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Abstract 

Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission 

reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha 

particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this 

binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronopheny-

lalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has 

been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much 

smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been 

expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and 

uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, 

monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Cur-

rently, however, none of these have reached the stage where there is enough convincing data to warrant clinical 

biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to 

optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future 

research will identify new and better boron delivery agents for clinical use.
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Background
Boron neutron capture therapy (BNCT) is based on the 

nuclear capture and fission reactions that occur when 

the stable isotope boron-10 (10B) is irradiated with either 

low-energy (0.025  eV) thermal neutrons or, for clinical 

studies, epithermal neutrons (10,000 eV), which become 

thermalized as they penetrate tissue. �is results in the 

production of high-linear energy transfer (LET) alpha 

(α) particles (4He) and recoiling lithium-7 (7Li) nuclei 

(Fig.  1a). In order to be successful, ~ 20  μg/g of 10B per 

weight of tumor must be selectively delivered to the 

tumor cells (~ 109 atoms/cell), and enough neutrons must 

be absorbed by them to sustain a lethal 10B(n, α)7Li cap-

ture reaction [1]. Since α particles have very short path-

lengths (5–9  μm) their destructive effects are limited to 

boron-containing cells (Fig. 1b). In theory, α particles can 

selectively destroy tumor cells and spare adjacent normal 

cells. Clinical interest in BNCT has focused primarily on 

high grade gliomas [2–5], patients with recurrent tumors 

of the head and neck region [6–13] who have failed con-

ventional therapy, and a much smaller number of patients 

with cutaneous [14–17] or extra-cutaneous [18] melano-

mas. Because BNCT primarily is a biologically, rather than 

a physically, targeted type of particle radiation therapy, it 

should be possible to selectively destroy tumor cells infil-

trating normal tissue. �e requirement, however, is that 

sufficient amounts of 10B and thermal neutrons are deliv-

ered to the site of the tumor. Up until 2014, the source of 

these neutrons has been specially designed nuclear reac-

tors, but recently a number of companies in Japan [19] 

and the United States [20] have fabricated accelerator-

based neutron sources, several of which are either being 

or will be evaluated in Phase I/II clinical trials.

In this review, we will focus on the two drugs that have 

been used clinically for BNCT and their limitations, as 
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well as a variety of low and high molecular weight boron 

delivery agents that have been evaluated in vitro and in 

experimental animal tumor models, but have not been 

evaluated clinically. Interested readers are referred to 

several more comprehensive reviews for more detailed 

information relating to boron delivery agents [21–24].

General requirements for boron delivery agents
�e most important requirements for a BNCT deliv-

ery agent are: (1) low intrinsic toxicity; (2) high tumor 

uptake (~ 20–50  μg 10B) and low normal tissue uptake, 

ideally with a tumor:normal tissue and tumor:blood 

boron concentration ratios of > 3:1; and (3) relatively 

rapid clearance from blood and normal tissues, and per-

sistence in tumor for at least several hours during neu-

tron irradiations. Approximately 50  years ago, research 

on the development of boron-containing delivery agents 

for BNCT began in the laboratory of Albert Soloway 

and his co-workers at the Massachusetts General Hos-

pital in Boston. A large number of low molecular weight 

boron compounds were synthesized, from which the 

first second-generation compound emerged, a polyhe-

dral borane anion, first synthesized by Miller et al. [25], 

sodium mercaptoundecahydro-closo-dodecaborate 

 (Na2B12H11SH), commonly known as sodium borocap-

tate or BSH [26]. BSH first was used clinically by Hatan-

aka [2, 27] and Nakagawa [3] in Japan, and by Sauerwein 

and his research team in Europe [28, 29] in a Phase I/II 

clinical trial in Petten, �e Netherlands, to treat patients 

with high grade gliomas.

A second boron compound, first synthesized by Sny-

der et  al. in 1958 [30], was introduced by Mishima and 

co-workers in Japan, a boron-containing amino acid (L)-

4-dihydroxy-borylphenylalanine, known as boronophe-

nylalanine or BPA [14, 15, 31]. Based on the assumption 

that BPA would preferentially be taken up by melanin-

synthesizing cells, it initially was used to treat several 

patients with cutaneous melanomas by injecting it perile-

sionally [14, 15, 31]. Experimental data of Coderre et al. 

