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BORNOLOGICAL LOCALLY CONVEX CONES

DAVOOD AYASEH - ASGHAR RANJBARI

In this paper we define bornological and b-bornological cones and in-
vestigate their properties. We give some characterizations for these cones.
In the special case of locally convex topological vector spaces these both
concepts reduce to the known concept of bornological spaces. We intro-
duce and investigate the convex quasiuniform structures Uτ , Uσ (P,P∗)
and Uβ (P,P∗) on locally convex cone (P,U).

1. Introduction

A cone is a set P endowed with an addition and a scalar multiplication for
nonnegative real numbers. The addition is assumed to be associative and com-
mutative, and there is a neutral element 0 ∈ P . For the scalar multiplication
the usual associative and distributive properties hold, that is α(βa) = (αβ )a,
(α +β )a = αa+βa, α(a+b) = αa+αb, 1a = a and 0a = 0 for all a,b ∈ P
and α,β ≥ 0.

The theory of locally convex cones as developed in [3] and [8] uses an order
theoretical concept or a convex quasiuniform structure to introduce a topological
structure on a cone. In this paper we use the latter. For recent researches see
[1, 4, 7].

Let P be a cone. A collection U of convex subsets U ⊆P2 =P×P is called
a convex quasiuniform structure on P , if the following properties hold:
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(U1) ∆⊆U for every U ∈ U ( ∆ = {(a,a) : a ∈ P});

(U2) for all U,V ∈ U there is a W ∈ U such that W ⊆U ∩V ;

(U3) λU ◦µU ⊆ (λ +µ)U for all U ∈ U and λ ,µ > 0;

(U4) αU ∈ U for all U ∈ U and α > 0.

Here, for U,V ⊆ P2, by U ◦V we mean the set of all (a,b) ∈ P2 such that
there is some c ∈ P with (a,c) ∈U and (c,b) ∈V .

Let P be a cone and U be a convex quasiuniform structure on P . We shall
say (P,U) is a locally convex cone if

(U5) for each a ∈ P and U ∈ U there is some ρ > 0 such that (0,a) ∈ ρU .

With every convex quasiuniform structure U on P we associate two topolo-
gies: the neighborhood bases for an element a in the upper and lower topologies
are given by the sets

U(a) = {b ∈ P : (b,a) ∈U}, resp. (a)U = {b ∈ P : (a,b) ∈U}, U ∈ U.

The common refinement of the upper and lower topologies is called symmetric
topology. A neighborhood base for a ∈ P in this topology is given by the sets

U(a)U =U(a)∩ (a)U, U ∈ U.

Let U andW be convex quasiuniform structures on P . We say that U is finer
thanW whenever for every W ∈W there is U ∈ U such that U ⊆W .

The extended real number system R=R∪{+∞} is a cone endowed with the
usual algebraic operations, in particular a+∞ = +∞ for all a ∈ R, α · (+∞) =
+∞ for all α > 0 and 0 · (+∞) = 0. We set Ṽ = {ε̃ : ε > 0}, where

ε̃ = {(a,b) ∈ R2
: a≤ b+ ε}.

Then Ṽ is a convex quasiuniform structure on R and (R, Ṽ) is a locally convex
cone. For a ∈ R the intervals (−∞,a+ ε] are the upper and the intervals [a−
ε,+∞] are the lower neighborhoods, while for a = +∞ the entire cone R is
the only upper neighborhood, and {+∞} is open in the lower topology. The
symmetric topology is the usual topology on R with +∞ as an isolated point.

For cones P and Q, a mapping T : P → Q is called a linear operator if
T (a+ b) = T (a)+T (b) and T (αa) = αT (a) hold for all a,b ∈ P and α ≥ 0.
If both (P,U) and (Q,W) are locally convex cones, the operator T is called
(uniformly) continuous if for every W ∈W one can find U ∈ U such that (T ×
T )(U)⊆W .

A linear functional on P is a linear operator µ : P → R. We denote the set
of all linear functional on P by L(P) (the algebraic dual of P). For a subset F
of P2 we define its polar F◦ as follows
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F◦ = {µ ∈ L(P) : µ(a)≤ µ(b)+1, ∀(a,b) ∈ F}.

Clearly ({(0,0)})◦ = L(P). A linear functional µ on (P,U) is (uniformly) con-
tinuous if µ ∈U◦ for some U ∈ U. The dual cone P∗ of a locally convex cone
(P,U) consists of all continuous linear functionals on P and is the union of all
polars U◦ of neighborhoods U ∈ U.

We shall say that a locally convex cone (P,U) has the strict separation
property if the following holds:

(SP) For all a,b ∈ P and U ∈ U such that (a,b) /∈ ρU for some ρ > 1,
there is a linear functional µ ∈U◦ such that µ(a)> µ(b)+1 ([3], II, 2.12).

Let U be a convex quasiuniform structure on P . The subset B of U is called
a base for U, whenever for every U ∈ U there are n ∈ N, U1, · · · ,Un ∈ B and
λ1, · · · ,λn > 0 such that λ1U1∩·· ·∩λnUn ⊆U .

2. Uniformly convex sets and uc-cones

Definition 2.1. Let P be a cone. We say that the convex subset E of P2 is
uniformly convex whenever E has properties (U1) and (U3).

Proposition 2.2. Let P be a cone and B be a collection of uniformly convex
subsets of P2. Then there exists coarsest convex quasiuniform structure U on
P that contains B. If for every a ∈ P and U ∈ B there is λ > 0 such that
(0,a) ∈ λU, then (P,U) is a locally convex cone.

Proof. We suppose that U is the collection of all uniformly convex subsets U of
P2 for which there are n ∈ N, λ1, ...,λn > 0 and U1, ...Un ∈ B such that

λ1U1∩ ...∩λnUn ⊆U .

It is easy to see that U satisfies the conditions (U1) to (U4). Also, if for every
a ∈ P and U ∈ B there is λ > 0 such that (0,a) ∈ λU , then U satisfies (U5) and
(P,U) becomes a locally convex cone.

Corollary 2.3. Let P be a cone. There is the finest convex quasiuniform struc-
ture Uβ on P that makes (P,Uβ ) into a locally convex cone.

