1988).

Disorders of movement and behavior in adult-
infected rats are associated with dysfunction in
dopamine (DA) circuits (Solbrig et al, 1994, 1995,
1996a, 1996b, 1998), as seen in many neuropsychi-
atric disorders (Anderson, 1994; Cooper et al, 1991;
Ernst et al, 1997; Hamner and Diamond, 1996; Kane
and Marder, 1993; Kelsoe et al, 1996; Partonen, 1996),
and may be further linked to serotonin (5HT) ab-
normalities (Solbrig et al, 1995). Enhanced sensitiv-
ity of central DA systems of adult-infected BD ani-
mals to DA agonists, antagonists, and DA reuptake
inhibitors is observed. Administration of the mixed-
acting DA agonist, dextroamphetamine (Solbrig et al,
1994), or of cocaine, a DA reuptake inhibitor, to adult-
infected rats elicits increased locomotor and stereo-
typic behavior, indicating dose-dependent potentia-
tion of DA neurotransmission (Solbrig et al, 1998).
Low, presynaptic, autoreceptor doses of the direct DA
agonist, apomorphine, reduce hyperactivity, whereas
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Table 1 Serum immunoreactivity to BDV in subjects with various diseases

Prevalence

Disease Disease Control Assay Reference

Psychiatric (various) 0.6% (4/694) 0% (0/200) IFA Rott et al, 1985
2% (13/642) 2% (11/540) IFA Bode et al, 1988
4%–7% (200/5000–350/5000) 1% (10/1000) WB/IFA Rott et al, 1991
12% (6/49) IFA Bode et al, 1993
30% (18/60) WB Kishi et al, 1995b
14% (18/132) 1.5% (3/203) WB Sauder et al, 1996
24% (13/55) 11% (4/36) IFA Igata-Yi et al, 1996
0% (0/44) 0% (0/70) IFA/WB Kubo et al, 1997
2.8% (35/1260) 1.1% (10/917 ECLIA Yamaguchi et al, 1999
9.8% (4/41) IFA Bachmann et al, 1999
14.8% (4/27) 0% (0/13) IFA Vahlenkamp et al, 2000
0% (0/89) 0% (0/210) IFA/WB Tsuji et al, 2000
1.1%–5.5% (1/90 or 5/90) 0% (0/45) WB (N or P) Fukuda et al, 2001
2.1% (17/816) ECLIA Rybakowski et al, 2001a
2.4% (23/946) 1.0% (4/412) ECLIA Rybakowski et al, 2001b,

2002
12.6% (11/87) 15.5% (45/290) IFA Lebain et al, 2002

Affective disorders 4.5% (12/265) 0% (0/105) IFA Amsterdam et al, 1985
4% (12/285) 0% (0/200) IFA Rott et al, 1985
38% or 12% (53/138 or 17/138) 16% or 4% WB (N or P) Fu et al, 1993a

(19/117 or 5/117)
37% (10/27) IFA Bode et al, 1993
12% (6/52) 1.5% (3/203) WB Sauder et al, 1996
0%–0.8% (0/122–1/122) 0% (0/70) IFA/WB Kubo et al, 1997
2% (1/45) 0% (0/45) WB Fukuda et al, 2001
92.6% (26/28) 32.3% (21/65) CIC Bode et al, 2001

Schizophrenia 25% (1/4) IFA Bode et al, 1993
9%–28% (8/90 or 25/90) 0%–20% (0/20 or 4/20) WB (N or P) Waltrip et al, 1995
17% (15/90) 15% (3/20) IFA Waltrip et al, 1995
14% (16/114) 1.5% (3/203) WB Sauder et al, 1996
20% (2/10) WB Richt et al, 1997
0%–1% (0/167–2/167) 0% (0/70) IFA/WB Kubo et al, 1997
14% (9/64) 0% (0/20) WB Waltrip et al, 1997
17.9% or 35.8% (12/67 or 24/67) 0% (0/26) WB (N or P) Iwahashi et al, 1997
12.1% (38/276) WB Chen et al, 1999b
10.3% (3/29) 23.1% (6/26) IFA Selten et al, 2000
9% (4/45) 0% (0/45) WB Fukuda et al, 2001
12.6% (11/87) 15.5% (45/290) IFA Lebain et al, 2002

