
Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

317

BORON: an ultra-lightweight and low power

encryption design for pervasive computing

Gaurav BANSOD
†1

, Narayan PISHAROTY
2
, Abhijit PATIL

3

(1Pune Institute of Computer Technology, Pune 411043, India)

(2Glocal University, Saharanpur 247121, India)

(3Symbiosis Institute of Technology, Pune 412115, India)

†E-mail: gaurav249@gmail.com

Received Nov. 28, 2015; Revision accepted May 15, 2016; Crosschecked Feb. 28, 2017

Abstract: We propose an ultra-lightweight, compact, and low power block cipher BORON. BORON is a substitution and

permutation based network, which operates on a 64-bit plain text and supports a key length of 128/80 bits. BORON has a compact

structure which requires 1939 gate equivalents (GEs) for a 128-bit key and 1626 GEs for an 80-bit key. The BORON cipher

includes shift operators, round permutation layers, and XOR operations. Its unique design helps generate a large number of active

S-boxes in fewer rounds, which thwarts the linear and differential attacks on the cipher. BORON shows good performance on both

hardware and software platforms. BORON consumes less power as compared to the lightweight cipher LED and it has a higher

throughput as compared to other existing SP network ciphers. We also present the security analysis of BORON and its

performance as an ultra-lightweight compact cipher. BORON is a well-suited cipher design for applications where both a small

footprint area and low power dissipation play a crucial role.

Key words: Lightweight cryptography; SP network; Block cipher; Internet of Things (IoT); Encryption; Embedded security

http://dx.doi.org /10.1631/FITEE.1500415 CLC number: TP309.7

1 Introduction

Lightweight cryptography is an emerging field,

which is well suited for applications like Internet of

Things (IoT), pervasive computing, and embedded

security. In recent years, many lightweight ciphers

have been designed and implemented for providing

security in applications like wireless sensor nodes and

RFID tags. The constraints about these applications

are their footprint areas, number of gate equivalents

(GEs), and power consumption. The cipher, which

meets all these constraints, can be implemented for

providing security in the field of embedded security.

A lightweight cipher should need less than 2000 GEs

for its implementation in hardware. It should also

consume less flash memory to be more compact.

Ciphers, like PRESENT (Bogdanov et al., 2007),

TWINE (Suzaki et al., 2011), PICCOLO (Shibutani

et al., 2011), SIMON and SPECK (Beaulieu et al.,

2013), RECTANGLE (Zhang et al., 2014), and LED

(Guo et al., 2011), are the existing ultra-lightweight

ciphers, among which the cipher PRESENT is the

most compact and has the best performance on both

hardware and software platforms. The PRESENT

cipher is designed to provide a compact hardware

structure. The cipher LED (Guo et al., 2011) is known

for its robust architecture, as it inherits some elements

of the AES (NIST, 2001) cipher, but it has a high

energy-per-bit, which results in high power dissipa-

tion. The fault-based attack is mounted on the LED

cipher. Recently, NSA launched the most compact

ciphers, SIMON and SPECK, which should be stud-

ied further for all possible types of attacks. In this

paper, we propose a design (BORON) that requires

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

 ORCID: Gaurav BANSOD, http://orcid.org/0000-0002-4089-

9714

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2017

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331 318

less footprint area and less power consumption and

has good cryptographic properties. The proposed

BORON cipher, as an SP network (Menezes et al.,

1996) cipher, executes at a higher throughput as

compared to other Feistel based ciphers. Multi-round

permutations are used to build the strong crypto-

graphic properties in BORON. While designing a

complex structure, we also take into consideration the

memory size and the number of GEs required for the

implementation of the cipher.

The nonlinear layer in an SP network plays a

very important role in deciding the strength of a ci-

pher. In BORON, we have designed a strong nonlin-

ear layer suitable for BORON, which results in a

larger number of active S-boxes. BORON shows a

good resistance against linear and differential crypt-

analysis. Our experimentation also shows that BO-

RON’s permutation layer design is one of the most

robust designs among other existing lightweight ci-

phers. We have used a computer-based approach to

find the linear and differential trails, the minimum

number of active S-boxes, and to mount linear and

differential attacks on this cipher. Key scheduling of

BORON is motivated by the PRESENT cipher.

Overall, the BORON cipher shows good crypto-

graphic properties, has a robust design, a compact

structure, and has a very low power consumption.

For the BORON cipher, we use the following

notations:

Aj → input plaintext block of j=64 bits

Cj → output cipher text block of j=64 bits

Ki → 64-bit round sub-key for round i

 → bitwise exclusive-OR operation

<<<n → left cyclic shift by n bits

<<n → left shift by n bits

>>n → right shift by n bits

RCi

j
 → round counter i of j=5 bits

|| → concatenation of two strings

! → bitwise NOT operation

& → bitwise AND operation

| → bitwise OR operation

2 Block cipher BORON

BORON is a substitution permutation network

(Menezes et al., 1996) and has a total of 25 rounds.

The block length is 64 bits and supports 80- and

128-bit key lengths. Fig. 1 shows the block diagram

of a BORON cipher and Fig. 2 shows the detailed

BORON block cipher.

As shown in Fig. 1, the BORON cipher contains

an S-box, which acts as a nonlinear layer followed by

a block shuffle of four bits. The shuffled bits are fed

to the round permutation layer, which is then fol-

lowed by an XOR operation. Twenty-five different

keys are generated from the 80/128-bit key register

and these keys are applied in each round of the

BORON cipher. One extra key will be generated and

will be XOR-ed to produce the final ciphertext.

 Fig. 2 Block cipher BORON

Fig. 1 Block diagram of a BORON cipher

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

319

Pseudo code of the BORON cipher is given as

A=a
63

 a
62

 ... a
0

RoundKeys()

for i=0 to 24 do

Add_round_key(A, Ki)

S_Box_Layer(A)

Block_Shuffle(A)

Round_Permutation(A)

XOR_Operation(A)

end for

Add_round_key(A, K25)

Each round of the BORON cipher consists of the

operations described in the following sections.

