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Abstract

While some forms of breast cancer are highly responsive to treatment, endocrine
therapy-resistant breast cancers are disproportionately lethal. There has been
significant progress in understanding how endocrine therapy-resistant strains
evolve from therapy-susceptible strains of cancer, but little is understood about
the proliferation of resistance through cancer cell populations, or the interac-
tions that occur between populations of resistant and sensitive cells. In this
study, we characterize the nature of the ecological interaction between popula-
tions of resistant and susceptible breast cancer cells to reveal novel methods of
controlling drug resistance.

Using in-vitro data on fluorescent-tagged resistant and susceptible cells, we
use an image processing algorithm to identify and count cell growth till equi-
librium. We then borrow theory from population biology to infer the type of
ecological interaction that occurs between populations of resistant and sensitive
cells. In particular, we use a Bayesian approach to fit single culture cell pop-
ulations to infer density-dependent growth parameters (growth rate, carrying
capacity) and a Generalized Lotka-Volterra model to understand how suscepti-
ble and resistant co-culture populations may be depressing or supporting growth
of the other.

Our results identify a net mutualistic interaction between the susceptible
and resistant cancer strains, demonstrating that there are ecological dynamics
to cancer resistance. Our findings also suggest that ecological dynamics change
in the presence of therapy, and that an adaptive treatment protocol can induce
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cycling behavior suggesting that heterogeneous ecological effects contribute to
empirically observed adaptive-therapeutic dynamics.

Introduction

Breast tumors that express the estrogen receptor alpha (ESR1; ER) often re-
spond to an initial endocrine therapy in the form of either an aromatase inhibitor
or an antiestrogen. Despite the effectiveness of these therapies, proliferation of
acquired or de novo resistant cells can diminish tumor response to treatment,
increasing mortality and often necessitating the use of cytotoxic therapies, es-
pecially in disseminated cancers [1, 2]. Traditional treatment approaches can
speed the emergence of therapy resistance through evolutionary pressure, select-
ing for therapy-resistant cells by eliminating those that are therapy-susceptible
[3, 4, 5]. Based on the “maximum tolerated dose” principle, this strategy fo-
cuses on diminishing tumor burden by eliminating as many susceptible cells as
possible. However, when recurrence occurs, less effective or poorly tolerated
systemic therapies are used to eliminate the cancer cells that are now resistant
to the first-line therapy [1, 3, 6]. Nonetheless, recurrent breast cancer remains
largely incurable. In contrast, the adaptive therapy paradigm focuses on limit-
ing future tumor growth or proliferation, aiming to decrease time to progression
without necessarily reducing tumor size [3]. This approach takes advantage of
ecological and evolutionary dynamics, including the spatial heterogeneity of re-
sistant phenotypes across the tumor and the fitness cost of resistance to find
the optimal therapy to keep tumor growth in check for the longest possible
time [4, 7, 8, 9, 10]. By using strategies like dose titration and “dose skip-
ping” such as treatment vacations or drug cycling, adaptive therapy approaches
can take advantage of intratumoral competition to limit overall tumor growth
and spread of the resistant phenotype [11, 7, 12, 3, 13]. Emerging research
further refines these approaches, applying evolutionary principles to optimize
individual-specific dose titration across time to minimize the development and
spread of therapy resistance [12, 14, 15].

Mathematical models are used in the adaptive therapy literature to explore
ecological and evolutionary dynamics within tumors; these models frequently
rely on two key assumptions: the fitness cost of resistance and robust compe-
tition between intratumor cell populations [3, 15]. Assuming a fitness cost to
resistance, a resistant strain is only more fit than a susceptible strain in the
presence of therapy. Additionally, under competition between strains, a more
fit strain will reproduce more quickly in the environment in which it is more fit,
outcompeting other strains. By taking advantage of this ecological dynamic,
adaptive therapy aims both to prevent the spread of the resistance and to limit
the evolution of new resistant genotypes. A range of complex modeling strate-
gies build on this approach, using mechanistic models of tumor dynamics to
examine the evolution of the resistant phenotype, to develop strategies that
minimize resistance proliferation, and to optimize treatment approaches that
maximize competitive dynamics within the tumor [16, 17, 18, 19, 20].
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Despite the ubiquity of these assumptions, a full understanding of the in-
terpopulation ecological dynamics between cancer phenotypes, including the
magnitude of competition and the potential fitness cost of resistance, has not
yet been developed [21, 22, 10]. Indeed, cooperative interactions between sub-
populations of heterogeneous tumors are well-described, both in vitro and in
vivo, calling into question the validity of the intratumor competition assump-
tion [23, 24, 22, 25]. Mathematical models have been used to identify not only
mechanisms driving competition for scarce resources (see e.g. [26, 17, 7, 27]),
but also pro-growth (mutualistic) interactions between intratumor strains – fos-
tering greater overall tumor expansion [22, 28]. Similarly, resistance mechanisms
can maintain or even increase fitness in the absence of therapy, challenging the
fitness cost of resistance assumption [29].