CFS 24% (6/25) WB Nakaya et al, 1996
34% (30/89) WB Kitani et al, 1996;

Nakaya et al, 1997
0% (0/69) 0% (0/62) WB Evengard et al, 1999
100% (7/7) 33% (1/3) WB Nakaya et al, 1999

MS 13% (15/114) 2.3% (11/483) IP/IFA Bode et al, 1992
0% (0/50) IFA Kitze et al, 1996

Mental health care workers 9.8% (8/82) 2.9% (8/277) WB Chen et al, 1999b
Family of schizophrenic 12.1% (16/132) 2.9% (8/277) WB Chen et al, 1999b

patients
Live near horse farms 2.6%–14.8% (2/78—16/108) 1% (1/100) ELISA Takahashi et al, 1997
Ostrich exposure 46% (19/41) 10% (4/41) ELISA Weisman et al, 1994

Abbreviations: ELISA, enzyme-linked immunosorbent assay; IFA, immunofluorescence assay; WB, Western immunoblot; IP, im-
munoprecipitation; CIC, circulating immune complexes; CFS, chronic fatigue syndrome; MS, multiple sclerosis; N, nucleoprotein;
P, phosphoprotein.

higher doses increase locomotion. Both pre- and post-
synaptic sites of the DA transmitter system appear to
be damaged in striatum: DA reuptake sites, as mea-
sured by mazindol binding, are reduced in caudate-
putamen (Solbrig et al, 1998) and nucleus accum-
bens (Solbrig et al, 1996b); and postsynaptic D2,
but not D1, receptor binding is markedly reduced in
caudate-putamen whereas D2 and D3 receptor bind-
ing are reduced in nucleus accumbens (Solbrig et al,

1994, 1996a, 1996b). In contrast, postsynaptic DA re-
ceptors (D1, D2) remain intact in prefrontal cortex
(Solbrig et al, 1996a). Further support for D2-selective
losses and resultant D1 hypersensitivity as media-
tors of neurobehavioral disturbances in adult BD is
found in the ability to reverse locomotor hyperactiv-
ity through administration of D1 receptor–blocking
agents, such as the D1 antagonist, SCH23390, or
clozapine, an atypical antipsychotic with mixed D1,
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Table 2 BDV RNA, virus or protein in subjects with various diseases

Prevalence

Disease Tissue Disease Controls Divergence* Reference

Psychiatric (various) PBMC 67% (4/6) 0% (0/10) 0%–3.6% Bode et al, 1995
PBMC 37% (22/60) Kishi et al, 1995b
PBMC 42% (5/12) 0% (0/23) 0%–4.0% Sauder et al, 1996
PBMC-coculture 9% (3/33) 0% (0/5) 0.07%–0.83% Bode et al, 1996;

de la Torre et al, 1996
PBMC 2% (2/106) 0% (0/12) Kubo et al, 1997
PBMC 0% (0/24) 0% (0/4) Richt et al, 1997
PBMC 0% (0/159) Lieb et al, 1997
Blood (1/1) Planz et al, 1998
PBMC 4% (5/126) 2.4% (2/84) Iwata et al, 1998
PBMC 20% (3/15) 0% (0/3) Planz et al, 1999
PBMC 0% (0/81) Kim et al, 1999
PBMC 0% (0/27) Bachmann et al, 1999
CSF 0% (0/27) Bachmann et al, 1999
PBMC 1.8% (1/56) 0.6% (1/173) Tsuji et al, 2000
PBMC 37% (10/27) 15.4% (2/13) Vahlenkamp et al, 2000
PBMC 1.1% (1/90) 0% (0/45) Fukuda et al, 2001