[32] at the Brookhaven National Laboratory in the United 

States demonstrated that BPA also was taken up by other 

histologic types of tumors, including a rat brain tumor, 

the 9L gliosarcoma. Based on this observation, BPA, as a 

fructose complex (BPA–F) which significantly increased 

its water solubility [33], very quickly entered into clini-

cal use for the treatment of patients with high grade glio-

mas. A number of clinical trials were initiated, first in the 

United States [34, 35] and subsequently in Finland [36, 

37], Sweden [38, 39] and Japan [4, 5, 40–42], and these 

demonstrated that BPA was therapeutically more effec-

tive than BSH. It subsequently became the drug of choice 

for clinical BNCT of patients with high grade gliomas 

[2–5] and recurrent tumors of the head and neck region 

[6–13, 43]. Interested readers are referred to two recent 

reviews that discuss the clinical results obtained using 

BNCT to treat brain and head and neck tumors [44, 45].

�e major problem with both BSH and BPA is the sig-

nificant variability in tumor uptake, especially in brain 

tumors. �is was clearly demonstrated by Goodman 

et  al. [46]. in a biodistribution and pharmacokinetic 

study involving 20 patients with high grade gliomas. 

Tumor boron concentrations varied both within dif-

ferent regions of the tumor, as well as among patients 

who received the same dose of BSH. Similar variability 

was reported by Koivunoro et  al. [47] in a group of 98 

patients with gliomas who received BPA-F, although the 

blood and estimated normal brain boron concentrations 

were in a much narrower range. �is variability in the 

tumor uptake of BPA and BSH most likely was due to the 

marked and complex intratumoral histologic, genomic, 

and epigenomic heterogeneity within high grade gliomas 

[48], as well as intertumoral variability from one patient 

to another. Experimental animal studies carried out by 

Barth and Yang and their co-workers using the F98 rat 

glioma model revealed similar variability in tumor boron 

concentration for both BSH and BPA in glioma-bearing 

Fig. 1 Boron neutron capture therapy is based on the nuclear 

capture and fission reactions that occur when non-radioactive 

boron-10, a  constituent of natural elemental boron, 80% of which is 

in the isotopic form of 11B and 20% as 10B, is irradiated with 

low-energy (0.025 eV) thermal neutrons or, alternatively, higher-

energy (10,000 eV) epithermal neutrons. The latter become 

thermalized as they penetrate tissues. The resulting 10B(n,α)7Li capture 

reaction yiels high linear energy transfer (LET) α paricles (stripped 

down helium nuclei  [4He]) and recoiling lithium-7 (7Li) atoms (a). 
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A sufficient amount of 10B must be delivered selectively to the tumor 

(~ 20–50 μg/g or ~ 109 atoms/cell) in order for BNCT to be successful 

(b). A collimated beam of either thermal or epithermal neutrons must 

be absorbed by the tumor cells to sustain a lethal 10B(n,α)7Li capture 

reaction. Since the α paricles have very short pathlengths in tissues 

(5–9 μm), their destructive effects are limite to boron-containing cells. 

In theory, BNCT provides a way to selectively destroy malignant cells 

and spare surrounding normal tissue if the required amounts of 10B 

and neutrons are delivered to the tumor cells.



Page 3 of 15Barth et al. Cancer Commun  (2018) 38:35 

rats. �is suggested that the broad range in mean survival 

time (MST) following BNCT was a consequence of the 

variability in tumor uptake and microdistribution [49–

52]. Similar variability also has been described in a nude 

rat model for neutron capture therapy of intracerebral 

melanoma [53].

Third‑generation boron delivery agents
Since neither BSH nor BPA adequately fulfills the cri-

teria indicated in the preceding section on general 

requirements, there has been a pressing need to develop 

new boron delivery agents. With the development of 

improved synthetic techniques and an increased aware-

ness of the requisite biochemical properties, a number of 

new boron delivery agents have emerged. �e major chal-

lenge for their development has been the requirement for 

selective tumor cell targeting and the delivery of thera-

peutic concentrations of boron with minimal normal 

tissue uptake and retention. �e effective killing of glio-

blastoma cells in the presence of normal brain tissue rep-

resents an even greater challenge than for malignancies at 

other anatomic sites. �is is due to an additional biologi-

cal impediment, the blood–brain barrier (BBB) [54, 55], 

which effectively excludes agents with molecular weights 

greater than 200 Da, and the highly infiltrative properties 

of glioma cells and their genomic heterogeneity.