Here, we examine the fitness cost of resistance and the interaction between
sensitive and resistant populations, fitting classical ecological models to in vitro
cell culture population data. Our Bayesian mechanistic approach allows for
flexible model specification, rich parameterization of uncertainty, and direct in-
terpretation of model coefficients. Using longitudinal observations of cell abun-
dance in the presence and absence of therapy, we quantify growth parameters
and net interactions between the populations. Our results suggest that eco-
logical dynamics change in the presence of therapy and that assumptions of a
fitness cost to resistance and inter-population competition should be verified
empirically on a system-by-system basis. We also apply an adaptive treatment
protocol to our mechanistic model, finding that it can decrease the resistant
population size and induce population cycling behavior – despite the absence
of a fitness cost to resistance – suggesting that heterogeneous ecological effects
contribute to empirically observed adaptive-therapeutic dynamics.

Results

Here, we examine the type and magnitude of the ecological interaction between
therapy-sensitive (LCC1) and therapy-resistant (LCC9) populations. We cul-
ture LCC1 and LCC9 populations in monoculture and in coculture, count the
cell population size every two hours, and fit logistic growth and Lotka-Volterra
growth models, respectively, to the temporal growth dynamics. We execute this
procedure for both the control and treated conditions, estimating growth pa-
rameters and inter-population interaction strength in each case. We simulate
from these posterior distributions to examine the impact of inter-population
interactions on predicted growth.

In-vitro cell populations can be rigorously quantified

We develop an image processing algorithm to systematically quantify cell pop-
ulation sizes over time. Due to the noisy nature of the cell culture experiments,
traditional automated tools, such as ImageJ, are unable to differentiate between
cells and background noise in this system. These images present a range of is-
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Figure 1: Automated counting algorithm produces counts of in vitro cell popula-
tion sizes. A) Our automated algorithm uses a two-stage process to reduce image
noise through a sigmoid correction, adaptive thresholding, artifact removal, and
cell identification. Contrast and intensity corrections reduce background noise
and normalize cell intensity, allowing for more accurate cell identification. B)
Comparison of algorithm counts to manual counts with simple linear regression
(solid black line) indicates satisfactory cell counts from images. Pearson’s corre-
lation coefficient of 0.97 (95% CI: 0.94, 0.99) shows that algorithm and manual
counts are highly correlated. Higher cell counts are estimated as slightly larger
by the algorithm count than by manual count (dashed line one-to-one).

sues for rigorous quantification, including fluctuations in color density across
the camera field, bunching in cell density (i.e. many groups of cells tightly
clumped together), and changes in brightness over time. Using the scikit-image
library, we develop a robust image processing pipeline that rapidly and accu-
rately quantifies cell abundance. We validate these algorithmic counts against
manual image counts, finding high agreement between the two (Pearson’s ρ =
0.97; Figure 1). Accurate quantification of abundance enables systematic char-
acterization of population dynamics over time.

