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Abstract:   We propose an ultra-lightweight, compact, and low power block cipher BORON. BORON is a substitution and 

permutation based network, which operates on a 64-bit plain text and supports a key length of 128/80 bits. BORON has a compact 

structure which requires 1939 gate equivalents (GEs) for a 128-bit key and 1626 GEs for an 80-bit key. The BORON cipher 

includes shift operators, round permutation layers, and XOR operations. Its unique design helps generate a large number of active 

S-boxes in fewer rounds, which thwarts the linear and differential attacks on the cipher. BORON shows good performance on both 

hardware and software platforms. BORON consumes less power as compared to the lightweight cipher LED and it has a higher 

throughput as compared to other existing SP network ciphers. We also present the security analysis of BORON and its 

performance as an ultra-lightweight compact cipher. BORON is a well-suited cipher design for applications where both a small 

footprint area and low power dissipation play a crucial role. 
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1  Introduction 

 

Lightweight cryptography is an emerging field, 

which is well suited for applications like Internet of 

Things (IoT), pervasive computing, and embedded 

security. In recent years, many lightweight ciphers 

have been designed and implemented for providing 

security in applications like wireless sensor nodes and 

RFID tags. The constraints about these applications 

are their footprint areas, number of gate equivalents 

(GEs), and power consumption. The cipher, which 

meets all these constraints, can be implemented for 

providing security in the field of embedded security. 

A lightweight cipher should need less than 2000 GEs 

for its implementation in hardware. It should also 

consume less flash memory to be more compact. 

Ciphers, like PRESENT (Bogdanov et al., 2007), 

TWINE (Suzaki et al., 2011), PICCOLO (Shibutani 

et al., 2011), SIMON and SPECK (Beaulieu et al., 

2013), RECTANGLE (Zhang et al., 2014), and LED 

(Guo et al., 2011), are the existing ultra-lightweight 

ciphers, among which the cipher PRESENT is the 

most compact and has the best performance on both 

hardware and software platforms. The PRESENT 

cipher is designed to provide a compact hardware 

structure. The cipher LED (Guo et al., 2011) is known 

for its robust architecture, as it inherits some elements 

of the AES (NIST, 2001) cipher, but it has a high 

energy-per-bit, which results in high power dissipa-

tion. The fault-based attack is mounted on the LED 

cipher. Recently, NSA launched the most compact 

ciphers, SIMON and SPECK, which should be stud-

ied further for all possible types of attacks. In this 

paper, we propose a design (BORON) that requires 
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less footprint area and less power consumption and 

has good cryptographic properties. The proposed 

BORON cipher, as an SP network (Menezes et al., 

1996) cipher, executes at a higher throughput as 

compared to other Feistel based ciphers. Multi-round 

permutations are used to build the strong crypto-

graphic properties in BORON. While designing a 

complex structure, we also take into consideration the 

memory size and the number of GEs required for the 

implementation of the cipher. 

The nonlinear layer in an SP network plays a 

very important role in deciding the strength of a ci-

pher. In BORON, we have designed a strong nonlin-

ear layer suitable for BORON, which results in a 

larger number of active S-boxes. BORON shows a 

good resistance against linear and differential crypt-

analysis. Our experimentation also shows that BO-

RON’s permutation layer design is one of the most 

robust designs among other existing lightweight ci-

phers. We have used a computer-based approach to 

find the linear and differential trails, the minimum 

number of active S-boxes, and to mount linear and 

differential attacks on this cipher. Key scheduling of 

BORON is motivated by the PRESENT cipher. 

Overall, the BORON cipher shows good crypto-

graphic properties, has a robust design, a compact 

structure, and has a very low power consumption. 

For the BORON cipher, we use the following 

notations: 
 

Aj → input plaintext block of j=64 bits 

Cj → output cipher text block of j=64 bits

Ki → 64-bit round sub-key for round i 

 → bitwise exclusive-OR operation 

<<<n → left cyclic shift by n bits 

<<n → left shift by n bits 

>>n → right shift by n bits 

RCi

j
 → round counter i of j=5 bits 

|| → concatenation of two strings 

! → bitwise NOT operation 

& → bitwise AND operation 

| → bitwise OR operation 

 

 

2  Block cipher BORON 

 

BORON is a substitution permutation network 

(Menezes et al., 1996) and has a total of 25 rounds. 

The block length is 64 bits and supports 80- and 

128-bit key lengths. Fig. 1 shows the block diagram 

of a BORON cipher and Fig. 2 shows the detailed 

BORON block cipher. 

As shown in Fig. 1, the BORON cipher contains 

an S-box, which acts as a nonlinear layer followed by 

a block shuffle of four bits. The shuffled bits are fed 

to the round permutation layer, which is then fol-

lowed by an XOR operation. Twenty-five different 

keys are generated from the 80/128-bit key register 

and these keys are applied in each round of the 

BORON cipher. One extra key will be generated and 

will be XOR-ed to produce the final ciphertext. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2  Block cipher BORON  

Fig. 1  Block diagram of a BORON cipher 
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Pseudo code of the BORON cipher is given as 

 

A=a
63

 a
62

 ... a
0
 

RoundKeys() 

for i=0 to 24 do 

Add_round_key(A, Ki) 

S_Box_Layer(A) 

Block_Shuffle(A) 

Round_Permutation(A) 

XOR_Operation(A) 

end for 

Add_round_key(A, K25) 
 

Each round of the BORON cipher consists of the 

operations described in the following sections. 