Recent efforts to improve the selectivity of boron 

delivery agents has involved incorporating them into 

tumor-targeting moieties, such as unnatural amino acids, 

polyamines, peptides, proteins, antibodies, nucleosides, 

sugars, porphyrins, liposomes and nanoparticles [44]. A 

partial list of third generation boron delivery agents of 

low and high molecular weight is summarized in Table 1 

and shown in Fig.  2. Among the low molecular weight 

boron delivery agents are boronated natural amino acids 

(i.e. BPA derivatives with higher percentage of boron by 

weight), as well as boronated derivatives of other amino 

acids such as aspartic acid, tyrosine, cysteine, methio-

nine and serine [56–58]. Boron-containing unnatural 

amino acids also have been investigated because of their 

higher metabolic stability compared with the natural 

ones. �e boronated derivatives of 1-aminocyclobutane-

1-carboxylic acid (ABCHC) and 1-amino-3-borono-

cyclo-pentanecarboxylic acid (ABCPC) are examples 

of such compounds [57–60] (Fig.  2). Higher tumor and 

tumor:brain boron concentration ratios were obtained 

with ABCPC, but the tumor:blood ratios were compara-

ble to that of BPA [61]. Unfortunately, no further animal 

studies have been carried out at the time of this writing 

on this promising class of compounds. Boron-containing 

linear and cyclic peptides conjugated to sodium boro-

captate have been investigated because they are usu-

ally non-immunogenic, easy to synthesize, and often 

show low toxicity and high tissue penetrating properties 

[62]. Of particular interest are peptide ligands for over-

expressed receptors on tumor cells, such as the vascular 

endothelial growth factor receptor (VEGFR) [63] (Fig. 2), 

somatostatin receptors and the epidermal growth factor 

receptor (EGFR and  EGFRVIII) [64–66] (Figs. 2, 3). How-

ever, the major problem relating to VEGF as a targeting 

moiety is that it would require repeated applications of 

BNCT to be effective. EGFR on the other hand is variably 

expressed on glioma cells either in its wildtype form or its 

mutant variant,  EGFRVIII.

Boron-containing purines, pyrimidines, thymidines, 

nucleosides and nucleotides also have been investigated 

as BNCT delivery agents, in particular 3-carboranyl thy-

midine analogues (3CTAs), which specifically target thy-

midine kinase-1 (TK1)-expressing tumor cells [67–69]. 

For example, in vitro studies of the thymidine derivative 

Table 1 Examples of new low‑ and high‑molecular weight boron delivery agents currently under evaluation

The delivery agents are listed alphabetically and not in any order indicating their potential usefulness for BNCT. None of these agents have been evaluated clinically

BNCT boron neutron capture therapy, EGF epidermal growth factor, EGFR epidermal growth factor receptor, MoAbs monoclonal antibodies, VEGF vascular endothelial 

growth factor

Boric acid [139] Boronated VEGF [64]

Boron-containing immunoliposomes [101, 103]
and liposomes [90, 91, 93, 94, 102, 104, 105]

Boronated unnatural amino acids [57, 61–64]

Boron-containing nanoparticles [140–142]

Boron-containing Lipiodol [143–145] Carboranyl nucleosides [70, 146]

Boron nitride nanotubes [147–149] Carboranyl porphyrazines [139]

Boronated co-polymers [85, 86] Carboranyl thymidine analogues [70–72]

Boronated cyclic peptides [62] Decaborone (GB10) [131, 143]

Boronated DNA intercalators [77] Dodecaborate cluster lipids and cholesterol derivatives [144]

Boronated EGF [82, 83] and anti-EGFR MoAbs [67–69, 150] Dodecahydro-closo-dodecaborate clusters [144]

Boronated polyamines [147, 151] Linear and cyclic peptides [65]

Boronated porphyrins [74–78] Polyanionic polymers [86]

Boronated sugars [152] Transferrin-polyethylene glycol liposomes [140]
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BPA BSH GB-10

N5-2OH

cis-ABCHC and trans-ABCHC VEGF-BD-Cy5 H2DCP

EGFR-targe�ng MoAb, C225-G5-B1100 EGFR-targe�ng immunoliposome

Fig. 2 Some low- and high-molecular weight boron delivery agents (with the exception of #3) that have been investigated by Barth et al. (1) BPA 

(boronophenylalanine, Na2
10B10H10) and (2) BSH (sodium borocaptate, Na2

10B12H11SH, undecahydro-mercapto-closo-dodecaborate) are the only two 

drugs in clinical use. (3) GB–10 (sodium decaborate,  Na2B12H) has been used in only a few animal studies; although at one time it had an approved 

U.S. Food and Drug Administration (FDA) Investigational New Drug designation (IND), it never has been used clinically. (4) N5-2OH (3-[5-{2-(2,3-dihy-

droxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl] thymidine) is a carboranyl thymidine analogue (CAT) that yielded promising results in the RG2, but 

not the F98, rat glioma models following intracerebral convection-enhanced delivery (i.c. CED). (5) cis-ABCHC and trans-ABCHC (1-amino-3-borono-

cycloheptanecarboxylic acid) as a racemic mixture is an unnatural amino acid that has in vivo uptake comparable to BPA in the B16 melanoma 

model, but far superior tumor:blood boron concentration ratios compared with BPA. (6) VEGF-BD-Cy5 is a heavily boronated vascular endothelial 

growth factor (VEGF) linked to Cy5 for near infrared imaging of the construct. (7)  H2-DCP (di [3,5-(nido-carboranylphenyl) tetra-benzoporphyrin]) is 

one of a group of carboranyl porphyrins containing multiple carborane clusters, which show high in vitro cellular uptake. In vivo BNCT following i.c. 