If B is the collection of all uniformly convex subsets of P2 such that for
every a ∈ P and U ∈ B there is λ > 0 such that (0,a) ∈ λU , then Uβ is the
coarsest convex quasiuniform structure on P that contains B.

Definition 2.4. Let P be a cone and F ⊆ P2. The smallest uniformly convex
subset of P2 that contains F is called uniformly convex hull of F . We denote it
by uch(F).
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Obviously, uch(F) is the intersection of all uniformly convex subsets of P2

which contain F .
A subset A of P is called balanced if b ∈ A whenever b = λa or b+λa = 0

for some a ∈ A and 0≤ λ ≤ 1 (see [8], I, 1).

Proposition 2.5. Let P be a cone and U be a uniformly convex subset of P2.
Then B =U(0)U = {b ∈ P|(0,b) ∈U,(b,0) ∈U} is balanced and convex.

Proof. The convexity of B is obvious. Let a ∈ B. For 0 ≤ λ ≤ 1 we have
(0,λa) ∈ λU ⊆U and (λa,0) ∈ λU ⊆U , then b = λa ∈ B. On other hand if
b+λa = 0, then

(0,b) = (b+λa,b) = (λa,0)+(b,b)∈ λU +(1−λ )4⊆ λU +(1−λ )U ⊆U.

Similarly (b,0) ∈U . Thus b ∈ B and B is balanced.

Definition 2.6. Suppose that (P,U) is a locally convex cone. We shall say that
F ⊆P2 is u-bounded if it is absorbed by each U ∈ U.

A subset A of P is called bounded above (below) whenever A×{0} (res.
{0}×A) is u-bounded.

Let (P,U) be a locally convex cone and F be a u-bounded subset of P2.
Then uch(F) is u-bounded. Indeed, for every U ∈U there is λ > 0 such that F ⊆
λU . This shows that uch(F)⊆ uch(λU) = λU , since each U ∈ U is uniformly
convex.

Definition 2.7. We say that the locally convex cone (P,U) is a uc-cone, when-
ever U= {αU : α > 0} for some U ∈U (the subset U of P2 is uniformly convex
and U is created by U).

Every normed space is a uc-cone as a locally convex cone. Indeed, if
(E,‖.‖) is a normed space, B = {(a,b) ∈ E2 : ‖a− b‖ ≤ 1} and U = {αB :
α > 0}, then (E,U) is a uc-cone.

Example 2.8. Let E be a normed space with unit ball B and let Conv(E) be
the collection of all non-empty convex subsets of E. Then Conv(E) is a cone
endowed with the usual addition and multiplication. The convexity of A ∈
Conv(E) implies that (α +β )A = αA+βA. We set

B̃ = {(A,C) : A,C ∈Conv(E), A⊆C+B}.

The subset B̃ of Conv(E)×Conv(E) is uniformly convex and for A ∈Conv(E)
there is λ > 0 such that ({0},A)∈ λ B̃. Therefore B= {αB̃ : α > 0} is a convex
quasiuniform structure on Conv(E) and (Conv(E),B) is a uc-cone.
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Remark 2.9. If (P,U) is a uc-cone and P is a vector space over R, then P is
a seminormed space endowed with the symmetric topology of (P,U). If U =
{αU : α > 0}, then this seminorm is given by P(a) = inf{λ > 0 : a ∈ λU(0)U}
for a ∈ P . If the symmetric topology on P is Hausdorff, then p is a norm on P .

If a (Hausdorff) locally convex space has a bounded neighborhood, then it
is a (normed) seminormed space. In locally convex cones we have:

Proposition 2.10. Let (P,U) be a locally convex cone. If U has a u-bounded
element, then (P,U) is a uc-cone.

Proof. Suppose that U ∈ U is u-bounded. We claim that U = {αU : α > 0}.
Obviously, U is finer than {αU : α > 0}. On the other hand, if W ∈ U, then
there is α > 0 such that U ⊆ αW or 1

α
U ⊆W . This shows that {αU : α > 0} is

finer than U.

The inductive and projective limit of locally convex convex cones is defined
in [5].

Proposition 2.11. Every locally convex cone is a projective limit of uc-cones.

Proof. Let (P,U) be a locally convex cone. For every U ∈U we set UU = {αU :
α > 0}. Then UU is a convex quasiuniform structure and (P,UU) is a uc-cone.
We claim that (P,U) is the projective limit of uc-cones (P,UU)U∈U with identity
mappings. Indeed, the identity mappings IU : (P,U)→ (P,UU) are continuous,
since U is finer than UU for all U ∈U. LetW be a convex quasiuniform structure
on P that makes all IU : (P,W)→ (PU ,UU) continuous. If U ∈U, then U ∈UU .
Now the continuity of IU shows that there is W ∈W such that W = IU(W )⊆U .
This yields that W is finer than U. Therefore (P,U) is the projective limit of
uc-cones (P,UU) by the identity mappings IU : (P,U)→ (P,UU).

3. Bornological and b-Bornological Cones

In the following we define bornological and b-bornological cones. We extend
some classical results from locally convex vector spaces to locally convex cones
(see for example [2] and [6]). We obtain new results and present some exam-
ples of bornological cones. Also, we introduce extreme convex quasiuniform
structures.

Suppose that (P,U) and (Q,W) are locally convex cones and T : P → Q
is a linear operator. We shall say T is u-bounded if (T ×T )(F) is u-bounded in
Q2 for every u-bounded subset F of P2.

Obviously, every continuous linear operator is u-bounded. The converse is
not true in general. If T : (P,U)→ (Q,W) is a u-bounded linear operator and
A is a bounded subset of P , then T (A) is a bounded subset of Q.
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Definition 3.1. Let (P,U) be a locally convex cone. We shall say (P,U) is
a bornological cone if every u-bounded linear operator from (P,U) into any
locally convex cone is continuous.