2.1 Add_round_key

Add_round_key performs an XOR (‘’) opera-

tion with a 64-bit plaintext and a 64-bit sub-key which

is extracted from the 128-bit key register. Sub-keys

are denoted by Ki (i ranges from 0 to 24) and the

current state output A→a
63

 a
62

 … a
0
 is given as

A → AK
i
.

2.2 S_Box_Layer

The S-box used in the BORON cipher design is a

4-bit to 4-bit S-box, S: 4 4

2 2F F . Table 1 presents the

hexadecimal values for the substitution layer.

Table 1 S-box of the BORON cipher

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] e 4 b 1 7 9 c a d 2 0 f 8 5 3 6

The current state output A64→a
63

 a
62

 ... a
0
 is di-

vided into sixteen 4-bit blocks W
15

 W
14

 … W
0
. Each

W
i
 is of a 4-bit size and W

i
=a

4i+3
||a

4i+2
||a

4i+1
||a

4i
, where

i ranges from 0 to 15 and i is updated by i=i+4. W
i
 is

fed to the 4-bit S-box and the output nibble S[W
i
]

provides the updated values.

The 4-bit to 4-bit S-box of BORON is described

by the following equations.

Let X=x3x2x1x0 be the input of the S-box and Y=

y3y2y1y0 be the output. Then,

y0 = (!x3&!x2&x1) | (!x2&x1&x0) | (!x3&x2&!x1)

| (x2&!x1&x0) | (x3&!x2&!x1&!x0)

| (x3&x2&x1&!x0),

y1=(!x3&!x2&!x0) | (!x3&!x1&!x0) | (x2&x1&x0)

| (x3&!x2&x0) | (x3&x2&x1),

y2=(!x3&!x2&!x1) | (!x2&!x1&!x0) | (!x3&x2&!x0)

| (x3&x1&x0) | (x3&x2&x0),

y3=(!x3&!x2&!x0) | (!x3&x1&!x0) | (!x3&x2&x0)

| (x3&!x1&!x0) | (x3&!x2&x1&x0).

2.3 Permutaion_Layer

The Permutation_Layer of the BORON cipher

has three sub-permutation layers, which are described

in the following.

2.3.1 Block_Shuffle

The Block_Shuffle layer takes the 16-bit input

and gives the 16-bit shuffled output. The block per-

mutation is presented in Table 2. Block x of a 4-bit

size is substituted to the block position P[x] of a 4-bit

size. The Block_Shuffle P: {0, 1}16←{0, 1}16 divides

a 16-bit input into four 4-bit data as P= 3

4P || 2

4P || 1

4P || 0

4P

and then permutes them following the manner shown

in Fig. 3.

Table 2 Block_Shuffle layer of the BORON cipher

x 0 1 2 3

P[x] 2 3 0 1

For the 64-bit block size, the Block_Shuffle op-

eration is repeated four times for each 16-bit size

block (W
0
, W

1
, W

2
, W

3
), where W

j
=a

i+15
 || a

i+14
 || …

|| a
i+1

 || a
i
 for 0≤16·i≤48 and j ranges from 0 to 3. W

j
 is

updated in the following manner:

Fig. 3 Block_Shuffle and Round_Permutaion layers

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331 320

W
0
=a

15
 ||a

14
 || … ||a

1
||a

0
,

W
1
=a

31
 ||a

30
 || … ||a

17
||a

16
,

W
2
=a

47
 ||a

46
 || … ||a

33
||a

32
,

W
3
=a

63
 ||a

30
 || … ||a

47
||a

48
.

2.3.2 Round_Permutation

The Round_Permutation performs the left cir-

cular shift operation on the 16-bit block as shown in

Fig. 3 and is given as

W
j
=W

j
<<<r[j], 0≤j≤3.

Table 3 shows the left circular shifted values for

each 16-bit block computed from the 64-bit block.

Table 3 Round_Permutation: left circular shift values

j 0 1 2 3

r[j] 1 4 7 9

2.3.3 XOR_Operation

The XOR_Operation performs XOR operation

() between 16-bit inputs and produces 16-bit output.

This layer produces a 64-bit output in the following

way:

A64→(W
3W

2W
0
) || (W

2W
0
) || (W

3W
1
)

|| (W
3W

1W
0
).

Algorithm 1 summaries the encryption process

described in Sections 2.1–2.3.

2.4 Key schedule of 80- and 128-bit key lengths

The key schedule of the BORON cipher is mo-

tivated by the PRESENT (Bogdanov et al., 2007)

cipher key scheduling design—no attack until dates

are reported on the PRESENT cipher key scheduling.

In BORON cipher key scheduling, there are a total of

25 sub-keys (each of size 64-bit). We strengthen the

key scheduling by using a larger number of nonlinear

operations in key scheduling.

1. 128-bit key scheduling

The user-defined 128-bit key is stored in the

register key, and the 64-bit least significant bits

(LSBs) from the KEY register are extracted as fol-

lows:

K
i
=K63 K62 … K0,

KEY=K127 K126 … K0.

Algorithm 1 Encryption

Input: Plaintext A64→a63 a62 … a0, S[16], P[4], r[4]

Output: Ciphertext C64

for i=0 to 24 do

 A64→a63 a62 … a0

for j=0 to 3 do

temp16→(A64>>16·j)(64

iK >>16·j)

temp16→S[temp16] // S-box

[]

16 0jW

for k=0 to 4 do

[]

16

jW +=((temp16>>4k)&0xF)<<4P[k]

// Block_shuffle

end for

[] []

16 16 []j jW W r j // Round_Permutation

end for

A64→X(3

16W , 2

16W , 0

16W) || X(2

16W , 0

16W) || X(3

16W , 1

16W)

|| X(3

16W , 1

16W , 0

16W) // X→XOR_Operation

end for

for j=0 to 3 do

C64+=(A64>>16·j)(25

64K >>16·j)<<16·j

end for

After extracting the keys of 64 bits, the register

KEY is updated in the following manner:

(1) KEY<<<13;

(2) [K3 K2 K1 K0]←S[K3 K2 K1 K0];

(3) [K7 K6 K5 K4]←S[K7 K6 K5 K4];

(4) [K63 K62 K61 K60 K59]←[K63 K62 K61 K60 K59]RC
i
.