CED yielded survival data comparable to that of intravenously administered BPA (8) C225-G5-B1000 is a heavily boronated form of the monoclonal 

antibody cetuximab that specifically targets the human epidermal growth factor receptor (EGFR), which has been used for BNCT of the  F98EGFR rat 

glioma. (9) EGFR-targeting, boron-containing immunoliposomes with cetuximab as the targeting moiety
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designated N5–2OH (Fig.  2) demonstrated selective 

tumor uptake, a high rate of phosphorylation and low 

toxicity [67], which led to in  vivo biodistribution and 

BNCT studies in brain tumor–bearing rats. Convection 

enhanced delivery (CED), by which therapeutic agents 

are delivered directly to the brain and completely bypass 

the BBB [70], has been an effective way to deliver some 

boron compounds [68, 71] and high molecular weight 

bioconjugates to brain tumor–bearing rats [64–66]. 

CED of N5–2OH to rats bearing intracerebral RG2 glio-

mas was effective for the selective delivery of therapeu-

tic concentrations of boron to tumors with very high 

tumor:brain and tumor:blood ratios and without any 

concomitant toxicity [68]. Following BNCT, a signifi-

cant prolongation in the MST of tumor-bearing rats was 

observed [68]. However, similar studies carried out using 

the almost identical F98 rat glioma, which also expressed 

amplified TK1, only produced a modest increase in MST 

[72], suggesting that N5–2OH may not be as effective as 

a boron delivery agent as was originally thought [68].

Boron-containing porphyrin derivatives (porphyrins, 

chlorins, bacteriochlorins, tetrabenzoporphyrins, and 

phthalocyanines) have been studied extensively due to 

their low toxicity and natural affinity for tumors [73–75]. 

Examples of such compounds are BOPP [75], CuTCPH 

[21], and  H2DCP [71] (Fig. 2). Porphyrin derivatives have 

been shown to deliver therapeutic amounts of boron to 

tumor bearing mice and rats, but as reported by Kawa-

bata et al., this may not be localized in tumor cells [71]. 

In  vivo biodistribution studies, carried out 24  h fol-

lowing intracerebral administration by means of CED 

to F98 glioma bearing rats, revealed unusually high 

tumor boron concentrations (~ 100  µg/g). Surprisingly, 

the MST 5-6  weeks following tumor cell implantation 

were very similar to those obtained using BPA, which 

attained much lower boron concentrations. Histologic 

Fig. 3 BSH-dendrimer conjugates for BNCT. a Conjugation scheme for the linkage of a boron-containing dendrimer to cetuximab; b Cellular bind-

ing of cetuximab. Varying amounts (5 − 100 ng) of 125I-cetuximab were incubated at 4 °C for 90 min with cells expressing wild-type EGF receptors 

 (F98EGFR) (black up-pointing triangle), mutant EGFRvIII receptors  (F98EGFRvIII) (black circle), and receptor-negative parental cells  (F98WT) (white square). 

c Boron neutron capture therapy effect of BSH-polymer conjugation on colon 26 subcutaneous tumor-bearing BALB/c mice. Reproduced with 

permission. Copyright 2004, ACS [150]
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examination of the brains of rats that received the boro-

noporphyrin compounds, followed by BNCT, revealed 

that they were localized in macrophages rather than 

tumor cells, thereby providing an explanation for the 

much lower than expected MST [71]. Further synthetic 

studies will be required to design porphyrin compounds 

that would have decreased affinity for macrophages and 

increased tumor cell uptake.

Other boron-containing DNA binding molecules, 

including alkylating agents, DNA intercalators, minor-

groove binders and polyamines, have been investigated 

[76]. For example, derivatives of aziridines, acridines, 

phenanthridines, various Pt(II) complexes and carbora-

nyl polyamines have been described [22–24]. �ese com-

pounds sometimes show low tumor selectivity and 

significant toxicity, in part due to their multiple cationic 

charges and/or ability for binding to DNA of normal 

cells. Boron-containing sugars, including derivatives of 

glucose, mannose, ribose, galactose, maltose and lac-

tose, also have been investigated [77]. �is class of mol-

ecules usually have low toxicity, but also unfortunately 

low tumor uptake, in part due to their hydrophilicity and 

rapid clearance from tissues.