Example 3.2. Let E be a bornological locally convex vector space over R and
V be a base of convex and balanced neighborhoods of the origin. If we set
Ṽ = {Ṽ : V ∈ V}, where Ṽ = {(a,b) : a−b∈V}, then (E, Ṽ) is a locally convex
cone. We prove that (E, Ṽ) is a bornological cone. Let T be a u-bounded linear
operator from (E, Ṽ) to another locally convex cone (Q,W). Then T (E) is a
locally convex space endowed with the symmetric topology induced byW . Let
W ∈W . The operator T maps bounded subsets of locally convex space E into
the locally convex space T (E) (endowed with the symmetric topology). Since E
is bornological as a locally convex space, T is continuous. Then there is V ∈ V
such that T (V ) ⊆ (1

2W )(0)(1
2W ). If we set B = {(T (a),T (b)) : T (a)−T (b) ∈

(1
2W )(0)(1

2W )}, then we have B ⊆W . Now, we have (T × T )(Ṽ ) ⊆ B ⊆W .
Then T : (E, Ṽ)→ (Q,W) is continuous and (E, Ṽ) is a bornological cone.

Example 3.3. The locally convex cone (P,Uβ ) from Corollary 2.3 is a borno-
logical cone. For, if T is a linear operator from P into other locally convex cone
(Q,W), t = T × T , and W ∈ W , then t−1(W ) = (T × T )−1(W ) is uniformly
convex. Also for every a ∈ P we have (T (0),T (a)) = (0,T (a)) ∈ λW for some
λ > 0. Then (0,a) ∈ λ t−1(W ). This shows that t−1(W ) ∈ Uβ . Therefore every
linear operator on P is continuous. This implies that (P,Uβ ) is a bornological
cone.

Let (P,U) be a locally convex cone. If the convex quasiuniform structure U
has a countable base, then it has a base (Un)n∈N such that Un+1 ⊆Un. Indeed,
let (ωn)n∈N be a base of U. We set U1 = ω1 and Un =Un−1∩ωn for n≥ 2. Now,
(Un)n∈N is a base of U and we have Un+1 ⊆Un for all n ∈ N.

Theorem 3.4. Let (P,U) be a locally convex cone. If the convex quasiuniform
structure U has a countable base, then (P,U) is a bornological cone.

Proof. We consider the base (Un)n∈N for U such that Un+1 ⊆ Un for all n ∈
N. Let (Q,W) be a locally convex cone and T : (P,U) → (Q,W) be a u-
bounded linear operator. If T is not continuous, then there exists W ∈W such
that (T ×T )(Un)* nW for all n ∈ N. We set

F =
⋂

∞
i=1Un.

The subset F of P2 is nonempty and u-bounded because 4 ⊆ F ⊆Un for all
n ∈ N. On the other hand (T ×T )(F) is not u-bounded in Q2. In fact it is not
absorbed by W ∈W . This contradiction proves our claim.
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Corollary 3.5. Every uc-cone is bornological.

In the case of locally convex spaces, Theorem 3.4 shows that every metriz-
able convex space is bornological as a locally convex cone.

Proposition 3.6. An inductive limit of bornological cones is a bornological
cone.

Proof. Let the locally convex cone (P,U) be the inductive limit of bornological
cones (Pγ ,Uγ) by linear mappings fγ : Pγ →P , for γ ∈ Γ. If T is a u-bounded
linear mapping from P into other locally convex cone (Q,W), then To fγ is a
u-bounded linear mapping from Pγ into Q, for each γ ∈ Γ, by the continuity of
fγ . Now, To fγ is continuous, since (Pγ ,Uγ) is bornological for each γ ∈ Γ. Thus
T is continuous by Proposition 3.3 from [5].

Corollary 3.7. Every inductive limit of locally convex cones with a countable
base is a bornological cone.

Theorem 3.8. Let (P,W) be a locally convex cone. Then there is the finest
convex quasiuniform structure U on P under which P2 has the same u-bounded
sets as underW . Under the convex quasiuniform structure U, P is a bornologi-
cal cone, the inductive limit of a family of uc-subcones of P . The locally convex
cone (P,W) is bornological if and if U andW are equivalent.

Proof. Let B be the collection of all u-bounded uniformly convex subsets of
P2. For U ∈B we set

PU = {a ∈ P : ∃λ > 0 s. t. (0,a) ∈ λU} and UU = {αU : α > 0}.

It is easy to see that (PU ,UU) is a uc-cone. We claim that P =
⋃

U∈BPU . For,
if a ∈ P , then {(0,a)} is a u-bounded subset of P2. We set U

′
= uch({(0,a)}).

Then U
′

is a u-bounded uniformly convex subset of P2 and we have a ∈ PU ′ .
We shall demonstrate that (P,U) is the inductive limit of locally convex cones
(PU ,UU)U∈B by the inclusion mappings: iU : (PU ,UU)→ (P,W), U ∈B. The
u-boundedness of U implies that the inclusion mapping iU : (PU ,UU)→ (P,W)
is continuous. This shows that U is finer thanW , by the definition of inductive
limit. Then u-boundedness in U implies u-boundedness inW . For the converse,
suppose that F ⊂P2 is u-bounded underW . If F̃ = uch(F), then F̃ is u-bounded
and F̃ ∈ B. Also F is u-bounded in (PF̃ ,UF̃). Now, the continuity of the
inclusion mapping iF̃ : (PF̃ ,UF̃)→ (P,U) implies the u-boundedness of F in
(P,U). The locally convex cone (P,U) is bornological by Proposition 3.6 and
Corollary 3.5. Now, if (P,W) is bornological, then the inclusion mapping i :
(P,W)→ (P,U) is u-bounded and then it is continuous. This shows that U and
W are equivalent.
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Let (P,U) be a locally convex cone. In the following we denote the finest
convex quasiuniform structure under which P2 has the same u-bounded sets as
under U, by Uτ . If (P,U) is bornological, then U = Uτ . If (P,U) and (Q,W)
are locally convex cones, we shall call the linear operator T : (P,U)→ (Q,W),
τ-continuous whenever T : (P,Uτ)→ (Q,Wτ) is continuous.

Theorem 3.9. Let (P,U) and (Q,W) be locally convex cones and T : P →Q
be a linear operator. Then T : (P,U)→ (Q,W) is u-bounded if and only if
T : (P,Uτ)→ (Q,W) is continuous.

