
BORPH: An Operating System for FPGA-Based Reconfigurable
Computers

by

Hayden Kwok-Hay So

B.S. (University of California, Berkeley) 1998
M.S. (University of California, Berkeley) 2000

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Robert Brodersen, Chair

Professor John Wawrzynek
Professor Dorit S. Hochbaum

Fall 2007

The dissertation of Hayden Kwok-Hay So is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

BORPH: An Operating System for FPGA-Based Reconfigurable

Computers

Copyright 2007

by

Hayden Kwok-Hay So

Abstract

BORPH: An Operating System for FPGA-Based Reconfigurable Computers

by

Hayden Kwok-Hay So

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert Brodersen, Chair

Reconfigurable computing is a promising technology to meet future computational

demand by leveraging flexibilities and the high degree of parallelism found in reconfig-

urable hardware fabrics, such as field programmable gate arrays (FPGAs). However,

despite their promising performance researchers have demonstrated, reconfigurable

computers are yet to be widely adopted. One reason is the lack of a common and

intuitive operating system for these platforms.

This dissertation work explores the design and implementation trade-offs of an

operating system for FPGA-based reconfigurable computers, BORPH, the Berkeley

Operating system for ReProgrammable Hardware. The goal of this work is to explore

and demonstrate the feasibility of providing a systematic and easy to understand

view into reconfigurable computers through OS support without incurring significant

performance penalties.

1

BORPH provides kernel support for FPGA applications by extending a standard

Linux operating system. It establishes the notion of hardware process for executing

user FPGA applications. Users therefore compile and execute hardware designs on

FPGA resources the same way they run software programs on conventional processor-

based systems. BORPH offers run-time general file system support to hardware

processes as if they were software. The unified file interface allows hardware and

software processes to communicate via standard UNIX file pipes. Furthermore, a

virtual file system is built to allow access to memories and registers defined in the

FPGA, providing communication links between hardware and software.

The functions of BORPH are demonstrated on a BEE2 compute module. Perfor-

mances of BORPH are measured to identify bottlenecks of our system. The clean OS

kernel/user separation of BORPH has allowed us to improve overall system perfor-

mance without affecting existing user designs. Furthermore, BORPH’s unified run-

time environment has enabled designers to make fair and end-to-end comparisons

among software/hardware implementations of the same application. Most impor-

tantly, since the introduction of BORPH to our FPGA-based platform, we have ob-

served increased productivity among high-level application developers who have little

experience in FPGA application design.

Professor Robert Brodersen
Dissertation Committee Chair

2

to my family,

to Carmen, and

to God be the Glory.

i

Table of Contents

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Related Work . 4
1.2 Chapter Overview . 6

2 Reconfigurable Computers 8
2.1 Reconfigurable Computer Architectures 9
2.2 Reconfigurable Fabrics . 12

2.2.1 Granularity of Configuration 13
2.2.2 Method of Configuration . 14
2.2.3 Field Programmable Gate Array 20

2.3 A Continuum of Computing . 23
2.3.1 Spatial and Temporal Computing 23
2.3.2 Stored-Program Processor . 25
2.3.3 Fully Spatial Computation . 26
2.3.4 Between Spatial and Temporal Computing 27
2.3.5 Hardware/Software Terminology 29
2.3.6 Physical and Virtual Machine 30

2.4 BEE2 . 31
2.5 Summary . 32

3 BORPH: The Operating System 34
3.1 Architectural Assumptions . 36
3.2 Machine Abstraction Model . 36

3.2.1 Reconfigurable Fabrics as Coprocessors 37
3.2.2 Reconfigurable Fabrics as Computational Resources 39

3.3 Hardware Process . 40

ii

TABLE OF CONTENTS

3.3.1 Process Creation . 41
3.3.2 The Lifecycle of a Hardware Process 42

3.4 Kernel Interface . 44
3.4.1 Hybrid Message Passing System Call Interface 47

3.5 File I/O . 49
3.5.1 Differences between Software and Hardware Design Patterns . 50
3.5.2 High Speed Streaming Data I/O 54
3.5.3 Runtime Streaming Mode Switching Support 57
3.5.4 File Streaming I/O Library 58

3.6 The ioreg Virtual File System . 60
3.6.1 Basic Operation . 61
3.6.2 Organization of ioreg Virtual Files 61
3.6.3 Example . 63
3.6.4 Beyond Simple Register . 65
3.6.5 Language Independence . 66
3.6.6 Operating Mode . 67

3.7 Summary . 67

4 Implementation and Performance 70
4.1 Overview . 70
4.2 Software Kernel Architecture . 71

4.2.1 BOF file support . 72
4.2.2 Reconfigurable Hardware Region (hwr) Support 72
4.2.3 FPGA Configuration and Resource Allocation 73
4.2.4 Software Fringe . 73
4.2.5 Packet Communication Network 74
4.2.6 Process Scheduler and Signal Handler 74

4.3 Base Architecture . 75
4.3.1 The SelectMap Bus Controller 77
4.3.2 Design of uK . 77

4.4 Performance of Base Architecture . 78
4.4.1 Hardware Process Creation 78
4.4.2 Reading/Writing ioreg Files 79
4.4.3 General File I/O from Hardware Processes 80

4.5 Advanced On-Chip Architecture . 86
4.5.1 Elimination of PLB-to-OPB Bridge 86
4.5.2 DMA Enabled Control FPGA 89

4.6 Porting BORPH . 94
4.7 Summary . 96

iii

TABLE OF CONTENTS

5 BORPH Application Developments 98
5.1 Conventional FPGA Design Flow . 98

5.1.1 Run Time Support . 100
5.2 Simulink-based Design Flow . 101
5.3 Sample Applications . 104

5.3.1 Example 1: A Real-Time Wireless Signal Processing System . 104
5.3.2 Example 2: Low-Density Parity-Check Decoders Emulation . . 106
5.3.3 Example 3: FPGA Video Processing with Commodity Software 107

5.4 Summary . 109

6 Conclusions and Future Directions 110
6.1 Future Directions . 112
6.2 Closing Remarks . 113

Bibliography 115

iv

List of Figures

2.1 6 classes of reconfigurable computer architectures. 10
2.2 Simplified version of dedicated DSP blocks on a Virtex-4 FPGA. It is

an example of coarse grain reconfigurable unit as it can perform only
one of the several predefined mathematical functions. 13

2.3 Gate arrays are programmed by metal and contact layer specialization. 15
2.4 A PLA maps Boolean equations in sum-of-product forms directly with

programmable connections in the AND-plane and OR-plane. 16
2.5 Making a connection between two wires using pass transistors con-

trolled by 1 bit of configuration memory 17
2.6 Mapping the truth table of 2-input XOR function directly using mem-

ory with 4 locations of 1-bit wide data. 18
2.7 All 16 possible 2-input truth tables 19
2.8 A generic FPGA . 21
2.9 Components of a generic FPGA . 22
2.10 A spectrum of computers . 24
2.11 Block diagram of a BEE2 compute module 31
2.12 BORPH utilizes a PowerPC based reconfigurable system that is built

using a BEE2 compute module. 32

3.1 Two ways of organizing reconfigurable fabrics in a reconfigurable com-
puter. 37

3.2 Simplified BOF file format . 42
3.3 Executing a BOF file containing a free running counter. FPGA hard-

ware is configured at prompt 1 and is unconfigured at prompt 3. . . . 43
3.4 BORPH’s hardware kernel interface is constructed from one or more

I/O connection points (ioc) . 48
3.5 Left: BORPH’s hardware system call (hsc) interface. Right: Format

of packet transmitted through hsc. 48
3.6 BORPH’s message format for file system read/write resembles its cor-

responding UNIX system call prototype. 53

v

LIST OF FIGURES

3.7 A simplified flow diagram for iock packet handling. A streaming data
connection is setup iff both source and sink are streamable and are
ready to stream data. 58

3.8 The bfsio library contains two blocks. The read (bfsio r) block gen-
erates read requests on behalf of the user and relays only data payload
and EOF information to user. The write (bfsio w) translates a stream
of data from user into individual write request packets to the kernel. . 59

3.9 The /proc directory tree in of BORPH 62
3.10 BORPH’s ioreg interface allows interacting with hardware processes

via virtual files. The register cntval contains current value of the
free running counter in counter.bof. This counter can be disabled by
writing to cnten register. 64

3.11 A simple packet format for message exchanges between BORPH main
kernel mK and its distributed kernel uK. 65

4.1 The two logical components of BORPH: mK and uK. mK is the main
controlling software kernel. Each reconfigurable hardware region is
individually managed by a low-level kernel called a uK. 71

4.2 Block diagram of BORPH system on a BEE2 compute module with
OPB-based SelectMap controller in control FPGA (opbsm). 75

4.3 Performance of reading/writing on-chip memory on a user FPGA using
ioreg interface. 81

4.4 Hardware process file I/O performance. 82
4.5 The effect of data transfer size s on total time required by a hardware

process to sink a regular file. Time is measured from control FPGA. . 84
4.6 Comparing software piped process chain with a mixed hardware/software

chain. 85
4.7 PLB-based SelectMap controller (plbsm). 87
4.8 Performance comparison between opbsm and plbsm. 88
4.9 Direct memory access (DMA) is enabled in the control FPGA for com-

munication between PPC and the PLB-based SelectMap controller.
On a user FPGA, a hardware arbiter is implemented to allow direct
access to SelectMap bus from a user gateware design for file I/Os. . . 90

4.10 Hardware process creation time in 3 different on-chip architectures
compared with the theoretical minimum time and software process
creation time. 91

4.11 Normalized time for hardware processes to finish streaming files of
various sizes. stdloop.bof uses PPC on user FPGA for file operations,
while direct file I/O through hsc is used in stdloop hsc.bof. 93

4.12 An example of porting BORPH to a single FPGA where user hardware
processes are executed on a partially reconfigurable region. 94

vi

LIST OF FIGURES

5.1 An automatic hardware design flow that compiles high-level Simulink
designs into executable BOF files. 102

5.2 Block diagram of a user FPGA. Compiled user Simulink designs are
combined with a predefined EDK template of uK to generate user
FPGA configurations. 103

5.3 Cognitive radio testbed system . 105

vii

List of Tables

3.1 Types of ioreg . 65

viii

Acknowledgments

This work could not be completed without the help, support and prayers of my

colleagues, friends and family.

I have to thank my advisor, Bob, for his continuous support throughout my time

at Berkeley. It was his adventurous mindset that inspired the creation of BORPH. It

was his well-rounded and open mind that nurtures such highly cross disciplinary work

of FPGA operating system. His passion for people, life, the nature and ideas from

any research fields is going to continue be my aspiration even after leaving Berkeley.

I have to thank Professor John Wawrzynek for introducing me into this exiting field

of reconfigurable computing and for his invaluable recommendations on the design

of BORPH. I also want to thank members of my dissertation and qualifying exam

committee, Professor Dorit Hochbaum, Professor Pravin Varaiya, and Professor Eric

Brewer, for their time, effort and recommendations.

Throughout my time at Berkeley, I have been supported financially by the DARPA,

C2S2.

The success of BORPH is due largely to the availability of the fine FPGA systems,

design flow, and their users at the Berkeley Wireless Research Center. I want to thank

Greg Wright for envisioning the original BEE (at that time the Biggascale Emulation

Engine); to Chen Chang and Pierre Droz for building the BEE and BEE2 machines;

to Andrew Shultz, Pierre Droz and Henry Chen for fine tuning and promoting the

Simulink FPGA design flow.

I want to thank all the users of BORPH whose feedbacks have been invaluable

ix

Acknowledgment

for the development of BORPH. It was your comments such as “BORPH is my life-

saver” and “It (BORPH) has been instrumental in my research” that have kept the

development of BORPH motivated. I must thank Artem Tkachenko in particular for

serving as “guinea pigs” stepping on the never ending list of bugs during BORPH’s

early development.

To my family, I want to express my deepest gratitude for your endless support,

enabling me to pursue this fine path of research at Berkeley, away from home, for

many years.

To Pastor Samuel Wong, thank you for your support during my lowest point in

my Ph.D. career.

To Carmen, thank you for your patience, support, encouragement, understanding,

and prayer all these years.

Finally, and most importantly, I must thank my Lord for providing all the people

and things that I am grateful for all these years; for carrying me through even the

darkest valley and the brightest avenue; and for giving me the much needed patience

and wisdom for research and for life.

I will lift up mine eyes unto the hills, from whence
cometh my help.

My help cometh from the LORD, which made heaven
and earth.

– Psalms 121:1-2

x

Chapter 1

Introduction

Reconfigurable computing has a long history. In 1960, Gerald Estrin proposed a

“Fixed+Variable” machine that some believe to be the first reconfigurable computer[18].

This machine featured a fixed host processor and a section of reconfigurable hardware

for application acceleration. Most reconfigurable computers (RCs) developed since

then followed a similar machine organization.

However, the idea of computing using reconfigurable hardware has not been given

as much attention as other simpler machine organizations. Until very recently, sin-

gle processor systems have dominated the mass personal computer market. For high

performance computing, researchers turn to various kinds of parallel processor ar-

chitectures such as cluster of symmetric multi-processors (SMP). Over the years, the

technology trend in computer architecture has been determined by two major factors:

(1) Physical hardware implementation technology and (2) Ease of use. Implementa-

tion technology imposes a number of physical constraints on a computing system. For

example, bus performance limits the scalability of bus-based shared memory SMP[17],

while power dissipation limits performances of modern sophisticated super-scalar pro-

cessors.

1

Chapter 1. Introduction

Ease of use of a computer system, on the other hand, is a subjective measure-

ment that takes on multiple meanings depending on context. Nevertheless, it is the

ease of understanding and reason about that the original sequential stored program

computer concept developed in the 1940s still prevails among modern computers. It

was the desire to have a smooth application development environment that moti-

vated the development of the first operating system on the EDVAC machine[36]. It

was the observation that easy to use user interfaces greatly improve computer users’

productivity that fueled the study of human computer interface.

Technology-wise, reconfigurable hardware has improved dramatically since the

1960s. Today, reconfigurable computers are capable of delivering orders of magnitude

higher performance than software solutions on conventional processor systems[43].

Their high performances have made them viable computing platforms for a wide range

of application domains, such as high speed digital signal processing[31], multi-media

processing, speech recognition[27, 33], bioinformatics[16], and radio astronomy. How-

ever, despite their promising performances, researchers, particular those traditionally

not accustomed to hardware/software design environments of RCs, remain reluctant

to adopt such technology. The main reason for this remains that reconfigurable com-

puters are difficult to use.

There are two classes of difficulties. The first class of difficulty relates to design

methodologies for RCs, i.e. the process of translating a conceptual design into a ma-

chine understandable program or configuration. This class of difficulty arises during

compile time of an application. In the context of a conventional processor system,

2

Chapter 1. Introduction

such translation process involves two main steps. First, a conceptual design must be

expressed in certain design language, such as C. Then, this user description must be

translated by a compiler into a sequence of processor specific instructions according

to the processor’s predefined instruction set architecture (ISA).

Unfortunately, due to the flexible hardware architecture of RCs, this conversion

process is not as straight forward as software compilation. Successful RC design

methodology requires design languages that are high-level enough for them be easy

to use yet powerful enough to fully express the parallel nature of an application.

Furthermore, a smart compiler is needed to further extract implicit parallelism and

sometimes even derive the correct computation architecture for each application. Fi-

nally, the tools must be able to efficiently perform placement and routing of the

compiled application on to the physical reconfigurable hardware fabric of the target

system to meet performance and resource constraints. In fact, the design methodol-

ogy for RC is so important that it has been the focus for a majority of research in

the reconfigurable computing field in the past.

The second class of difficulty involves how easy an RC application may interact

with the system, user, and other applications during run time. It involves questions

such as: “On which reconfigurable fabric, and for how long, should an application

be executed?” “How does an application communicate with the user?” “How does

an application perform general I/O operations?” Most existing RC systems have

their own ad-hoc mechanisms to address the above system integration requirements.

However, few research efforts have been put into addressing these common problems

3

1.1. Related Work

in a standardized and systematic way. The focus of this dissertation work, BORPH,

approaches this class of problems systematically from an operating system design

perspective.

The goal of BORPH is to improve usability of reconfigurable computer systems

through operating system support. Instead of abstracting reconfigurable hardware of

the system as accelerators for software programs, BORPH allows users to implement

applications directly using these reconfigurable hardware fabrics. User hardware de-

signs therefore run as normal UNIX process in the system like a software program.

BORPH OS kernel provides standard UNIX services, such as file system access, to

these hardware processes. Productivity of novel RC users are observed to have im-

proved as a combined result of such familiar OS interface, a hardware design flow with

libraries that integrates with BORPH, and the availability of commodity software to

coexist with hardware designs within the same system.

1.1 Related Work

A number of research projects have approached the task of designing operating

systems for FPGA-based reconfigurable computers[10, 48, 46, 30, 21]. All of them

are devoted to the problem of dynamic FPGA resource allocation, memory sharing

or virtualization between software and hardware tasks on FPGA-based systems. We

are not aware of any prior work that systematically offer runtime support directly

to hardware processes as BORPH does. Furthermore, instead of relying on abstract

“task” models commonly found in other reconfigurable computer operating systems,

4

1.1. Related Work

the use of UNIX process semantics to model running FPGA designs is unique to

BORPH.

On the other hand, most commercial FPGA-based reconfigurable computers[9, 51,

15, 6] are managed by off-the-shelf operating systems such as Linux and VxWorks.

FPGAs on these systems are used mainly as software accelerators. Software and FP-

GAs communicate through the conventional device driver layer while FPGA designs

must utilize vendor specific libraries with custom APIs. As a result, even if machines

from different vendors are constructed using identical FPGAs, the inconsistent system

interface prevent designs targeting one machine to be easily ported to another. Such

inconsistent system interface greatly hinder collaborations among FPGA researchers.

Much consideration has been put into the design of BORPH’s kernel/user inter-

face, making it as close to conventional UNIX system as possible. It is designed to

lower the barrier-to-entry for novel FPGA users and to increase portability of recon-

figurable application designs. The importance of an intuitive and unified interface is

well acknowledged by a number of works[45, 37]. The work of UltraSONIC[47] shares

a similar design philosophy as BORPH in providing a unifying coarse-grain hardware

software component interface. Furthermore, the choice of POSIX conforming pthread

interface in the work of hThread[2] echoes well with BORPH’s design philosophy.

The main contribution of BORPH is that by leveraging conventional UNIX se-

mantics to FPGA-based reconfigurable computing, it provides a unique, unified en-

vironment for both FPGA and software application designers. The UNIX semantics

is familiar to developers across many research domains, thus lowering the barrier-

5

1.2. Chapter Overview

to-entry into FPGA-based reconfigurable computing. Furthermore, since BORPH is

implemented as an extended Linux kernel, a BORPH managed system may leverage

all commodity Linux software applications for developing, testing, benchmarking, and

deploying FPGA applications.

1.2 Chapter Overview

Chapter 2 provides brief background information about reconfigurable computing.

An overview of various reconfigurable computer architectures will be given. We will

introduce one of the most common reconfigurable hardware fabrics in contemporary

RC, the field programmable gate array (FPGA) and illustrate how one can configure

such hardware to perform any digital logic. Finally, we will describe the FPGA-based

reconfigurable machine, BEE2, on which BORPH currently runs.

Chapter 3 goes into details of BORPH design and implementation. The concept of

hardware process will first be introduced. Based on this notion of hardware process,

we will describe various BORPH features: the BORPH hardware kernel/user interface

design; the hardware file I/O subsystem; and finally the ioreg virtual file system.

Chapter 4 evaluates the performance of BORPH. Three iterations of hardware

system design will be described. The multiple implementations not only provide a

concrete performance benchmark of various BORPH subsystems, they also illustrate

the benefit of kernel/user separation in hardware. Finally, these benchmarks demon-

strate how end-to-end performance comparison between software and hardware can

be achieved through BORPH’s unified hardware/software run-time environment.