Among the high molecular weight boron delivery 

agents, monoclonal antibodies (MoAbs), polymers, den-

drimers, liposomes and nanoparticles have been the 

most intensively studied. MoAbs are a very promising 

class of tumor-targeting agents due to their high specific-

ity for molecular targets such as EGFR and  EGFRvIII [65, 

66] and the ligands EGF [78] and VEGF [63]. Extensive 

studies have been carried out by Barth, Wu and Yang 

and their co-workers using a heavily boronated preci-

sion dendrimer with five dendritic generations that has 

been linked by means of heterobifunctional reagents to 

the EGFR targeting MoAb cetuximab (Erbitux™) [65], 

the  EGFRvIII targeting MoAb L8A4 [64] or EGF [79] itself 

(Fig. 3). �ese bioconjugates were administered intracer-

ebrally by means of CED to rats bearing receptor positive 

F98 gliomas that have been transfected with the human 

gene encoding EGFR or  EGFRvIII  (F98EGFR or  F98EGFRvIII) 

[64–66, 79, 80]. �e best survival data were obtained in 

 F98EGFR glioma bearing rats when these bioconjugates 

were combined with intravenous administration of BPA, 

yielding a two to threefold increase in MST compared to 

irradiated controls [64–66, 80]. However, these biocon-

jugates would have been ineffective against F98 wildtype 

tumors  (F98WT), which do not express amplified EGFR. 

If similar studies had been carried out in rats bearing 

composite tumors consisting of  F98EGFR and  F98WT, we 

would predict only a modest increase in MST.

Finally, as recently reported by Sun et al. [81], it is note-

worthy that a MoAb directed against the stem cell marker 

CD133, which frequently is expressed on glioma cells, 

could be used to deliver a heavily boronated dendrimer 

to specifically target this cell population, both in  vitro 

and in vivo. A significantly longer survival time was seen 

in BALB/c mice bearing intracerebral CD133 + SU2 gli-

oma cells compared to that of CD133 − SU2 cells. �ese 

results suggest that further studies using CD133 target-

ing, boron containing bioconjugates are warranted to 

evaluate their potential.

Polymers are alternative carriers for boron compounds, 

and linkage to them could improve the solubility and 

pharmacokinetics of these compounds by increasing 

their circulation half-life and tumor accumulation [82]. 

BPA is a hydrophobic boron compound, whose cellular 

uptake is dependent upon the -amino acid transporter 

system [83], and conjugation to polymers might also 

increase its solubility as had complexation with fructose 

[33]. For example, boronated cationic copolymers, com-

posed of different ratios of acrylamide, N-acryloyl-3-ami-

nophenylboronic acid and N-acryloyl-diaminoethane 

(the cationic moiety), have been synthesized as deliv-

ery agents for boronic acids (Fig. 4) [84]. �e molecular 

weight of the resulting tri-block polymer ranged from 

9.98 to 10.21 kDa, which resulted in 14–21 µg/g of boron 

per gram tumor with an increased cationic monomer 

ratio in tumor versus normal peri-colonic tissue follow-

ing intravenous injection of boronic polymers. However, 

cationic polymers can trigger serious side effects in vivo, 

such as the induction of cell necrosis via impairment of 

 Na+/K+-ATPase, thereby resulting in an inflammatory 

response [85]. �erefore, some polyanionic polymers 

have been evaluated, such as PEGylated-polyglutamic 

acid, which has been synthesized by conjugating BSH 

via a disulfide bond [86]. BSH is hydrophilic and has a 

higher boron content than BPA, but lower tumor uptake 

and retention due to its negative charge and low molecu-

lar weight. Cellular uptake was significantly improved 

by conjugating BSH with PEGylated-polyglutamic 

acid (PEG-b-P(Glu-BSH)), which increased tumor cell 

uptake within 1  h and resulted in a five-fold increase 

in the tumor boron concentration compared to that of 

BSH at 24  h [86, 87]. PEG-b-P(Glu-BSH), was adminis-

tered intravenously to BALB/c mice bearing subcutane-

ous implants of the Colon-26 (C26) carcinoma cell line. 