Proof. We suppose that T : (P,U)→ (Q,W) is u-bounded. Then T : (P,Uτ)→
(Q,W) is u-bounded, since P2 has the same u-bounded sets under U and Uτ .
Now, T : (P,Uτ)→ (Q,W) is continuous because (P,Uτ) is bornological.

Conversely, if T : (P,Uτ)→ (Q,W) is continuous then it is u-bounded.
This implies that T : (P,U)→ (Q,W) is u-bounded, since P2 has the same
u-bounded sets under U and Uτ .

We characterize bornological cones in the following theorem.

Theorem 3.10. Let (P,U) be a locally convex cone. The following are equiva-
lent:

(a) (P,U) is bornological.

(b) Every uniformly convex subset of P2 that absorbs all u-bounded subsets
of P2 contains an element of U.

(c) Every u-bounded linear mapping of (P,U) into each uc-cone is continu-
ous.

(d) (P,U) is an inductive limit of a family of uc- subcones of P .

Proof. The statements (a) and (d) are equivalent by Corollary 3.5 and Theorem
3.8.

(a)→ (b) Suppose that (a) holds and ṽ is a uniformly convex subset of P2

that absorbs all u-bounded subsets of P2. We set V = {α ṽ : α > 0}. It is easy to
see that (P,V) is a locally convex cone. Since ṽ absorbs all u-bounded subsets
of P2, the identity mapping i : (P,U)→ (P,V) is a u-bounded linear operator.
Now, (a) implies that i is continuous and therefore U is finer than V . This shows
that ṽ ∈ U. Thus (a) implies (b).

(b)→ (a) Suppose that (b) holds and T : (P,U)→ (Q,W) is a u-bounded
linear operator. We set t = T×T . For every W ∈W , t−1(W ) is a uniformly con-
vex and absorbs all u-bounded subsets of P2. Indeed, (T (a),T (a)) ∈W implies
(a,a) ∈ t−1(W ). If (a,c) ∈ λ t−1(W ) and (c,d) ∈ µt−1(W ), then (T (a),T (c)) ∈
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λW and (T (c),T (d)) ∈ µW . This shows that (T (a),T (d)) ∈ (λ + µ)W and
then (a,c) ∈ (λ +µ)t−1(W ). Also the u-boundedness of T implies that t−1(W )
absorbs all u-bounded subsets of P2. Now (b) implies that t−1(W ) ∈ U. Thus T
is continuous and (P,U) is bornological.

Clearly (a) implies (c).
(c)→ (a) Suppose that (c) holds and T : (P,U)→ (Q,W) is a u-bounded

linear operator. For W ∈ W , we set WW = {αW : α > 0}. Clearly for every
W ∈W , T : (P,U)→ (Q,WW ) is u-bounded and then it is continuous by (c).
If W ∈ W , then W ∈ WW . Therefore, there is U ∈ U such that (T ×T )(U) ⊆
W .

As a special case in locally convex spaces, Theorem 3.10, (c) yields that
a locally convex space E is bornological if and only if every u-bounded linear
operator from E into a seminormed space is continuous.

Remark 3.11. Let (P,U) be a locally convex cone with (SP) and P∗ be its dual
cone. We set

X = {U◦ : U ∈ U} and VU◦ = {(a,b) ∈P2 : µ(a)≤ µ(b)+1 f or all µ ∈U◦}.

It is proved in [3], chapter II, that UX = {VU◦ : U ∈ U} is a convex quasiuniform
structure on P and (P,UX) is a locally convex cone. If (P,U) has (SP), then the
convex quasiuniform structures U and UX are equivalent (see [3], chapter II).

A net (xi)i∈I in locally convex cone (P,U) is called symmetric Cauchy if
for each U ∈ U there is some γU ∈ I such that (xβ ,xα) ∈ U for all α,β ∈ I
with β ,α ≥ γU . The locally convex cone (P,U) is called symmetric complete
if every symmetric Cauchy net converges in the symmetric topology.

Proposition 3.12. Let (P,W) be a locally convex cone with (SP) and U be a
u-bounded uniformly convex subset of P2 such that

(CP) if (a,b) /∈U, then there is µ ∈ P∗ such that µ(a)> µ(b)+1 and
µ(c)≤ µ(d)+1 for all (c,d) ∈U.

Then the completeness of (P,W) with respect to the symmetric topology implies
the completeness of (PU ,UU) with respect to the symmetric topology.

Proof. Let (ai)i∈I be a Cauchy net in (PU ,UU). Then (ai)i∈I is a Cauchy net
in (P,W), since the topology induced on PU by the symmetric topology of
(P,W) is coarser than the symmetric topology of (PU ,UU). Now, the com-
pleteness of (P,W) yields that there is a ∈ P such that ai→ a with respect to
the symmetric topology of (P,W). We show that a ∈ PU and ai→ a with re-
spect to the symmetric topology of (PU ,UU). For ε > 0 there exists i0 ∈ I such
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that (ai,a j) ∈ εU for all i, j ≥ i0. We claim that (ai,a) ∈ εU and (a,ai) ∈ εU
for all i≥ i0. Otherwise, there is µ ∈ P∗ such that µ(ai)> µ(a)+ ε or there is
µ1 ∈ P∗ such that µ1(a)> µ1(ai)+ ε . This is a contradiction by Remark 3.11.
Indeed, there is W1 ∈W such that µ,µ1 ∈W ◦1 . Let X = {W ◦ : W ∈W}. Then
the convex quasiuniform structures W and WX are equivalent, since (P,W)
has (SP). This shows that ai → a with respect to the symmetric topology of
(P,WX). Then there is i1 such that for i≥ i1, (ai,a) ∈ εUW ◦1 and (a,ai) ∈ εUW ◦1 .
This implies that µ(ai)≤ µ(a)+ ε and µ1(a)≤ µ1(ai)+ ε for i≥max{i1, i0}.

Also, there is λ > 0 such that (0,ai0) ∈ λU , since ai0 ∈ PU . On the other
hand (ai0 ,a)∈ εU . Since U is uniformly convex, we have (0,a)∈ (λ +ε)U and
then a ∈ PU .

Lemma 3.13. In every locally convex cone with (SP), every uniformly convex
u-bounded subset of P2 is contained in a uniformly convex u-bounded subset of
P2 which has property (CP).