6

1.2. Chapter Overview

Chapter 5 explores the interaction between FPGA design methodologies and the

run time operating system. Design methodologies for FPGA and other reconfigurable

computers will first be briefly described. Then, the Simulink-based design flow de-

veloped at the Berkeley Wireless Research Center (BWRC) will be described as an

illustration on how a design methodology integrates with BORPH. Finally, three ac-

tual FPGA applications are presented to illustrate how various features of BORPH

work together to ease their development processes.

We will conclude this dissertation and provides insights into future research in-

spired by BORPH in Chapter 6.

7

Chapter 2

Reconfigurable Computers

This chapter provides a brief introduction into the field of reconfigurable com-

puting. Broadly speaking, reconfigurable computing refers to machines that compute

with dynamically reconfigurable data and control path. This is in contrast to a simple

processor system in which only a single fixed data and control path is presented. As

such, reconfigurable computing generally refers to a large spectrum of computers with

drastically different designs and implementations. A number of excellent surveys are

available in the literature[43, 8, 22, 42] and their results are not repeated here. Only

a brief introduction is given here to make this dissertation self-contained.

In general, reconfigurable computers consist of zero or more physically presented

sequential processors coupled with one or more reconfigurable fabrics. Such definition

points to two important design aspects of reconfigurable computers: (1) The coupling

of processor and reconfigurable hardware, i.e. their system architectures; and (2) The

implementation of reconfigurable hardware.

8

2.1. Reconfigurable Computer Architectures

2.1 Reconfigurable Computer Architectures

Todman et al. [43] extended the work of Compton and Hauck[8] and provided

a 5-class classification of RC architectures as shown in Figure 2.1(a) to (e). The

first four classes of systems are characterized by the physical presence of a single

controlling processor. They differ in the way that the processor communicates with

the reconfigurable fabric (RF) of the system.

In Figure 2.1(a), reconfigurable fabrics are connected to the processor through its

system I/O bus. Although it provides the least data bandwidth between the processor

and the RF, it is easiest to implement. A conventional processor-based system can

be extended into a RC system by simply inserting an add-on card with reconfigurable

fabrics to its peripheral bus. Because of this simplicity, it is by far the most common

RC architecture found in commercial systems.

Figure 2.1(b) and 2.1(c) depict systems that incorporate RF into two different

locations within the processor’s memory subsystem. Data bandwidth between the

processor and the RF is usually the performance bottleneck of a system. By connect-

ing RFs directly to the processor’s memory subsystem, these architectures provide

the much needed bandwidth.

Figure 2.1(d) shows a system that integrates RF directly into the data path of

the controlling processor as functional units. It allows the RF to have access to all

local information about the running processor, such as the register file. Such tight

integration ensures maximum integration between software and hardware. However,

it is also this tight integration that limits RF speedup due to the lack of instruction

9

2.1. Reconfigurable Computer Architectures

I/
O

 i
n
te

rf
a
c
e

c
a
c
h
e

memory

CPU

(a)

c
a
c
h
e

memory

I/
O

 i
n
te

rf
a
c
e

CPU

(b)

I/
O

 i
n
te

rf
a
c
e

memory

c
a
c
h
e

CPU

(c)

c
a
c
h
e

memory

I/
O

 i
n
te

rf
a
c
e

CPU

(d)

CPU

reconfigurable

fabric

(e) (f)

Figure 2.1: 6 classes of reconfigurable computer architectures.

10

2.1. Reconfigurable Computer Architectures

level parallelism.

Figure 2.1(e) represents a new class of RC that is made only possible with ad-

vances in reconfigurable hardware technologies. Instead of connecting reconfigurable

fabrics to a processor system, these machines embed processors within reconfigurable

fabrics. These embedded processors can either be implemented physically or as soft

processors. Soft processors are processors that are built as needed by an application

using reconfigurable hardware. Examples are the MicroBlaze and PicoBlaze proces-

sors by Xilinx, as well as the Nios and Nios-II processors by Altera. This class of

RC system has the benefit of allowing a user to determine the type and number of

processors needed in the system, especially by using soft processor, thereby increas-

ing system performance and efficiency. Most importantly, this class of system breaks

away from the processor-centric compute model in the previous 4 classes of systems.

By shifting away from the sequential compute model of the controlling processor, this

class of system has much higher performance potential than the previous four.

Figure 2.1(f) illustrates the sixth class of system that consists of two or more ma-

chines in the previous 5 classes connected through a direct network. On a system level,

these systems share similar properties such as system topology and routing strate-

gies with conventional multi-processor systems. However, because of the proximity

of computational fabric to the network, RC systems provide much higher potential

performance benefit over multi-processor systems. For example, sending a word of

data from a hardware application on one FPGA to another directly connected FPGA

takes only a few clock cycles for synchronization. If the system is fully synchronized,

11

2.2. Reconfigurable Fabrics

latency can potentially be further reduced to zero cycle, virtually doubling the size of

the FPGA. Even for large complicated RC systems that must utilize complex packets

for communication, the fact that the very same computational reconfigurable hard-

ware fabrics are used to manage these communication packets significantly reduces

such communication overhead. In contrast, because of layers of software overhead,

communication latency on multi-processor systems, particularly cluster based sys-

tems, are order of magnitude higher[29]. Moreover, some systems employ a run time

reconfigurable direct network, forming a hierarchical reconfigurable system as a result.

For example, the RAW machine consists of an array of processing elements connected

through a user programmable network[41]. The routing of the network is controlled

as part of the user program. At the same time, each RAW processing element is itself

a simple reconfigurable computer consists of a processor coupled with a custom made

FPGA.

2.2 Reconfigurable Fabrics

One of the most important structures that differentiate a reconfigurable computer

from a conventional processor-based system is its reconfigurable fabric. Many differ-

ent types of reconfigurable fabrics have been proposed in the literature. In general,

they can be characterized by their granularities of configuration and their methods

of configuration. This section explores the design space of reconfigurable hardware

and concludes with an introduction to currently most widely used fabric: the field

programmable gate array (FPGA).

12

2.2. Reconfigurable Fabrics

c
o
n
fi
g
u
ra

b
le

c
o
n
n
e
c
ti
o
n
s

A

B
P

C

Figure 2.2: Simplified version of dedicated DSP blocks on a Virtex-4 FPGA. It is an
example of coarse grain reconfigurable unit as it can perform only one of the several
predefined mathematical functions.

2.2.1 Granularity of Configuration

The configuration granularity of a reconfigurable hardware fabric affects its flex-

ibility in implementing different logic functions. There is always a trade-off between

flexibility and efficiency of the fabric. Fine grain reconfigurable fabrics are very flex-

ible. They can be used to implement any sequential and combinational Boolean

logic function, but are slower and physically bigger in general. On the other hand,

coarse grain reconfigurable fabrics are faster, occupy smaller areas, but are limited to

implementing only one of the predefined functions.

Some reconfigurable fabrics, such as modern FPGAs, contain a mix of both fine

grain and coarse grain reconfigurable units. For example, Xilinx Virtex-4 FPGAs[50]

contain dedicated blocks similar to that in Figure 2.2 for digital signal processing

(DSP) applications. This block can be programmed by the user to perform a combi-

nation of multiplication, addition or subtraction. Although the same functions could

have been implemented using general fine-grain programmable fabrics on the FPGA,

having such dedicated blocks result in designs that are smaller, faster, and consume

less energy.

Unfortunately, the correct mix of coarse grain and fine grain reconfigurable units

13

2.2. Reconfigurable Fabrics

is highly application specific. As a reconfigurable computing platform, designers must

adjust the mix according to the area, power and performance requirements for the

target application domain.

2.2.2 Method of Configuration

In the 1970s, integrated circuit designers were looking for timely and cost effective

ways to manufacture application specific integrated circuits (ASICs). The result

was the development of integrated circuits that can be programmed after they are

fabricated. These post-fabrication programmable integrated circuits subsequently

evolve into modern day programmable logic devices.

Non-Volatile, Single Program

Tracing back to their ASIC roots, early programmable logic devices are designed to

be programmed only once: i.e., to program an IC to implement a specific application.

One way to achieve such specialization is by pre-fabricating a gate array on silicon

wafers as seen in Figure 2.3. Designing an ASIC is then reduced to a task of connecting

these pre-fabricated transistor gates using upper metal layers. Manufacturing cost,

as well as time-to-market, is therefore reduced as the number of fabrication mask is

reduced. Strictly speaking, this method is not a post-fabrication logic programming

mechanism. Nevertheless, this metal layer specialization is the predecessor for many

subsequent programmable logic devices (PLDs).

Another non-volatile, single program method of configuration for PLDs is by using

14

2.2. Reconfigurable Fabrics

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

4−input NOR gate

in1 in2 in3 in4

o
u
tp
u
t

4−input NAND gate

in1 in2 in3 in4

o
u
tp
u
t

VDD

GND

Possible

Contact

Metal

Polysilicon n−diffusion

p−diffusion

Figure 2.3: Gate arrays are programmed by metal and contact layer specialization.

15

2.2. Reconfigurable Fabrics

AND−plane

OR−plane

lines
product

(a) Unprogrammed

AND−plane

OR−plane

lines
product

P0 P1 P2

Q0

Q1

A

B

C

D

(b) Programmed

Figure 2.4: A PLA maps Boolean equations in sum-of-product forms directly with
programmable connections in the AND-plane and OR-plane.

fuses or anti-fuses to form metal connections. They are usually used in dense PLDs

such as programmable logic arrays (PLAs). As oppose to gate arrays, PLAs are truly

post-fabrication programmable logic devices. Logically, a PLA is programmed by

directly mapping user Boolean functions in sum-of-product forms to the device.

Figure 2.4(a) shows a simplified block diagram for a PLA. A typical PLA contains

a programmable AND-plane connected to a programmable OR-plane. Similar to

the gate array concept, a PLA is configured by programming wire connections that

connect the two planes and I/O pins. These connections are either made of anti-fuses

or programmable switches. An anti-fuse behaves in exact opposite ways of a normal

electrical fuse: i.e., the two terminals of an anti-fuse are disconnected by default until

it is “broken” by strong current.

The first step to implementing user logic is to generate all product terms by making

16

2.2. Reconfigurable Fabrics

configuration

memory

wire

wire

Figure 2.5: Making a connection between two wires using pass transistors controlled
by 1 bit of configuration memory

appropriate connections to the AND-plane input. The results, carried in the set of

vertical product lines, are then connected accordingly to the OR-plane to compute

the final sum-of-products. For example, the PLA in Figure 2.4(b) is programmed to

compute two equations: Q0 = AB + AC and Q1 = AD + AC. Product lines P0, P1

and P2 carry the intermediate results AB, AC and AD respectively.

Non-Volatile, Multiple Program

Some manufacturers use non-volatile, but programmable memory technology such

as erasable programmable read only memory (EPROM) and electrical erasable pro-

grammable read only memory (EEPROM) to implement programmable logic devices.

For instance, instead of using anti-fuses, PLAs described above can be programmed

using pass transistors that are controlled by PROMs (Figure 2.5).

Another way to build programmable logic devices is to implement Boolean logic

directly using non-volatile memories. Performing logic operations using memory is

best illustrated by an example.

Figure 2.6 shows the truth table of an exclusive or (XOR) Boolean operation

17

2.2. Reconfigurable Fabrics

0 0

0 1

1

1 1

0

0

1

1

0

QBA

(a) Truth ta-
ble for XOR

0

1

1

0

dataaddress

3

2

1

0

(b) Mapped
to 4 memory
locations

Figure 2.6: Mapping the truth table of 2-input XOR function directly using memory
with 4 locations of 1-bit wide data.

where output (Q) is 1 only if exactly one of either A or B is 1. One way to implement

an XOR operation in hardware is by mapping its truth table directly using a read

only memory (ROM). Using input A and B as memory address, this ROM reads out

the expected value of Q. In this particular example, a 0 is stored at locations 0 and 3

while a 1 is stored at locations 1 and 2. When a ROM is used for looking up values,

it is referred as a lookup table (LUT).

Figure 2.7 shows all 16 possible truth tables with two inputs, A and B, and one

output, Q. For instance, the 7th column from the left shows the same truth table as

Figure 2.6 for an XOR operation. Figure 2.7 illustrates the benefit of implementing a

simple 2-input XOR function using a LUT: configurability. By implementing lookup

tables using programmable memory, the logic function of that a LUT implementation

can be changed simply by changing data values in various memory locations. For

instance, to implement an AND operation, one can simply write 0 to locations 0,1,2

and write a 1 to location 3.

18

2.2. Reconfigurable Fabrics

1

1

1

11

1

1

0

1

0

1

1

1

0

0

1

1

0

1

1

1

0

0

11

0

0

1

1

0

0

0

0

1

1

1

0

0

0

0

0

1

1

0

0

1

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

1

0 0

0 1

1

1 1

0

BA on
e

ze
ro

A
B

A
+

B

AA
+

B

BA
⊕

B

A
+

B

A
+

B

A
⊕

B

BA
B

AA
B

A
B

Figure 2.7: All 16 possible 2-input truth tables

In general, any Boolean logic function with n variables can be implemented by

using a lookup table with n inputs. A LUT with n inputs is usually referred as an n-

LUT. Each n-LUT can be configured to implement one of the 22n
possible functions.

However, large LUTs are expensive to build in terms of silicon area, speed, power and

dollar cost. Therefore, lookup tables of moderate sizes from 3 to 6 inputs are usually

used.

Volatile Configuration

Most modern commercially available programmable devices utilize volatile memo-

ries, such as static random access memory (SRAM), or even simple on-chip registers,

to store device configurations. Since the device configuration is volatile, these de-

vices must be programmed every time a system is powered up. The programming is

usually accomplished by reading configurations from an external PROM or through

standardized in-system testing protocol such as that from the Joint Test Action Group

(JTAG). Architecturally, these modern devices can be identical to devices described

above. However, since programming a device is performed through writing to SRAM

or hardware registers, the programming speed is order of magnitude faster than pre-

19

2.2. Reconfigurable Fabrics

vious non-volatile configuration solutions. Furthermore, modern devices support dy-

namic partial configuration, which is the ability to reconfigure parts of the device

while the rest of the device continues to operate without interruption.

Such versatility in programming has created opportunities for using even off-the-

shelf PLDs in reconfigurable computing. A number of commercial products[9, 51, 15]

as well as numerous research projects[26] are based on off-the-shelf PLDs.

Custom, Multi-Context Configuration

Over the years, reconfigurable computing researchers have proposed a number of

custom reconfigurable fabrics specific for their systems. Some of them are developed to

integrate with existing processor datapath[38]. Others developed the notion of multi-

context reconfigurable hardware fabrics[28, 25, 44, 11]. The idea of multi-context

reconfiguration evolves from the need to reprogram a device in extreme speed. It is

particularly useful for RC systems in which reconfigurable fabrics must switch between

different functions quickly. As a result, these devices store multiple configurations in

the device in parallel that can potentially be swapped in a single hardware cycle.

2.2.3 Field Programmable Gate Array

Field Programmable Gate Array (FPGA) is one of the most readily available

commercial programmable logic devices. Starting as ASIC replacements similar to

other PLDs, FPGAs have slowly evolved into complex embedded system platforms

that are flexible and are able to deliver performances comparable to ASICs. The

20

2.2. Reconfigurable Fabrics

programmable network

programmable I/O

configurable logic unit

Figure 2.8: A generic FPGA

basic architecture of an FPGA is shown in Figure 2.8. FPGAs are generally made

up of an array of configurable logic units connected with a programmable routing

network. Programmable I/O blocks are used to control off-chip interfaces, such as

signal directions and impedances of I/O pins.

Configurable Logic Unit

The basic building blocks of an FPGA are configurable logic units (CLUs) that

are programmable according to user logic functions. Different FPGA manufacturers

have slightly different implementations, such as “slices” for Xilinx FPGAs or “adap-

tive logic modules” for Altera FPGAs. Despite their different implementations, they

share a similar basic design. Each configurable logic unit consists of a fine grain

programmable combinational logic block that is optionally connected to one or more

flip-flops (Figure 2.9(a)).

The programmable combinational logic block is usually implemented using lookup

21

2.2. Reconfigurable Fabrics

LUT

CE

D Q

in1

in2

in3

clk

ce

ffin ffout

Q

(a) configurable logic unit (b) pro-
grammable
switch box

Figure 2.9: Components of a generic FPGA

tables. A number of multiplexers (MUXs) are used to fine tune the behaviors of

a CLU. They are used to select output from either the LUT or flip-flop, or both.

They also control polarities of clock and other control signals. By carefully connect-

ing the flip-flops and LUTs of different configurable logic units using the on-chip

programmable routing network, any synchronous digital logic design can be imple-

mented.

Routing Network

The routing network of an FPGA links different configurable logic units together

to perform user defined logic. Many different routing networks have been proposed

to balance performance with routability of an FPGA. FPGA routing networks are

generally regular, consisting of groups of short local wires combined with long global

wires. They are designed for maximum flexibilities without introducing long wire de-

lays. Wire to wire connections are made through programmable switch boxes similar

to that in Figure 2.9(b). Such programmable switch boxes allow flexible connections

22

2.3. A Continuum of Computing

such as a T-joint.

2.3 A Continuum of Computing

On the surface, comparing the architecture of a single cycle processor with an

ASIC design process seems remotely relevant. However, as it will be illustrated later,

single cycle processors and ASIC designs can abstractly be viewed as extreme points

in the broad spectrum of computing methods. This section gives an abstract under-

standing of reconfigurable computing with respect to other forms of computing in the

hope to illustrate various benefits and trade-offs of reconfigurable computers.

2.3.1 Spatial and Temporal Computing

The fundamental function of a computer is to compute. Therefore, any ma-

chine that can perform the necessary computation to accomplish a user’s conceptual

design can be treated as a computer. In practice, there are many ways to per-

form computations. Example includes, but not limited to, sequential stored-program

computing, communicating sequential processor (CSP), synchronous data flow, etc.

Figure 2.10 organizes some of these computers in a hypothetical spectrum that cor-

responds roughly to how often the computer is reconfigured.

In general, machines on the left hand side of Figure 2.10 carries out computation

sequentially, usually according to one or more instruction streams. Computations

on these machines are serialized and spread over time. Consequently, they are in

23

2.3. A Continuum of Computing

Processor

Sequential
ASIC

PLA

Anti−Fuse
FPGA

FPGA

Multi−Context

Processor

Datapath

Configurble

Processor

Multi−Core PROM based

PLD

Figure 2.10: A spectrum of computers

theory relatively slower than those machines on the right hand side of the spectrum.

On the other hand, those machines on the right of the spectrum tend to perform

computations in parallel. Since more computations are accomplished spatially at the

same time, these machines are in theory faster.

In practice, however, parallel computation has its limitation. First, one must be

able to express high level designs in parallel to take advantage of the underlying spatial

computation paradigm. Unfortunately, it is a non-trivial problem. To effectively

express a parallel high level design, a designer must possess fluent knowledge about

the choice of design languages, software compilers or computer aided design (CAD)

tools, as well as the underlying computer architecture. Second, parallel computations

require multiple operations to take place at the same time. As a result, more time

and efforts are needed to setup the machine and to route the appropriate data to

perform these operations. Therefore, parallel machines are relatively less flexible

than sequential machines during run-time.

One of the benefits of reconfigurable computers is therefore their theoretical abil-

ities to deliver performance of highly parallel computers while offering flexibilities

of traditional stored-program processors. Essentially, reconfigurable computers pop-

24

2.3. A Continuum of Computing

ulate the middle section of Figure 2.10 by providing different mixes of spatial and

temporal computing capabilities.

2.3.2 Stored-Program Processor

On the far left of Figure 2.10 is a single cycle stored-program processor. Such pro-

cessor carries out its operations according to a stored program. This stored program

computing forms the fundamental computation architecture for almost all modern

processors, which is sometimes referred as the “von Neumann” architecture. The

notion of stored program machine can be dated back to the 19th century where me-

chanical looms used punch cards for controlling cloth patterns. The same punch card

concept was used in the design of Charles Babbage’s Analytical Machine in 1837.

Punch cards are used in most early computers in the 1950s.