�is resulted in 70–90 µg of  B10 per g tumor after a sin-

gle intravenous injection at the dose of 50 mg/kg with a 

tumor:blood ratio of 20:1. In vivo BNCT was carried out 

24 h after intravenous injection of PEG-b-P(Glu-BSH) to 

tumor-bearing mice, indicating enough 10B was delivered 

to eradicate the tumor. Based on these studies it was con-

cluded that Glu-BSH appeared to be superior to BSH, as 

evidenced by increased tumor:normal tissue ratios and 

an improved tumor:blood ratio. However, high uptake 

in non-target organs [88] and questions relating to their 
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ability to traverse the BBB must be evaluated before 

biodistribution studies in larger animals are initiated. 

Recently, functionalized dodecaborate has been linked 

to albumin and, following intravenous administration, it 

was effective in achieving tumor targeting and enhanced 

efficacy against subcutaneous implants of the murine 

C26 colon carcinoma [89]. �is suggested that it might be 

useful as a delivery agent for extracranial tumors such as 

head and neck cancer and melanomas.

Liposomes, which are vesicles containing an aqueous 

volume entirely enclosed by a lipid bilayer [90], have been 

extensively studied, for more than 35  years as poten-

tial boron delivery agents [86, 91–98]. �e compound 

 Na3[1–(2′-B10H9)-2-NH3B10H8] has been incorporated 

into the core of liposomes (Fig. 5) and this subsequently 

Fig. 4 BSH-polymer conjugates for tumor BNCT. a Synthetic scheme of BSH-polymer conjugates [PEG-b-P(Glu-SS-BSH) and P(Glu-SS-BSH)]; b 

Time-lapsed cellular uptake of PEG-b-P(Glu-SS-BSH) by C26 cancer cells was investigated by confocal laser scanning microscopy (CLSM). Both PEG-

b-P(Glu-SS-BSH) and P(Glu-SS-BSH) were labeled with Alexa488 (green color), and their dose was 20 µg/mL on a BSH basis, while the nuclei were 

stained with Hoechst (blue color). c Relative cellular uptake of BSH, PEG-b-P(Glu-SS-BSH) and P(Glu-SS-BSH) was measured by inductively coupled 

plasma mass spectrometry (ICP-MS). The C26 cancer cells were exposed to BSH, PEG-b-P(Glu-SS-BSH) and P(Glu-SS-BSH) for 1, 6 and 24 h (n = 3), at a 

dose of 100 µg/mL on a BSH basis, while the results were measured by ICP-MS and normalized by comparing with the cellular uptake of BSH at 1 h. 

The data are expressed as the mean ± SD, ***P < 0.001. d Tumor growth ratio of C26 subcutaneous tumors in BALB/c mice that were irradiated with 

thermal neutrons (1.6–2.2 × 1012 neutron/cm2) at Kyoto University Reactor (KUR) for 1 h after intravenous injection of phosphate buffered saline 

(PBS), BSH, and BSH-polymer conjugates for 24 h at a dose of 100 mg/kg on a BSH basis. Reproduced with permission. Copyright 2017, Elsevier [86]
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was followed by two in vivo studies in mice bearing the 

EMT6 mammary tumor. �e tumor boron concentration 

in the latter was ~ 40 μg/g at 54 h after a single intrave-

nous injection, after which it gradually decreased [98, 

99]. In both studies [97, 98], following BNCT there was 

slower tumor growth compared to that of the control 

groups. Boron compounds such as these also can be con-

jugated to lipids to form boron-loaded liposomes with 

boron concentrations of 150 ppm. �eir in vitro tumori-

cidal effects also have been demonstrated following neu-

tron irradiation [97].

Targeting moieties such as MoAbs [92], antibodies 

directed against carcinoembryonic antigens (CEA) [100], 

transferrin [101], and EGFR [102] also have been intro-

duced on the surface of liposomes to specifically target 

tumor cells. �ese immunoliposomes could deliver low 

molecular weight hydrophobic agents such as BSH that 

have been incorporated into their lipid bilayers [102, 103], 

and liposomes can transport large numbers of boron-

containing molecules intracellularly, resulting in high 

tumor boron uptake [104]. Liposomes also have been 

extensively investigated as delivery agents for a variety of 

polyhedral boron anions and these studies are described 

in detail elsewhere [105]. High tumor boron concentra-

tions were attained in vitro when polyhedral boron ani-

ons were encapsulated in tumor-selective unilamellar 

liposomes, and their in vivo therapeutic efficacy has been 

demonstrated in EMT6 tumor bearing mice [93]. Linkage 

of boron-containing liposomes to the MoAb cetuximab 

(C225 or Erbitux™) resulted in specific in vitro molecular 

targeting of EGFR expressing  F98EGFR glioma cells [102]. 