Proof. Let (P,U) be a locally convex cone with (SP) and B be a uniformly
convex u-bounded subset of P2. We set B̃ = {(a,b) ∈ P2 : µ(a) ≤ µ(b) +
1, ∀µ ∈ B◦}. Obviously, B̃ is uniformly convex and we have B ⊆ B̃. We prove
that B̃ is u-bounded. Let U ∈ U. There is λ > 1 such that B ⊆ λU , since B is
u-bounded. This shows that U◦ ⊆ λB◦. We claim that B̃ ⊆ λU . If (a,b) /∈ λU
then there is µ ∈U◦ ⊆ λB◦ such that µ(a) > µ(b)+ 1, since (P,U) has (SP).
This shows that (a,b) /∈ B̃.

Every complete Hausdorff bornological space is the inductive limit of Ba-
nach spaces. In locally convex cones we have:

Theorem 3.14. Let (P,U) be a locally convex cone such that:
(a) P is complete with respect to the symmetric topology,
(b) (P,U) has (SP).
Then (P,Uτ) is the inductive limit of a family of uc- subcones which are

complete with respect to their symmetric topologies.

Proof. Let B be the collection of all u-bounded uniformly convex subsets of
P2 which have (CP) (the collection B is not empty by Lemma 3.13). We can
prove that (P,Uτ) is the inductive limit of uc-cones (PU ,UU)U∈B in a similar
way to the proof of Theorem 3.8. Since (P,U) is complete with respect to
the symmetric topology, (PU ,UU) is complete with respect to the symmetric
topology for all U ∈B, by Proposition 3.12.

Let (P,U) be a locally convex cone andP∗ be whose dual cone. We suppose
that Uσ (P,P∗) is the coarsest convex quasiuniform structure on P that makes
all µ ∈ P∗ continuous. The finite intersections of the sets (µ× µ)−1(ε̃) where
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µ ∈ P∗, ε > 0 and ε̃ = {(a,b) ∈ R2
: a ≤ b+ ε}, form a base for Uσ (P,P∗).

We call Uσ (P,P∗) the weak convex quasiuniform structure on P . It is easy to
see that (P,Uσ (P,P∗)) is a locally convex cone. We shall say that F ⊂ P2 is
weakly u-bounded, if it is u-bounded in locally convex cone (P,Uσ (P,P∗)).
The operator T : (P,U)→ (Q,W) is called weakly u-bounded if (T ×T )(F) is
weakly u-bounded for every weakly u-bounded subset F of P2 and it is called
weakly continuous or (σ -continuous) whenever it is continuous with respect
the weak convex quasiuniform structures on P and Q. The linear operator T :
(P,U)→ (Q,W) is called τ-continuous whenever T : (P,Uτ)→ (Q,Wτ) is
continuous.

Proposition 3.15. Let (P,U) and (Q,W) be locally convex cones and let T
be a continuous linear operator from (P,U) into (Q,W). Then T is σ and
τ-continuous.

Proof. Let Wσ ∈Wσ . There are n ∈ N and µ1, ...,µn ∈Q∗ such that

n⋂
i=1

Λ
−1
i (1̃)⊆Wσ ,

where Λi = µi × µi. We have µi ◦ T ∈ P∗ for all i ∈ {1, ...,n}, since T is
continuous. We set Γi = µi ◦ T × µi ◦ T . Then Uσ =

⋂n
i=1 Γ

−1
i (1̃) ∈ Uσ and

(T ×T )(Uσ )⊆
⋂n

i=1 Λ
−1
i (1̃)⊆Wσ . Then T is σ -continuous.

The linear operator T : (P,U) → (Q,W) is u-bounded, since it is con-
tinuous. Then T : (P,Uτ)→ (Q,Wτ) is u-bounded, since P2 has the same
u-bounded sets under U and Uτ , also Q2 has the same u-bounded sets un-
der W and Wτ by Theorem 3.8. Now, since (P,Uτ) is a bornological cone,
T : (P,Uτ)→ (Q,Wτ) is continuous.

Proposition 3.16. Let (Q,W) be a locally convex cone such that Q2 has the
same u-bounded subsets underW andWσ (Q,Q∗). If (P,U) is a bornological
cone and T : P →W is weakly continuous, then it is continuous.

Proof. Since (P,U) is a bornological cone, it is enough to show that T is a u-
bounded operator. Let F ⊆ P2 be u-bounded. Then F is weakly u-bounded.
The weak continuity of T yields that (T ×T )(F) is weakly u-bounded and then
u-bounded by the hypothesis. This shows that T is u-bounded.

Let (P,U) be a locally convex cone and B be a collection of u-bounded
subsets of P2. For a u-bounded subset B of P2, we set B◦ = {µ ∈ P∗ : µ(a)≤
µ(b)+1, ∀(a,b)∈ B} and B̃◦ = {(µ,ν)∈P∗×P∗ : ν ∈ µ +B◦}. We show that
B̃◦ is uniformly convex. The convexity of B̃◦ is obvious. Clearly we have 0∈B◦.
This yields µ ∈ µ +B◦ for all µ ∈ P∗. Thus 4 ⊆ B̃◦. Let (µ1,µ3) ∈ (λ B̃◦) ◦
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(ρB̃◦). Then there is µ2 ∈P∗ such that (µ1,µ2)∈ λ B̃◦ and (µ2,µ3)∈ ρB̃◦. This
implies µ2 ∈ µ1 + λB◦ and µ3 ∈ µ2 + ρB◦. Since B̃◦ is convex, this implies
µ3 ∈ µ1 +(λ +ρ)B◦. Thus (µ1,µ3) ∈ (λ +ρ)B̃◦.

Suppose B̃= {B̃◦ : B∈B}. Then there is the coarsest convex quasiuniform
structure UB on P∗ such that B̃ ⊂ UB by Proposition 2.2. Let µ ∈ P∗ and
B ∈B be arbitrary. There is U ∈ U such that µ ∈U◦. Since B is u-bounded,
there is λ > 0 such that B ⊆ λU . This implies U◦ ⊆ λB◦. Thus µ ∈ λB◦ and
then (0,µ) ∈ λ B̃◦. Now Proposition 2.2 yields that (P∗,UB) is a locally convex
cone. If B is the collection of all u-bounded subsets of P2, then we denote the
corresponding convex quasiuniform structure by Uβ (P∗,P).