For 0 to 24 rounds, five bits of the round counter

i is XOR-ed with the five bits of key register KEY, i.e.,

from K59 to K63.

2. 80-bit key scheduling

The user-defined 80-bit key is stored in the key

register KEY and the LSB bits from it are used as

round sub-keys:

Ki=K63 K62 … K0,

KEY=K79 K78 … K0.

After extracting the 64-bit key, register KEY is

updated as follows:

(1) KEY<<<13;

(2) [K3 K2 K1 K0]←S[K3 K2 K1 K0];

(3) [K63 K62 K61 K60 K59]←[K63 K62 K61 K60 K59] RC
i
.

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

321

3 Security analysis of BORON

There are different cryptanalysis techniques to

find whether the cipher is resistant to attacks or not. In

this study, we focus on basic attacks, like differential

attack, linear attack, algebraic attack, key scheduled

attack, and key collision attack. In an SP network,

S-box selection plays a very important role in decid-

ing whether the structure is secure against linear and

differential attacks. S-box is the only nonlinear ele-

ment in the entire cipher design. Generation of a large

number of active S-boxes in a design results in a ro-

bust architecture and can thwart all possible types of

attacks. Computer-based techniques are used in this

study for the selection of good S-boxes and to find the

minimum number of active S-boxes.

3.1 Design criteria of the S-box

Use of a different S-box for each round will re-

sult in an increase in the gate count. Similarly, the use

of different S-boxes does not provide a sensible im-

provement in the resistance against known attacks

(NIST, 2001). The use of an 8-bit to 8-bit S-box in the

cipher will increase the number of GEs, so we choose

a single 4-bit to 4-bit S-box for the BORON cipher.

Compactness and resistance against linear and

differential attacks are the two parameters we con-

sider while designing the S-box. A compact S-box

requires less memory and a smaller number of GEs

for implementation.

The BORON S-box takes a 4-bit input and

produces a 4-bit output, i.e., S: 4 4

2 2F F . Properties

essential for a good S-box design are listed as follows:

Property 1 (Linear property) Let a 4

2F be the input

to the S-box, A the input mask, B the output mask, and

A, B 4

2F . LC(A, B) is defined as

LC(A, B)=#{a 4

2F |A�a=B�S(a)}−8,

where LC(·) represents linear cryptanalysis (Matsui

1993; Heys 2001), ‘�’ denotes mask operation on 4

2F ,

and #{·} indicates the number of matches in the linear

approximation table (LAT) for input mask A and

output mask B.

Property 2 (Differential property) Let a 4

2F be the

input to the S-box, ΔA and ΔB the input and output

differences, respectively, and ΔA, ΔB 4

2F . DC(ΔA,

ΔB) is defined as

DC(ΔA, ΔB)=#{a 4

2F |S(a)S(aΔA)=ΔB},

where DC(·) represents differential cryptanalysis

(Biham and Shamir, 1991; Heys, 2001). This property

is used to form the difference distribution table

(DDT).

The complete design criteria of the S-box, which

we have used in the design of the BORON cipher, are

given as follows:

Criterion 1 For any nonzero input difference

ΔA 4

2F and output differences ΔB 4

2F , we have

DC(ΔA, ΔB)=#{a 4

2F |S(a)S(aΔA)=ΔB}≤4.

Criterion 2 For any nonzero input differences

ΔA 4

2F and output differences ΔB 4

2F such that

Hw(ΔA)=Hw(ΔB)=1, where Hw(x) denotes the

Hamming weight of x, we have

SetDC=DC(ΔA, ΔB)

=#{a 4

2F |S(a)S(aΔA)=ΔB}=0.

Cardinality of SetDC can be given as CarDC, and

we have CarDC=0.

Criterion 3 For any nonzero input mask A 4

2F and

output mask such that B 4

2F , we have

LC(A, B)=#{a 4

2F |A�a=B�S(a)}−8≤4.	

Criterion 4 For any nonzero input mask A 4

2F ,

output mask B 4

2F , and Hw(A)=Hw(B)=1, we have

SetLC=LC(A, B)=#{x 4

2F |A�x=B�S(x)}−8≠0.	

Cardinality of SetLC can be given as CarLC, and

we have CarLC=4.

Criterion 5 (Bijective) S(a)≠S(b) for all values of

a≠b.

Criterion 6 (No static point) S(a)≠a for all values of

a 4

2F .

The strength of the S-box depends on cardinality;

for example, in the case of the PRESENT cipher,

S-box (Bogdanov et al., 2007; Zhang et al., 2014) has

CarDC=0 and CarLC=8; in case of the RECTANGLE

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331 322

cipher, S-box (Zhang et al., 2014) has CarDC=2 and

CarLC=2; in case of the BORON cipher, S-box has

CarDC=0 and CarLC=4.

3.2 BORON cipher S-box selection

Selection of the S-box in the BORON cipher is

driven by two definitions:

Definition 1 (Permutation-then-XOR equivalence

(PE) (Leander and Poschmann, 2007; Zhang et al.,

2014)) If there exist two 4×4 permutation matrices

m0 and m1 and constants a, b 4

2F for two S-boxes

such that S′(x)=m1(S(m0(x)+a))+b, then the equiva-

lence is called PE.