The use of punch cards in looms helps to clarify an important observation to

understand reconfigurable computing: A processor instruction by itself is a simple

machine configuration. This observation is especially apparent for a reduced instruc-

tion set computer (RISC) or a micro-coded machine where each machine instruction

performs one simple task. For example, an add instruction configures the arithmetic

and logic unit (ALU) of a processor to carry out an addition operation. It configures

the ALU to take input from the correct register from the register file. It also config-

ures the machine to write the result of the ALU to the correct output register. Given

the sequential nature of stored-program computers, a “program” can be defined as a

sequence of machine configurations. A sequential processor therefore “reconfigures”

25

2.3. A Continuum of Computing

itself continuously according to the stored program.

Based on this observation, a stored program processor is therefore a fully temporal

reconfigurable computer. At any given time, it performs only one operation. However,

as observed by DeHon[12], it reconfigures itself after each operation, thereby spreading

all operations over time.

2.3.3 Fully Spatial Computation

On the other hand of the spectrum of computing is an application specific inte-

grated circuit (ASIC). More precisely, it is the silicon wafer that is used to build an

ASIC that is “configured” during the manufacturing process such that it will carry

out certain computing operations. It is a form of fully spatial computation because at

any given time, many operations are performed in parallel over space. Furthermore,

the same set of operation is performed every time. In the case of a synchronous ASIC,

the unit of time is a clock cycle. An ASIC never “reconfigures” itself. Once an ASIC

is fabricated, its function is set.

Anti-fuse based PLAs are programmable after they are fabricated. However, they

can only be programmed once. PROM based PLDs are truly re-configurable devices.

However, because of the need of external configuring devices and their long config-

uration time, they are usually configured only once for a particular application and

are rarely reconfigured over the life-time of a product.

On the other hand, FPGAs can be programmed in-system relatively quickly in the

other of milliseconds. Because their configurations are stored in volatile memory, they

26

2.3. A Continuum of Computing

can be reprogrammed quickly. As a result, despite being developed originally as re-

placements for ASICs, FPGAs are natural devices to perform fine grain reconfigurable

computing.

2.3.4 Between Spatial and Temporal Computing

Occupying the spectrum between a processor and an FPGA is a spectrum of recon-

figurable computers that exploit the design space of temporal and spatial computing.

To add a temporal dimension to a fully spatial FPGA, multi-context devices are

developed[28, 25, 44, 11]. Multiple configurations of the reconfigurable fabrics are

stored, or cached, inside the device to allow rapid device reconfiguration. A temporal

compute model is therefore established when a device is reconfigured (rapidly) as part

of the native compute model. Furthermore, the temporal reconfiguration does not

necessarily apply to the entire device. Modern FPGAs allow dynamic partial recon-

figuration that reconfigures part of the device while the rest of the device continues

to run.

On the other hand, to add a spatial dimension to a fully temporal processor,

RCs such as PipeRench[38] introduced reconfigurable datapath to a simple sequen-

tial processor. Furthermore, RCs such as Garp[23] utilized reconfigurable fabrics as

dynamically executed co-processors.

27

2.3. A Continuum of Computing

Trade-offs between Performance and Flexibility

The architectural design of a reconfigurable computer is often the result of a

series of trade-offs between performance and flexibility. Depending on the context,

the performance of a RC may be measured by its speed, power consumption or silicon

area consumed. On the other hand, flexibility refers to how easy a machine can be

programmed to perform different tasks.

In general, architectures towards the right hand side of Figure 2.10 are pro-

grammed with longer instructions. Architectures with a longer instruction are more

demanding on their reconfiguration subsystems than architectures with a shorter in-

struction. It is because transferring streams of long instructions from their backing

stores takes longer than transferring streams of short instructions. Consequently, the

architecture must either reconfigures less frequently or devotes more silicon areas for

temporary storages such as caches, which was termed instruction density by DeHon

in [11].

Fortunately, a “long” instruction may embed more information and may therefore

be useful over a longer period of time. For instance, once an FPGA is programmed

with its intended configuration, it may be left running until it is powered down. All

the necessary actions needed to be performed by this FPGA are contained in this one

very long instruction. In fact, when an FPGA is configured to perform data intensive

signal processing, it becomes an extreme case in single instruction stream multiple

data (SIMD) machine where only one single instruction is used. Nonetheless, more

compile time effort must be spent to fully utilize such long instructions.

28

2.3. A Continuum of Computing

On the other hand, a stored-program processor fetches and executes a new instruc-

tion every cycle, making it very flexible. Each instruction by itself cannot accomplish

much. Nonetheless, when executed as a collection, they become useful software pro-

grams. The difficulties associated with compiling for such model therefore lies with

the temporal aspects of the instruction stream.

Architectures with multiple configuration contexts attempt to balance the benefits

of spatial computers with the flexibilities of stored-program processors by providing

quick context switching mechanisms. However, they are also faced with both compile

time and run time implementation difficulties with architectures in both ends of the

spectrum.

2.3.5 Hardware/Software Terminology

In conventional computer engineering terminologies, the term “hardware” is pri-

marily used to refer to the physical machinery of the system while the word “software”

is used to refer to the programs that determine the functions of the machine. In the

context of a conventional stored-program computer, the distinction between the two is

apparent: “Hardware” refers to the central processing unit (CPU) and its supporting

platform, such as memory and I/O devices, while “software” refers to the sequence

of instructions that control the function of the “hardware” platform to accomplish

certain task.

On the other hand, in the context of a reconfigurable computer, the use of the

word “hardware” sometimes becomes fuzzy and ambiguous. This is particularly con-

29

2.3. A Continuum of Computing

fusing with respect to fine-grain reconfigurable fabrics such as FPGAs because an

FPGA performs in ways identical to an ASIC once configured. However, as argued

in Section 2.3.2, configurations of reconfigurable fabrics of a RC are equivalence of

instructions for a processor. Therefore, it is more appropriate to refer to these FPGA

configurations as mere “programs” or even “software”. Unfortunately, the word “soft-

ware” is easily confused with the sequence of processor instructions commonly known

in the context of stored-program computing.

To aide the distinction, Hartenstein used the word “configware” as a counter

part to “software” in the context of reconfigurable computer[4]. Similarly, the word

“gateware” was introduced by Adam Megacz and is used by the RAMP project[24]

to refer to pieces of FPGA logical designs that can be shared among researchers. In

this dissertation, the word “gateware” will be used whenever appropriate to avoid

confusion.

2.3.6 Physical and Virtual Machine

Reconfigurable computers are sometimes difficult to be classified because their

machines can be reconfigured to compute in many different modes. This is particularly

true for fine-grain reconfigurable hardware such as FPGAs. For instance, one design

may choose to configure an FPGA into a shared memory multi-processor system using

soft processors, while another design requires the same FPGA to be configured as a

fully synchronous data flow machine.

30

2.4. BEE2

Control

FPGA

FPGA

User

FPGA

User

FPGA

User
MGT

MGTMGT

MGT
MGT

Direct Connection

Multi−Gigabit Tranceiver

Ethernet

DDR2 Memory

SelectMap Bus

Legend

FPGA

User

120120

120

120

5050

50 50

Figure 2.11: Block diagram of a BEE2 compute module

2.4 BEE2

BEE2 is an FPGA-based reconfigurable computer built at the Berkeley Wireless

Research Center (BWRC) around year 2003[7]. Figure 2.11 shows a high level block

diagram of a BEE2. Each BEE2 compute module contains 5 Xilinx Virtex-2pro

(xc2vp70) FPGAs. The center FPGA, usually referred to as the control FPGA, is

connected to each of the remaining 4 user FPGAs through an 8-bit SelectMap bus

and a 50-bit direct connection. The control FPGA is usually responsible for system

functions such as to configure the 4 user FPGAs and network communications. The

four user FPGAs are connected in a ring topology. They are primarily used for

executing user gateware.

Currently, BORPH is implemented on a BEE2 compute module. A BEE2 com-

pute module exhibit the architecture depicted in Figure 2.1(f) in which each FPGA

itself can be treated independently as a RC. For a BORPH system, an embedded

PowerPC processor system is built using the control FPGA as a controlling processor

system. The four user FPGAs are then used as reconfigurable fabrics to execute user

31

2.5. Summary

memory

PowerPC

User

FPGA

User

FPGA

User

FPGA

User

FPGA

I/
O

 i
n
te

rf
a
c
e

Control FPGA

Figure 2.12: BORPH utilizes a PowerPC based reconfigurable system that is built
using a BEE2 compute module.

gatewares. Figure 2.12 shows the resulting logical construction of a BORPH system

and their partition over control and user FPGAs. Note that the resulting virtual

system becomes one of those depicted in Figure 2.1(a).

2.5 Summary

This chapter explored the broad design space of reconfigurable computers. Re-

configurable computers can broadly be defined as computers that compute with dy-

namically reconfigurable control and data path. They are usually constructed from

zero or more physically presented sequential processors coupled with one or more

reconfigurable fabrics.

From a physical construction point of view, reconfigurable computers can roughly

be classified according to both the way processors are coupled with reconfigurable

fabrics in the system and the designs of the systems’ reconfigurable fabrics. Recon-

figurable fabrics can either be fine-grain or coarse-grain reconfigurable. The former

allows maximum reconfiguration flexibilities while the latter optimizes system perfor-

mance for certain task. Furthermore, the flexibilities of fine-grain PLDs allow them

32

2.5. Summary

to be programmed as virtual machines with application dependent compute model.

From an abstract computational model point of view, reconfigurable computers

complete the continuum of compute model from fully sequential stored-program pro-

cessor to fully spatial computation as in the case of an ASIC. It is this flexibility that

allows RCs to deliver orders of magnitude higher performances than conventional

machines.

BORPH is currently implemented on a PowerPC based system built using FPGAs

of a BEE2 compute module.

33

Chapter 3

BORPH: The Operating System

The Berkeley Operating system for ReProgrammable Hardware (BORPH) is an

operating system designed specifically for FPGA-based reconfigurable computers.

The design goal of BORPH is to improve usability of FPGA-based RCs through

operating system support[39]. In particular, BORPH approaches this goal by extend-

ing the familiar UNIX semantics to reconfigurable computers[40]. BORPH provides

kernel support for FPGA applications similar to the way conventional OS provides

support for software programs. On one hand, BORPH manages reconfigurable fabrics

of a RC just like other processor resources such as CPU time and memory, allocating

them to user applications as needed. On the other hand, BORPH isolates user de-

signs from many low-level details about the system so that a user may focus on the

actual application development.

The choice of UNIX semantics is both technical and ideological. Ideologically, the

UNIX semantics is well understood and well studied by both software and hardware

engineers. Such familiarity helps lower the barrier-to-entry for engineers with software

or hardware background into the field of hardware/software codesign in FPGA-based

34

Chapter 3. BORPH: The Operating System

reconfigurable computer. Technically, some UNIX semantics, such as the UNIX file

stream and file pipe concepts, resemble closely the semantics of digital signal process-

ing (DSP) applications, which is one of the most important class of problems that

can benefit from RCs. Finally, the Linux operating system, an open source UNIX

implementation, has been widely ported to FPGA platforms. It allows BORPH to

be ported to a number of different RCs with relative ease.

In a nutshell, BORPH addresses the run-time system integration issues with re-

configurable computer applications as outlined in Chapter 2. It addresses the FPGA

applications I/O problems systematically through UNIX I/O services. Reconfigurable

resource allocation and concurrent multi-user support are embedded in BORPH’s

kernel design. Furthermore, it provides a unified environment where meaningful end-

to-end performance comparison among software, hardware, or hardware/software so-

lution to certain problem be performed. Finally, BORPH provides an OS framework

for future RC researches. For instance, without the BORPH framework, dynamic

reconfiguration of FPGA is limited as a research topic that exists only on paper. The

BORPH framework provides it with a context for implementation and comparison.

It enables meaningful discussions such as whether dynamic reconfiguration should

be performed at a system level during process startup or as dynamically linked li-

brary loading, or simply be used as part of the underlying executing model of the

application.

35

3.2. Machine Abstraction Model

3.1 Architectural Assumptions

Because of the wide range of reconfigurable computer architectures, it is useful

to limit the discussion of BORPH to a subset of the architectures that BORPH is

designed for. The design of BORPH makes very few assumptions about the un-

derlying hardware platform. It is designed to run on RC systems that consist of a

main controlling processor coupled with a one or more reconfigurable fabrics such

as those depicted in Figure 2.1(a) to (c). A generic machine architecture for the

current BORPH implementation was shown in Figure 2.12. Note that the specific ar-

chitectural implementation subsequently affects only the performance of the system

rather than its correctness. For example, performance of our current implementa-

tion has been improved multiple times through architectural changes as described in

Chapter 4.

3.2 Machine Abstraction Model

Fundamental to the design of BORPH is its abstraction model of the underlying

machine and reconfigurable fabrics. Although the underlying physical machine archi-

tecture is similar to most conventional RCs, BORPH is unique in its way to abstract

reconfigurable resources of the machine.

36

3.2. Machine Abstraction Model

SW

Process

SW

Process

(Network, UART, etc)

Hardware

Platform

FPGA FPGA

Device Driver

OS Kernel

System Library

H
a
rd

w
a
re

S
o
ft

w
a
re

(a) Reconfigurable fabrics as part
of hardware platform.

SW

Process

SW

Process

SW

Process

Hardware

(Network, UART, etc)

Platform

HW

Process

Device Driver

H
a
rd

w
a
re

S
o
ft

w
a
re

Hardware System Library

HW

Process

HWR HWR

System Library

BORPH Kernel

(b) BORPH: Reconfigurable fabrics as computing
resources

Figure 3.1: Two ways of organizing reconfigurable fabrics in a reconfigurable
computer.

3.2.1 Reconfigurable Fabrics as Coprocessors

Figure 3.1(a) illustrates a conventional method of organizing reconfigurable re-

sources on a reconfigurable computer. In such systems, reconfigurable fabrics are

managed as part of the underlying hardware support platform, similar to the way a

network interface card or a hard disk is being managed. Under such an abstraction,

using reconfigurable fabrics for computation involves two steps. First, a user design,

in the form of a configuration file, must be loaded to the underlying reconfigurable

fabrics. Once a reconfigurable fabric is configured to perform certain function, it has

essentially becomes part of the underlying hardware platform. Consequently, similar

to the way a software program communicates with any other hardware devices, it

communicates with the user design through a layer of device driver. There are a

number shortcomings associated with such abstraction.

37

3.2. Machine Abstraction Model

First, the controlling processor inherently forms a master-slave relationship with

reconfigurable fabrics in the system when they are treated as part of the underlying

platform. Consequently, communications with a user design configured in these re-

configurable fabrics are initiated from the processor most of the time. For instance, a

software program typically initializes “hardware acceleration” by sending a block of

data to the accelerator implemented on the system’s reconfigurable fabrics. It would

then enter a polling loop until data is returned from the hardware accelerator. The

polling may be replaced by interrupts if the software is running in kernel mode, such

as in the case of a device driver. Such a software-centric methodology is sufficient

when reconfigurable fabrics are used to accelerate software applications. However,

it becomes cumbersome or even awkward in cases when the reconfigurable hardware

design is the application itself. For example, when FPGAs are used for perform-

ing high-speed digital signal processing in hardware, there is little need for an extra

software program that a user must program and manage.

Complicating the situation is the lack of standardized semantics for software pro-

grams to communicate with designs running on reconfigurable fabrics. In a typical

computer system, different device drivers are written for different hardware devices

that are connected. Although there exist standardized device driver interfaces, the

task of developing device drivers are themselves non-trivial for most high-level appli-

cation developers. Moreover, the fact that each application has its unique communi-

cation requirement inevitably implies a new device driver must be written for each

application.

38

3.2. Machine Abstraction Model

The lack of standardized I/O semantics is not limited to hardware/software com-

munication within a system. Different RC systems developed by different researchers

or companies often define their own interfaces and semantics. The lack of common

semantics makes the already difficult task of porting a design from one RC to another

even more daunting. This in turn hinders wide scale mainstream developments of

reconfigurable computers.

Finally, modeling reconfigurable fabrics as part of the underlying machine platform

obscures the distinctions between a machine’s physical hardware platform and the

hardware “configurations” that correspond to user applications. In other word, the

notion of gateware may easily be lost when reconfigurable fabrics of a system are

treated by the OS the same way as the underlying support platform.

3.2.2 Reconfigurable Fabrics as Computational Resources

BORPH logically separates reconfigurable fabrics of a reconfigurable computer

from its underlying hardware support platform. The smallest unit of reconfigurable

fabrics managed by BORPH is denoted a reconfigurable hardware region (hwr).

Figure 3.1(b) illustrates this concept. For example, the current implementation of

BORPH on BEE2 defines each user FPGA as a hwr. hwrs are mere extensions to

the controlling sequential processor as computational resources of the system. Their

sole purpose in the system is to perform computation for user applications. In par-

ticular, they are used primarily for executing user gateware designs.

As an independent executing entity of the system, a gateware design has a peer-

39

3.3. Hardware Process

to-peer relationship with other software or gateware designs. In other word, the

controlling processor no longer forms a master-slave relationship with reconfigurable

fabrics. Communication may therefore be initiated from gateware designs indepen-

dent of any controlling software. Such active communication allows a gateware de-

sign to have tight control on data movement and potentially increase over system

performance. File I/O described in Section 3.5 is an example of gateware-centric

communication because file I/O operations are initiated by gateware. Traditional

software-centric communications, such as to copy a block of memory, are handled by

BORPH’s ioreg virtual file system described in Section 3.6. As a result, high-level

application developers are freed from the task of developing ad-hoc device drivers for

each gateware application. All communications are handled by familiar and standard

UNIX file I/O semantics.

3.3 Hardware Process

In conventional OS terminologies, a process is usually defined as an executing

instance of a program. It means that the software program represented by an exe-

cutable file becomes a running process when it is executed. Each process is allocated

its own unique process ID together with its executing environment. A process forms

a parent-child relationship with its spawning process.

BORPH extends this idea to reconfigurable computers, defining a hardware pro-

cess as an executing instance of a gateware program. In other word, a hardware

process is similar to a conventional software process except it may be executing on

40

3.3. Hardware Process

reconfigurable fabrics of the system instead of the main processor. The notion of

execution domain of a process is therefore extended to include spatial information,

such as the reconfigurable fabrics that this process is executing.

The concept of hardware process allows a gateware design to transform from a

passive entity under the control of some software program to an independent executing

entity. Such transformation is essential to create a logical one-to-one mapping between

user application and its corresponding executing instances in the system. Without

such hardware process concept, application designer must develop both a gateware

design executing on reconfigurable fabrics, as well as a software program that manage

that gateware design. The concept of hardware process allows that only one gateware

program be developed for each user application. This gateware design will then play

an active role in interacting with the rest of the system during run time similar to

the way software programs do.

3.3.1 Process Creation

A hardware process is created when a BORPH Object File (BOF) is exec-ed. As

shown in Figure 3.2, a BOF file is a binary file format that encapsulates, among other

information, configuration for reconfigurable fabrics. In conventional UNIX systems,

a process is created with two system calls: fork and exec. When a hardware process

is created, the same fork-exec sequence is employed. During the exec system call,

the actual hwr is setup according to the configuration in the corresponding BOF file.

Since hardware process creations are handled by the kernel, a hardware design can

41

3.3. Hardware Process

BOF Header

Embedded ELF file data

ELF Header

Hardware Region 0

Hardware Region 1

Hardware Region Header

ioreg Definition

Open File Descriptor

FPGA Configuration Data

Figure 3.2: Simplified BOF file format

be started by any software program that is able to create normal UNIX process, such

as the command shell, a C or Java program, etc.

Hardware process creations conform to the standard UNIX process creation se-

mantics by maintaining all necessary parent-child and process group information. The

created hardware process has its own memory space and execution domain. As a re-

sult, there is no shared memory between hardware and other processes in the system

by default. Currently, memory attached to hardware processes must be exported by

the ioreg interface. Each hardware process also has access to its execution envi-

ronment, including its executing command line arguments. Similar to a conventional

UNIX process, a hardware process occupies its own logical virtual memory space. In

other word, there is no implicit memory sharing between a hardware process with

any other processes in the system.