Proposition 3.17. If (P,U) is a uc-cone, then (P∗,Uβ (P∗,P)) is a uc-cone

Proof. Let U = {αU : α > 0}. We prove that Uβ (P∗,P) = {αŨ◦ : α > 0}. If
B is a u-bounded subset of P2, then there is λ > 0 such that B ⊆ λU . Thus
1
λ

Ũ◦ ⊆ B̃◦. This implies that {αŨ◦ : α > 0} is finer than Uβ (P∗,P). Therefore

Uβ (P∗,P) = {αŨ◦ : α > 0}.

Let P be a (Hausdorff) locally convex space and V be a base of convex,
balanced and closed neighborhoods. For V ∈ V , suppose Ṽ = {(a,b) ∈ P2 :
a− b ∈ V}. We set Ṽ = {Ṽ : V ∈ V}. Then (P, Ṽ) is a locally convex cone.
If V = {αV : α > 0} for some V ∈ V , then the symmetric topology induced on
P∗ by Uβ (P∗,P) is (normable) seminormable by Proposition 3.17 and Remark
2.9.

Proposition 3.18. Let (P,U) be a locally convex cone. Then for every U ∈ U,
U◦ is bounded below in (P∗,Uβ (P∗,P)).

Proof. Let B be a u-bounded subset of P2 and U ∈ U. Then B ⊆ λU for some
λ > 0. This implies that U◦ ⊆ λB◦, hence µ ∈ λB◦ for all µ ∈U◦. This yields
(0,µ) ∈ λ B̃◦ for all µ ∈U◦. Thus U is bounded below in (P∗,Uβ (P∗,P)).

Let (P,U) be a locally convex cone and B∗ be the collection of all u-
bounded subsets of P∗×P∗ under Uβ (P∗,P). For B∗ ∈ B∗, we set

B◦∗ = {a ∈ P : µ(a)≤ ν(a)+1, ∀ (µ,ν) ∈ B∗}.

Then B̃∗ = {B̃◦∗ : B∗ ∈B∗} is a collection of uniformly convex subsets of P2,
where B̃◦∗ = {(a,b) ∈ P2 : b ∈ a+B◦∗}.

Lemma 3.19. Let (P,U) be a locally convex cone and A be a subset of P . If
B = {0}×A, then
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(i) B⊆ Ẽ◦, where E = B̃◦ ( B⊆ ˜̃B◦◦).
(ii) ˜̃B◦◦ is uniformly convex,
(iii) ˜̃B◦◦ ⊆U for every subset U of P2 that has (CP) and contains B.

Proof. For (i), let (0,a) ∈ B and (µ,ν) ∈ E be arbitrary. Then ν ∈ µ +B◦.
This shows that there is ψ ∈ B◦ such that ν = µ + ψ . Obviously, we have
ψ(a) ≥ −1. This implies that µ(a) ≤ ν(a)+1. Therefore a ∈ E◦. This yields
that (0,a) ∈ Ẽ◦.

(ii) is obvious.
For (iii), let U be a subset ofP2 that has (CP) and contains B and let (a,b) /∈

U . Then there is µ ∈ P∗ such that µ(a)> µ(b)+1 and µ(c)≤ µ(d)+1 for all
(c,d) ∈U . Clearly we have µ ∈U◦ ⊂ B◦. This implies (0,µ) ∈ B̃◦. If (a,b) ∈
˜̃B◦◦, then b = a+ t for some t ∈ E◦, where E = B̃◦. Now, since (0,µ) ∈ B̃◦ we
have µ(t) ≥ −1. This implies that µ(a) ≤ µ(b)+1. This contradiction proves
our claim.

Corollary 3.20. Let (P,U) be a locally convex cone. If U = uch({0}×A) for
some subset A of P and U has (CP), then U = ˜̃U◦◦.

Let a ∈ P , B∗ ∈B∗ and B = {0}×{a}. We have B̃◦ ∈ Uβ (P∗,P), since
B is u-bounded in P2. Now, there is λ > 0 such that B∗ ⊆ λ B̃◦. This im-
plies that B⊆ ˜̃B◦◦ ⊆ λ B̃◦∗ by Lemma 3.19. Therefore, there is the coarsest con-
vex quasiuniform structure Uβ (P,P∗) on P such that B̃∗ ⊆ Uβ (P,P∗) and
(P,Uβ (P,P∗)) is a locally convex cone by Proposition 2.2.

Example 3.21. We consider the locally convex cone (R, Ṽ), where Ṽ = {ε 1̃ :
ε > 0} and 1̃ = {(a,b) ∈ R2

: a ≤ b+ 1}. The dual cone of (R, Ṽ) consists of
all nonnegative reals and the functional 0 acting as

0(a) =

{
+∞, if a =+∞

0 else.

We have Ṽβ (R
∗
,R) = {ε ˜̃1◦ : ε > 0}, where ˜̃1◦ = {(α,β ) ∈ (R∗)2 : β ∈ α +

(1̃)◦}. The subset U = 1̃ of R2
is uniformly convex and it has (CP). Then

we have U = ˜̃U◦◦ by Corollary 3.20. This shows that the convex quasiuniform
structures Ṽβ (R,R

∗
) and Ṽ are equivalent on R.

Proposition 3.22. Let (P,U) be a locally convex cone with (SP). Then the
convex quasiuniform structure Uβ (P,P∗) is finer than U on P . A subset A of P
is bounded below in (P,U) if and only if it is bounded below in (P,Uβ (P,P∗)).
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Proof. Let U ∈U. Then {0}×U◦ ∈B∗ by Proposition 3.18. Let B∗= {0}×U◦

and (a,b) ∈ B̃◦∗. Then b ∈ a+B◦∗. This shows that b = a+ c for some c ∈ B◦∗.
Since c ∈ B◦∗, then 0 ≤ µ(c)+ 1 for all µ ∈U◦, hence µ(a) ≤ µ(b)+ 1 for all
µ ∈U◦. Now, if (a,b) /∈ 2U then there is µ ∈U◦ such that µ(a)> µ(b)+1 by
(SP). This shows that (a,b) /∈ B̃◦∗. Thus B̃◦∗ ⊆ 2U .