2.1  Add_round_key  

Add_round_key performs an XOR (‘’) opera-

tion with a 64-bit plaintext and a 64-bit sub-key which 

is extracted from the 128-bit key register. Sub-keys 

are denoted by Ki (i ranges from 0 to 24) and the 

current state output A→a
63

 a
62

 … a
0
 is given as 

 

A → AK
i
. 

 

2.2  S_Box_Layer 

The S-box used in the BORON cipher design is a 

4-bit to 4-bit S-box, S: 4 4

2 2F F . Table 1 presents the 

hexadecimal values for the substitution layer. 

 
Table 1  S-box of the BORON cipher 

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] e 4 b 1 7 9 c a d 2 0 f 8 5 3 6

 

The current state output A64→a
63

 a
62

 ... a
0
 is di-

vided into sixteen 4-bit blocks W
15

 W
14

 … W
0
. Each 

W
i
 is of a 4-bit size and W

i
=a

4i+3
||a

4i+2
||a

4i+1
||a

4i
, where 

i ranges from 0 to 15 and i is updated by i=i+4. W
i
 is 

fed to the 4-bit S-box and the output nibble S[W
i
] 

provides the updated values. 

The 4-bit to 4-bit S-box of BORON is described 

by the following equations. 

Let X=x3x2x1x0 be the input of the S-box and Y= 

y3y2y1y0 be the output. Then, 
 
y0 = (!x3&!x2&x1) | (!x2&x1&x0) | (!x3&x2&!x1) 

| (x2&!x1&x0) | (x3&!x2&!x1&!x0) 

| (x3&x2&x1&!x0), 

y1=(!x3&!x2&!x0) | (!x3&!x1&!x0) | (x2&x1&x0) 

| (x3&!x2&x0) | (x3&x2&x1), 

 

y2=(!x3&!x2&!x1) | (!x2&!x1&!x0) | (!x3&x2&!x0) 

| (x3&x1&x0) | (x3&x2&x0), 

 

y3=(!x3&!x2&!x0) | (!x3&x1&!x0) | (!x3&x2&x0) 

| (x3&!x1&!x0) | (x3&!x2&x1&x0). 

 

2.3  Permutaion_Layer 

The Permutation_Layer of the BORON cipher 

has three sub-permutation layers, which are described 

in the following. 

2.3.1  Block_Shuffle 

The Block_Shuffle layer takes the 16-bit input 

and gives the 16-bit shuffled output. The block per-

mutation is presented in Table 2. Block x of a 4-bit 

size is substituted to the block position P[x] of a 4-bit 

size. The Block_Shuffle P: {0, 1}16←{0, 1}16 divides 

a 16-bit input  into four 4-bit data as P= 3

4P || 2

4P || 1

4P || 0

4P  

and then permutes them following the manner shown 

in Fig. 3. 

 
 

Table 2  Block_Shuffle layer of the BORON cipher 

x 0 1 2 3 

P[x] 2 3 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the 64-bit block size, the Block_Shuffle op-

eration is repeated four times for each 16-bit size 

block (W
0
, W

1
, W

2
, W

3
), where W

j
=a

i+15
 || a

i+14
 || … 

|| a
i+1

 || a
i
 for 0≤16·i≤48 and j ranges from 0 to 3. W

j
 is 

updated in the following manner: 

Fig. 3  Block_Shuffle and Round_Permutaion layers 
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W
0
=a

15
 ||a

14
 || … ||a

1
||a

0
, 

W
1
=a

31
 ||a

30
 || … ||a

17
||a

16
, 

W
2
=a

47
 ||a

46
 || … ||a

33
||a

32
, 

W
3
=a

63
 ||a

30
 || … ||a

47
||a

48
. 

 

2.3.2  Round_Permutation 

The Round_Permutation performs the left cir-

cular shift operation on the 16-bit block as shown in 

Fig. 3 and is given as 

 

W
j
=W

j
<<<r[j],  0≤j≤3. 

 

Table 3 shows the left circular shifted values for 

each 16-bit block computed from the 64-bit block. 
 

Table 3  Round_Permutation: left circular shift values

j 0 1 2 3 

r[j] 1 4 7 9 
 

2.3.3  XOR_Operation 

The XOR_Operation performs XOR operation 

() between 16-bit inputs and produces 16-bit output. 

This layer produces a 64-bit output in the following 

way: 
 

A64→(W
3W

2W
0
) || (W

2W
0
) || (W

3W
1
) 

|| (W
3W

1W
0
). 

 

Algorithm 1 summaries the encryption process 

described in Sections 2.1–2.3. 

2.4  Key schedule of 80- and 128-bit key lengths 

The key schedule of the BORON cipher is mo-

tivated by the PRESENT (Bogdanov et al., 2007) 

cipher key scheduling design—no attack until dates 

are reported on the PRESENT cipher key scheduling. 