3.3.2 The Lifecycle of a Hardware Process

Figure 3.3 shows a transcript of executing a BOF file from a bash shell. The file

counter.bof contains a free running counter design to run on a FPGA. When this

42

3.3. Hardware Process

1:bash$./counter.bof &
[1] 1399
2:bash$ ps j
PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
1386 1387 1387 1387 pts/3 1400 Ss 1000 0:00 -bash
1387 1399 1399 1387 pts/3 1400 S 1000 0:00 ./counter.bof
1387 1400 1400 1387 pts/3 1400 R+ 1000 0:00 ps j
3:bash$ kill -9 1399
[1]+ Killed counter.bof
4:bash$

Figure 3.3: Executing a BOF file containing a free running counter. FPGA hardware
is configured at prompt 1 and is unconfigured at prompt 3.

file is executed at prompt 1, based on the file’s header, the BORPH kernel select and

configure an unused FPGA of the system for this file.

Once a BOF file is spawned, its status can checked by standard command like

ps as shown in prompt 2. The output of the command ps shows the parent-child

relationship between the starting bash shell and the hardware process counter.bof

as well as its process group information. Of interest is the STAT column in the out-

put, which shows counter.bof is at an “interruptible sleep” state. In our current

implementation, to avoid a hardware process being put on the processor’s run queue,

it is marked with a Linux process state of TASK INTERRUPTIBLE. In the future, a new

process state will be introduced to indicate to the rest of the system that a process

is being run on a hwr.

Similar to a software process, a hardware process can be terminated either by

external UNIX signals (SIGTERM, SIGKILL), or by executing a gateware equivalence

of exit system call.

43

3.4. Kernel Interface

3.4 Kernel Interface

This section explores the design of BORPH’s kernel-user interface. The parallel

and high performance nature of gateware designs impose a number of requirements

on this interface that are not presented in conventional single processor systems.

In a conventional single processor system, both OS kernel and user processes are

software executing on the same processor. However, in a FPGA-based reconfigurable

computer, some of the user processes, specifically hardware processes, may be exe-

cuting on reconfigurable fabrics instead of the processor that the software OS kernel

executes. Furthermore, gateware designs run at a much higher speed and potentially

generate requests to the OS kernel at much higher rate than a processor can handle.

As a result, to provide low level support for these user gateware designs, some of the

OS kernel functionalities must be implemented in gateware as well.

The part of BORPH OS kernel that executes in a processor, performing conven-

tional OS functionality and interacting with normal software processes is called mK.

The part of BORPH OS kernel that must be implemented in gateware to interact

with hardware processes is called uK. The two are logically part of the same operating

system kernel. However, depending on the system (e.g. our current implementation),

they may be physically separated. This section focuses on the interface between

BORPH’s hardware kernel (uK) with hardware processes.

Typical software systems have the operating system kernel manages all system

resources such as CPU, memory and I/O. The OS then provides user programs with

a set of services, such as reading a file, through a set of predefined system calls.

44

3.4. Kernel Interface

System calls play the role of application program interface (API) into the OS kernel.

Since crossing the user/kernel boundary involves low-level functions such as modifying

memory protection and CPU privilege mode, the actual system call calling mechanism

is machine dependent and is defined in a system’s application binary interface (ABI).

The calling user program is usually suspended (blocked) while the OS services a

system call. The kernel has complete control over how to proceed with the system

call. Having such kernel-user separation not only shields a user program from all the

low-level system details, but also allows the kernel to perform any management work,

such as enforcing security and resource allocation as needed.

To serve similar management functions to hardware processes, BORPH defines

a similar hardware system call interface. Similar to software OS ABI, the hardware

system call interface must be kept at the lowest physical level such that it is de-

sign language independent. However, the parallel computation model of gateware

applications post a number of requirements not commonly found in a software sys-

tem. Specifically, gateware programs in general require both an asynchronous and a

parallel interface into the BORPH kernel.

Asynchronous System Calls

System calls are conventionally executed synchronously to the executing user pro-

gram. The user thread that requests system services is usually blocked while the kernel

services the request1. Gateware applications, however, exhibit a parallel computation

model in which every part of the design is performing certain function concurrently.

1Some new OS’s are beginning to have provision for asynchronous I/O system calls.

45

3.4. Kernel Interface

As a result, there is no single thread of control that the OS may block while it services

a system call. In other word, if one part of a user hardware design issues a file read

request that blocks due to lack of data, it is unwise to block the entire user FPGA

design because other part might, by design, still be operational. This is similar to a

multi-threaded software program running on a single processor. If one thread must

be blocked due to OS services, other threads must still be allowed to proceed. With-

out making any assumption about running user hardware designs, hardware system

calls must therefore always be executed asynchronously to the user program. The

handling of such asynchronous OS communication is left as a responsibility of user

space designs.

Concurrent System Calls

Since gateware designs compute in parallel, it is possible that multiple portions

of the same design demand OS services concurrently. In a single processor system,

the OS kernel may service “concurrent” system calls without affecting overall system

performance because such concurrency is limited only to the logical level. At the

lowest level, the system processor must serialize the computation regardless of the

software concurrency. On a hardware system, however, it is possible such concurrent

system calls are issued on the exact same hardware cycle. For example, a dataflow

hardware application may open 2 files for input and 1 file for output. For performance

reasons, it is desirable to service the output file write and 2 input file read on each

and every hardware cycle.

46

3.4. Kernel Interface

High Data Bandwidth Requirement

To minimize performance impact on a user gateware process, the BORPH kernel

must ideally be able to provide OS services at hardware speed. It is particularly

important for performance critical system services such as file I/O. On the other hand,

some system functions, such as sys gettimeofday that gets a system’s time, has very

low latency and bandwidth requirements. As a result, the design of BORPH’s kernel

interface must be flexible and generic on one hand, while extremely high performance

on the other hand.

3.4.1 Hybrid Message Passing System Call Interface

The current BORPH design employs a hybrid message passing interface as its

system call interface. It is “hybrid” because by means of high level handshaking

protocol, the interface can be changed from operating in a message passing mode into

a cycle accurate data streaming mode.

As shown in Figure 3.4, the BORPH kernel connects to user gateware programs

with a predefined number of I/O connection points (ioc). Each ioc primarily consists

of 2 unidirectional connections in each direction. All communications between the

uK and the user are performed over this generic interface, usually in the form of

request/acknowledge packets. With respect to file I/O, they can be thought as a

physical realization of the logical “file descriptors” in software.

The left hand side of Figure 3.5 shows the physical interface between an ioc and a

user application. Being essentially two 8-bit unidirectional connections guarded with

47

3.4. Kernel Interface

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

Hardware

(Network, UART, etc)

Platform

SW

Process1

SW

Process2

SW

Process3

Process1

HW

Process2

HW

HW System Library

H
a
rd
w
a
re

S
o
ft
w
a
re

ioc ioc ioc

BORPH OS Kernel

Software System Library

Figure 3.4: BORPH’s hardware kernel interface is constructed from one or more I/O
connection points (ioc)

WRITE, WRITE_ACK
(syscall#)
SC: READ, READ_ACK

FLAG: FLG_STREAM, FLG_ERROR

SIZE:

ACK: Actual read/write size

READ/WRITE: size request

byte offset

0 1 2 3

PAYLOAD

FLAG SIZESC

hsc_k2ud_f

hsc_u2kd

hsc_u2kd_f

hsc_status

hsc_k2ud

Figure 3.5: Left: BORPH’s hardware system call (hsc) interface. Right: Format of
packet transmitted through hsc.

a 1-bit valid (framing) signal, this physical interface is simple and generic by design.

For example, keeping the data connection as byte-wide both simplifies protocol design

and saves physical resources so that more iocs can be instantiated for more parallel

filesystem access if needed.

All kernel-user communications are carried out by a high-level packet based mes-

sage passing protocol through iocs. As shown in right hand side of Figure 3.5, the

packet format is again simple and generic by design. In general, user applications

request hardware system calls by sending messages to the kernel. The protocol man-

48

3.5. File I/O

dates a request-acknowledge sequence between user and kernel for most system calls.

Acknowledgement messages are used by the kernel to return any requested data or

error status to the user.

As mentioned earlier, each ioc may independently switch from a message pass-

ing mode into streaming data mode. The discussion on the motivation and specific

switching protocol is deferred to the next section as it is used solely for streaming file

I/O.

3.5 File I/O

One unique service that BORPH provides to gateware designs is general UNIX file

system access. This section describes the design consideration for BORPH’s filesystem

layer specific to gateware designs.

Unlike most other RCs, file system access provides FPGA designs an active mecha-

nism for data I/O. In other word, it is a gateware design that logically and physically

initiates such I/O communications. It is different from most conventional FPGA-

based RCs, where FPGA designs only receive passive communications that are initi-

ated by certain software programs running on the controlling processor. With respect

to usability of the system, the presence of active I/O services is intuitive because it

logically corresponds to the active, self-contained nature of FPGA designs running

as gateware programs. Technically, allowing gateware designs to control their own

I/O patterns allows much higher performance potential. A gateware design may, for

example, initiate a long read request when its input buffer is running low on data.

49

3.5. File I/O

Without an active reading mechanism like file read, the software supplying data to

the gateware process must perform a second duty of monitoring the status of a gate-

ware design’s input FIFO status. Such double duty is both counter-intuitive and

cumbersome, lowering over system performance.

In theory, providing file system access to FPGA designs can be as simple as

providing a proxy between the FPGA and the processor. In practice, however, because

of the unique nature of gateware processes, there are some subtleties that must be

taken into account when designing BORPH’s file system layer.

3.5.1 Differences between Software and Hardware Design Pat-

terns

Designing for reconfigurable hardware inherit most of the design patterns from

traditional synchronous digital hardware designs. All physical connections are ex-

pected to carry valid data on every sampling clock edge. No erroneous situation is

ever assumed on the physical connection level because any error in the physical layer

always results in system-wide failure. For example, synchronous data flow (SDF) de-

signs often assume valid data is streamed into the design on every cycle. There is no

notion of erroneous data. If the input data is invalid, a SDF design simply produces

erroneous data.

On the other hand, file system access through the operating system kernel imposes

a number of semantics not commonly presented in hardware designs. First, file system

access is a logical layer service. Both read and write functions involve a pair of

50

3.5. File I/O

request-response handshaking between a user design and the kernel. On the other

hand, gateware designs usually assume a physical data connection that supplies data

on every cycle without the need of any “request.”

Secondly, conventional UNIX file system semantics does not guarantee that the

exact amount of reading/writing data requested by a user process will be return by

the kernel. For instance, in the case of a file read, the kernel may choose to return

less data than the amount requested by a user design due to the lack of data from the

actual file or simply because the read system call is interrupted by a signal. Similarly,

in the case of a file write, the kernel may choose to commit less data than requested

by a user design due to lack of hard disk space. In both cases, partial reads/writes

are considered normal file system behavior. However, for sake of simplicity, most

hardware design assumes any data movement request will be honored exactly.

Finally, common to most system calls, both file read and write system calls have

provisions for error situations and other “out-of-band” situation such as the reach of

end-of-file. On the other hand, gateware designs tend to separate control and data

into different channels and rarely handle situation such as end-of-file.

Filesystem Support in BORPH

Providing filesystem support to gateware designs implies that all the above men-

tioned file system semantics must be appropriately handled. As mentioned in Sec-

tion 3.4, all gateware system calls are handled by BORPH’s hybrid message passing

kernel interface. The design of messages specific to file system read and write are

51

3.5. File I/O

such that the above software-centric I/O semantics are retained. This is to keep the

interface generic enough that gateware designs with smart state machine or embedded

system may choose to handle these semantics manually. For other gateware designs

that choose to ignore these software semantics, a layer of user space hardware system

library may be employed.

Figure 3.6 shows BORPH’s message definition for file system access, together

with their corresponding UNIX system call prototypes. For read and write system

calls, the actual amount of data written or read is returned in the size field of the

corresponding ack message. Following UNIX convention, this size is not necessarily

the same as the amount in the original request packet. Furthermore, end-of-file status

and any error condition are flagged in the flag field, with the error code embedded

in the size field.

Note that there is no corresponding file descriptor number (fd) in the packet

definition. Each physical instance of ioc is associated with the corresponding file

descriptor number when the file is open-ed. As a result, even in lieu of user speci-

fication, any system call initiated by this ioc is automatically associated with that

file descriptor number. Furthermore, there is no information about offset into the file

that a user application is accessing. Similar to normal UNIX kernel, the current file

position is maintained by the kernel inside ioc. This file position is updated with

each successful file read/write. This is designed both as a way to simplify the packet

definition for user, and to allow some degree of hardware kernel management.

52

3.5. File I/O

User Request Kernel Return

read

so
ft
w
a
re

g
a
te
w
a
re

r = sys read(fd, buf, count)

0 < r < count actual amount read

r = 0 EOF reached

r < 0 error

SC

FLAG

SIZE

PAYLOAD

READACK

error | EOF

r | error code

buf:

:

:

:

0 1 2 3

SC FLAG SIZE

PAYLOAD

SC

FLAG

SIZE

0

count:

:

: READ

0 1 2 3

SC FLAG SIZE

write

so
ft
w
a
re

g
a
te
w
a
re

r = sys write(fd, buf, count)

{
0 ≤ r < count actual amount written

r < 0 error

SC

FLAG

SIZE

PAYLOAD

WRITE

0

count

buf:

:

:

:

0 1 2 3

SC FLAG SIZE

PAYLOAD

SC

FLAG

SIZE r:

:

: WRITEACK

| error code

error

0 1 2 3

SC FLAG SIZE

Figure 3.6: BORPH’s message format for file system read/write resembles its corre-
sponding UNIX system call prototype.

53

3.5. File I/O

3.5.2 High Speed Streaming Data I/O

As observed by a number of researchers[13, 20], streaming data I/O presents one

of the most intuitive abstraction as well as implementation for gateware applications.

At the same time, conventional UNIX systems have the concept of software pipelines,

or pipes, that represent unidirectional streams of data from one process to another.

Based on these two observations, BORPH extends the conventional notion of UNIX

file pipes to represent native streaming data for gateware designs.

Unix Pipe

In a UNIX system, a file pipe, denoted by a “|” character, is used to chain a series

of programs in the shell command to collectively perform certain complex functions.

Standard output of one program is fed as standard input to the next program in the

chain. The OS kernel buffers data on behalf of the pipe, blocking programs on either

side of the pipe as needed so not to overflow or underflow this internal buffer. Pipes

can be created either from the command line or from within a program. Without

lost of generality, we will restrict the discussion to shell command. For example,

the following command finds all the lines in the file student.db containing the word

freshman, sort the resulting lines and save the output to freshman.db:

bash$ cat student.db | tr ’a-z’ ’A-Z’ | grep ’FRESHMAN’ | sort -o freshman.db

Furthermore, since “pipes” are simply special forms of “files” in UNIX, user pro-

grams are not required to differentiate between the two. During run time, using I/O

redirection, a program that is designed to read from standard input may read from

54

3.5. File I/O

either a regular data file or a UNIX pipe. For example, in the above command, in-

stead of reading standard output from the program cat through a pipe, the program

tr may read directly from the file student.db by the following command:

bash$ tr ’a-z’ ’A-Z’ < student.db | grep ’FRESHMAN’ | sort > freshman.db

Streaming Data I/O Using UNIX Pipes

BORPH’s virtual file system layer extends the concept of UNIX file pipe to hard-

ware processes such that the end points of a pipe may either be a software or a

hardware process. There are two cases to consider: (a) hardware/software pipe and

(b) hardware/hardware pipe.

Providing hardware/software pipe support in BORPH is relatively straight for-

ward because of the way UNIX systems represent most passive system resources using

a unified virtual “file” abstraction. For example, regular data files, sockets, device

driver handles, pipes, etc. are all represented as files. All these virtual files are man-

aged by the kernel’s virtual file system layer using identical interfaces. As a result,

user programs in general do not need to differentiate the specific realization of an

opened file. Such flexibility provides hardware processes the ability to communicate

with standard software processes via file pipes using the identical mechanisms that

are used to access regular data files. Specifically, the very same read and write

messages described in the previous section may be used to read/write any UNIX

virtual files, including hardware/software pipes.

On the other hand, supporting hardware/hardware pipes requires careful design

55

3.5. File I/O

considerations to balance performance with kernel I/O manageability. When two

hardware processes stream data to each other, it is desirable that the data stream be

uninterrupted by the kernel for performance sake. In fact, a fully synchronous data

flow (SDF) application requires data streaming at system clock rate. However such

direct data streaming violates the usual request-acknowledge system call semantics

for regular file accesses.

In general, to efficiently support hardware/hardware pipes, three requirements

must be met:

1. To maintain performance, a hardware only management schemes must be pre-

sented to connect hardware processes directly without software intervention.

2. BORPH’s hardware system call interface (hsc) must be generic enough to ac-

commodate the two different I/O semantics.

3. A combination of both hsc and hardware library must allow switching between

the two modes of operation during run time in response to I/O redirections.

Once all three requirements are met, a compiled user gateware design may then

be able to switch between three mode of operations with simple I/O redirection: To

read/write to regular data files, to stream data to standard software processes, and

to stream data in high speed to another hardware process. For instance, a video

filter design implemented in FPGA may read from a known video data file during

development and debugging stage. Once it is stable, the same design will then be

used to connect to a hardware video source for real-time processing.

56

3.5. File I/O

3.5.3 Runtime Streaming Mode Switching Support

The BORPH hardware system call (hsc) interface is designed to work with both

the normal packet based message passing mode (packet mode) and the high speed

hardware streaming data mode (streaming mode) with user. The same physical in-

terface is used in both modes. Support for different communication mode is handled

by a high-level hand shaking protocol between the kernel and user.

On the kernel side of hsc is iock. While operating in the initial packet mode, it

relays any read/write requests from the user to mK. It also buffers any data returned

by the software kernel before sending back to the user. Once switched into streaming

mode, it disables most of the packet marshaling and data buffering features. During

streaming mode, its main responsibility is to route data streams from user gateware

programs to BORPH’s streaming data network. It monitors the connections and

when instructed by mK, terminates or suspends the connection.

During run time, a user application may request a streaming data connection by

setting the top bit in the flag field of a read (write) request packet. A streaming

connection must be established during run time by iock because the connection peer

of an ioc is only known when the corresponding file is opened. The two sides of

a pipe can be thought as a connection peer. A connection point is streamable only

if it is able to stream data through BORPH’s streaming network. If both sides of

a connection are streamable and both of them request streaming connections, then

iock engages in a sequence of handshaking messages with the BORPH kernel to setup

a connection with its connection peer (Figure 3.7). Once the streaming connection

57

3.5. File I/O

user
request stream? Read/Write?

Source Streamable? Sink Streamable?

Wait until receive
SrcRdy signal

Send SrcRdy
signal to sink

Setup
Virtual Circuit

Send SinkRdy
signal to source

Send WRITEACK
packet to user

Wait until receive
SinkRdy signal

from hsc interface
Wait for user packet

START

Relay user
packet to mK

Wait until receive
ACK from mK

Send ACK to user
on hsc

Stream Monitor

yes

no

write

read

no

yesyse

no

Figure 3.7: A simplified flow diagram for iock packet handling. A streaming data
connection is setup iff both source and sink are streamable and are ready to stream
data.

is setup, the source will be allowed to stream data by sending a write packet with

infinite payload. As a result, the sink will receive an infinitely size readack packet

containing the streaming data.

3.5.4 File Streaming I/O Library

While the introduction of a complex communication protocol provides an ex-

tremely flexible and efficient kernel-user interface, it substantially increases the bur-

den on user design effort. Recall that one of the primary motivations for BORPH is to

improve usability of reconfigurable computers. Therefore, it is essential that the bur-

den of kernel-user communication be relieved from high-level application designers.