Let A be bounded below in (P,U). Then B = {0}×A is u-bounded. If B∗
is a u-bounded subset of P∗×P∗ under Uβ (P∗,P), then there is λ > 0 such
that B∗ ⊆ λ B̃◦. This shows that ˜̃B◦◦ ⊆ λB◦∗. Now we have B ⊆ ˜̃B◦◦ ⊆ λ B̃◦∗ by
Lemma 3.19. Thus B is u-bounded in (P,Uβ (P,P∗)) (the sets B̃◦∗ form a base
for Uβ (P,P∗)). Therefore A is bounded below in (P,Uβ (P,P∗). The converse
is obvious.

Let (P,U) and (Q,W) be locally convex cones. The linear operator T :
P → Q is called bounded below whenever T maps bounded below subsets of
P into bounded below subsets of Q. The locally convex cone (P,U) is called
b-bornological whenever every bounded below linear operator from (P,U) into
other locally convex cone is continuous.

We prove that every b-bornological cone is bornological. Let (P,U) be
a b-bornological cone and T be a u-bounded linear operator from (P,U) into
another locally convex cone (Q,W). If B is a bounded below subset of (P,U)
then {0}× B is u-bounded and therefore {0}× T (B) = (T × T )({0}× B) is
u-bounded. This shows that T (B) is bounded below in (Q,W). Thus T is
bounded below. Now, T is continuous, since (P,U) is b-bornological. We note
that every locally convex bornological real vector space is both b-bornological
and bornological as a locally convex cone. It is easy to see that an inductive
limit of b-bornological cones is b-bornological.

Theorem 3.23. Let (P,U) be a b-bornological locally convex cone with (SP).
Then U and Uβ (P,P∗) are equivalent.

Proof. The identity mapping i : (P,U)→ (P,Uβ (P,P∗)) is bounded below.
Since (P,U) is a b-bornological, i is continuous. This implies that U and
Uβ (P,P∗) are equivalent by Proposition 3.22.

Let (P,U) be a locally convex cone. We say that the subset A∗ of P∗ is
equicontinuous if there is U ∈ U such that A∗ ⊂U◦. Proposition 3.18 yields that
every equicontinuous subset of P∗ is bounded below in (P∗,Uβ (P∗,P)). The
converse is not true in general. However, we have:

Theorem 3.24. Let (P,U) be a b-bornological locally convex cone with (SP).
Then every bounded below subset of (P∗,Uβ (P∗,P)) is equicontinuous



BORNOLOGICAL LOCALLY CONVEX CONES 281

Proof. Let A∗ be a bounded below subset of (P∗,Uβ (P∗,P)) and B∗ = {0}×
A∗. Then U = B̃◦∗ ∈ U by Theorem 3.23. Now, we have B∗ ⊆ U◦ by Lemma
3.19.

Example 3.25. Let P be a cone and A be a subset of P such that for every
a ∈ P there is λ ≥ 0 such that a ∈ λA. We set U = uch({0}×A) and U =
{αU : α > 0}. Then (P,U) is a uc-cone. We claim that the uc-cone (P,U) is
b-bornological. Indeed, let T be a bounded below linear operator from (P,U)
into (Q,W). If T is not continuous, then there is W ∈W such that T (U)* αW
for all α > 0. Thus T ({0}×A) * αW for all α > 0. This shows that T (A) is
not bounded below. Then T is not bounded below. This contradiction proves
our claim. Let P = R, U = uch({0}×{−1,1,+∞}) and U = {αU : α > 0}.
The uc-cone (R,U) is b-bornological.

Theorem 3.26. Let (P,W) be a locally convex cone. Then there is a finest
convex quasiuniform structure U on P under which P has the same bounded
below subsets as underW . Under the convex quasiuniform structure U, P is a
b-bornological cone, the inductive limit of a family of uc-subcones of P . The
locally convex cone (P,W) is b-bornological if and if U andW are equivalent.

Proof. Let B be the collection of all bounded below subsets of (P,W). For
B ∈B we set B̃ = uch({0}×B) and

PB̃ = {a ∈ P : ∃λ > 0 such that (0,a) ∈ λ B̃} and UB̃ = {αB̃ : α > 0}.

It is easy to see that (PB̃,UB̃) is a uc-cone for each B∈B. The uc-cone (PB̃,UB̃)
is b-bornological by Example 3.25. We claim that P =

⋃
B∈BPB̃. For, if a ∈ P ,

then A′ = {a} is a bounded below subset of P and we have a∈PÃ′ . We suppose
that (P,U) is the inductive limit of locally convex cones (PB̃,UB̃)B∈B by the
inclusion mappings: iB : (PB̃,UB̃)→ (P,W), B ∈B. The u-boundedness of B̃
implies that the inclusion mapping iB : (PB̃,UB̃)→ (P,W) is continuous. This
shows that U is finer than W , by the definition of inductive limit. Then the
bounded below subsets of P under U are bounded below under W . For the
converse, suppose that A ⊂ P is bounded below underW . Then A is bounded
below in (PÃ,UÃ). Now, the continuity of the inclusion mapping iA : (PÃ,UÃ)→
(P,U) implies that A is bounded below in (P,U).

The locally convex cone (P,U) is b-bornological, since it is the inductive
limit of b-bornological cones. Now if (P,W) is b-bornological, then the inclu-
sion mapping i : (P,W)→ (P,U) is bounded below and then it is continuous.
This shows that U andW are equivalent.

Let (P,U) be a locally convex cone. In the following we denote the finest
convex quasiuniform structure under which P has the same bounded below sub-
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sets as under U, by Ubτ . If (P,U) is b-bornological, then U and Ubτ are equiva-
lent. If (P,U) and (Q,W) are locally convex cones, we shall call the linear op-
erator T : (P,U)→ (Q,W), bτ-continuous whenever T : (P,Ubτ)→ (Q,Wbτ)
is continuous. In a similar way to Theorem 3.9, we can prove that T : (P,U)→
(Q,W) is bounded below if and only if T : (P,Ubτ)→ (Q,W) is continuous.