In BORON cipher key scheduling, there are a total of 

25 sub-keys (each of size 64-bit). We strengthen the 

key scheduling by using a larger number of nonlinear 

operations in key scheduling. 

1. 128-bit key scheduling  

The user-defined 128-bit key is stored in the 

register key, and the 64-bit least significant bits 

(LSBs) from the KEY register are extracted as fol-

lows: 

 

K
i
=K63 K62 … K0, 

KEY=K127 K126 … K0. 

Algorithm 1  Encryption 

Input: Plaintext A64→a63 a62 … a0, S[16], P[4], r[4] 

Output: Ciphertext C64 

for i=0 to 24 do 

        A64→a63 a62 … a0 

for j=0 to 3 do 

temp16→(A64>>16·j)( 64

iK >>16·j) 

temp16→S[temp16]    // S-box 

[ ]

16 0jW   

for k=0 to 4 do 

[ ]

16

jW +=((temp16>>4k)&0xF)<<4P[k] 

// Block_shuffle 

end for 

[ ] [ ]

16 16 [ ]j jW W r j      // Round_Permutation 

end for 

A64→X( 3

16W , 2

16W , 0

16W ) || X( 2

16W , 0

16W ) || X( 3

16W , 1

16W ) 

|| X( 3

16W , 1

16W , 0

16W )    // X→XOR_Operation 

end for 

for j=0 to 3 do 

C64+=(A64>>16·j)( 25

64K >>16·j)<<16·j 

end for 

 

 

After extracting the keys of 64 bits, the register 

KEY is updated in the following manner:  

 

(1) KEY<<<13; 

(2) [K3 K2 K1 K0]←S[K3 K2 K1 K0]; 

(3) [K7 K6 K5 K4]←S[K7 K6 K5 K4]; 

(4) [K63 K62 K61 K60 K59]←[K63 K62 K61 K60 K59]RC
i
. 

 
For 0 to 24 rounds, five bits of the round counter 

i is XOR-ed with the five bits of key register KEY, i.e., 

from K59 to K63. 

2. 80-bit key scheduling 

The user-defined 80-bit key is stored in the key 

register KEY and the LSB bits from it are used as 

round sub-keys: 

 

Ki=K63 K62 … K0, 

KEY=K79 K78 … K0. 
 

After extracting the 64-bit key, register KEY is 

updated as follows: 
 
(1) KEY<<<13; 

(2) [K3 K2 K1 K0]←S[K3 K2 K1 K0]; 

(3) [K63 K62 K61 K60 K59]←[K63 K62 K61 K60 K59] RC
i
. 
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3  Security analysis of BORON 

 

There are different cryptanalysis techniques to 

find whether the cipher is resistant to attacks or not. In 

this study, we focus on basic attacks, like differential 

attack, linear attack, algebraic attack, key scheduled 

attack, and key collision attack. In an SP network, 

S-box selection plays a very important role in decid-

ing whether the structure is secure against linear and 

differential attacks. S-box is the only nonlinear ele-

ment in the entire cipher design. Generation of a large 

number of active S-boxes in a design results in a ro-

bust architecture and can thwart all possible types of 

attacks. Computer-based techniques are used in this 

study for the selection of good S-boxes and to find the 

minimum number of active S-boxes. 

3.1  Design criteria of the S-box 

Use of a different S-box for each round will re-

sult in an increase in the gate count. Similarly, the use 

of different S-boxes does not provide a sensible im-

provement in the resistance against known attacks 

(NIST, 2001). The use of an 8-bit to 8-bit S-box in the 

cipher will increase the number of GEs, so we choose 

a single 4-bit to 4-bit S-box for the BORON cipher. 

Compactness and resistance against linear and 

differential attacks are the two parameters we con-

sider while designing the S-box. A compact S-box 

requires less memory and a smaller number of GEs 

for implementation. 

The BORON S-box takes a 4-bit input and 

produces a 4-bit output, i.e., S: 4 4

2 2F F . Properties 

essential for a good S-box design are listed as follows: 

Property 1 (Linear property)    Let a 4

2F  be the input 

to the S-box, A the input mask, B the output mask, and 

A, B 4

2F . LC(A, B) is defined as 

 

LC(A, B)=#{a 4

2F |A�a=B�S(a)}−8, 

 

where LC(·) represents linear cryptanalysis (Matsui 

1993; Heys 2001), ‘�’ denotes mask operation on 4

2F , 

and #{·} indicates the number of matches in the linear 

approximation table (LAT) for input mask A and 

output mask B. 

Property 2 (Differential property)    Let a 4

2F  be the 

input to the S-box, ΔA and ΔB the input and output 

differences, respectively, and ΔA, ΔB 4

2F . DC(ΔA, 

ΔB) is defined as 

 

DC(ΔA, ΔB)=#{a 4

2F |S(a)S(aΔA)=ΔB}, 

 

where DC(·) represents differential cryptanalysis 

(Biham and Shamir, 1991; Heys, 2001). This property 

is used to form the difference distribution table 

(DDT). 

The complete design criteria of the S-box, which 

we have used in the design of the BORON cipher, are 

given as follows: 

Criterion 1    For any nonzero input difference 

ΔA 4

2F  and output differences ΔB 4

2F , we have 

 

DC(ΔA, ΔB)=#{a 4

2F |S(a)S(aΔA)=ΔB}≤4. 