Affective disorders PBMC 33% (1/3) 0% (0/23) Sauder et al, 1996
PBMC 17% (1/6) 0% (0/36) Igata-Yi et al, 1996
Brain 40% (2/5) 0% (0/10) Salvatore et al, 1997
PBMC 4% (2/49) 2% (2/84) 0%–5.1% Iwata et al, 1998
CSF 5% (3/65) 0% (0/69) [Protein] Deuschle et al, 1998
PBMC 2% (1/45) 0% (0/45) Fukuda et al, 2001

Schizophrenia Brain 0% (0/3) 0% (0/3) Sierra-Honigmann et al, 1995
CSF 0% (0/8) 0% (0/8) Sierra-Honigmann et al, 1995
PBMC 0% (0/7) 0% (0/7) Sierra-Honigmann et al, 1995
PBMC 64% (7/11) 0% (0/23) Sauder et al, 1996
PBMC 10% (5/49) 0% (0/36) Igata-Yi et al, 1996
PBMC 100% (3/3) 4.2%–9.3% Kishi et al, 1996
PBMC 0% (0/10) 0% (0/10) Richt et al, 1997
Brain 53% (9/17) 0% (0/10) Salvatore et al, 1997
PBMC 9.8% (6/61) 0% (0/26) Iwahashi et al, 1997
PBMC 4% (3/77) 2% (2/84) 0%–5.1% Iwata et al, 1998
PBMC 14% (10/74) 1.4% (1/69) Chen et al, 1999a
Brain 25% (1/4) [RNA, virus, protein] Nakamura et al, 2000
PBMC 13.8% (4/29) 34.6% (9/26) Selten et al, 2000
PBMC 0% (0/45) 0% (0/45) Fukuda et al, 2001
PBMC 12% (3/25) 6.0%–14% Nakaya et al, 1996
PBMC 12% (7/57) 4.9% (8/172) Kitani et al, 1996;

Nakaya et al, 1997
PBMC 0% (0/18) Evengard et al, 1999

FMS CSF 0% (0/18) 0% (0/6) Wittrup et al, 2000
Hippocampal sclerosis Brain 80% (4/5) de la Torre et al, 1996

Brain 15% (3/20) 0% (0/85) Czygan et al, 1999
MS CSF 11% (2/19) 0% (0/69) [Protein] Deuschle et al, 1998

PBMC 0% (0/34) 0% (0/40) Haase et al, 2001
Mental health care workers PBMC 15% (7/45) 1.4% (1/69) Chen et al, 1999a
Normal controls PBMC 5% (8/172) Kishi et al, 1995a

Brain 6.7% (2/30) Haga et al, 1997

Abbreviations: PBMC, peripheral blood mononuclear cells; CSF, cerebrospinal fluid; CFS, chronic fatigue syndrome; FMS, fibromyalgia
syndrome. *Divergence of P-gene nucleotide sequence from common BDV isolates (strain V and He/80).

D2, D3, and D4 antagonist activity, but not through
the administration of D2-selective antagonists (e.g.,
raclopride) (Solbrig et al, 1994).

Neurochemical studies further support a lesion in
DA transmission consistent with partial DA deaf-
ferentation and compensatory metabolic hyperac-
tivity in nigrostriatal and mesolimbic DA systems.
Decreases in DA levels exceed those in dihydrox-
yphenylacetic acid (DOPAC, the major metabolite
of DA) levels in high-performance liquid chro-
matography (HPLC) analysis of tissues from stria-

tum, nucleus accumbens, and olfactory tubercle
(Solbrig et al, 1994), whereas in prefrontal cor-
tex marked increases are noted in DOPAC (Solbrig
et al, 1996a). Depletion of tyrosine hydroxylase (TH)-
immunoreactive cells in substantia nigra and ventral
tegmental area (Solbrig et al, 1994) and in striatum
(Solbrig et al, 2000), and a decrease in TH protein con-
tent in striatum but not in substantia nigra pars com-
pacta, are nonetheless accompanied by an increase
in TH functional activity (Solbrig et al, 2000). In-
creased gene expression of neurotrophic factors that
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support growth of DA-producing cells in vitro, in-
cluding brain-derived neurotrophic factor (BDNF),
neurotrophin (NT)-3, NT-4, and ciliary neurotrophic
factor (CNTF), may also contribute to the sensitivity
to DA agonist action in adult BD (Solbrig et al, 2000).