Now, we reformulate Theorem 3.10 for b-bornological cones.

Theorem 3.27. Let (P,U) be a locally convex cone. The following are equiva-
lent:

(a) (P,U) is b-bornological.

(b) If V is a uniformly convex subset of P2 such that for every bounded below
subset A of P there is λ > 0 such that {0}×A⊆ λV , then there is U ∈ U
such that U ⊆V .

(c) Every bounded below linear mapping of (P,U) into each uc-cone is con-
tinuous.

(d) (P,U) is an inductive limit of uc- subcones (PB̃,UB̃)B∈B of P , where B is
the collection of all bounded below subsets of (P,U), B̃ = uch({0}×B),
PB̃ = {a ∈ P : ∃λ > 0 s.t. (0,a) ∈ λ B̃} and UB̃ = {αB̃ : α > 0}.

Proof. The statements (a) and (d) are equivalent by Theorem 3.26.
(a)→ (b) Suppose that (a) holds and V is a uniformly convex subset of

P2 such that for every bounded below subset A of P there is λ > 0 such that
{0}×A ⊆ λV . We set V = {αV : α > 0}. It is easy to see that (P,V) is a
locally convex cone. Since for every bounded below subset A of (P,U), {0}×A
is absorbed by V , the identity mapping i : (P,U)→ (P,V) is a bounded below
linear operator. Now, (a) implies that i is continuous and then U is finer than V .
This shows that V ∈ U. Thus (a) implies (b).

(b)→ (a) Suppose that (b) holds and T : (P,U)→ (Q,W) is a bounded
below linear operator. We set t = T×T . For every W ∈W , t−1(W ) is uniformly
convex and absorbs all subsets {0}×A of P2, where A is bounded below in
(P,U). Then t−1(W ) ∈ U by (b). Now (b) implies that t−1(W ) ∈ U. Thus T is
continuous and (P,U) is b-bornological.

Clearly (a) implies (c).
(c)→ (a) Suppose that (c) holds and T : (P,U)→ (Q,W) is a bounded

below linear operator. For W ∈ W , we set WW = {αW : α > 0}. Clearly for
every W ∈W , T : (P,U)→ (Q,WW ) is bounded below and then it is continuous
by (c). If W ∈ W , then W ∈ WW . Therefore, there is U ∈ U such that (T ×
T )(U)⊆W .
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Let (P,U) be a locally convex cone. The cone P has the same bounded
below subsets under U and Uτ . This shows that Uτ ⊆ Ubτ , since Ubτ is the finest
convex quasiuniform structure under which P has the same bounded below sub-
sets as under U.

Suppose that (P,U) is a locally convex cone and P∗ is its dual. We in-
vestigate the behavior of the convex quasiuniform structures Uσ (P,P∗) and Uτ

under inductive and projective limits.

Theorem 3.28. Let (P,U) be the inductive limit of locally convex cones (Pγ ,Uγ)
by the mappings fγ , γ ∈ Γ. Then (P,Uτ) (or (P,Ubτ)) is the inductive limit of
locally convex cones (Pγ ,Uγτ)(or (Pγ ,Uγbτ)) by the linear mappings fγ , γ ∈ Γ.

Proof. The linear mapping fγ : (Pγ ,Uγτ)→ (P,Uτ) is continuous by Proposi-
tion 3.15 for each γ ∈ Γ. Let (P,W) be the inductive limit of locally convex
cones (Pγ ,Uγτ) by the mappings fγ , γ ∈ Γ. Then we have Uτ ⊆W by the def-
inition of an inductive limit. We claim that P2 has the same u-bounded sets
underW and Uτ . Indeed, if B⊆P2 is u-bounded under Uτ , then it is u-bounded
under U. This shows that ( fγ × fγ)

−1(B) is u-bounded under Uγ and then under
Uγτ , for γ ∈ Γ. Thus B is u-bounded under W in P2. If B ⊆ P2 is u-bounded
underW , then it is u-bounded in Uτ , since Uτ ⊆W . Since the identity mapping
i : (P,Uτ)→ (P,W) is u-bounded and (P,Uτ) is bornological, W and Uτ are
equivalent.

Theorem 3.29. Let (P,U) be the projective limit of locally convex cones
(Pγ ,Uγ) by the mappings gγ , γ ∈ Γ. Then (P,Uσ (P,P∗)) is the projective limit
of locally convex cones (Pγ ,Uγσ (Pγ ,P∗γ )) by the mappings gγ , γ ∈ Γ.

Proof. Obviously, gγ : (P,Uσ (P,P∗))→ (Pγ ,Uγσ (Pγ ,P∗γ )) is continuous for
each γ ∈ Γ. Let (P,W) be the projective limit of locally convex cones
(Pγ ,Uγσ (Pγ ,P∗γ )) by the mappings gγ , γ ∈ Γ. Let Uσ ∈ Uσ (P,P∗). Then there
is n ∈ N and µ1, ...,µn ∈ P∗ such that⋂n

i=1 Λ
−1
i (1̃)⊆Uσ , where Λi = µi×µi.

There is U ∈ U such that µ1, ...,µn ∈U◦. Since (P,U) is the projective limit of
locally convex cones (Pγ ,Uγ) by the mappings gγ , there is m ∈ N such that⋂m

j=1 G−1
γ j
(Uγ j)⊆U, Uγ j ∈ Uγ j ,γ j ∈ Γ,Gγ j = gγ j ×gγ j .

This shows that µi ∈ (G−1
γ j
(Uγ j))

◦ for each i∈ {1, ...,n} and some j ∈ {1, ...,m}.
Therefore θi j = µiog−1

γ j
∈ P∗γ j

for each i ∈ {1, ...,n}. Now, we have

n⋂
i=1

Θ
−1
i j (1̃) ∈ Uγ jσ (Pγ j ,P∗γ j

),
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where Θi j = θi j×θi j. Then⋂n
i=1 Λ

−1
i (1̃) = G−1

γ j
(
⋂n

i=1 Θ
−1
i j (1̃)) ∈W.

ThusW and Uσ (P,P∗) are identical.
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