 
Criterion 2    For any nonzero input differences 

ΔA 4

2F  and output differences ΔB 4

2F  such that 

Hw(ΔA)=Hw(ΔB)=1, where Hw(x) denotes the 

Hamming weight of x, we have 

 
SetDC=DC(ΔA, ΔB) 

=#{a 4

2F |S(a)S(aΔA)=ΔB}=0. 

 
Cardinality of SetDC can be given as CarDC, and 

we have CarDC=0. 

Criterion 3    For any nonzero input mask A 4

2F  and 

output mask such that B 4

2F , we have 

 

LC(A, B)=#{a 4

2F |A�a=B�S(a)}−8≤4.	
 

Criterion 4    For any nonzero input mask A 4

2F , 

output mask B 4

2F , and Hw(A)=Hw(B)=1, we have 

 

SetLC=LC(A, B)=#{x 4

2F |A�x=B�S(x)}−8≠0.	
 
Cardinality of SetLC can be given as CarLC, and 

we have CarLC=4. 

Criterion 5 (Bijective)    S(a)≠S(b) for all values of 

a≠b. 

Criterion 6 (No static point)    S(a)≠a for all values of 

a 4

2F . 

The strength of the S-box depends on cardinality; 

for example, in the case of the PRESENT cipher, 

S-box (Bogdanov et al., 2007; Zhang et al., 2014) has 

CarDC=0 and CarLC=8; in case of the RECTANGLE 
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cipher, S-box (Zhang et al., 2014) has CarDC=2 and 

CarLC=2; in case of the BORON cipher, S-box has 

CarDC=0 and CarLC=4. 

3.2  BORON cipher S-box selection  

Selection of the S-box in the BORON cipher is 

driven by two definitions: 

Definition 1 (Permutation-then-XOR equivalence 

(PE) (Leander and Poschmann, 2007; Zhang et al., 

2014))    If there exist two 4×4 permutation matrices 

m0 and m1 and constants a, b 4

2F  for two S-boxes 

such that S′(x)=m1(S(m0(x)+a))+b, then the equiva-

lence is called PE. 

When an S-box satisfies criteria 1 to 5 in Section 

3.1, then its PE equivalent S-box also satisfies criteria 

1 to 5. 

Definition 2 (Affine equivalence (Leander and 

Poschmann, 2007; Zhang et al., 2014))    If there exist 

a bijective linear mapping A, B and constants a, b 

 4

2F  for two S-boxes such that S′(x)=B(S(A(x)+a))+b, 

then the equivalence is called affine equivalence. 

When an S-box satisfies criteria 1, 3, and 5 in 

Section 3.1, then its affine equivalent S-box also sat-

isfies criteria 1, 3, and 5. 

Definitions 1 and 2 are considered while de-

signing the S-box for the BORON cipher. 

3.3  Linear cryptanalysis 

Linear cryptanalysis (Matsui, 1993; Heys, 2001) 

is applicable to symmetric-key block ciphers and the 

cipher needs to resist such a kind of attack. This attack 

is a known plaintext attack. It uses the high probabil-

ity occurrences of the linear expression containing 

plaintext bits, cipher text bits, and sub-key bits. This 

expression is used for mounting linear attacks on a 

cipher. To mount a linear attack, the attacker needs to   

have the knowledge about a subset of plaintext and its 

corresponding ciphertext. The attacker will find the 

relationship between them. S-box is examined by 

forming a LAT. S-box is the only nonlinear compo-

nent in the encryption design. If PL is the linear 

probability, then the bias can be given as |PL−1/2|, and 

bias (ε) for the BORON cipher S-box is 2
−2

. Matsui’s 

piling-up lemma (Matsui, 1993) is used to calculate 

the probability bias for n rounds. 

The best way to resist against linear cryptanaly-

sis is: 

1. Optimize the bias in LAT. For an ideal S-box, 

the value of bias is 1/8 and this is practically not 

possible to achieve. 

2. Increase the number of active S-boxes in the 

cipher structure.  

Lemma 1 (Matsui’s pilling-up lemma (Matsui, 1993))    

For random binary variables X1, X2, …, Xn (n is the 

number of active S-boxes) and X1X2···Xn=0, the 

total bias can be derived as 

 

1

1

2 ,
n

n

i

i

 



   

 

where εi represents the bias of Xi. 

Two standard methods can be used to count the 

minimum number of active S-boxes: 

1. Matusi’s branch and bound algorithm (Matsui, 

1994); 

2. the mixed-integer programming technique 

(Sun et al., 2014a; 2014b). 

In this study, Matusi’s branch and bound algo-

rithm is used to count the minimum number of active 

S-boxes.  

Table 4 presents the linear trails for the BORON 

cipher. Fig. 4 shows the linear trails for two rounds of 

the BORON cipher and the red S-box represents the 

active S-box. The maximum bias is 2
−2

 for the BO-

RON cipher S-box. Table 5 presents the minimum 

number of active S-boxes from the linear trails.  