When an S-box satisfies criteria 1 to 5 in Section

3.1, then its PE equivalent S-box also satisfies criteria

1 to 5.

Definition 2 (Affine equivalence (Leander and

Poschmann, 2007; Zhang et al., 2014)) If there exist

a bijective linear mapping A, B and constants a, b

 4

2F for two S-boxes such that S′(x)=B(S(A(x)+a))+b,

then the equivalence is called affine equivalence.

When an S-box satisfies criteria 1, 3, and 5 in

Section 3.1, then its affine equivalent S-box also sat-

isfies criteria 1, 3, and 5.

Definitions 1 and 2 are considered while de-

signing the S-box for the BORON cipher.

3.3 Linear cryptanalysis

Linear cryptanalysis (Matsui, 1993; Heys, 2001)

is applicable to symmetric-key block ciphers and the

cipher needs to resist such a kind of attack. This attack

is a known plaintext attack. It uses the high probabil-

ity occurrences of the linear expression containing

plaintext bits, cipher text bits, and sub-key bits. This

expression is used for mounting linear attacks on a

cipher. To mount a linear attack, the attacker needs to

have the knowledge about a subset of plaintext and its

corresponding ciphertext. The attacker will find the

relationship between them. S-box is examined by

forming a LAT. S-box is the only nonlinear compo-

nent in the encryption design. If PL is the linear

probability, then the bias can be given as |PL−1/2|, and

bias (ε) for the BORON cipher S-box is 2
−2

. Matsui’s

piling-up lemma (Matsui, 1993) is used to calculate

the probability bias for n rounds.

The best way to resist against linear cryptanaly-

sis is:

1. Optimize the bias in LAT. For an ideal S-box,

the value of bias is 1/8 and this is practically not

possible to achieve.

2. Increase the number of active S-boxes in the

cipher structure.

Lemma 1 (Matsui’s pilling-up lemma (Matsui, 1993))

For random binary variables X1, X2, …, Xn (n is the

number of active S-boxes) and X1X2···Xn=0, the

total bias can be derived as

1

1

2 ,
n

n

i

i

where εi represents the bias of Xi.

Two standard methods can be used to count the

minimum number of active S-boxes:

1. Matusi’s branch and bound algorithm (Matsui,

1994);

2. the mixed-integer programming technique

(Sun et al., 2014a; 2014b).

In this study, Matusi’s branch and bound algo-

rithm is used to count the minimum number of active

S-boxes.

Table 4 presents the linear trails for the BORON

cipher. Fig. 4 shows the linear trails for two rounds of

the BORON cipher and the red S-box represents the

active S-box. The maximum bias is 2
−2

 for the BO-

RON cipher S-box. Table 5 presents the minimum

number of active S-boxes from the linear trails.

Table 4 Linear trails for the BORON cipher

Round index Input to S-box Output of S-box

1 0000 0000 0008 0000 0000 0000 0005 0000

2 0000 0000 5000 5000 0000 0000 3000 3000

3 0060 0060 0300 0360 0010 0010 0600 0610

4 2024 2004 0040 204c e0e9 e009 0090 e095

Table 5 Minimum number of active S-boxes from the

linear trails

Round index
Minimum number of active

S-boxes

1 1

2 3

3 8

4 17

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

323

Theorem 1 For 18 rounds of BORON it has a total

of 48 active S-boxes and the total bias for the 18

rounds is 2
−49

.

Proof We find that for three rounds BORON has a

minimum of eight active S-boxes.

The maximum bias for the BORON cipher

S-box is 2
−2

 by using Matsui’s pilling-up lemma for

three rounds of BORON cipher and the total bias can

be given as

2
7
×(2

−2
)
8
=2

−9
.

By applying the same lemma for 18 rounds, the

total bias ε can be given as

ε=2
5
×(2

−9
)
6
=2

−49
.

By calculating the required number of known

plaintext/ciphertext, we can compute the complexity

of the linear attack as

NL=1/ε2.

For 18 rounds of BORON cipher, the required

number of known plaintext/ciphertext can be given as

NL=1/ε2=1/(2
−49

)
2
=2

98
.

The required number of known plaintext/ciphertexts

is 2
98

, which is larger than the available limit, i.e., 2
64

.

Thus, the complete number of rounds of BORON

cipher shows good resistance against a linear attack.

3.4 Differential cryptanalysis

Differential cryptanalysis (Biham and Shamir,

1991; Heys, 2001) is the most significant attack ap-

plicable to the symmetric key block cipher. Biham

and Shamir (1991) first applied the differential attack

on the Data Encryption Standard (DES). To mount

the differential attack for a specific number of rounds

in an encryption system, pairs of high probability

input and output occurrences are used to recover the

round keys. S-box is a nonlinear component in our

design and it gets examined by forming a DDT. Dif-

ferential trails are formed by considering high prob-

ability input and output differences for each round,

and the S-box that has non-zero input differences or

non-zero output differences is referred to as an active

S-box.

The differential probability for the BORON ci-

pher S-box is 4/16=2
−2

.

There are two approaches to providing security

against differential cryptanalysis:

1. By minimizing the differential probability, for

the ideal S-box, this probability is 1/16.

2. Find a structure that maximizes the minimum

number of active S-boxes.

Table 6 presents the differential trails for the

BORON cipher. Non-zero input differences to the

S-box or non-zero output differences from the S-box

are referred to as an active S-box. Table 7 presents the

minimum number of active S-boxes from differential

trails.

Table 6 Differential trails for the BORON cipher

Round index Input to S-box Output of S-box

1 0000 0000 000e 0000 0000 0000 0002 0000

2 0000 0000 2000 2000 0000 0000 3000 3000

3 0060 0060 0300 0360 0080 0080 0200 0280

4 0145 0045 0120 0125 0a91 0091 0a30 0a31

For three rounds of BORON cipher, there are a

minimum of eight active S-boxes, so for 18 rounds

there will be a minimum of 48 active S-boxes. The

total differential probability Pd is (2
−2

)
48

=2
−96

.