Boron-containing lipids bearing covalently-bound boron 

clusters also have been described [105, 106]. �ese nano-

particles showed no leakage of the encapsulated boron 

compounds and had the capability of delivering high 

tumor payloads of boron in mice bearing subcutaneous 

gliomas and increased survival times following BNCT 

[106, 107]. However, their large size and high molecular 

weight would preclude their passage across the BBB in 

rodents bearing intracranial tumors unless there was dis-

ruption of the BBB. �is could be accomplished by such 

methods as the intra-carotid infusion of a hyperosmotic 

solution of mannitol [49–52], focused ultrasound [108, 

109], or direct intratumoral administration by means of 

CED [64, 110]. Despite all of their potential advantages, 

boron containing liposomes have yet to be evaluated 

in animals other than rodents, and their clinical use as 

boron delivery agents is still to be determined [86, 111].

Polymeric nanoparticles have been evaluated for drug 

delivery to metastatic tumors [112] and as potential 

delivery agents for gadolinium neutron capture therapy 

(Gd-NCT) [113–115]. Boron-containing micelles were 

shown to have improved stability, blood circulation time, 

and tumor accumulation [116]. Recently, boron clusters 

containing redox nanoparticles have been developed, 

which have reactive oxygen species scavenging ability, 

high therapeutic efficacy and minimal side effects (Fig. 6) 

[117]. �ey were formed by static interaction of the posi-

tively charged BSH-conjugated polymers with the posi-

tively charged polymers with redox-responsive groups. 

�ese nanoparticles had an extended circulation time in 

blood and increased uptake in C26 tumors with over 5% 

of the injected dose per gram tumor at 48 h. �ey effec-

tively suppressed the tumor growth following BNCT 

when administered at a dose of 15  mg/kg. In addition, 

these micelles also could be decorated with folic acid on 

their surface to increase tumor-specific targeting [118, 

119] and achieve higher intracellular boron concentra-

tions [120].

Ending on a positive note, the single most practi-

cal major advance in the development of boron deliv-

ery agents has been described by Kabalka et  al. [121, 

122] and Imahori et  al. [123, 124]. �ey have labeled 

BPA with fluorine-18 for positron emission tomogra-

phy (PET) in order to determine the tumor uptake of 

BPA and thereby improve treatment planning [124]. 

It should be pointed out, however, that PET is usually 

performed prior to surgical resection of the primary 

tumor in the case of high grade gliomas, and therefore 

the imaging data may not reflect the uptake of 18F-BPA 

by residual or recurrent tumor that would be treated 

by means of BNCT. Nevertheless, 18F-BPA PET at least 

provides some data on the macroscopic uptake of BPA 

but not on the cellular uptake by individual or clusters 

of tumor cells, which are too small to be identified by 

any real time imaging techniques. At present, cellu-

lar and subcellular localization of boron can be deter-

mined by means of secondary ion mass spectrometry 

[125–127] or alpha track autoradiography [128] which 

would allow more accurate dosimetry, but unfortunately 

these techniques cannot be carried out in real time. 

Finally, boron compounds also have been conjugated to 

diethylene-triamine-penta-acetic acid gadolinium (III) 

dihydrogen (Gd-DTPA) to form a potential theranostic 

system (Gd/B-NPs) with β-cyclodextrin [129] for tumor 

localization by MRI and the determination of boron 

concentrations [130].

Conclusions
Why has it been so difficult to develop new boron deliv-

ery agents for BNCT? Clearly, it has not been for a lack 

of trying, as evidenced by the voluminous literature 

beginning in the 1970s on their design and synthesis, as 

summarized in a number of reviews [21–24]. However, 

there are still only two drugs in clinical use, BSH and 

BPA. Objectively, the challenges are much more difficult 
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than the design of chemotherapeutic or tumor imaging 

agents. Boron delivery agents must not only have tumor 

selectivity but also deliver amounts far in excess of that 

required for radiopharmaceuticals to detect tumors by 

radiodiagnostic modalities such as single photon emis-

sion computerized tomography and PET. In contrast to 

radiopharmaceuticals, these agents must deliver enough 
10B, presumptively to all tumor cells, in amounts suf-

ficient to sustain a lethal 10B(n,α) Li capture reaction 

(~ 20–50 µg per g tumor or ~ 109 atoms per tumor cell). 

Furthermore, they must persist in these tumor cells for 

a sufficient amount of time, and simultaneously clear 

from surrounding normal tissues to ideally attain a 

tumor:normal tissue ratio of 3–4:1.