58

3.5. File I/O

hsc_k2ud

hsc_k2ud_f

hsc_u2kd

hsc_u2kd_f

hsc_status

bfsio_r

EOF

F

D

hsc_k2ud

hsc_k2ud_f

hsc_u2kd

hsc_u2kd_f

hsc_status

bfsio_w

RDY

F

D

Figure 3.8: The bfsio library contains two blocks. The read (bfsio r) block generates
read requests on behalf of the user and relays only data payload and EOF information
to user. The write (bfsio w) translates a stream of data from user into individual write
request packets to the kernel.

This is achieved through a layer of hardware system library.

This layer of hardware system library serves the same purpose as standard UNIX

system library such as libc. The purpose of this layer is to hide all low level kernel

communication complexities from the user. Furthermore, by means of an OS-neutral

interface to the user, this layer of system library provides added portability for appli-

cation developers.

As an illustration, a library of file streaming I/O library, bfsio, has been devel-

oped. As shown in Figure 3.8, this library contains two blocks; a streaming file read

block (bfsio r) and a streaming file write block (bfsio w).

For file reads, bfsio r initially attempts to switch into streaming mode by sending

a streaming read request into hsc. If the streaming read request succeeded, the

returned streaming data together with its flow control information is passed unaltered

to the user. The user therefore sees a continuous stream of data from the data port

(D) of the block. If the streaming read request failed, meaning the device that it is

streaming is not streamable, such as the case of a regular data file, then bfsio r

resolves to repeatedly requesting packet mode read of a predetermined block size.

59

3.6. The ioreg Virtual File System

The data valid port F is asserted only when the kernel has returned valid data that

can be passed back to the user. Its operation ends when an EOF is signaled by the

kernel, at which time the port EOF is asserted.

For file writes, bfsio w initially attempts to switch into streaming mode by send-

ing a streaming write request into hsc. If the streaming write request succeeds, it

signals RDY to the user. Any data sent by the user is subsequently passed directly

through hsc as payload of an infinitely sized write packet. If the streaming write

request fails, then bfsio w falls back to packet mode communication and resumes

user data buffering. A write packet is sent when the number of user data exceeds

certain threshold or when the user asserts the flush signal.

By using this library, FPGA application developers only see a simple byte wide

streaming data port with simple flow control for both read and write. With all the

complexities of data buffering and kernel handshaking handled by such hardware

library, users are left with the sole job of application development.

3.6 The ioreg Virtual File System

While standard UNIX file system access provides an active communication mech-

anism for hardware processes, BORPH’s ioreg virtual file system offers conventional

passive, software centric communication services.

In a processor-centric system, attached hardware devices are typically controlled

by a set of special hardware registers that are memory mapped by software device

drivers. BORPH encapsulates this common design practice by supporting it sys-

60

3.6. The ioreg Virtual File System

tematically via its ioreg interface. Instead of requiring each gateware designer to

implement a new device driver for each new gateware application, the ioreg interface

allows gateware design to expose predefined logical constructs as virtual files in the

UNIX file system similar to that presented in [14].

3.6.1 Basic Operation

The basic idea of BORPH’s ioreg virtual file system is to allow user to com-

municate with a running gateware design through simple UNIX file accesses. The

actions of BORPH’s ioreg virtual file system layer are initiated when a user reads or

writes to an ioreg virtual file. The read/write file operation causes the kernel to per-

form machine dependent communication with the corresponding hardware construct.

In our current implementation, the BORPH software kernel mK communicates with

hardware processes via a BORPH specific message passing network2. As a result, a

read file operation will causes the kernel to read live data from the executing gate-

ware process, while a write operation causes the kernel to send the written data to the

hardware process. No caching is performed by the kernel. Therefore, every read/write

operations are translated into their corresponding communicating messages.

3.6.2 Organization of ioreg Virtual Files

All ioreg related virtual files are located under the running process’s own /proc

directory. Modern Linux systems populate the system’s /proc directory with virtual

2Note that it is not the same message passing interface as hsc.

61

3.6. The ioreg Virtual File System

27

hw

region

ioreg_mode

ioreg

my_count_val

my_memory

cmdline

proc

cpuinfo

meminfo

BORPH’s extension

/

bin

etc

1

var

Figure 3.9: BORPH extends a standard Linux system’s /proc directory with hard-
ware process specific information.

files that contain information about the running system (Figure 3.9). For example,

reading the file /proc/cpuinfo always return information about the CPU of the

system. Furthermore, for each executing process with process id <pid>, a subdirectory

/proc/<pid>/ is created and is populated with process specific information such as

its executing command line (cmdline).

BORPH extends this idea by introducing a /proc/<pid>/hw subdirectory that is

populated with virtual files specific to a hardware process. It currently contains two

62

3.6. The ioreg Virtual File System

files and one subdirectory. Reading the file region returns status about the hwr that

this hardware process is executing on. The file ioreg mode is a read/write file that

controls ioreg virtual files to operate in either binary mode or ASCII mode. The

subdirectory ioreg is where all virtual files corresponding to the hardware process

are located. Each virtual file in this directory corresponds to one hardware con-

struct embedded in the user gateware design. For example, the gateware design with

process ID 27 in Figure 3.9 contains two software accessible hardware constructs:

my counter val and my memory.

All ioreg virtual files are created when a BOF file is executed. Name, unique

identifier, size and access mode of a virtual file are obtained from the executing BOF

file header.

3.6.3 Example

The design counter.bof in Figure 3.10 contains a free running counter that stores

its output in an ioreg register named cntval. The operation of this counter is con-

trolled by an enable register called cnten.

In Figure 3.10, the file counter.bof is initially executed at prompt 1. Based on

the returned PID of 2458, a user may then list the content of its ioreg directory at

/proc/2458/hw/ioreg. The directory listing indicates that it contains 2 files. The

file cnten has a write only file permission because it is a write only register. On

the other hand cntval has a read/write permission. Both of them have a file size

of 4 bytes because all registers accessible through the ioreg interface are currently

63

3.6. The ioreg Virtual File System

1:bash$./counter.bof &
[1] 2458
2:bash$ ls -l /proc/2458/hw/ioreg
total 0
--w--w--w- 1 user user 4 May 27 14:31 cnten
-rw-rw-rw- 1 user user 4 May 27 14:31 cntval
3:bash$ cat /proc/2458/hw/ioreg/cntval
A3B498E0
4:bash$ cat /proc/2458/hw/ioreg/cntval
B289E906
5:bash$ echo 0 > /proc/2458/hw/ioreg/cnten
6:bash$ cat /proc/2458/hw/ioreg/cntval
C103D024
7:bash$ cat /proc/2458/hw/ioreg/cntval
C103D024
8:bash$ kill -9 2458
[1]+ Killed counter.bof
9:bash$

Figure 3.10: BORPH’s ioreg interface allows interacting with hardware processes via
virtual files. The register cntval contains current value of the free running counter
in counter.bof. This counter can be disabled by writing to cnten register.

restricted to a size of 32 bits.

At prompt 3, the value of cntval is read by the UNIX command cat, returning a

32-bit hexadecimal value of A3B498E0. When the same command is issued at prompt

4, a different value is returned because the hardware counter is running freely in

FPGA. The free running counter’s action is disabled at prompt 5 by writing a value

of 0 to the file cnten using echo command. Subsequently, the two file readings at

prompt 6 and 7 return the same value.

Finally, the gateware program is killed at prompt 8, releasing the corresponding

FPGA resources.

64

3.6. The ioreg Virtual File System

Type R/W Seekable Size

Register rw no 4 bytes
On Chip Memory rw yes any
Off Chip Memory rw yes any
FIFO (from user) r/o no width×depth
FIFO (to user) w/o no width×depth

Table 3.1: Types of ioreg

byte offset
0 1 2 3

CMD LOC
OFFSET

SIZE
PAYLOAD

CMD:

LOC:
or ioreg location number
file descriptor number
GREET, EXIT
WRITE, WRITE_ACK
READ, READ_ACK

file offset
read/write size

OFFSET:
SIZE:

Figure 3.11: A simple packet format for message exchanges between BORPH main
kernel mK and its distributed kernel uK.

3.6.4 Beyond Simple Register

Despite what the name might suggest, the ioreg interface supports not only

simple single word registers. It also provides access to on-chip FIFOs, on-chip mem-

ories, as well as off-chip memories that a hardware process has access to. Table 3.1

shows the supported gateware construct by this interface and their differences when

exported as virtual files in BORPH.

BORPH requires that the underlying machine dependent communication mech-

anism used by the ioreg layer be generic enough to handle all kinds of gateware

constructs. It must be able to handle any requests with arbitrary size and offset

values. For example, Figure 3.11 shows the packet format used by the current imple-

mentation of BORPH on BEE2.

With a generic underlying communication service, the differences among different

65

3.6. The ioreg Virtual File System

hardware constructs are enforced through top level file system permission settings.

For instance, since logically an on-chip FIFO must always be read from the head, its

corresponding virtual file is marked as non-seekable in the UNIX virtual file system

layer, causing any file seek attempt to fail. As a result, all requests to a FIFO will

always have an offset value of 0. On the other hand, an on-chip memory may be

accessed randomly and therefore does not impose such restriction. Consequently, the

kernel might initiate a request with non-zero offset to a user design.

3.6.5 Language Independence

Servicing ioreg communication in kernel space through an intuitive file I/O inter-

face guarantees the language independence of this interface. For example, retrieving

the contents of a 2048 bytes on-chip memory Shared Memory can be accomplished by

a simple shell cp command:

bash$ cp /proc/123/hw/ioreg/Shared_Memory ~/

or similarly, in a C program:

memfile = fopen("/proc/123/hw/ioreg/Shared_Memory", "r");
fread(buf, 2048, 1, memfile);

Being language independent allows a user to interact easily with gateware designs.

In fact, a hardware process, utilizing its file I/O capability, may choose to interact

with another hardware process via the very same ioreg interface. The flexibility of

the ioreg layer allows complex tasks such as remote machine health monitoring to

be implemented with even a simple UNIX shell script.

66

3.7. Summary

3.6.6 Operating Mode

The ioreg virtual file system layer can be operated in either a binary or ASCII

mode. This operating mode is controlled on a per-process basis using the virtual file

/proc/<pid>/hw/ioreg mode. The examples in Figure 3.10 illustrates the operation

in ASCII mode. In this mode, the value returned by a register is translated by the

kernel into a hexadecimal string before returning to the user. For example, if the

value read from a register is the value 58, the string “0000003A” is returned. Since

the return values are human readable text strings, this mode is useful for simple

command shell interactions with gateware designs.

For more complex operations, such as reading a large block of data from an on-

chip memory, a user should set ioreg into its binary operating mode. In this mode,

no translation is performed by the kernel. Raw data is returned to the user. For

example, if the same value of 58 is read as above when ioreg is operating in binary

mode, then a colon (:) character, which has an ASCII value of 58, will be displayed

on screen.

3.7 Summary

This chapter has presented the design of BORPH. BORPH extends the famil-

iar UNIX semantics to reconfigurable computers. Under BORPH, FPGA gateware

designs execute as hardware processes, which are in most aspects identical to con-

ventional UNIX processes. A generic, hybrid message passing system call interface is

67

3.7. Summary

defined through which user FPGA gateware designs communicate with the BORPH

kernel. BORPH provides two primary I/O services to gateware designs.

First, BORPH allows gateware processes to access general UNIX file system. It

provides hardware processes an active mechanism for both accessing regular data

files and to communicate with other processes in the system through UNIX’s pipe

construct. Performances for pipes that connect two gateware processes are optimized

by switching the message based connection into a streaming data channel, bypassing

most of the kernel interventions.

Second, the ioreg virtual file system allows passive communication from the con-

trolling processor to gateware designs. Gateware constructs within a gateware design,

such as simple single-word registers, FIFOs, and memories, are abstracted as virtual

files residing in the process specific /proc/<pid> directory tree. Reading or writing

to these virtual files from any user program initiate direct communication with the

running FPGA via the BORPH kernel. As a result, users may monitor and control

running gateware designs asynchronously through simple file system operations. Be-

cause of the kernel’s involvement, access to FPGA resources may be initiated by any

UNIX programs: from simple shell scripts to complex compiled programs.

BORPH presents a new approach to using reconfigurable computers. By modeling

reconfigurable fabrics of a reconfigurable computer systematically as native comput-

ing resources, BORPH establishes a solid foundation for reconfigurable computing

research in a complete, self-contained framework. At the same time, the familiar

UNIX semantics lower the barrier-to-entry for reconfigurable computers, allowing

68

3.7. Summary

novel users across different research domains to fully exploit potentials of reconfig-

urable computers. Such wide acceptance of reconfigurable computers is essential to

foster future computing researches.

69

Chapter 4

Implementation and Performance

This chapter describes the current BORPH implementation and its performance

on a BEE2 compute module. First, a high level overview of a BORPH system will be

presented. Then, the design of BORPH’s software kernel will be discussed. As men-

tioned in Chapter 2, BORPH runs on an embedded PowerPC processor system that is

built using BEE2’s FPGA fabrics. A base architecture of this processor system will be

described as an illustration of basic BORPH implementation. Multiple architectural

improvements are subsequently implemented to improve overall system performance.

Performances of process creation, gateware file I/O and the ioreg virtual file system

will be presented.

4.1 Overview

Figure 4.1 shows a high level block diagram of a BORPH system. BORPH has

two main logical components: the mK and the uK. BORPH’s main kernel, mK,

is the main software operating system kernel that controls the entire system. It is

similar in concept to conventional operating system and is currently implemented as

70

4.2. Software Kernel Architecture

HW

Process

HWR

uK

HW

Process

HWR

uK

HW

Process

HWR

uK

FPGA

mK

SW

Process

SW

Process

SW

Process

Software

BORPH

Kernel

Figure 4.1: The two logical components of BORPH: mK and uK. mK is the main con-
trolling software kernel. Each reconfigurable hardware region is individually managed
by a low-level kernel called a uK.

an extended Linux kernel. The smallest unit of reconfigurable fabrics managed by

BORPH is defined as a reconfigurable hardware region (hwr). Each hwr is managed

by a hardware (or gateware) part of the BORPH kernel called uK. Each uK acts on

behalf of mK for low level management of hardware processes, such as buffering file

I/O data for gateware designs. As will be shown later, the communication perfor-

mance between mK and uK has significant impact on file I/O and ioreg virtual file

system’s performance.

4.2 Software Kernel Architecture

BORPH main kernel, mK, is a modified version of a Linux 2.4.30 kernel running

on the PowerPC 405 core in the control FPGA. A standard Debian PowerPC root

file system is mounted over network file system (NFS), which provides familiar Linux

71

4.2. Software Kernel Architecture

applications to the user. To provide kernel support for FPGA fabrics, a number of

modifications have been made to the standard Linux kernel:

4.2.1 BOF file support

The standard Linux kernel contains an extensible interface to support user defined

binary file formats. Making use of this interface, a binary file format kernel module

called binfmt bof has been developed to handle execution of BORPH Object Files

(BOF). When a BOF file is executed, the exec system call initiates the load binary

function defined in binfmt bof. It in turn triggers a series of BORPH specific func-

tions such as allocating and configuring the necessary reconfigurable resources.

4.2.2 Reconfigurable Hardware Region (hwr) Support

A reconfigurable hardware region (hwr) is the smallest unit of reconfigurable

fabrics in the system that the BORPH kernel uses for computational purposes. Since

BORPH is designed to be portable to different reconfigurable computers, machine

dependent definitions of a hwr are implemented as loadable kernel modules. A set of

kernel APIs is defined for such hwr subsystem similar to the way device drivers are

implemented in standard a Linux kernel. For instance, the hwr module must define a

configure function that handles the details of configuring a particular type of hwr.

The rest of the kernel, in particular the hwr execution daemon (bkexecd), calls this

configure function without being burdened by the machine dependent details.

This abstract hwr definition and the extensible kernel API allows BORPH to

72

4.2. Software Kernel Architecture

be ported to different RCs relatively easily. In our first implementation, we have

defined a hwr type hwr b2fpga, which corresponds to a user FPGA on BEE2. Port-

ing BORPH to another reconfigurable computer will therefore primarily involve the

implementation of a new hwr type as illustrated in Section 4.6.

4.2.3 FPGA Configuration and Resource Allocation

A kernel thread bkexecd is created to handle all hwr allocation and configuration

routines. When a BOF file is executed by the user, bkexecd picks an unused hwr

and configures that hwr accordingly. Users may override the behavior of bkexecd

by locking a BOF file to specific hwr in the system. In our current implementation,

this feature is used to lock a gateware design to be programmed on a particular

user FPGA. This is useful for connecting user designs that require special external

hardware devices that are available only to certain specific user FPGAs. In case

a requested FPGA is not available, or no free FPGA is available for executing a

relocatable BOF file, a device busy error (-EBUSY) is returned to the user.

4.2.4 Software Fringe

A hardware process may be blocked while accessing the general file system if the

file is not ready. To handle this potential blocking, each opened file by a hardware

process is managed by a software fringe running on the processor. The fringe performs

file I/O operations on behalf of the hardware process and sends data back to the

hardware process when it is ready.

73

4.2. Software Kernel Architecture

4.2.5 Packet Communication Network

BORPH’s current implementation utilizes a message passing network for commu-

nication between mK and uKs running on user FPGAs. A kernel thread (mkd) is

responsible for handling all messages from hardware processes. It acts as the main

message delivery hub where messages from all hardware processes are processed. Non-

blockable actions, such as terminating a hardware process, are handled directly by

mkd. For file I/O, the requests are relayed to the corresponding software fringe. The

same packet communication network is used by the ioreg virtual file system layer.

User read/write to ioreg virtual files are translated into packet messages that com-

municate with hardware processes.

4.2.6 Process Scheduler and Signal Handler

Since hardware processes do not run on the processor that BORPH runs on, the

kernel must take special care during process scheduling. Hardware processes are

handled differently such that they are never put on the software run queue.

Furthermore, since hardware processes may access terminal TTY’s, they must

respond correctly to “stopping” and “continuing” signals. For instance, a hardware

process will receive SIGSTOP signal when a user press Ctrl-Z on the running terminal,

or SIGTSTP when it tries to read from a terminal while it is running in the background.

Also, a hardware process receives SIGCONT when a user put the process in background,

or back to foreground. The BORPH kernel is modified to handle these cases for

hardware processes so that they conforms to standard UNIX semantics and thus be

74

4.3. Base Architecture

SelectMap FIFO

User
FPGA

User
FPGA

User
FPGA

P
LB

−O
P

B
B

rid
ge

SelectMap

Control PPC

mem cntlr

PLBOPB

InternetControl FPGA ethernet

D
D

R
2

M
E

M

On−Chip
BRAM

PPC

P
LB

−O
P

B
B

rid
ge

ioreg

ioregOPB IPIF

OPB IPIF

BRAM
Shared

FIFO
User

Design
Simulink

User

PLB

User FPGA
OPB

OS Kernel Space User Space

Figure 4.2: Block diagram of BORPH system on a BEE2 compute module with
OPB-based SelectMap controller in control FPGA (opbsm).

able to coexist coherently with other software processes in the system.

4.3 Base Architecture

BORPH’s software kernel currently runs on the embedded PowerPC 405 core of

the control FPGA on a BEE2. Besides standard system support hardware, such as

an Ethernet device and memory controllers, special hardware must be designed to

support BORPH’s communication network between mK and uKs. Figure 4.2 shows

the first proof-of-concept platform built on a BEE2 compute platform. Its simplicity

serves as an illustration of basic BORPH function as well as a baseline for subsequent

performance comparisons.

The part of the BEE2 compute module that makes up BORPH’s infrastructure is

75

4.3. Base Architecture

labeled “kernel space” in Figure 4.2. It includes the control FPGA and the part of the

user FPGA (uK) that is responsible for communicating with the control FPGA. The

part of the system that is responsible for executing user hardware designs is labeled

“user space” in the diagram (hwr).

Implemented in the control FPGA is a standard on-chip processor system. De-

vices with high communication bandwidth requirements such as memory controller

and Ethernet controller are connected to the processor via the high bandwidth pe-

ripheral logic bus (PLB). Devices with relatively lower communication bandwidth

requirements, such as the RS232 UART, are connected to a simpler On-chip Periph-

eral Bus (OPB), which in turn is connected to the processor through a PLB-to-OPB

bridge.