 

 

Table 4  Linear trails for the BORON cipher 

Round index Input to S-box Output of S-box 

1 0000 0000 0008 0000 0000 0000 0005 0000

2 0000 0000 5000 5000 0000 0000 3000 3000

3 0060 0060 0300 0360 0010 0010 0600 0610

4 2024 2004 0040 204c e0e9 e009 0090 e095

 

 
Table 5  Minimum number of active S-boxes from the 

linear trails 

Round index 
Minimum number of active 

S-boxes 

1   1 

2   3 

3   8 

4 17 
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Theorem 1    For 18 rounds of BORON it has a total 

of 48 active S-boxes and the total bias for the 18 

rounds is 2
−49

. 

Proof    We find that for three rounds BORON has a 

minimum of eight active S-boxes. 

The maximum bias for the BORON cipher 

S-box is 2
−2

 by using Matsui’s pilling-up lemma for 

three rounds of BORON cipher and the total bias can 

be given as 

 

2
7
×(2

−2
)
8
=2

−9
. 

 

By applying the same lemma for 18 rounds, the 

total bias ε can be given as 

 

ε=2
5
×(2

−9
)
6
=2

−49
. 

 

By calculating the required number of known 

plaintext/ciphertext, we can compute the complexity 

of the linear attack as 

 

NL=1/ε2. 
 

For 18 rounds of BORON cipher, the required 

number of known plaintext/ciphertext can be given as 

NL=1/ε2=1/(2
−49

)
2
=2

98
.
 

 

The required number of known plaintext/ciphertexts 

is 2
98

, which is larger than the available limit, i.e., 2
64

. 

Thus, the complete number of rounds of BORON 

cipher shows good resistance against a linear attack. 

3.4  Differential cryptanalysis 

Differential cryptanalysis (Biham and Shamir, 

1991; Heys, 2001) is the most significant attack ap-

plicable to the symmetric key block cipher. Biham 

and Shamir (1991) first applied the differential attack 

on the Data Encryption Standard (DES). To mount 

the differential attack for a specific number of rounds 

in an encryption system, pairs of high probability 

input and output occurrences are used to recover the 

round keys. S-box is a nonlinear component in our 

design and it gets examined by forming a DDT. Dif-

ferential trails are formed by considering high prob-

ability input and output differences for each round, 

and the S-box that has non-zero input differences or 

non-zero output differences is referred to as an active 

S-box.  

The differential probability for the BORON ci-

pher S-box is 4/16=2
−2

.  

There are two approaches to providing security 

against differential cryptanalysis: 

1. By minimizing the differential probability, for 

the ideal S-box, this probability is 1/16. 

2. Find a structure that maximizes the minimum 

number of active S-boxes. 

Table 6 presents the differential trails for the 

BORON cipher. Non-zero input differences to the 

S-box or non-zero output differences from the S-box 

are referred to as an active S-box. Table 7 presents the 

minimum number of active S-boxes from differential 

trails.  
 

Table 6  Differential trails for the BORON cipher 

Round index Input to S-box Output of S-box 

1 0000 0000 000e 0000 0000 0000 0002 0000

2 0000 0000 2000 2000 0000 0000 3000 3000

3 0060 0060 0300 0360 0080 0080 0200 0280

4 0145 0045 0120 0125 0a91 0091 0a30 0a31

 
For three rounds of BORON cipher, there are a 

minimum of eight active S-boxes, so for 18 rounds 

there will be a minimum of 48 active S-boxes. The 

total differential probability Pd is (2
−2

)
48

=2
−96

. 

Fig. 4  Linear trails for two rounds of BORON cipher

(References to color refer to the online version of this 

figure) 
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Table 7  Minimum number of active S-boxes from the 

differential trails 

Round index 
Minimum number of active 

S-boxes 

1   1 

2   3 

3   8 

4 18 

 

We can compute the complexity of the differen-

tial attack by calculating the required number of 

plaintext/ciphertexts chosen and this can be given as 

 

Nd=C/Pd, 

 

where C=1 and Pd=2
−96

, so the required number of 

plaintext/ciphertexts chosen is 

 

Nd=1/2
−96

=2
96

. 

 

The required number of chosen plaintext/  

ciphertexts is 2
96

, which is larger than the available 

limit, i.e., 2
64

. Therefore, the complete number of 

rounds of the BORON cipher shows good resistance 

against differential attacks.  

3.5  Zero-correlation attack 

Zero-correlation attack (Bogdanov and Rijmen, 

2011; Soleimany and Nyberg, 2012) is the extension 

of linear cryptanalysis. The block ciphers should 

resist a zero correlation attack. The zero-correlation 

attack is based on the linear approximations with a 

correlation value of zero. The zero-correlation attack 

is considered as a counterpart of the impossible dif-

ferential cryptanalysis in the domain of linear crypt-

analysis. We have applied a matrix method (So-

leimany and Nyberg, 2012) to mount a zero-  

correlation attack, which is explained below. Fol-

lowing are the three lemmas used to mount a zero- 

coorelation attack on the cipher: 

Lemma 2 (XOR approximation)    Either the three 

linear selection patterns at an XOR ‘’ are equal or 

the correlation over the  operator is exactly zero. 

Lemma 3 (Branching approximation)    Either the 

three linear selection patterns at a branching point ‘�’ 

sum up to 0 or the correlation over ‘�’ is exactly zero. 