Additional neuromodulator abnormalities are also
noted in the adult model. The expression of genes
for neuromodulatory substances and their associ-
ated synthesizing enzymes, including somatostatin,
cholecystokinin, and glutamic acid decarboxylase, is
greatly reduced during the acute phase and recov-
ers toward normal in the chronic phase of adult BD
(Lipkin et al, 1988). The cholinergic system, a ma-
jor participant in sensorimotor processing, learning,
and memory, is similarly affected, with a decrease
in choline acetyltransferase-positive fibers as early as
day 6 post infection, progressing to nearly complete
loss of these fibers in hippocampus and neocortex by
day 15 (Gies et al, 1998). Preliminary work on dys-
regulation of 5HT and norepinephrine (NE) systems
suggests metabolic hyperactivity of 5HT, with a mod-
est increase in the metabolite 5-hydroxyindoleacetic
acid in striatum, and of NE, as evidenced by a
small increase in the NE metabolite, 3-methoxy-4-
hydroxyphenethyleneglycol, in prefrontal and an-
terior cingulate cortex regions (Solbrig et al,
1995). These changes may reflect compensatory up-
regulation or heterotypic sprouting following partial
loss of DA afferents to these brain regions. Selective
effects of BDV on 5HT and NE pre- or postsynaptic
receptors have not yet been investigated. Pharmaco-
logic and neurotransmitter-specific molecular probes
have also been used to characterize endogenous opi-
oid systems in the adult rat model. Infected animals
respond abnormally to the opiate antagonist, nalox-
one, with hyperkinesis and seizures, and also demon-
strate increases in striatal preproenkephalin mRNA
at 14 and 21 days (Fu et al, 1993b), and 6 weeks
after BDV infection (Solbrig et al, 2002). BDV and
met-enkephalin immunoreactivity also coincided in
a high percentage of cells (Solbrig et al, 2002). Induc-
tion of the enkephalin system in adult BD may re-
late to increased levels of phosphorylated cyclic AMP
response element binding (phosphoCREB) protein
through activation by BDV of the mitogen-activated
protein (MAP) kinase pathway, thus stimulating tran-
scription factors that regulate enkephalin expression
in striatum (Konradi et al, 1993). However, the mech-
anisms by which these changes in endogenous opi-
oid systems occur are unclear. The marked CNS in-
flammation in adult-infected rats confounds the role
of direct effects of the virus, virus effects on resi-
dent cells of the CNS, and cellular immune responses
to viral gene products in production of monoamine,
cholinergic, and opiatergic dysfunction in BD. Thus,
our efforts have turned towards the neonatal rat
model in an effort to identify the functional and
structural consequences of BDV in a system that is
linked to more direct interactions of the virus with
CNS.

The neonatal rat model does not show overt im-
munopathology; instead, despite high virus load in
the brain and lifelong persistence, animals infected
within the first 12 h of life develop a mild behav-
ioral syndrome and restricted neuropathology that
may provide a more intriguing model for neuropsy-
chiatric disorders. The cerebellar and hippocampal
dysgenesis observed in neonatally infected animals
is consistent with the more subtle neurodevelopmen-
tal abnormalities reported by some investigators in
autism (Kemper and Bauman, 1993), schizophrenia
(Altshuler et al, 1987; Fish et al, 1992), and affec-
tive disorders (Soares and Mann, 1997). Neonatally
infected animals display a wide range of physiologic
and neurobehavioral disturbances. They are smaller
than uninfected littermates (Bautista et al, 1994;
Carbone et al, 1991b), without demonstrable alter-
ation of glucose, growth hormone, or insulin-like
growth factor-1 (Bautista et al, 1994) or amount of
food ingested (Bautista et al, 1995); display an en-
hanced preference for salt solutions; and exhibit al-
tered circadian rhythms (Bautista et al, 1994). Be-
havioral and cognitive changes in rats infected in
the neonatal period include abnormal early loco-
motor development (Hornig et al, 1999), spatial
and aversive learning deficits (Dittrich et al, 1989;
Rubin et al, 1999), increased motor activity (Bautista
et al, 1994; Hornig et al, 1999), abnormal anxiety
responses (Dittrich et al, 1989; Hornig et al, 1999;
Pletnikov et al, 1999a), stereotypic behaviors (Hornig
et al, 1999), and reduced initiation of and response to
nondominance-related play interactions (Pletnikov
et al, 1999b). Thus, the neuropathologic, physiologic,
and neurobehavioral features of BDV infection of
neonates indicate that it not only provides a useful
model for exploring the mechanisms by which viral
and immune factors may damage developing neuro-
circuitry, but also has significant links to the range of
biologic, neurostructural, locomotor, cognitive, and
social deficits observed in a wide range of human neu-
ropsychiatric illnesses, including the neurodevelop-
mental disorder, autism.