The part of the user FPGAs that belongs to the system infrastructure implements

the functions of uK. It handles distributed hardware process management on behalf

of the main kernel. For example, it controls the starting and stopping of hardware

process on that user FPGA once it is configured. It responses to ioreg request

packets sent from the BORPH kernel by reading or writing the corresponding values

to a user design. It also keeps records of opened files by a hardware process and

handles read/write requests by a user gateware design.

As mentioned in Chapter 5.2, the processor system on the user FPGA that makes

up uK is inserted by our design flow automatically. As part of the system infras-

tructure, uK should never be unconfigured when a user hardware process terminates.

However, it must currently be embedded within a user BOF file because the entire

76

4.3. Base Architecture

FPGA is reconfigured for each hardware process creation.

4.3.1 The SelectMap Bus Controller

Physically connecting a user FPGA with a control FPGA is the SelectMap bus.

It is a simple point-to-point, bi-directional, 8-bit bus connection running at 50 MHz.

The bus is named after the fact that it reuses the same set of I/O pins to configure

a user FPGA in SelectMAP mode.

A SelectMap bus master controller is implemented in the control FPGA. It serves

the dual role of configuring a user FPGA and communicating with uK after a user

FPGA is programmed. As shown in Figure 4.2, it is connected to the processor

system OPB bus in this base architecture.

4.3.2 Design of uK

In this base architecture, uK is implemented using a simplified processor system

based on the embedded PowerPC 405 core on a user FPGA. Embedded software run-

ning on the processor is responsible for all communications with mK. It is responsible

for handling all packet marshaling. In response to ioreg virtual file system requests,

it reads/writes to the corresponding hardware constructs in the user designs which

are all connected through a multi-level OPB bus. Furthermore, it emulates all file

I/O requests on behalf of the user design. The näıve design of this base architecture

is simple to understand, but is also the culprit of suboptimal performance as shown

in the following sections.

77

4.4. Performance of Base Architecture

4.4 Performance of Base Architecture

In this section, performance of BORPH running on the base architecture (opbsm)

will be presented. In particular, the performances of process creation, gateware file

I/O and the ioreg virtual file system will be benchmarked and analyzed.

4.4.1 Hardware Process Creation

A hardware process is created when an exec system call is received by the BORPH

kernel on a BOF file. The request is then passed on to a kernel thread, bkexecd, for

the actual configuration. Based on the BOF file header, one or more suitable FPGAs

are chosen and configured accordingly using the SelectMap bus.

Creating a hardware process is similar to creating a normal UNIX process, in which

a number of data structures, such as the kernel task struct, must be updated and

created for book keeping sake. In addition, the FPGA involved must be configured

based on the FPGA configuration embedded in the BOF file.

Based on opbsm, creating a hardware process takes about 900 ms, while creating

a normal software process takes about 40 ms on the same processor. Since the theo-

retical minimum time to configure a user FPGA on BEE2 is 65ms, the minimum time

to create a hardware process is 40+65 = 105 ms. In other word, creating a hardware

process in opbsm takes about 9 times longer than the theoretical minimum time.

A close examination has shown that this process creation time is limited by data

transfer speed from control FPGA to the user FPGA. There are three contributing

bottlenecks.

78

4.4. Performance of Base Architecture

1. The SelectMap controller on the control FPGA is controlled using simple pro-

grammed I/O. The processor is responsible for copying every byte of the 3MB

configuration file to the SelectMap controller.

2. The SelectMap controller is connected to the processor through a PLB-to-OPB

bridge, adding significant latency.

3. Despite running at a 50 MHz data clock, the SelectMap bus implementation

takes 4 cycles to transfer one byte of configuration data to the user FPGA,

limiting the maximum physical configuration speed.

As will be shown later, by eliminating bottleneck (1) and (2) in subsequent im-

plementations, process creation time is reduced by more than 70%. Process creation

time can be further improved if bottleneck (3) is also eliminated.

Note that modern operating systems like Linux employs demand paging tech-

niques such as copy-on-write that significantly reduce software process start up time.

Although demand paging of hardware configurations have been studied by other re-

searchers in specialized partially reconfigured systems, such a technique is not being

used by BORPH. BORPH focuses on the hardware process abstraction and its inte-

gration with the rest of the software system.

4.4.2 Reading/Writing ioreg Files

When a user reads or writes to a virtual ioreg file, the request is translated

by the kernel into a message that is sent to the corresponding FPGA. The unique

79

4.4. Performance of Base Architecture

identification number of the corresponding hardware construct is sent in the loc field

of the message. Each ioreg read (write) request is answered by the user FPGA by

a read (write) acknowledge message, indicating the number of bytes read (written),

or a negative value that indicates error condition. Adhering to the standard UNIX

semantics for file read (write), the return value is passed directly back to the user

process that initiated the request.

Figure 4.3 shows the performance of reading/writing an on-chip memory that

is exported as an ioreg file using different read/write sizes, s. The transfer time

remains low until s increases beyond about 64 bytes. Since there is no buffering

in the file system level, the time needed for the operation is determined solely by

data movement time, which includes memory copy time and hardware data transfer

time. The effect of a small data cache (16k bytes), combined with a small 128 bytes

SelectMap FIFO and the lack of DMA transfer are contributing factors for the slowing

down. For large enough s, the speed levels at about 1.38 MB/s for both read and

write1.

4.4.3 General File I/O from Hardware Processes

Hardware processes initiate file I/O by sending messages to the BORPH kernel

using the format described in Figure 3.11, with the loc field denoting the Linux

opened file descriptor number. All messages are received by mkd. Each opened file is

managed by a fringe, which is implemented as a kernel thread on the control FPGA.

1Note: 1 MB = 220 bytes; 1 kB = 210 bytes

80

4.4. Performance of Base Architecture

1 2 8 32 128 512 2048 8192
102

103

104

transfer size s (bytes)

tim
e

(µ
s)

ioreg read
ioreg write

Figure 4.3: Performance of reading/writing on-chip memory on a user FPGA using
ioreg interface.

A fringe is woken up by mkd as needed.

For the purpose of benchmarking hardware file I/O performance, a gateware de-

sign, stdloop.bof, and an equivalent software C program, pipetok, are created.

Both designs repeatedly read s bytes of data from its stdin, and write the data back

to stdout, until the end of file is reached.

Regular File I/O

First, to determine the performance of regular file I/O from a user FPGA hardware

process, the two programs are run as follow:

bash$ stdloop.bof < datafile > outfile
bash$ pipetok < datafile > outfile

Figure 4.4 shows the file I/O performance of both processes with various file transfer

sizes s. In the case of stdloop.bof, the time for each file I/O operation is measured

directly on the user FPGA.

A hardware process file read is analogous to the C function call:

81

4.4. Performance of Base Architecture

1 2 8 32 128 512 2048 8192
10

0

10
1

10
2

10
3

10
4

read/write size s (bytes)

tim
e

(µ
s)

hardware read
hardware write
software read
software write

Figure 4.4: Hardware process file I/O performance.

read(fd, buffer, s);

For each read, a read request packet is sent from the user FPGA to the control

FPGA. Recall that mkd is first woken up to handle this packet, which subsequently

wakes up the corresponding fringe. The fringe then carries out the file read on behalf

of the hardware process, blocking as needed. Once the requested data is ready, the

fringe sends all data back to the user FPGA in one read ack packet. Comparing

a hardware file read to a software file read, a hardware file read incurs the overhead

of interrupt handling and 2 extra context switches to the fringe. This overhead is

reflected when value of s is small. Moreover, there is the overhead of data movement

for large values of s. On the other hand, software reads require almost the same

amount of time as fringe reads. The only difference between the two is the extra

kernel boundary crossing time for software processes as they run in user mode.

82

4.4. Performance of Base Architecture

Similarly, a hardware process file write is analogous to the C function call:

write(fd, buffer, s);

For each write, the data to be written is sent in the payload of a write request packet

to the control FPGA. Upon receiving the packet, mkd is woken up. Since most file

writes complete successfully without blocking, as an optimization, mkd writes to the

file on behalf of the hardware process directly without involving a fringe, eliminating

one context switch for each file write. Therefore, for small writes that can fit into the

on-chip FIFO, the time to write to a file is the same as the time needed to write the

packet into the FIFO, resulting in the very fast small hardware file writes. For write

operations with larger payloads, however, the hardware process is delayed further by

both the limited size of on-chip FIFO and the maximum packet size limit imposed

by BORPH. Consequently, large hardware file writes approach the performance of

hardware file reads.

In general, files are allowed to be larger than the size of a single read message.

Therefore, multiple read messages are required to process the entire content of a

file, incurring multiple packet communication overheads. Figure 4.5 plots the time

required for a hardware process to read files of various sizes using different values s

for each read request. The values are measured from the control FPGA using the

standard time command:

bash$ time sink.bof -s $SIZE < $INPUT_FILE

where sink.bof is a hardware design that reads the entire content of a file from

stdin and then exit. This graph gives an overall system performance benchmark as

83

4.4. Performance of Base Architecture

1 1k 1M 32M
10

−1

10
0

10
1

10
2

10
3

10
4

file size (bytes)

tim
e

(s
ec

on
d)

s = 1
s = 4
s = 16
s = 64
s = 256
s = 1024
s = 4096

Figure 4.5: The effect of data transfer size s on total time required by a hardware
process to sink a regular file. Time is measured from control FPGA.

it includes system time such as the time for process creation and destruction.

From Figure 4.5, it can be seen that large transfer size s is essential for large files

transfer to amortize the high overhead involved for each hardware file system call. For

s = 4096, streaming a 32 megabytes file to a hardware process completes in 16.68s,

resulting in a transfer speed of 1.91 MB/s. On the other hand, for s = 1, the same

transfer takes 1871.73s.

Piped Process through Standard I/O

Having access to system standard I/O allows hardware and software processes to

communicate with standard UNIX pipes. To evaluate the performance of such pipe,

a second benchmark is performed. Instead of reading regular files, the two programs

from previous section are run in a pipelined fashion as follow:

bash$ sendtok | stdloop.bof | recvtok
bash$ sendtok | pipetok | recvtok

84

4.4. Performance of Base Architecture

1 2 8 32 128 512 2048 8192

102

103

104

tim
e

(µ
s)

sw | hw | sw
sw | sw | sw

1 2 8 32 128 512 2048 8192
100
200
300

token size s (bytes)

ov
er

he
ad

 (%
)

(a) Latency between when sendtok
sends a token and when recvtok re-
ceives the entire token

1 2 8 32 128 512 2048 8192
0

0.5

1

1.5

2

2.5

3

token size s (bytes)

th
ro

ug
hp

ut
 (

M
B

/s
)

SW src
SW sink
HW src
HW sink

(b) Throughput of both hw-sw and
sw-sw pipes

Figure 4.6: Comparing software piped process chain with a mixed hardware/software
chain.

where sendtok and recvtok are software programs that repeatedly send and receive

token of s bytes from their stdout and stdin respectively. The time for recvtok

to receive an entire s bytes token from sendtok in both cases is shown in the top

half of Figure 4.6(a). Communication overhead, which is the extra time needed for

the mixed HW/SW pipe over the software pipe, is plotted at the bottom half of the

diagram. For s < 128, the mixed HW/SW pipe’s latency is about 60% more than

the pure software pipe. The gap increases as s increases to almost 300% for s ≥ 128

as the data transfer latency starts to dominate.

In the above piped organization, throughput of the pipe is also an important

metric. Figure 4.6(b) shows the throughput of HW/SW pipe and SW/SW pipe

for different token sizes s. Throughput is measured by sendtok at the source, and

recvtok at the sink. The difference in sending and receiving rates are results of

85

4.5. Advanced On-Chip Architecture

buffering within the system. At the receiving end, throughput increases as s increases.

For s = 4096, the mixed HW/SW pipe has a throughput of 858.56 kB/s, while the

SW/SW pipe has a throughput of 2.8 MB/s

4.5 Advanced On-Chip Architecture

While the base architecture opbsm is simple as a proof-of-concept, its performance

is suboptimal. Two advanced versions of on-chip architecture on BEE2 were subse-

quently implemented. Apart from improving the much needed system performance,

the two iterations of architectural changes also demonstrate the benefit of hardware

kernel/user separation. Throughout the process of implementing these two advance

architectures, backward compatibilities of user BOF files have been maintained. As

a result of the consistent BORPH interface, BOF files created for opbsm can be

executed without recompilation in the two new architectures.

4.5.1 Elimination of PLB-to-OPB Bridge

The first architectural improvement is developed based on the observation that

the PLB-to-OPB bridge in the control FPGA increases latency between the PPC and

the SelectMap controller. A new version of the control FPGA system, plbsm, was

created with the SelectMap controller connected directly to the high bandwidth, low

latency PLB bus. The resulting control FPGA architecture is shown in Figure 4.7.

Figure 4.8 shows the result of repeating the experiments from the previous section

86

4.5. Advanced On-Chip Architecture

PPC

mem cntlr

SelectMap

Control

UART

PLB−OPB

Bridge

InternetControl FPGA ethernet

D
D

R
2
 M

E
M

PLB

OPB

PLBSM

Figure 4.7: PLB-based SelectMap controller (plbsm).

in plbsm. Each sub-figure plots the result for both opbsm and plbsm. To highlight

the performance difference between the two hardware architectures, only subsets of

all data points are shown in the diagrams.

Figure 4.8(a) shows that process creation benefits most from the new architecture,

with a 28.9% decrease in process creation time. To create a hardware process, no

complex interrupt handling or message exchange is needed between control FPGA

and user FPGA. Hardware process creation is dominated purely by the transfer of

configuration data to the user FPGA. Therefore, all the performance gain in bypassing

a PLB-to-OPB bridge is reflected in the process creation benchmark.

On the other hand, Figure 4.8(c) shows that there is only marginal improvement

in hardware file I/O as measured from the user FPGA. This is as expected because

the performance of hardware file I/O is largely limited by the speed of the processor

system on the user FPGA, not the control FPGA. On a user FPGA, the processor

communicates with the SelectMap bus FIFO through an OPB-connected controller.

Here, the OPB-to-PLB bridge is again the bottleneck, undermining any improvement

in control FPGA speed. Figure 4.8(d) shows that for file reads with large enough

87

4.5. Advanced On-Chip Architecture

OPBSM PLBSM
0

100

200

300

400

500

600

700

800

900
tim

e
(m

ill
is

ec
on

ds
)

(a) HW process creation

1 1000 2000 3000 4000 5000 6000 7000 8000

1000

2000

3000

4000

5000

6000

read/write size s (bytes)

tim
e

(µ
s)

write (PLB)
read (PLB)
write (OPB)
read (OPB)

(b) ioreg read/write

1 2 8 32 128 512 2048 8192
10

0

10
1

10
2

10
3

10
4

read/write size s (bytes)

tim
e

(µ
s)

read (PLB)
read (OPB)
write (PLB)
write (OPB)

(c) HW file I/O

1 1k 1M 32M
10

−1

10
0

10
1

10
2

10
3

10
4

file size (bytes)

tim
e

(s
ec

on
d)

OPBSM s = 1
PLBSM s = 1
OPBSM s = 4096
PLBSM s = 4096

(d) File streaming from SW to HW

1 2 8 32 128 512 2048 8192

10
2

10
3

10
4

tim
e

(µ
s)

PLB
OPB

(e) HW/SW pipe (latency)

1 2 8 32 128 512 2048 8192
0

0.2

0.4

0.6

0.8

1

token size s (bytes)

th
ro

ug
hp

ut
 (

M
B

/s
)

PLBSM (sink)
OPBSM (sink)

(f) HW/SW pipe (throughput)

Figure 4.8: Performance comparison between opbsm and plbsm.88

4.5. Advanced On-Chip Architecture

size, plbsm and opbsm have similar performance. For small files transfers, the per-

formance advantages of plbsm are direct results of faster process creation times.

Performance of the ioreg interface also sees limited performance improvement:

an average of 4% increase for large reads and 2% increase for large writes. The

performance of the ioreg interface is largely limited by pure hardware data transfer

speed. As in the case of hardware file I/O, since the user FPGA is limiting the data

transfer speed, very little improvement is expected.

The chained hardware/software pipe does benefit from the architectural change.

An average of 12% performance increase in latency (Figure 4.8(e)) is observed. With

a transfer size s = 2048, the overall throughput increases 14% from 807 kB/s to

920 kB/s (Figure 4.8(f)). The pipelined process operation involves complex HW/SW

interaction such as context switching on the processor, interrupt and message pass-

ing, etc. Therefore, a faster data transfer speed on the control FPGA allows the

processor to perform these tasks more efficiently, resulting in a higher overall system

performance.

4.5.2 DMA Enabled Control FPGA

Based on the performance benchmarks of plbsm, a third on-chip architecture,

plbdma, is implemented to further enhance performance. A performance compar-

ison of opbsm and plbsm highlights two performance bottlenecks in the BORPH

system. First, while eliminating the PLB-to-OPB bridge improves raw data transfer

performance as expected, the increased performance in the control FPGA must be

89

4.5. Advanced On-Chip Architecture

PPC

ethernet

PLB−OPB

Bridge

UART D
D

R
2
 M

E
Mmem cntlr

SelectMap

Control

ioreg

iock

iock

iock

iock

ioreg

Memory
Shared

On−Chip

BRAM

PPC P
L
B

−
O

P
B

B
ri
d
g
e

Design

Simulink

User

SelectMap FIFO

other user

FPGA

PLB

OPB

In
te

rn
e
t

D
M

A

OPBPLB

H
W

 L
ib

ra
ry

ARB

To Streaming Network

T
o

S
W

 K
er

ne
l

BORPH OS Kernel Space User Space

User FPGA

Control FPGA

Figure 4.9: Direct memory access (DMA) is enabled in the control FPGA for commu-
nication between PPC and the PLB-based SelectMap controller. On a user FPGA, a
hardware arbiter is implemented to allow direct access to SelectMap bus from a user
gateware design for file I/Os.

matched by the user FPGA to have major impact in overall system performance.

Secondly, in heavily loaded system, the processor currently spends a large portion of

the processing time in data transfer, hindering the over system performance.

Based on the above two observations, the third on-chip architecture, plbdma,

was developed as shown in Figure 4.9. Architectural changes are introduced to both

the control and user FPGAs to address overall system bottlenecks.

On the control FPGA, direct memory access (DMA) is enabled for communica-

tions between the control processor and the SelectMap controller. This arrangement

increases the raw data transfer speed and at the same time relieves the processor

from intensive programmed I/O data transfer. Furthermore, instead of relying on the

PPC on the user FPGA to emulate file I/O operations on behalf of the user design, a

new uK architecture is implemented with fully functional hsc interface for gateware

file I/O. An arbiter is implemented to allow direct access to the SelectMap bus inter-

90

4.5. Advanced On-Chip Architecture

OPBSM PLBSM PLBDMA MIN SW
0

200

400

600

800

1000

tim
e

(m
ill

is
ec

on
ds

)

Figure 4.10: Hardware process creation time in 3 different on-chip architectures com-
pared with the theoretical minimum time and software process creation time.

face from user gateware designs. All remaining system administrative functions and

handling of ioreg messages remains duties of the PPC.

Process Creation

Process creation time is significantly reduced as a result of the performance im-

provement from DMA-enabled SelectMap controller. Process creation time is reduced

by 70% when compared with the original opbsm and is decreased by 61% when com-

pared with plbsm. As a result of DMA transfer, process creation time is currently

mostly limited by the transfer speed of the SelectMap bus which runs only at 25% the

speed of the theoretical maximum configuration clock of 50 MHz. Figure 4.10 shows

the relative speed of hardware process creation in all three architectures compared

with the theoretical minimum as well as normal software process creation time.

91

4.5. Advanced On-Chip Architecture

File I/O Performance

In plbdma, file I/O operations from a gateware design is performed directly

through BORPH’s hsc interface. BORPH’s ioc controller, iock, has direct access to

the SelectMap interface through a newly implemented arbiter, eliminating the need

for PPC core operations. The result is improved hardware I/O performance.