Lemma 4 (Permutation approximation)    Over a 

permutation , if the input and output selection pat-

terns are neither both zero nor both non-zero, the 

correlation over  is exactly zero. 

1. The matrix method (Soleimany and Nyberg, 

2012) 

The miss-in-the-middle approach is considered 

to find the impossible differential characteristics of a 

cipher. This approach is used to construct the impos-

sible differential characteristic by two (truncated) 

differential paths with a probability of one, which 

leads to a contradiction in the middle. The matrix 

method for finding the linear approximation with 

correlation zero is given below: 

The linear masks applied to the words can be one 

of the following five types: 

(1) zero mask denoted by 0,  

(2) an arbitrary non-zero mask denoted by 0,  

(3) non-zero mask with a fixed value a ,  

(4) the exclusive-or of a fixed non-zero mask a 

and an arbitrary non-zero mask, denoted by a , and 

(5) any other mask denoted by ‘∗’. 

The matrix shows how a linear mask of each 

output word is affected by the linear mask of an input 

word. Arithmetic rules for multiplication and addition 

are given in Tables 8 and 9, respectively. 

 
Table 8  Arithmetic rules multiplication by 0, 1, and 1F

 0 1 1F 

0 0 0 0 

0  0 0  0  

a 0 a  

a  0 a  ∗ ∗ 0 ∗ ∗ 

 
 
Table 9  Arithmetic rules for addition between two masks

 0 0  a a  * 

0 0 0 a a  * 

0  0 * a * * 

b b b  a+b * * 

b  b  * * * * 

* * * * * * 

 

2. Zero-correlation for four rounds of BORON 

(000a00000000000)→(00000000000000b0) has 

a correlation of exactly zero for the values a and b that 

are non-zero. The trails for zero correlation attacks 

are shown in Table 10 and we find contradictions at 
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round 2 for the BORON cipher. Contradictions are 

presented in Table 10 by using characters in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6  Biclique attack 

Biclique attack (Bogdanov et al., 2011; Jeong et 

al., 2012) is an extension of the meet-in-the-middle 

attack. In this study, we apply biclique cryptanalysis 

on both BORON-80 and BORON-128. Based on the 

attack results, comparisons are made with the most 

popular lightweight block ciphers such as PRESENT, 

Piccolo, and LED. 

We have constructed a three-dimensional bi-

clique for rounds 22–25 of BORON-80. For these 

rounds the partial keys used are (K
22

, K
23

, K
24

, K
25

), 

described as follows: 

 

K
22

=K17, K16, …, K0, K79, …, K34 

K
23

=K4, K3, …, K0, K79, …, K21 

K
24

=K71, K70, …, K8 

K
25

= K58, K57, …, K0, K79, …, K75 

 

From the above equations we find that varying 

the following sub-keys (K
23

, K
22

, K
21

) and (K
74

, K
73

, 

K
72

) gives the bicliques on the full BORON-80. 

To construct the Δi-differential, we consider 

sub-keys (K
23

, K
22

, K
21

) and for the j-differential, we 

consider sub-keys (K
74

, K
73

, K
72

). Let f be a sub-cipher 

from rounds 22 to 25. The ∆i-differential affects 41 

bits of the ciphertext (Fig. 5), and the data complexity 

does not exceed 2
41

. The red arrows at the 25th round 

in Fig. 5 show the data complexity. 

Figs. 6a and 6b present the recomputation in the 

forward and backward directions, respectively. The 

total computational complexity of BORON-80 is 

computed as follows: 

 

Ctotal=2
k−2d

(Cbiclique+Cprecomp+Crecomp+Cfalsepos), 

=2
80−6

(2
0.954

+2
2.88

+2
5.239

+2
2
)=2

79.564
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5  Three-dimensional biclique for BORON-80 (Ref-

erences to color refer to the online version of this figure)
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 Fig. 6  Recomputation in forward directions for BORON-80 (a) and recomputation in backward directions for BO-

RON-80 (b) (References to color refer to the online version of this figure) 
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3.7  Algebraic attack 

The attacker applies the algebraic attack (Al-

brecht and Cid, 2009) usually on a stream cipher, 

because it is easier to succeed on a stream cipher than 

on a block cipher. The 4-bit to 4-bit S-box can be 

described by a minimum of 21 equations. x=a×21 

quadratic equations in y=a×8 variables are used to 

examine the complete cipher (a represents the number 

of S-boxes used in the encryption algorithm and key 

scheduling algorithm). 

In our cipher design for a single round of en-

cryption, a total of 16 S-boxes are used, and for the 

128-bit key scheduling, two S-boxes are used. For the 

25 rounds of cipher, there are 25 ×16=400 S-boxes 

in the encryption system, and 25×2=50 S-boxes in the 

key scheduling algorithm. 

The number of quadratic equations is given as 

 

a=(400+50)×21=9450, 

 

and the number of variables is given as 

 

b=(400+50)×8=3600. 

 

By applying the same method for the 80-bit key 

scheduling algorithm, we will obtain 8925 quadratic 

equations which can be formed with 3400 variables. 

We believe that by requiring 9450 quadratic equa-

tions with 3600 variables, the BORON cipher shows 

resistance against the algebraic attack.  