Fig. 4 Linear trails for two rounds of BORON cipher

(References to color refer to the online version of this

figure)

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331 324

Table 7 Minimum number of active S-boxes from the

differential trails

Round index
Minimum number of active

S-boxes

1 1

2 3

3 8

4 18

We can compute the complexity of the differen-

tial attack by calculating the required number of

plaintext/ciphertexts chosen and this can be given as

Nd=C/Pd,

where C=1 and Pd=2
−96

, so the required number of

plaintext/ciphertexts chosen is

Nd=1/2
−96

=2
96

.

The required number of chosen plaintext/

ciphertexts is 2
96

, which is larger than the available

limit, i.e., 2
64

. Therefore, the complete number of

rounds of the BORON cipher shows good resistance

against differential attacks.

3.5 Zero-correlation attack

Zero-correlation attack (Bogdanov and Rijmen,

2011; Soleimany and Nyberg, 2012) is the extension

of linear cryptanalysis. The block ciphers should

resist a zero correlation attack. The zero-correlation

attack is based on the linear approximations with a

correlation value of zero. The zero-correlation attack

is considered as a counterpart of the impossible dif-

ferential cryptanalysis in the domain of linear crypt-

analysis. We have applied a matrix method (So-

leimany and Nyberg, 2012) to mount a zero-

correlation attack, which is explained below. Fol-

lowing are the three lemmas used to mount a zero-

coorelation attack on the cipher:

Lemma 2 (XOR approximation) Either the three

linear selection patterns at an XOR ‘’ are equal or

the correlation over the operator is exactly zero.

Lemma 3 (Branching approximation) Either the

three linear selection patterns at a branching point ‘�’

sum up to 0 or the correlation over ‘�’ is exactly zero.

Lemma 4 (Permutation approximation) Over a

permutation , if the input and output selection pat-

terns are neither both zero nor both non-zero, the

correlation over is exactly zero.

1. The matrix method (Soleimany and Nyberg,

2012)

The miss-in-the-middle approach is considered

to find the impossible differential characteristics of a

cipher. This approach is used to construct the impos-

sible differential characteristic by two (truncated)

differential paths with a probability of one, which

leads to a contradiction in the middle. The matrix

method for finding the linear approximation with

correlation zero is given below:

The linear masks applied to the words can be one

of the following five types:

(1) zero mask denoted by 0,

(2) an arbitrary non-zero mask denoted by 0,

(3) non-zero mask with a fixed value a ,

(4) the exclusive-or of a fixed non-zero mask a

and an arbitrary non-zero mask, denoted by a , and

(5) any other mask denoted by ‘∗’.

The matrix shows how a linear mask of each

output word is affected by the linear mask of an input

word. Arithmetic rules for multiplication and addition

are given in Tables 8 and 9, respectively.

Table 8 Arithmetic rules multiplication by 0, 1, and 1F

 0 1 1F

0 0 0 0

0 0 0 0

a 0 a

a 0 a ∗ ∗ 0 ∗ ∗

Table 9 Arithmetic rules for addition between two masks

 0 0 a a *

0 0 0 a a *

0 0 * a * *

b b b a+b * *

b b * * * *

* * * * * *

2. Zero-correlation for four rounds of BORON

(000a00000000000)→(00000000000000b0) has

a correlation of exactly zero for the values a and b that

are non-zero. The trails for zero correlation attacks

are shown in Table 10 and we find contradictions at

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

325

round 2 for the BORON cipher. Contradictions are

presented in Table 10 by using characters in bold.

3.6 Biclique attack

Biclique attack (Bogdanov et al., 2011; Jeong et

al., 2012) is an extension of the meet-in-the-middle

attack. In this study, we apply biclique cryptanalysis

on both BORON-80 and BORON-128. Based on the

attack results, comparisons are made with the most

popular lightweight block ciphers such as PRESENT,

Piccolo, and LED.

We have constructed a three-dimensional bi-

clique for rounds 22–25 of BORON-80. For these

rounds the partial keys used are (K
22

, K
23

, K
24

, K
25

),

described as follows:

K
22

=K17, K16, …, K0, K79, …, K34

K
23

=K4, K3, …, K0, K79, …, K21

K
24

=K71, K70, …, K8

K
25

= K58, K57, …, K0, K79, …, K75

From the above equations we find that varying

the following sub-keys (K
23

, K
22

, K
21

) and (K
74

, K
73

,

K
72

) gives the bicliques on the full BORON-80.

To construct the Δi-differential, we consider

sub-keys (K
23

, K
22

, K
21

) and for the j-differential, we

consider sub-keys (K
74

, K
73

, K
72

). Let f be a sub-cipher

from rounds 22 to 25. The ∆i-differential affects 41

bits of the ciphertext (Fig. 5), and the data complexity

does not exceed 2
41

. The red arrows at the 25th round

in Fig. 5 show the data complexity.

Figs. 6a and 6b present the recomputation in the

forward and backward directions, respectively. The

total computational complexity of BORON-80 is

computed as follows:

Ctotal=2
k−2d

(Cbiclique+Cprecomp+Crecomp+Cfalsepos),

=2
80−6

(2
0.954

+2
2.88

+2
5.239

+2
2
)=2

79.564
.

Fig. 5 Three-dimensional biclique for BORON-80 (Ref-

erences to color refer to the online version of this figure)

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331 326

 Fig. 6 Recomputation in forward directions for BORON-80 (a) and recomputation in backward directions for BO-

RON-80 (b) (References to color refer to the online version of this figure)

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

327

3.7 Algebraic attack

The attacker applies the algebraic attack (Al-

brecht and Cid, 2009) usually on a stream cipher,

because it is easier to succeed on a stream cipher than

on a block cipher. The 4-bit to 4-bit S-box can be

described by a minimum of 21 equations. x=a×21

quadratic equations in y=a×8 variables are used to

examine the complete cipher (a represents the number

of S-boxes used in the encryption algorithm and key

scheduling algorithm).