To determine the performance advantages of this new architecture, a gateware de-

sign stdloop hsc is implemented. It performs the same operations as stdloop.bof

used in previous section except stdloop hsc performs file I/O operations using BORPH’s

native hsc interface. The three programs, pipetok, stdloop.bof and stdloop hsc.bof,

read 1024 bytes from its standard input and write the result to standard output. The

time needed to complete streaming files of various sizes is timed with standard UNIX

time command as follow:

bash$ time stdloop_hsc.bof < datafile > outfile
bash$ time stdloop.bof < datafile > outfile
bash$ time pipetok < datafile > outfile

The normalized execution time of stdloop.bof and stdloop hsc.bof with respect

to pipetok are shown in Figure 4.11.

The time for hardware processes to process small files is completely dominated

by the process creation time. As file sizes increase, more time is needed to transfer

data from the medium where the file is physically located, as well as for in memory

buffer copying. The gap in processing time between gateware and software processes

is therefore reduced. With files of significant sizes, the communication overhead of

hardware processes becomes the bottleneck. For stdloop.bof, the processor overhead

92

4.5. Advanced On-Chip Architecture

4 16 64 256 4k 16k64k256k 4M16M
0

20

40

60

80

File size s (bytes)

N
or

m
al

iz
ed

 ti
m

e

PLBSM
PLBDMA
SW

Figure 4.11: Normalized time for hardware processes to finish streaming files of vari-
ous sizes. stdloop.bof uses PPC on user FPGA for file operations, while direct file
I/O through hsc is used in stdloop hsc.bof.

on the user FPGA is limiting its performance to 2.9 times slower than software. For

stdloop hsc.bof, no PPC operation is involved. Only a few cycles are needed to

stream data through a gateware design on user FPGA. As a result, its performance

is limited solely by the communication bandwidth on the SelectMap bus, as well as

the processing overhead on the control FPGA. It is currently 2.2 times slower than

software.

Note that no DMA transfer is used on the control FPGA to handle hardware

file I/O. DMA is currently only used for user FPGA configurations. Performance

of hardware file I/O, as well as the ioreg virtual file system layer is expected to

increase significantly once DMA is implemented on control FPGA for all message

passing operations.

93

4.6. Porting BORPH

PLB−OPB

Bridgemem cntlr

PPC

ethernet

In
te

rn
e
t

ICAP

m
e
m

o
ry

ioreg

Design

Simulink

User
ioreguK

User Space

hwr_pr

Communication

Network

PLB

OPB

BORPH OS Kernel Space

FPGA

Region

Legend

Partial Reconfigurable

Shared
Memory

Figure 4.12: An example of porting BORPH to a single FPGA where user hardware
processes are executed on a partially reconfigurable region.

4.6 Porting BORPH

Although currently implemented on a BEE2 compute module, BORPH is a general

operating system design that can be applied to other FPGA-based systems. This

section provides a high-level description on porting BORPH.

To make the discussion concrete, we will illustrates the process using an example

of porting BORPH to an FPGA that supports dynamic partial reconfiguration. The

top-level block diagram of the resulting system is shown in Figure 4.12.

Porting BORPH to the platform in Figure 4.12 requires changes to both hardware

and software from the original BEE2 implementation. Logically, all hardware and

software changes involved can be classified as part of the process of implementing a

new reconfigurable hardware region (hwr). Denote this new hwr as hwr pr. As

shown in Figure 4.12, we assume only one instance of hwr pr will be presented.

The first hardware change required is to implement logic that configures and un-

configures the newly defined partial reconfiguration region. Modern FPGAs provide

native support for this purpose, such as through the Internal Configuration Access

94

4.6. Porting BORPH

Port (ICAP) in Xilinx FPGAs. For other platforms, different configuration logic will

need to be implemented.

The second hardware change required is to reimplement the message passing

network between mK and uK. The original BORPH implementation on BEE2 uti-

lized the SelectMap bus for communication between control and user FPGA. Porting

BORPH to a new platform requires a new communication mechanism between mK

and uK. In the case of hwr pr, since mK and uK are physically residing within

the same FPGA, this communication network may be reduced to a simple memory

mapped device on the processor system.

Most of the BORPH software kernel can be ported to any FPGA-based reconfig-

urable system without modification because they are written as high-level machine

independent code. Two parts of the BORPH kernel are machine dependent. First,

some part of signal handling code is processor dependent. Therefore, porting BORPH

to a FPGA-based reconfigurable system with a different processor will require small

modifications to its signal handling code. Secondly, the BORPH software kernel must

be updated to handle any newly defined hwr type by registering a new corresponding

hwr module.

As described in Section 4.2, BORPH’s kernel design has a dedicated subsystem

devoted to supporting different kinds of hwr types. This hwr subsystem works in

ways similar to the standard Linux device driver subsystem. A set of virtual function

calls must be implemented by each hwr type kernel module to handle hardware

specific operations. For example, in the case of hwr pr, the configure function must

95

4.7. Summary

be implemented to configure the correct reconfigurable region on the FPGA using

the built in ICAP. It must also make use of the newly implemented hardware for

communication between mK and uK. Work is currently underway to standardize this

interface for mK-uK communication.

Supporting any additional system calls for hardware process can be accomplished

by defining a new message that corresponds to each supported system call. For

example, to add support of gettimeofday function to FPGA designs, a new message

with unique cmd field corresponding to gettimeofday can be defined. Upon receiving

such message, the main message handling thread, mkd, may then serve as a proxy that

returns the current time of the day to the issuing hardware process.

4.7 Summary

This chapter has described BORPH’s software kernel, as well as three different on-

chip architectures of mK and uK as implemented on a BEE2 module. Performances

of various BORPH features as implemented in the three different on-chip architectures

are presented.

BORPH’s software kernel is an extended version of Linux 2.4.30 kernel designed

to manage gateware designs natively. To make BORPH portable, machine dependent

information about reconfigurable fabrics are handled by a hwr abstraction layer,

implemented as loadable kernel module with a pre-defined kernel interface. A new

binary format, binfmt bof is registered to handle BORPH’s native BOF files. A

kernel thread, mkd, is created to handle all message communications between mK

96

4.7. Summary

and uK. To handle hardware file I/O operations, each opened file is managed by a

kernel thread called a fringe. A fringe acts as a proxy for FPGA designs to gain access

to the general file system. BORPH’s ioreg virtual file system layer is implemented by

extending Linux’s native proc filesystem. All ioreg related virtual files are created

as subtree under a hardware processes /proc/<pid>/hw directory.

Three on-chip architectures, opbsm, plbsm, and plbdma with successive higher

performance are presented. All three of them include a processor system based on

an on-chip PowerPC 405 core in the control FPGA of a BEE2 compute module. The

BORPH kernel running on this processor system communicates with uKs configured

in user FPGAs through a message passing network built on top of the SelectMap

bus. The same bus serves a dual role of user FPGA configuration bus. The three

architectures differ in the way they communicate and configure user FPGAs.

Overall hardware/software system performance is limited by communication per-

formance between control and user FPGAs. In opbsm and plbsm, both message

passing and user FPGA configuration are performed using programmed I/O, which

has shown to be a significant performance bottleneck. Direct memory access (DMA)

is used in plbdma for user FPGA configuration which results in a 70% decrease in

hardware process startup time. Eliminating the need of PowerPC on user FPGA is

also shown to improve hardware file I/O performance by 24.1%.

97

Chapter 5

BORPH Application Developments

From the perspective of an application designer, the available design methodology

and the ease of run time system interaction have significant impact on the usability

of a reconfigurable computer system. The former determines how easy a concep-

tual design may be realized as an RC application at compile time, while the latter

determines how easy an application can be executed, debugged and perform useful

computation during run time.

This chapter will first describe briefly the conventional HDL-based FPGA devel-

opment methodology. Then, our in-house Simulink-based high-level design flow and

its integration with BORPH will be described. Finally, three FPGA applications

are described as examples to illustrate how various features of BORPH work together

during run time to improve overall user experiences with RC application development.

5.1 Conventional FPGA Design Flow

Because of its close ties to application specific integrated circuit (ASIC) devel-

opment, FPGA application development usually follows industry standard hardware

98

5.1. Conventional FPGA Design Flow

design flows. The use of hardware description languages (HDLs) such as VHDL and

Verilog are common among FPGA application designers. Once designs are described

in HDL, they are simulated using a software simulator. The simulated designs are

subsequently passed to vendor-specific tools that translate these HDL designs into

configuration files specific to a particular FPGA through multiple stages of synthesis,

translation, mapping, placing and routing. The resulting configuration files are then

used to program FPGA devices using one of the many device specific configuration

mechanisms offered by the vendor. Despite being described as cumbersome, HDL-

based design flow remains invaluable for designers for controlling low-level resource

utilization and execution on a FPGA.

However, as the sizes of modern FPGAs and the complexities of their applications

increase, the needs for high-level design methodologies that shields users from low-

level hardware details become apparent. Similar to the way high-level programming

languages were developed to enable complex software programming, a number of high-

level description languages have been proposed for FPGAs and other reconfigurable

fabrics. Examples include Handel-C[34], Stream-C[20], StreamIT[1], JHDL[5] etc.

As their names have suggested, many of them are developed with syntax similar to

familiar software programming languages such as C, C++ and Java in the hope to

ease the transition from software to gateware developments.

At the same time, because of the hardware/software nature of FPGA applications,

some advocate language environments that are capable of expressing the entire hard-

ware/software system using one unified environment. Examples include POLIS[3],

99

5.1. Conventional FPGA Design Flow

SystemC[35] and SystemVerilog[19].

5.1.1 Run Time Support

While design language environments allow designers to express and debug their

conceptual designs during compile time, run time supports are essential for applica-

tions to perform useful computation with actual data. There are two common ways

to provide run time support to applications. Each method integrates into its design

language environment differently.

The first method, commonly found in embedded systems, is to generate the entire

run time system statically based on actual user application requirements during com-

pile time. Parameters of the system, such as the number of task running at any one

time or I/O device memory maps are generated on a per-application basis. Because of

the static nature of this methodology, RC vendors may choose to incorporate custom

run time operating system kernel, or choose not to include a full OS kernel at all in

order to optimize for system performance, memory consumption, etc. Furthermore,

because of such flexibility on the generated kernel, the application interfaces into the

run time kernel are often language dependent and vary greatly across different RC

systems.

The second method, commonly found in large scale high performance reconfig-

urable computers, is to manage an RC with fully functional, online operating systems

such as Linux or VxWorks. In this case, run time support is provided by the kernel.

Applications must communicate with the kernel using the kernel defined interface.

100

5.2. Simulink-based Design Flow

Because of this kernel/user separation, the interface is design language independent.

It is therefore, possible to develop applications in any design language suitable for

the applications. Furthermore, the same interface may be applied to different recon-

figurable computers across different vendors.

BORPH is one example of such operating system that extends standard Linux ker-

nel interface to gateware applications. FPGA application developments in a BORPH

managed system are therefore design language independent. Similar to the case of

developing software programs, system libraries must be developed for each supported

language. System libraries serve as bridges between the run time kernel and user

applications. They isolate users from most of the complexities involved with run time

kernel communications. They may come in the form of an actual included library in

a text based language, such as VHDL, or in the form of a library block as in the case

of our graphical design flow described next.

5.2 Simulink-based Design Flow

This section describes the Simulink-based hardware design flow currently em-

ployed at the Berkeley Wireless Research Center (BWRC) for FPGA application

development. It serves as an illustration on how a FPGA design flow may integrate

with the BORPH run time kernel. Figure 5.1 shows the major stages of our integrated

hardware design flow.

Using this design flow, users describe their designs in Simulink using blocks pro-

vided by Xilinx System Generator[49]. The vendor provided blockset includes blocks

101

5.2. Simulink-based Design Flow

Simulink
Design in

SimulationSTART Simulation OK? Simulink
File

Interface Logic
Insertion

File

Simulink
Augmented

Xilinx System
Generator

Netlist

User

Logic

EDK System
Integration

Netlist

Complete

System

EDK
Template

BOF
Header

FPGA
Backend Flow

FPGA
Config

BOF
Generation

BOF
Executable

END

NO

YES

Figure 5.1: An automatic hardware design flow that compiles high-level Simulink
designs into executable BOF files.

ranging from low-level single bit flip-flops, to complex hardware constructs such as

adder, multiplier and finite impulse response (FIR) filter. To interact with the rest

of the BORPH systems, users make use of data I/O blocks from our in-house library.

It includes, for instance, custom library blocks for hardware constructs that are ex-

ported and accessible through the ioreg virtual file system such as register, shared

memory, and FIFO. Once the design is created in Simulink, the user may optionally

simulate the design within the Simulink environment before proceeding to hardware

generation.

The hardware generation process is where the BORPH specific steps are involved.

First, the user Simulink design is parsed to identify all instances of BORPH specific

library blocks. These blocks serve as the boundary between the actual generated

hardware and native Simulink blocks that are only for simulation purposes. Xilinx

System Generator is then called to generate the necessary netlist from the user design,

102

5.2. Simulink-based Design Flow

EDK
Template

reg_in sim_out

cntval

en out

Counter

reg_outsim_in

cnten

Xilinx System Generator Block

BORPH I/O blocks

Legend:

uK

cntval

cnten

Design

Simulink

User

Design

Simulink

User

OPB

User FPGA

Shared
Memory

Figure 5.2: Block diagram of a user FPGA. Compiled user Simulink designs are com-
bined with a predefined EDK template of uK to generate user FPGA configurations.

instantiating native library blocks accordingly. Clock and reset insertion, as well as

data sample rate resolution, are handled by System Generator. The resulting low

level netlist is then prepared as a block for use with Xilinx Embedded Development

Kit (EDK) in our next step.

Next, a processor system (uK) is inserted as shown in Figure 5.2. All ioreg

related blocks from a user design are connected to a multi-level On-chip Peripheral

Bus (OPB) that is accessible from this processor system. All runtime communications

with the central BORPH software kernel (mK) are handled by this processor system.

A detail block diagram of uK is shown in Figure 4.2. The combined system is

subsequently passed to vendor provided backend tools for synthesis, map, place and

route.

Finally, from the top level Simulink design, a symbol file is generated that lists

information such as address and size of all BORPH specific blocks. This symbol file

is combined with the FPGA configuration file generated by the vendor tools to create

the final BOF executable file.

103

5.3. Sample Applications

5.3 Sample Applications

In this section, three FPGA applications are briefly described to illustrate how

various features of BORPH work together to ease their development processes. The

first two are developed using the Simulink-based design flow described earlier, while

the last one is developed using VHDL only.

5.3.1 Example 1: A Real-Time Wireless Signal Processing

System

The first application is a real-time wireless signal processing system for our cog-

nitive radio project[31]. This system makes extensive use of the ioreg virtual file

system for hardware parametrization and HW/SW communication. Furthermore, full

backward compatibilities with existing Linux system allows software team to perform

HW/SW system testing remotely over Internet.

Overview

Cognitive radios are smart radios that take advantage of under-utilized licensed

spectrum for opportunistic tranceiving. In order to prevent interference to licensed

primary users of the spectrum, a variety of techniques have been proposed for reliable

sensing and non-interfering use of the spectrum. Our system is designed to validate

those techniques. Figure 5.3 depicts our overall system design that involves multiple

cooperative cognitive radios.

104

5.3. Sample Applications

Spectrum

Analysis

2.4 GHz

Analog

Frontend

Network

Protocol

Spectrum

Analysis

2.4 GHz

Analog

Frontend

Network

Protocol

In
fo

rm
a
ti
o
n
 E

x
c
h
a
n
g
e

N
e
tw

o
rk

Radio #N

Radio #1

Figure 5.3: Cognitive radio testbed system

Each radio is logically separated into two parts that are developed by two physi-

cally separated design teams. The partitioning is done loosely based on the standard

ISO network stack, where the physical layer is implemented in hardware and the

higher layers are implemented in software.

At the physical layer, real-time spectrum analysis is performed by FPGA hardware

that is connected to external RF frontend. The FPGA hardware is designed using our

Simulink-based design flow described in Section 5.2. All high-level network protocols

are independently developed in software.

Using BORPH for Communication and Synchronization

All communications between the spectrum sensing hardware and the software

protocol stacks are done via BORPH’s ioreg interface. Two 8192 bytes shared

memories are exported as ioreg virtual files for data communication with software.

In addition, more than 20 single word registers are defined. Most of them serve the

function of controlling hardware parameters such as RF channel, amplifier gain, etc.

Some ioreg registers, however, are used solely for synchronization purpose. For

example, each shared memory is guarded by a pair of enable and ready registers.

105

5.3. Sample Applications

The enable register is used by software to notify hardware its intention to read

memory. When the data in the shared memory is ready, the hardware asserts the

corresponding ready register. This two-way handshaking mechanism forms the basis

of simple synchronization between software and hardware processes.

The file I/O capability of a hardware process is used to implement a low level

debugging shell. It provides an additional way to debug the running FPGA and to

display hardware status.

Remote System Testing

Our software design is developed off-site. BORPH provides a remote testing en-

vironment for our protocol group who doesn’t have physical access to the hardware.

With BORPH, our software team independently develops the protocol stack without

the presence of the hardware by emulating it with software processes. As develop-

ment progress, they then remote log onto the physical hardware for mixed HW/SW

testing with a simple swap of hardware process in place of the emulating software pro-

cess. Since BORPH runs with a fully functional Debian root file system, all necessary

software development tools, such as gdb are available for debugging.

5.3.2 Example 2: Low-Density Parity-Check Decoders Em-

ulation

In this project, FPGAs are used to study quantization effects on the performance

of low-density parity-check (LDPC) codes[52, 53]. Because of the intense compu-

106

5.3. Sample Applications

tational need for empirical study of LDPC code for even moderate bit error rates

(BER), hardware emulations using FPGAs are employed.

Similar to the previous wireless signal processing example, this application relies

heavily on BORPH’s ioreg virtual file interface to dynamically customize design

parameters to explore implementation choices. Furthermore, ioreg virtual files are

used to export collected data for post-processing.

This application is unique that it does not require externally attached hardware

devices for execution. As a result, during the design exploration phase, the same

relocatable BOF file can be executed concurrently on multiple FPGAs. The fact that

each BORPH system is networked allows each instance be conveniently started and

parametrized through ioreg virtual files remotely. Having more than 10 instances of

the same design emulating concurrently have significantly improved the productivity

of the designers.

5.3.3 Example 3: FPGA Video Processing with Commodity

Software

The standard conforming file I/O capabilities for hardware processes allow FPGA

designs to communicate with commodity software via standard pipes. To illus-

trate this, we have implemented a simple Sobel edge detection program in FPGA

(yuvedgdet.bof) that works with the MJPEG Tools[32]. The MJPEG Tools is a set

of Linux programs that collectively perform complex video editing functions. Most

of the programs in the tool set communicate with each other through piped standard

107

5.3. Sample Applications

input and output, using a predefined raw video format (YUV4MPEG2).

Using BORPH’s file I/O capabilities, the FPGA edge detection filter may therefore

be inserted easily with a single shell command:

bash$ lav2yuv test.avi | yuvedgdet.bof | mpeg2enc -o output.mpg

where lav2yuv and mpeg2enc are programs distributed with the MJPEG Tools.

In the above command, lav2yuv translates the source video test.avi into the

YUV4MPEG2 raw video stream, which is then redirected to our FPGA edge detec-

tion filter. The filtered video is piped back to the software MPEG encoder mpeg2enc

for the final encoding.

Comparing to a pure software implementation, performance of the above hardware-

in-the-loop video processing is 18% slower as a result of I/O overhead. As with any

other hardware acceleration scheme, the advantage of FPGA implementation is ex-

pected to be more prominent as more computation, such as MPEG encoding, is shifted

to FPGA, amortizing performance degradations due to I/O.

Most importantly, this example demonstrates BORPH’s unique approach to hard-

ware/software co-execution. The use of standard file semantics for hardware/soft-

ware communication is not only easy to understand for novel users, but also allows

easy integration with existing commodity software, greatly improving productivity of

designers.