3.8  Related key and slide attacks 

No specific guidelines have been provided to 

design key scheduling algorithms. A large variety of 

algorithms can be formed and a wide variety of key 

related attacks can be mounted. Related key attack 

(Biham, 1993) and slide attack (Biryukov and Wag-

ner, 2000) are two important attacks, which show 

weaknesses related to the key scheduling algorithms. 

The related key attack is also known as the chosen key 

attack and is applied successfully on a reduced round 

AES-256 (Biryukov et al., 2009). 

There is no successful key related attack that has 

been found on the key scheduling algorithm of 

PRESENT. Therefore, we adopt a similar style of key 

scheduling to the PRESENT block cipher. For design 

of the key scheduling algorithm, we have considered 

two approaches, which are given as follows: 

1. use of the nonlinear component, i.e., S-box, in 

the design; 

2. XOR operation of 5-bit from key register with 

round constant RC
i
. 

By using two S-boxes in 128-bit key scheduling 

and one S-box in 80-bit key scheduling algorithms, 

the BORON cipher increases the strength of the key 

scheduling algorithm. 

3.9  Key collision attack 

Key collision attack (Anderson et al., 1998) can 

be mounted on any block cipher and depends on the 

key length regardless of the key scheduling algorithm. 

Key collision attack creates a message with a com-

plexity of 2
k/2

, where k denotes the length of the key. 

The complexity of the created message is given as 

2
128/2

=2
64

. 

3.10  Avalanche effect (Shi and Lee, 2000) 

When a single bit in the input changes, the output 

changes considerably, resulting in an avalanche effect. 

For example, flipping a single bit in the input or in a 

key could change half of the bits in the cipher text. A 

cipher with a good avalanche effect has a higher 

probability to resist all possible types of attacks. 

In case of a robust design of block ciphers, 

drastic changes in the cipher text are visible when a 

small change in the key or the plaintext takes place. 

Poor randomization occurs when a block cipher does 

not show the avalanche effect to a significant degree. 

We have observed the output by applying single 

bit change in input plaintext/key bits. In the case of 

the BORON cipher, any single bit change in the key 

results changes more than half of the bits of the cipher 

text. Tables 11 and 12 show the avalanche effect. 

 
 

4 Security comparison with standard  

algorithms 

 
In this section, the security of BORON is com-

pared with that of other standard algorithms. Table 13 

compares the linear and differential complexities by 

considering the minimum number of active S-boxes 

for particular rounds. Table 14 compares the data and 

computational complexities of BORON with those of 

other ciphers. 
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5  Hardware and software performances of 

the BORON cipher 

 

The BORON cipher is designed in such a way 

that it provides optimum performance on both the 

software platform and the hardware platform. The 

compact structure of the BORON cipher results in a 

small footprint area in the hardware and requires less 

memory in the software. We have considered the 

32-bit ARM 7 LPC2129 processor for analyzing the 

software performance of the BORON cipher.  

The footprint areas (number of GEs) are com-

puted with a standard cell library based on the UMCL 

180 0.18 µm logic process (UMCL18G212T3) 

(Poschmann, 2009; Bansod et al., 2015). The memory 

size required for the BORON cipher on a 32-bit pro-

cessor is 2408 bytes as flash memory and 1256 bytes 

as RAM memory. All other ciphers are programed in 

embedded C and implemented on a 32-bit processor 

for comparison. Fig. 7 shows the memory comparison 

between existing lightweight ciphers and the BORON 

cipher. 

The round based architecture data path for the 

BORON cipher is shown in Fig. 8. The numbers of 

GEs are computed based on a UMCL180 standard 

cell library (Table 15). GE calculation for the BO-

RON cipher is presented in Table 16. For the 128-bit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11  Avalanche effect for BORON-80 

Plaintext Key Ciphertext Number of bits changed 

0000 0000 0000 0000 

0000 0000 0000 0000 0000 3cf7 2a8b 7518 e6f7  

0010 0000 0000 0000 0000 fdf9 f345 3448 197a 32 

0000 0000 0000 0000 0010 fe91 0aec bee3 29b3 33 

Table 12  Avalanche effect for BORON-128 

Plaintext Key Ciphertext Number of bits changed

0000 0000 0000 0000 

0000 0000 0000 0000 0000 0000 0000 0000 94a1 05a7 d2f2 de42  

0000 0000 0000 0000 0000 0000 0000 0010 7946 b520 9d6e c210 34 

0000 8000 0000 0000 0000 0000 0000 0000 2dcc 3b8d e115 e67c 36 

Table 13  Linear and differential attack comparison 

Cipher 
Number of  

rounds 

Number of active 

S-boxes 

Number of known 

plaintext 

Number of chosen 

plaintext 
Reference 

BORON 18 48 298 296 This paper 

PRESENT 25 50 2102 2100 Bogdanov et al., 2007

L-Block 15 32 266 264 Wu and Zhang, 2011

FEW 27 45 290 290 Kumar et al., 2014 

PICCOLO 30 30 2120 2120 Shibutani et al., 1990

Fig. 7  Flash memory and RAM memory comparison 

between standard algorithms and the BORON cipher 

implemented on LPC2129 

Fig. 8  Data path for the BORON cipher for 64-bit 

plaintext and 128-bit key 
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BORON, the key scheduling complete cipher has a 

total of 1939 GEs, and for the 80-bit, the key sched-

uling complete cipher has a total of 1626 GEs. 