Translating experimental animal data into a clinical 

biodistribution study represents a significant hurdle that 

must be overcome. First, and most importantly, as of 

the time of writing there has been a lack of convincing 

experimental animal data that would warrant the initia-

tion of expensive clinical biodistribution studies for any of 

the boron delivery agents that we have described in this 

review. Second, there is a major challenge in going from 

laboratory synthesis to scale up synthesis in a Good Man-

ufacturing Practices (GMP) facility before clinical studies 

Fig. 5 Boron cluster-loaded liposomes for tumor BNCT. a Schematic illustration of liposomes incorporating  Na3 [1-(2′-B10H9)-2-NH3B10H8] for BNCT. 

b The biodistribution of boron in EMT6 tumor-bearing mice after a single intravenous injection (340–345 µg of boron; red diamond = blood, green 

triangle = tumor, blue square = liver). c Tumor growth curves normalized with respect to mean volume on day 0 after BNCT treatment consisted 

of a 30-min irradiation following double injection of liposomal suspension (set as the time of irradiation): black circle control group; white square, 

BNCT group. d Kaplan–Meier time-to-event curves indicating time required to reach a 500-mm3 tumor volume (solid black line, control group; solid 

gray line, neutron irradiation-only group; dashed line, BNCT group). Reproduced with permission. Copyright 2013, National Academy of Science [99]
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can be initiated. �ird, these biodistribution studies would 

have no direct benefit to the patients participating in them 

other than the altruistic reason that might help other 

future patients with malignancies that would be treated 

by means of BNCT. Fourth, the issue of funding of such 

a Phase I clinical biodistribution studies represents a sig-

nificant hurdle, at least in the United States, where at this 

time there is very little chance of getting funding from the 

government or the pharmaceutical industry and where an 

Investigative New Drug application would require very 

convincing experimental animal data, including toxico-

logic evaluation in at least one non-rodent animal species.

What, then, is the best course of action at the present 

time? First and foremost would be to optimize the dos-

ing paradigms for BSH and BPA. Clinical data generated 

by the Swedish group [38, 39, 131] suggest that increas-

ing the dose of BPA and the infusion time resulted in 

improved survival in patients with high grade gliomas 

who had been treated with BNCT. Second, methods 

should be explored to enhance the delivery of BSH and 

BPA, both in brain tumor patients and patients that have 

had recurrent tumors of the head and neck region. Two 

of us (Barth and Yang) have convincingly demonstrated 

that transient disruption of the BBB by intracarotid 

Fig. 6 Boron cluster containing redox nanoparticles (BNP) for tumor BNCT. a Scheme for preparing boron cluster containing redox nanopar-

ticles. b Biodistribution of BNP in tumor-bearing mice. c Tumor growth curves of tumor-bearing mice after 40-min thermal neutron irradiation 

(1.3–1.7 × 1012 neutron/cm2). Mice with a mean original tumor volume of 140 mm3 received BNP at doses of 15 and 5 mg 10B/kg. Mice administered 

BPA–fructose complex at a dose of 40 mg 10B/kg were used as the positive control. Mice administered boron cluster containing redox nanoparticles 

with the same amount of nitroxide radical as in the BNP-treated group at a dose of 15 mg 10B/kg and PBS with and without (PBS-C) irradiation were 

used as negative controls (n = 3, mean ± SD, *P < 0.01, **P < 0.005, Student’s t test). Reproduced with permission. Copyright 2016, Elsevier [117]
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infusion of a hyperosmotic solution of mannitol, com-

bined with administration of either BSH or BPA, resulted 

in a threefold increase in tumor boron concentrations in 

F98 glioma bearing rats [49–52]. �is enhanced tumor 

uptake of BSH and BPA resulted in a three- to four-fold 

increase in MST following BNCT. Although this proce-

dure has been used clinically to administer cytoreductive 

chemotherapeutic agents to patients with high grade glio-

mas, it requires a very specialized team, which may make 

it difficult to carry out in patients who will be receiving 

BNCT [132–134]. An alternative approach [135–137] 

could be the use of pulsed ultrasound [109, 138] initially 

to enhance tumor uptake of 18F–BPA for PET imaging. 
18F–BPA PET imaging [121–124] is now a well-estab-

lished technique used as part of the treatment planning 

protocols both in Japan and Finland, the two countries 

where the largest number of patients have been treated 

by BNCT. Although some of the clinical results that have 

been obtained in these two countries have been impres-

sive [44], especially in the treatment of genital cancers 

[18]. It remains to be determined if the results would be 

sufficient to convince a broader group of physicians, who 

are taking care of cancer patients on a day-to-day basis, 

that BNCT would be worth pursuing �e challenge to 

those of us who have been working in this field is to come 

up with truly convincing data!
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