In our cipher design for a single round of en-

cryption, a total of 16 S-boxes are used, and for the

128-bit key scheduling, two S-boxes are used. For the

25 rounds of cipher, there are 25 ×16=400 S-boxes

in the encryption system, and 25×2=50 S-boxes in the

key scheduling algorithm.

The number of quadratic equations is given as

a=(400+50)×21=9450,

and the number of variables is given as

b=(400+50)×8=3600.

By applying the same method for the 80-bit key

scheduling algorithm, we will obtain 8925 quadratic

equations which can be formed with 3400 variables.

We believe that by requiring 9450 quadratic equa-

tions with 3600 variables, the BORON cipher shows

resistance against the algebraic attack.

3.8 Related key and slide attacks

No specific guidelines have been provided to

design key scheduling algorithms. A large variety of

algorithms can be formed and a wide variety of key

related attacks can be mounted. Related key attack

(Biham, 1993) and slide attack (Biryukov and Wag-

ner, 2000) are two important attacks, which show

weaknesses related to the key scheduling algorithms.

The related key attack is also known as the chosen key

attack and is applied successfully on a reduced round

AES-256 (Biryukov et al., 2009).

There is no successful key related attack that has

been found on the key scheduling algorithm of

PRESENT. Therefore, we adopt a similar style of key

scheduling to the PRESENT block cipher. For design

of the key scheduling algorithm, we have considered

two approaches, which are given as follows:

1. use of the nonlinear component, i.e., S-box, in

the design;

2. XOR operation of 5-bit from key register with

round constant RC
i
.

By using two S-boxes in 128-bit key scheduling

and one S-box in 80-bit key scheduling algorithms,

the BORON cipher increases the strength of the key

scheduling algorithm.

3.9 Key collision attack

Key collision attack (Anderson et al., 1998) can

be mounted on any block cipher and depends on the

key length regardless of the key scheduling algorithm.

Key collision attack creates a message with a com-

plexity of 2
k/2

, where k denotes the length of the key.

The complexity of the created message is given as

2
128/2

=2
64

.

3.10 Avalanche effect (Shi and Lee, 2000)

When a single bit in the input changes, the output

changes considerably, resulting in an avalanche effect.

For example, flipping a single bit in the input or in a

key could change half of the bits in the cipher text. A

cipher with a good avalanche effect has a higher

probability to resist all possible types of attacks.

In case of a robust design of block ciphers,

drastic changes in the cipher text are visible when a

small change in the key or the plaintext takes place.

Poor randomization occurs when a block cipher does

not show the avalanche effect to a significant degree.

We have observed the output by applying single

bit change in input plaintext/key bits. In the case of

the BORON cipher, any single bit change in the key

results changes more than half of the bits of the cipher

text. Tables 11 and 12 show the avalanche effect.

4 Security comparison with standard

algorithms

In this section, the security of BORON is com-

pared with that of other standard algorithms. Table 13

compares the linear and differential complexities by

considering the minimum number of active S-boxes

for particular rounds. Table 14 compares the data and

computational complexities of BORON with those of

other ciphers.

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331 328

5 Hardware and software performances of

the BORON cipher

The BORON cipher is designed in such a way

that it provides optimum performance on both the

software platform and the hardware platform. The

compact structure of the BORON cipher results in a

small footprint area in the hardware and requires less

memory in the software. We have considered the

32-bit ARM 7 LPC2129 processor for analyzing the

software performance of the BORON cipher.

The footprint areas (number of GEs) are com-

puted with a standard cell library based on the UMCL

180 0.18 µm logic process (UMCL18G212T3)

(Poschmann, 2009; Bansod et al., 2015). The memory

size required for the BORON cipher on a 32-bit pro-

cessor is 2408 bytes as flash memory and 1256 bytes

as RAM memory. All other ciphers are programed in

embedded C and implemented on a 32-bit processor

for comparison. Fig. 7 shows the memory comparison

between existing lightweight ciphers and the BORON

cipher.

The round based architecture data path for the

BORON cipher is shown in Fig. 8. The numbers of

GEs are computed based on a UMCL180 standard

cell library (Table 15). GE calculation for the BO-

RON cipher is presented in Table 16. For the 128-bit

Table 11 Avalanche effect for BORON-80

Plaintext Key Ciphertext Number of bits changed

0000 0000 0000 0000

0000 0000 0000 0000 0000 3cf7 2a8b 7518 e6f7

0010 0000 0000 0000 0000 fdf9 f345 3448 197a 32

0000 0000 0000 0000 0010 fe91 0aec bee3 29b3 33

Table 12 Avalanche effect for BORON-128

Plaintext Key Ciphertext Number of bits changed

0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 94a1 05a7 d2f2 de42

0000 0000 0000 0000 0000 0000 0000 0010 7946 b520 9d6e c210 34

0000 8000 0000 0000 0000 0000 0000 0000 2dcc 3b8d e115 e67c 36

Table 13 Linear and differential attack comparison

Cipher
Number of

rounds

Number of active

S-boxes

Number of known

plaintext

Number of chosen

plaintext
Reference

BORON 18 48 298 296 This paper

PRESENT 25 50 2102 2100 Bogdanov et al., 2007

L-Block 15 32 266 264 Wu and Zhang, 2011

FEW 27 45 290 290 Kumar et al., 2014

PICCOLO 30 30 2120 2120 Shibutani et al., 1990

Fig. 7 Flash memory and RAM memory comparison

between standard algorithms and the BORON cipher

implemented on LPC2129

Fig. 8 Data path for the BORON cipher for 64-bit

plaintext and 128-bit key

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

329

BORON, the key scheduling complete cipher has a

total of 1939 GEs, and for the 80-bit, the key sched-

uling complete cipher has a total of 1626 GEs.