The related key attack on TEA was mounted by 

Kelsey et al. (1997), which leads to developing an 

extension of TEA, called XTEA (Wheeler and 

Needham, 1997). Hardware implementation of TEA 

requires 2355 GEs (Poschmann, 2009) and XTEA 

requires at least 2000 GEs (Bogdanov et al., 2007). 

Table 17 shows the comparison of lightweight 

ciphers with BORON based on parameters such as 

execution time, throughput, and the number of cycles 

required to convert plain text to cipher text. 

Throughput is computed at a 12 MHz frequency on 

the software platform. Fig. 9 shows the numbers of 

GEs (Bansod et al., 2015; 2016) of existing ciphers 

and the BORON cipher. All other versions have block 

size of 64 bits and key size of 128 bits. Table 18 

shows the throughput comparison of the BORON 

cipher and the existing SP network cipher. 

 

 

6  Conclusions 

 

In this paper, we presented BORON, an ultra- 

lightweight and low power cipher. BORON has a 

compact design, resulting in a smaller foot print area 

and lower power consumption. BORON performs 

efficiently on both hardware and software platforms. 

It has achieved a great speed while encrypting the text, 

as it is based on the SP network as compared to the 

Feistel based ciphers. We showed the resistance of the 

BORON cipher mainly against linear, differential,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 16  Calculation of the number of GEs for 

the BORON-128 cipher 

Data layer 
Number 

of GEs 
Key layer 

Number 
of GEs

D register 384 Key register 768 

S-Box 384 Shift operator 0 

P-Layer 0 S-box 48 

XOR 170.84 XOR RC 13.35 

  Key XOR 170.84

Total 938.24 Total 1000.19

Total number of gates required for 128-bit key is 1938.43≈1939 

 

Table 17  Comparison with respect to throughput, execution time, and the number of cycles 

Structure Cipher 
Block size 

(bit) 

Key size 

(bit) 

Execution time 

(μs) 

Throughput 

(kb/s) 

Number of 

cycles 

SP network 

LED   64 128 7092.86       9.00 425 572.00 

KLEIN   64   96   887.51     72.00   10 650.12 

BORON   64 128   666.46     96.02      7997.52 

HUMMINGBIRD-2   16 128   316.51     51.00      3798.12 

PRESENT   64 128 2648.65     24.16   31 783.80 

Feistel 

SPECK   64 128     49.02 1305.00        588.24 

SIMON   64 128   105.67   605.00      1268.04 

PICCOLO   64 128   227.68   281.00      2732.16 

CLEFIA 128 128 1048.01   122.00   12 576.12 

TWINE   64 128   592.87   108.00      7114.44 

 

Table 15  Gate count of the UMCL18G212T3 library

Standard cell Process Number of GEs

NOT 0.18 µm 0.67 

AND 0.18 µm 1.33 

XOR 0.18 µm 2.67 

D F.F. 0.18 µm 6.00 

 

Table 14  Biclique attack comparison 

Cipher 
Data 

complexity

Computational 

complexity 
Reference

BORON-80 241 279.56 This paper

PRESENT-80 223 279.54 

Jeong et al., 

2012 

PRESENT-128 219 2127.42 

PICCOLO-80 248 279.13 

PICCOLO-128 224 2127.35 

LED-64 264 263.58 

LED-80 264 279.37 

LED-96 264 295.37 

LED-128 264 2127.37 
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key schedule, and key collide attacks. During the 

cipher design, we conducted extensive computer 

based searches for good S-boxes, the minimum 

number of active S-boxes, and the calculation of the 

Hamming weight for specific entries in LAT and 

DDT. The BORON cipher has a strong S-box and a 

robust permutation layer, which prevent the cipher 

design from undergoing the clustering of linear and 

differential trails. This property represents the robust 

design of the BORON cipher. In designing BORON, 

we have achieved a very small gate count, so it can be 

implemented for security in any small-scale embed-

ded system. For applications like RFID tags and 

wireless sensor nodes, where a small number of GEs 

and low power consumption are required, we believe 

BORON is the best design. The BORON cipher can 

be further tested with a variety of advanced attacks. 
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Appendix: Test vectors 

 
Table A1  Test vectors for 80-bit key 

Plaintext: 0000 0000 0000 0000 

Key: 0000 0000 0000 0000 0000 

Ciphertext: 3cf7 2a8b 7518 e6f7 

Plaintext: 0123 4567 89ab cdef 

Key: 0000 0000 0000 0000 0000 

Ciphertext: 5a66 4928 b961 c619 

 
Table A2  Test vectors for 128-bit key 

Plaintext: 0000 0000 0000 0000 

Key: 0000 0000 0000 0000 0000 0000 0000 0000 

Ciphertext: 94a1 05a7 d2f2 de42 

Plain Text: 0123 4567 89ab cdef 

Key: 0000 0000 0000 0000 0000 0000 0000 0000 

Ciphertext: 953b e55b d5f2 68ba 

 

 

 

 

 