CNS dysfunction in neonatally infected animals
has been proposed to be linked to direct viral ef-
fects on morphogenesis of the hippocampus and cere-
bellum, two structures in rodents that continue to
mature postnatally. Although overall architecture is
maintained, granule cells of dentate gyrus (Carbone
et al, 1991b; Hornig et al, 1999; Rubin et al, 1999)
and Purkinje cells of cerebellum (Eisenman et al,
1999; Hornig et al, 1999) are lost through apoptosis
(Hornig et al, 1999). The extent of neuronal loss in
dentate gyrus is correlated with the severity of spa-
tial learning and memory deficiencies in neonatally-
infected Lewis rats (Rubin et al, 1999). Subtle testing
of cerebellar function demonstrates deficits in mo-
tor coordination and postural stability (Hornig et al,
1999; Pletnikov et al, 2001), consistent with Purk-
inje cell losses. Further studies are needed to evaluate
the mechanisms by which early postnatal exposure to
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BDV induces apoptotic losses and functional damage
in cerebellar and limbic circuitry.

Although cellular inflammatory response to BDV
following neonatal infection is restricted, a phe-
nomenon ascribed to the immaturity of rat postna-
tal immune function, a brief surge in mononuclear
cell infiltrates occurs (Hornig et al, 1999; Sauder and
de la Torre, 1999), along with elevations in expres-
sion of proinflammatory cytokine (Hornig et al, 1999;
Sauder and de la Torre, 1999), chemokine (Sauder
et al, 2000), and chemokine receptor (Rauer et al,
2002) transcripts. However, this transient immune
response does not colocalize with sites of neu-
ropathologic damage (Weissenböck et al, 2000). Neu-
ropathology instead parallels regions and timecourse
of microglial proliferation and expression of major
histocompatibility complex (MHC) class I and class
II, intercellular adhesion molecule (ICAM), CD4 and
CD8 molecules (Weissenböck et al, 2000). Humoral
immune response to BDV in neonatally infected ani-
mals is also curtailed, with anti-BDV antibody titers
remaining below 1:10 through 133 days post infec-
tion (Carbone et al, 1991b).

Although reduced levels of neurotrophic factor
mRNAs occur in the neonatal model (Hornig et al,
1999; Zocher et al, 2000), these changes are restricted
to hippocampus and are unlikely to account for losses
of Purkinje cells in cerebellum. Alternatively, it is
conceivable that abnormal regulation of apoptosis,
either failure of normal apoptotic sequences to be
curtailed with age or excess activation of apoptotic
cell programs, may contribute to abnormal CNS ar-
chitecture in neonatal infections with BDV or other
neurotropic viruses. Excitotoxic stimulation, includ-
ing activation of glutamatergic circuitry, is one factor
that might trigger neuronal apoptosis. Complex al-
terations in mRNAs for apoptosis mediators, includ-
ing increased levels of mRNAs for Fas (CD95) and
interleukin-1 converting enzyme (ICE, caspase-1),
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