The related key attack on TEA was mounted by

Kelsey et al. (1997), which leads to developing an

extension of TEA, called XTEA (Wheeler and

Needham, 1997). Hardware implementation of TEA

requires 2355 GEs (Poschmann, 2009) and XTEA

requires at least 2000 GEs (Bogdanov et al., 2007).

Table 17 shows the comparison of lightweight

ciphers with BORON based on parameters such as

execution time, throughput, and the number of cycles

required to convert plain text to cipher text.

Throughput is computed at a 12 MHz frequency on

the software platform. Fig. 9 shows the numbers of

GEs (Bansod et al., 2015; 2016) of existing ciphers

and the BORON cipher. All other versions have block

size of 64 bits and key size of 128 bits. Table 18

shows the throughput comparison of the BORON

cipher and the existing SP network cipher.

6 Conclusions

In this paper, we presented BORON, an ultra-

lightweight and low power cipher. BORON has a

compact design, resulting in a smaller foot print area

and lower power consumption. BORON performs

efficiently on both hardware and software platforms.

It has achieved a great speed while encrypting the text,

as it is based on the SP network as compared to the

Feistel based ciphers. We showed the resistance of the

BORON cipher mainly against linear, differential,

Table 16 Calculation of the number of GEs for

the BORON-128 cipher

Data layer
Number

of GEs
Key layer

Number
of GEs

D register 384 Key register 768

S-Box 384 Shift operator 0

P-Layer 0 S-box 48

XOR 170.84 XOR RC 13.35

 Key XOR 170.84

Total 938.24 Total 1000.19

Total number of gates required for 128-bit key is 1938.43≈1939

Table 17 Comparison with respect to throughput, execution time, and the number of cycles

Structure Cipher
Block size

(bit)

Key size

(bit)

Execution time

(μs)

Throughput

(kb/s)

Number of

cycles

SP network

LED 64 128 7092.86 9.00 425 572.00

KLEIN 64 96 887.51 72.00 10 650.12

BORON 64 128 666.46 96.02 7997.52

HUMMINGBIRD-2 16 128 316.51 51.00 3798.12

PRESENT 64 128 2648.65 24.16 31 783.80

Feistel

SPECK 64 128 49.02 1305.00 588.24

SIMON 64 128 105.67 605.00 1268.04

PICCOLO 64 128 227.68 281.00 2732.16

CLEFIA 128 128 1048.01 122.00 12 576.12

TWINE 64 128 592.87 108.00 7114.44

Table 15 Gate count of the UMCL18G212T3 library

Standard cell Process Number of GEs

NOT 0.18 µm 0.67

AND 0.18 µm 1.33

XOR 0.18 µm 2.67

D F.F. 0.18 µm 6.00

Table 14 Biclique attack comparison

Cipher
Data

complexity

Computational

complexity
Reference

BORON-80 241 279.56 This paper

PRESENT-80 223 279.54

Jeong et al.,

2012

PRESENT-128 219 2127.42

PICCOLO-80 248 279.13

PICCOLO-128 224 2127.35

LED-64 264 263.58

LED-80 264 279.37

LED-96 264 295.37

LED-128 264 2127.37

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331 330

key schedule, and key collide attacks. During the

cipher design, we conducted extensive computer

based searches for good S-boxes, the minimum

number of active S-boxes, and the calculation of the

Hamming weight for specific entries in LAT and

DDT. The BORON cipher has a strong S-box and a

robust permutation layer, which prevent the cipher

design from undergoing the clustering of linear and

differential trails. This property represents the robust

design of the BORON cipher. In designing BORON,

we have achieved a very small gate count, so it can be

implemented for security in any small-scale embed-

ded system. For applications like RFID tags and

wireless sensor nodes, where a small number of GEs

and low power consumption are required, we believe

BORON is the best design. The BORON cipher can

be further tested with a variety of advanced attacks.

References
Albrecht, M., Cid, C., 2009. Algebraic techniques in differen-

tial cryptanalysis. LNCS, 5665:193-208.

http://dx.doi.org/10.1007/978-3-642-03317-9_12

Anderson, R., Biham, E., Knudsen, L., 1998. Serpent: a pro-

posal for the advanced encryption standard. 1st Advanced

Encryption Standard (AES) Conf., p.1-23.

Bansod, G., Raval, N., Pisharoty, N., 2015. Implementation of

a new lightweight encryption design for embedded secu-

rity. IEEE Trans. Inform. Forens. Secur., 10(1):142-151.

http://dx.doi.org/10.1109/TIFS.2014.2365734

Bansod, G. Pisharoty, N., Patil, A., 2016. PICO: an ultra

lightweight and low power encryption design for perva-

sive computing. Def. Sci. J., 66(3):259-265.

http://dx.doi.org/10.14429/dsj.66.9276

Beaulieu, R., Shors, D., Smith, J., et al., 2013. The SIMON and

SPECK families of lightweight block ciphers. Cryptology

ePrint Archive, Report 2013/404.

Biham, E., 1993. New types of cryptanalytic attacks using

related keys. EUROCRYPT, p.398-409.

http://dx.doi.org/10.1007/3-540-48285-7_34

Biham, E., Shamir, A., 1991. Differential cryptanalysis of

DES-like cryptosystems. J. Cryptol., 4(1):3-72.

http://dx.doi.org/10.1007/BF00630563

Biryukov, A., Wagner, D., 2000. Advanced slide attacks.

EUROCRYPT, p.589-606.

http://dx.doi.org/10.1007/3-540-45539-6_41

Biryukov, A., Khovratovich, D., Nikolić, I., 2009. Distin-

guisher and related-key attack on the full AES-256.