108

5.4. Summary

5.4 Summary

This chapter has described briefly the industry standard hardware description lan-

guage based design methodology for reconfigurable fabrics such as FPGA. Although

sometimes regarded as cumbersome by some researchers, HDL design methodologies

remain invaluable for low-level resource controlling.

Furthermore, we have also described the Simulink-based design flow developed at

the BWRC and how it integrates with the run time system of BORPH. This design

flow is suitable for high level application developments and for users with few prior

experiences with FPGA application development.

Finally, development experiences from three different FPGA applications have

been described to illustrate how various features of BORPH works together to ease

their development efforts.

109

Chapter 6

Conclusions and Future Directions

This thesis has demonstrated that not only is it feasible, but it is essential to

develop operating systems that on one hand provide systematic OS services to recon-

figurable gateware designs, while on the other hand maintain backward compatibilities

with conventional processor-based systems so as to ensure future success of reconfig-

urable computing research, allowing it to gain mainstream acceptance across multiple

research domains.

BORPH demonstrated the concept of operating system support for reconfigurable

computers on the BEE2 compute module. BORPH encapsulates FPGA hardware de-

signs as running hardware processes and provides them with conventional OS services

such as file system support. By integrating reconfigurable hardware processes into a

conventional Linux system, BORPH provides a unified HW/SW runtime environment

with a familiar UNIX interface. The concept of hardware process allows gateware de-

signs to take an active role in the system. Instead of the traditional master-slave re-

lationship with its controlling software, a hardware process may form a peer-to-peer

relationship with any running software/gateware program. Furthermore, hardware

processes interact with the rest of the system actively through standard UNIX file

110

Chapter 6. Conclusions and Future Directions

I/O and passively through BORPH specific ioreg virtual file system.

There are multiple ways one can look at BORPH beyond an operating system: It

is an abstraction model; it is an interface; it is an ideology.

BORPH presents a novel way to abstract a running FPGA design in a system

using the conventional UNIX process model. Such an abstraction transforms a static

FPGA design into an active running entity. It provides context for one to explain,

appreciate and to reason about reconfigurable resources of a system. It also provides a

framework in which many traditional FPGA research may be carried out. Topics such

as task scheduling, I/O resource allocations, task swapping, take on new meanings

under BORPH’s UNIX process model.

BORPH extends the traditional software OS kernel/user interface concept to a

spatial one that supports gateware designs executing on reconfigurable computers.

Such kernel/user separation improves manageability of a reconfigurable computer

while relieving gateware designers from cumbersome system management tasks, al-

lowing them to focus on developing their actual applications. Furthermore, by con-

fining a gateware design within the UNIX process boundary, BORPH introduces a

coarse grain hardware/software runtime interface at this design language independent

kernel boundary. Similar to the design of any other interface, the precise definition

of an ideal gateware kernel/user interface is a moving target that requires constant

refinements. Nonetheless, the current BORPH implementation has taken a first step

towards that direction.

Finally, the development of BORPH is an ideology that through systematic op-

111

6.1. Future Directions

erating system support, the usability of reconfigurable computers may be improved.

The lowered barrier-to-entry into the field of reconfigurable computing may there-

fore enable researchers from across different research domains to take advantage of

reconfigurable computing technologies.

6.1 Future Directions

The work of BORPH has opened the door into operating system research for recon-

figurable computing, allowing many traditional concepts in both computer sciences

and FPGA designs to take on a new dimension.

The semantics for hardware processes remains to be explored. Concepts such as

blocking, swapping, parallel file system access, and HW/SW signaling semantics need

to be refined. Furthermore, the kernel/user interface of BORPH is a natural boundary

to employ dynamic partial reconfiguration on a FPGA. The OS kernel should continue

to execute while a user design is configured dynamically as a result of process starting,

stopping, suspending, continuing, and swapping. Interactions of the runtime system

with the compile time partial reconfiguration design flow is essential.

The concept of hardware process also enables future development in gateware de-

sign runtime debugging methodologies. Because of the close ties between the runtime

OS kernel and a debugger, the development of one is likely to affect the development

of the other.

Scaling of BORPH is going to be an exciting research topic. BORPH is cur-

rently implemented on the BEE2 module with 4 user FPGAs. Since no swapping

112

6.2. Closing Remarks

is performed, a maximum of 4 hardware processes may be executing at the same

time. On one hand, BORPH may be scaled up to systems with plentiful of reconfig-

urable resources, stressing the limit of a centralized main OS kernel. On the other

hand, high-end embedded systems may contain limited reconfigurable resources with

tight real-time requirements, stressing the spatial and temporal resource allocation

capabilities of the BORPH kernel.

Finally, as the BORPH abstraction model has demonstrated to be extremely use-

ful, future reconfigurable computer architectures may be designed specifically to op-

timize performance for such model. For instance, communication between a user

gateware design and the BORPH kernel has shown to be an overall system perfor-

mance bottleneck in our current implementation. Future reconfigurable systems may

therefore consider providing high performance native hardware support for gateware

communications.

6.2 Closing Remarks

Gauging the usefulness of BORPH is a highly subjective matter. Taking away

precious FPGA resources while imposing various limitations on FPGA designs in

the name of operating system management is a difficult proposition for performance

conscious hardware designers to appreciate. Nonetheless, positive experiences from

current users have suggested that trading off resources for system manageability is

indeed useful for high-level application designers.

As an illustration, FPGA research work at the Berkeley Wireless Research Center

113

6.2. Closing Remarks

has been on going since 2000. Multiple BEE and BEE2 systems have been setup

for research uses within BWRC. However, only until BORPH is fully functional, and

with the help of a mature Simulink design flow, when for the first time all FPGAs in

the center are being utilized at the same time performing useful calculation.

It is the hope of the author that the work of BORPH will continue to open the

door into reconfigurable computing for researchers from across different application

domains, enabling them to perform research work that will benefit our world.

114

Bibliography

[1] S. Amarasinghe, M. l. Gordon, , M. Karczmarek, J. Lin, D. Maze, , R. M. Rab-
bah, and W. Thies, “Language and compiler design for streaming applications,”
International Journal of Parallel Programming, vol. 22, pp. 261–278, June 2005.

[2] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp, R. Sass,
and D. Andrews, “Enabling a uniform programming model across the soft-
ware/hardware boundary,” in Field-Programmable Custom Computing Ma-
chines, 2006. FCCM ’06. 14th Annual IEEE Symposium on, April 2006, pp.
89–98.

[3] F. Balarin, P. D. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tabbara,
M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, and K. Suzuki,
Hardware-software co-design of embedded systems: the POLIS approach. Nor-
well, MA, USA: Kluwer Academic Publishers, 1997.

[4] J. Becker and R. Hartenstein, “Configware and morphware going mainstream,”
Journal of Systems Architecture, vol. 49, pp. 127–142, September 2003.

[5] P. Bellows and B. Hutchings, “JHDL – an HDL for reconfigurable systems,” in
Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines,
1998., 1998, pp. 175–184.

[6] Celoxica. [Online]. Available: http://www.celoxica.com

[7] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: A high-end reconfig-
urable computing system,” IEEE Design & Test, vol. 22, no. 2, pp. 114–125,
2005.

[8] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and
software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, 2002.

[9] Cray, “XD1 supercomputer.” [Online]. Available: http://www.cray.com/
products/xd1/

115

http://www.celoxica.com
http://www.cray.com/products/xd1/
http://www.cray.com/products/xd1/

BIBLIOGRAPHY

[10] K. Danne, R. Muehlenbernd, and M. Platzner, “Executing hardware tasks on
dynamically reconfigurable devices under real-time conditions,” in 16th Inter-
national Conference on Field Programmable Logic and Applications (FPL’06),
2006, pp. 541–546.

[11] A. DeHon, “DPGA utilization and application,” in FPGA ’96: Proceedings of the
1996 ACM fourth international symposium on Field-programmable gate arrays.
New York, NY, USA: ACM Press, 1996, pp. 115–121.

[12] A. DeHon, “Reconfigurable architectures for general-purpose computing,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1996.

[13] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi,
J. Yeh, and J. Wawrzynek, “Stream computations organized for reconfigurable
execution,” Microprocessors and Microsystems, vol. 30, pp. 334–354, 9 2006.

[14] A. Donlin, P. Lysaght, B. Blodget, and G. Troeger, “A virtual file system for
dynamically reconfigurable FPGAs.” in Field Programmable Logic and Applica-
tion, 14th International Conference, FPL 2004, Leuven, Belgium, August 30-
September 1, 2004, Proceedings, 2004, pp. 1127–1129.

[15] DRC computer, “Development system 2000.” [Online]. Available: http:
//www.drccomputer.com

[16] S. Dydel and P. Bala, “Large scale protein sequence alignment using FPGA re-
programmable logic devices.” in Field Programmable Logic and Application, 14th
International Conference, FPL 2004, Leuven, Belgium, August 30-September 1,
2004, Proceedings, 2004, pp. 23–32.

[17] S. J. Eggers and R. H. Katz, “The effect of sharing on the cache and bus per-
formance of parallel programs,” in ASPLOS-III: Proceedings of the third in-
ternational conference on Architectural support for programming languages and
operating systems. New York, NY, USA: ACM Press, 1989, pp. 257–270.

[18] G. Estrin, “Reconfigurable computer origins: the UCLA fixed-plus-variable
(F+V) structure computer,” IEEE Annals of the History of Computing, vol. 24,
no. 4, pp. 3–9, 2002.

[19] T. Fitzpatrick, “SystemVerilog for VHDL users,” in Design, Automation and
Test in Europe Conference and Exhibition, 2004 (Vol 2). Proceedings, April 2004,
pp. 1334–1339.

[20] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented
fpga computing in the streams-c high level language,” in FCCM ’00: Proceed-
ings of the 2000 IEEE Symposium on Field-Programmable Custom Computing
Machines. Washington, DC, USA: IEEE Computer Society, 2000, p. 49.

116

http://www.drccomputer.com
http://www.drccomputer.com

BIBLIOGRAPHY

[21] M. Gotz and F. Dittmann, “Reconfigurable microkernel-based RTOS: Mecha-
nisms and methods for run-time reconfiguration,” in Reconfigurable Computing
and FPGA’s, 2006. ReConFig 2006. IEEE International Conference, 2006, pp.
1–8.

[22] R. W. Hartenstein, “A decade of reconfigurable computing: a visionary retro-
spective,” in DATE ’01: Proceedings of the conference on Design, automation
and test in Europe. Piscataway, NJ, USA: IEEE Press, 2001, pp. 642–649.

[23] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS processor with a reconfigurable
coprocessor.” in 5th IEEE Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM ’97), 16-18 April 1997, Napa Valley, CA, USA, 1997, pp.
12–21.

[24] A. Krasnov, A. Schultz, G. Gibeling, P.-Y. Droz, and J. Wawrzynek, “RAMP
Blue: A message-passing manycore system in FPGAs,” in To Appear in Proceed-
ings of FPL 2007 - International Conference on Field Programmable Logic and
Applications, 2007.

[25] M.-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E. M. Filho, and
V. C. Alves, “Design and implementation of the MorphoSys reconfigurable com-
puting processor,” The Journal of VLSI Signal Processing, vol. 24, no. 2–3, pp.
147–164, 3 2000.

[26] P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M. Y.
Wong, and K. H. Lee, “Pilchard : A reconfigurable computing platform with
memory slot interface,” in FCCM ’01: Proceedings of the the 9th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 170–179.

[27] E. C. Lin, K. Yu, R. A. Rutenbar, and T. Chen, “A 1000-word vocabulary,
speaker-independent, continuous live-mode speech recognizer implemented in a
single FPGA,” in FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th inter-
national symposium on Field programmable gate arrays. New York, NY, USA:
ACM Press, 2007, pp. 60–68.

[28] A. Lodi, C. Mucci, M. Bocchi, A. Cappelli, M. D. Dominicis, and L. Ciccarelli,
“A multi-context pipelined array for embedded systems,” in 16th International
Conference on Field Programmable Logic and Applications (FPL’06), 2006, pp.
581–588.

[29] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson, “Effects of
communication latency, overhead, and bandwidth in a cluster architecture,” in
ISCA ’97: Proceedings of the 24th annual international symposium on Computer
architecture. New York, NY, USA: ACM Press, 1997, pp. 85–97.

117

BIBLIOGRAPHY

[30] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “Design methodology for
a tightly coupled VLIW/reconfigurable matrix architecture: A case study,” in
DATE ’04: Proceedings of the conference on Design, automation and test in
Europe. Washington, DC, USA: IEEE Computer Society, 2004, p. 21224.

[31] S. M. Mishra, D. Cabric, C. Chang, D. Willkomm, B. van Schewick, A. Wolisz,
and R. W. Brodersen, “A real time cognitive radio testbed for physical and
link layer experiments,” in 1st IEEE Symposium on New Frontiers in Dynamic
Spectrum Access Networks (DySPAN 2005), Nov 2005, pp. 562–567.

[32] mjpegtools. [Online]. Available: http://mjpeg.sourceforge.net

[33] E. M. Ortigosa, P. M. Ortigosa, A. Cañas, E. Ros, R. Aǵıs, and J. Ortega,
“FPGA implementation of multi-layer perceptrons for speech recognition,” in
Field Programmable Logic and Application, 13th International Conference, FPL
2003, Lisbon, Portugal. Proceedings, 2003, pp. 1048–1052.

[34] I. Page, “Closing the gap between hardware and software: hardware-software
cosynthesis at Oxford,” in IEE Colloquium on Hardware-Software Cosynthesis
for Reconfigurable Systems. IEE, 1996, pp. 2/1–2/11.

[35] P. R. Panda, “SystemC: a modeling platform supporting multiple design abstrac-
tions,” in ISSS ’01: Proceedings of the 14th international symposium on Systems
synthesis. New York, NY, USA: ACM Press, 2001, pp. 75–80.

[36] G. W. Reitwiesner, “The first operating system for the EDVAC,” IEEE Annals
of the History of Computing, vol. 19, no. 1, pp. 55–59, 1997.

[37] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-based design,” in DAC
’97: Proceedings of the 34th annual conference on Design automation. New
York, NY, USA: ACM Press, 1997, pp. 178–183.

[38] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor,
“PipeRench: A virtualized programmable datapath in 0.18 micron technology,”
in Proceedings of the IEEE Custom Integrated Circuits Conference, 2002, 2002,
pp. 63–66.

[39] H. K.-H. So and R. W. Brodersen, “Improving usability of FPGA-based recon-
figurable computers through operating system support,” in 16th International
Conference on Field Programmable Logic and Applications (FPL’06), 2006, pp.
349–354.

[40] H. K.-H. So, A. Tkachenko, and R. Brodersen, “A unified hardware/software
runtime environment for FPGA-based reconfigurable computers using BORPH,”

118

http://mjpeg.sourceforge.net

BIBLIOGRAPHY

in CODES+ISSS ’06: Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis. New York, NY, USA: ACM Press,
2006, pp. 259–264.

[41] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The raw microproces-
sor: A computational fabric for software circuits and general purpose programs,”
IEEE Micro, vol. 22, pp. 25–35, 3–4 2002.

[42] R. Tessier and W. Burleson, “Reconfigurable computing for digital signal pro-
cessing: A survey,” Journal of VLSI Signal Processing, vol. 28, no. 1, pp. 7–27,
June 2001.

[43] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and P. Cheung,
“Reconfigurable computing: architectures and design methods,” in IEE Proceed-
ings: Computer & Digital Techniques, vol. 152, no. 2, March 2005, pp. 193–208.

[44] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-multiplexed
fpga,” in FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based
Custom Computing Machines. Washington, DC, USA: IEEE Computer Society,
1997, p. 22.

[45] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink, “Design
and programming of embedded multiprocessors: an interface-centric approach,”
in CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis. New York,
NY, USA: ACM Press, 2004, pp. 206–217.

[46] H. Walder and M. Platzner, “A runtime environment for reconfigurable hardware
operating systems.” in Field Programmable Logic and Application, 14th Interna-
tional Conference, FPL 2004, Leuven, Belgium, August 30-September 1, 2004,
Proceedings, 2004, pp. 831–835.

[47] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “A unified codesign run-time en-
vironment for the UltraSONIC reconfigurable computer.” in Field Programmable
Logic and Application, 13th International Conference, FPL 2003, Lisbon, Por-
tugal, September 1-3, 2003, Proceedings, 2003, pp. 396–405.

[48] G. B. Wigley, D. A. Kearney, and D. Warren, “Introducing ReConfigME: An
operating system for reconfigurable computing,” in Proceedings of the 12th In-
ternational Conference on Field Programmable Logic and Application (FPL’02).
Springer, 2002.

[49] Xilinx, “Xilinx system generator.” [Online]. Available: http://www.xilinx.com

119

http://www.xilinx.com

BIBLIOGRAPHY

[50] Xilinx, XtremeDSP for Virtex-4 FPGAs User Guide. [Online]. Available:
http://direct.xilinx.com/bvdocs/userguides/ug073.pdf

[51] XtremeData, “XD1000 development system.” [Online]. Available: http:
//www.xtremedatainc.com

[52] Z. Zhang, L. Dolecek, B. Nikolić, V. Anantharam, and M. J. Wainwright, “In-
vestigation of error floors of structured low-density parity-check codes by hard-
ware emulation,” in Proceedings of IEEE Global Communications Conference
(GLOBECOM), November 2006.

[53] Z. Zhang, L. Dolecek, M. Wainwright, V. Anantharam, and B. Nikolić, “Quan-
tization effects of low-density parity-check decoders,” in Proceedings of IEEE
International Conference on Communications, June 2007.

120

http://direct.xilinx.com/bvdocs/userguides/ug073.pdf
http://www.xtremedatainc.com
http://www.xtremedatainc.com

	List of Figures
	List of Tables
	Introduction
	Related Work
	Chapter Overview

	Reconfigurable Computers
	Reconfigurable Computer Architectures
	Reconfigurable Fabrics
	Granularity of Configuration
	Method of Configuration
	Field Programmable Gate Array

	A Continuum of Computing
	Spatial and Temporal Computing
	Stored-Program Processor
	Fully Spatial Computation
	Between Spatial and Temporal Computing
	Hardware/Software Terminology
	Physical and Virtual Machine

	BEE2
	Summary

	BORPH: The Operating System
	Architectural Assumptions
	Machine Abstraction Model
	Reconfigurable Fabrics as Coprocessors
	Reconfigurable Fabrics as Computational Resources

	Hardware Process
	Process Creation
	The Lifecycle of a Hardware Process

	Kernel Interface
	Hybrid Message Passing System Call Interface

	File I/O
	Differences between Software and Hardware Design Patterns
	High Speed Streaming Data I/O
	Runtime Streaming Mode Switching Support
	File Streaming I/O Library

	The ioreg Virtual File System
	Basic Operation
	Organization of ioreg Virtual Files
	Example
	Beyond Simple Register
	Language Independence
	Operating Mode

	Summary

	Implementation and Performance
	Overview
	Software Kernel Architecture
	BOF file support
	Reconfigurable Hardware Region (hwr) Support
	FPGA Configuration and Resource Allocation
	Software Fringe
	Packet Communication Network
	Process Scheduler and Signal Handler

	Base Architecture
	The SelectMap Bus Controller
	Design of uK

	Performance of Base Architecture
	Hardware Process Creation
	Reading/Writing ioreg Files
	General File I/O from Hardware Processes

	Advanced On-Chip Architecture
	Elimination of PLB-to-OPB Bridge
	DMA Enabled Control FPGA

	Porting BORPH
	Summary

	BORPH Application Developments
	Conventional FPGA Design Flow
	Run Time Support

	Simulink-based Design Flow
	Sample Applications
	Example 1: A Real-Time Wireless Signal Processing System
	Example 2: Low-Density Parity-Check Decoders Emulation
	Example 3: FPGA Video Processing with Commodity Software

	Summary

	Conclusions and Future Directions
	Future Directions
	Closing Remarks

	Bibliography