Cryptology ePrint Archive, Report 2009/241.

Bogdanov, A., Rijmen, V., 2011. Linear hulls with correlation

zero and linear cryptanalysis of block ciphers. Cryptology

ePrint Archive, Report 2011/123.

Bogdanov, A., Knudsen, L.R., Leander, G., et al., 2007.

PRESENT: an ultra-lightweight block cipher. LNCS,

4727:450-466.

http://dx.doi.org/10.1007/978-3-540-74735-2_31

Bogdanov, A., Khovratovich, D., Rechberger, C., 2011. Bi-

clique cryptanalysis of the full AES. LNCS, 7073:

344-371.

http://dx.doi.org/10.1007/978-3-642-25385-0_19

Guo, J., Peyrin, T., Poschmann, A., et al., 2011. The LED

block cipher. LNCS, 6917:326-341.

http://dx.doi.org/10.1007/978-3-642-23951-9_22

Heys, H.M., 2001. A tutorial on linear and differential crypt-

analysis. Cryptologia, 26(3):189-221.

http://dx.doi.org/10.1080/0161-110291890885

Jeong, K., Kang, H., Lee, C., et al., 2012. Biclique cryptanal-

ysis of lightweight block ciphers PRESENT, Piccolo and

LED. Cryptology ePrint Archive, Report 2012/621.

Kelsey, J., Schneier, B., Wagner, D., 1997. Related-key

cryptanalysis of 3-WAY, Biham DES, CAST, DES-X,

new DES, RC2, and TEA. LNCS, 1334:233-246.

http://dx.doi.org/10.1007/BFb0028479

Kumar, M., Pal, S.K., Panigrahi, A., 2014. FeW: a lightweight

block cipher. Cryptology ePrint Archive, Report

2014/326.

Leander, G., Poschmann, A., 2007. On the classification of 4

bit S-boxes. LNCS, 4547:159-176.

http://dx.doi.org/10.1007/978-3-540-73074-3_13

Matsui, M., 1993. Linear cryptanalysis method for DES ci-

pher. LNCS, 765:386-397.

http://dx.doi.org/10.1007/3-540-48285-7_33

Matsui, M., 1994. On correlation between the order of S-boxes

Table 18 Throughput improvement provided by the

BORON cipher compared with other algorithms

Algorithm Throughput improvement

PRESENT 297.43%

LED 96.00%

KLEIN 33.36%

HUMMINGBIRD 2 88.27%

Fig. 9 Comparison of the number of GEs between

standard algorithms and the BORON cipher

Bansod et al. / Front Inform Technol Electron Eng 2017 18(3):317-331

331

and the strength of DES. LNCS, 950:366-375.

http://dx.doi.org/10.1007/BFb0053451

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A., 1996.

Handbook of Applied Cryptography. CRC Press.

http://dx.doi.org/10.1201/9781439821916

National Institute of Standards and Technology (NIST), 2001.

Advanced Encryption Standard (AES). FIPS 197.

http://csrc.nist.gov/publications/PubsFIPS.html

Poschmann, A., 2009. Lightweight Cryptography: Crypto-

graphic Engineering for a Pervasive World. PhD Thesis,

Ruhr-University Bochum, Germany.

Shi, Z., Lee, R.B., 2000. Bit permutation instructions for ac-

celerating software cryptography. Proc. IEEE Int. Conf.

on Application-Specific Systems, Architectures, and

Processors, p.138-148.

http://dx.doi.org/10.1109/ASAP.2000.862385

Shibutani, K., Isobe, T., Hiwatari, H., et al., 2011. Piccolo: an

ultra-lightweight blockcipher. LNCS, 6917:342-357.

http://dx.doi.org/10.1007/978-3-642-23951-9_23

Soleimany, H., Nyberg, K., 2012. Zero-correlation linear

cryptanalysis of reduced-round LBlock. Cryptology

ePrint Archive, Report 2012/570.

Sun, S., Hu, L., Wang, M., et al., 2014a. Towards finding the

best characteristics of some bit-oriented block ciphers and

automatic enumeration of (related-key) differential and

linear characteristics with predefined properties. Cryp-

tology ePrint Archive, 2014/747.

Sun, S., Hu, L., Wang, P., et al., 2014b. Automatic security

evaluation and (related-key) differential characteristic

search: application to SIMON, PRESENT, LBlock,

DES(L) and other bit-oriented block ciphers. LNCS,

8873:158-178.

http://dx.doi.org/10.1007/978-3-662-45611-8_9

Suzaki, T., Minematsu, K., Morioka, S., et al., 2011. TWINE:

a lightweight, versatile block cipher. ECRYPT Workshop

on Lightweight Cryptography, p.146-169.

Wu, W., Zhang, L., 2011. LBlock: a lightweight block cipher.

LNCS, 6715:327-344.

http://dx.doi.org/10.1007/978-3-642-21554-4_19

Zhang, W., Bao, Z., Lin, D., et al., 2014. RECTANGLE: a

bit-slice lightweight block cipher suitable for multiple

platforms. Cryptology ePrint Archive, Report 2014/084.

Appendix: Test vectors

Table A1 Test vectors for 80-bit key

Plaintext: 0000 0000 0000 0000

Key: 0000 0000 0000 0000 0000

Ciphertext: 3cf7 2a8b 7518 e6f7

Plaintext: 0123 4567 89ab cdef

Key: 0000 0000 0000 0000 0000

Ciphertext: 5a66 4928 b961 c619

Table A2 Test vectors for 128-bit key

Plaintext: 0000 0000 0000 0000

Key: 0000 0000 0000 0000 0000 0000 0000 0000

Ciphertext: 94a1 05a7 d2f2 de42

Plain Text: 0123 4567 89ab cdef

Key: 0000 0000 0000 0000 0000 0000 0000 0000

Ciphertext: 953b e55b d5f2 68ba