Resistance does not confer a fitness cost

Before characterizing interactions between populations, we independently char-
acterize the parameters governing growth dynamics of therapy-sensitive and
therapy-resistant populations. We employ the logistic growth model, fitting
population dynamics parameters to the data quantified through our cell count-
ing algorithm. For each condition, sensitive or resistant cell line and in the
presence of vehicle or treatment, we fit a separate logistic growth curve, finding
a condition- and strain-specific intrinsic growth rate (r) and carrying capacity
(K) (Figure 2A). Posterior estimates for sensitive (LCC1) growth in the pres-
ence of treatment are lower than those in the presence of vehicle, with estimated
r and K both decreased – consistent with the expected effects of treatment on
the sensitive phenotype (Figure 2B). Posterior estimates of resistant (LCC9)
growth parameters, both with vehicle and with treatment are similar to, but
slightly higher than, those from the sensitive vehicle condition. In this system,
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Figure 2: Resistant (LCC9) population demonstrates no fitness cost of resistance
compared to susceptible (LCC1) population. A) Bayesian posterior predictive
distributions of logistic growth model to in vitro monocultures show hetero-
geneous growth dynamics. Logistic growth model posterior mean (solid line)
and 95% curve-wise credible interval (shaded interval) reproduce observed cell
cultures (points) across time. B) Treatment diminishes sensitive (LCC1) cell
population growth in monoculture, while the resistant (LCC9) cell population
is unaffected. Sensitive intrinsic growth rates (r) and carrying capacities (K) are
decreased by therapy, while resistant intrinsic growth rates do not change sub-
stantially and are at least as high as those of sensitive populations in all cases,
as measured by the 50% and 95% credible interval. Note that VEH corresponds
to vehicle and TRT corresponds to treatment.
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Figure 3: Posterior estimates of sensitive (LCC1) and resistant (LCC9) popula-
tions grown in coculture in two replicates are similar to those from monoculture.
A) Bayesian posterior predictive distribution of the Lotka-Volterra competition
model to coculture of sensitive and resistant cell populations shows accurate
recovery of growth dynamics. Lotka-Volterra model posterior mean (solid line)
and 95% posterior curve-wise credible interval (shaded interval) reproduce ob-
served cell cultures (points) across time. B) Posterior 50% and 95% credible
intervals for intrinsic growth rates and carrying capacities reproduce logistic
growth estimates. Because growth parameters are unchanged from the mono
culture posterior estimates, accurate coculture fits are driven not by changes
in growth parameters, but by the net ecological interactions. Note that VEH
corresponds to vehicle and TRT corresponds to treatment.

the resistant population is expected to grow at least as quickly as the susceptible
population in monoculture regardless of treatment regime; there is not a fitness
cost of resistance.

We use the Lotka-Volterra competition model to quantify cell growth in
co-culture, using the monoculture posterior distributions as informative prior
distributions for growth parameters. Sensitive and resistant populations in the
co-culture vehicle condition do not grow more slowly than their respective mono-
culture counterparts, which suggests that intercellular signaling dynamics are
supporting the increased cellular abundance. Indeed, posterior estimates of in-
trinsic growth rates and carrying capacities are unchanged from monoculture
estimates; therefore, any difference in growth is driven by ecological interac-
tion between sensitive and resistant populations in co-culture, not changes in
condition-specific growth parameters (Figure 3B). For the populations in co-
culture under treatment (both LCC1 and LCC9) each grows more slowly than
it does alone, in the monoculture condition, or together, in the co-culture vehi-
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Figure 4: Net ecological interactions between sensitive (LCC1) and resistant
(LCC9) populations are only weakly competitive and heterogeneous across treat-
ment conditions. Ecological interaction coefficients (α and β) measure the over-
all effect of all interactions between the sensitive and resistant populations,
including pro-growth signaling and competition for scarce resources. In the
absence of treatment (i.e., vehicle), mutualism and competition are closely bal-
anced, with growth remaining at near-monoculture levels (α ≈ β ≈). With
treatment, net interactions are more competitive; each population is expected
to reduce the other population’s carrying capacity per cell by between 0.20
and 0.50 cells. The probability of either interaction coefficient equaling 1 is
close to zero, suggesting that inter-population competition is weaker than intra-
population competition.

cle condition (Figure 3A). However, the growth parameter estimates are again
unchanged from those in monoculture. Therefore, any heterogeneity in growth
dynamics across the treatment conditions is driven by heterogeneity in ecological
interaction between the populations.

We identify heterogeneous ecological interactions between therapy-sensitive
and therapy-resistant strains across treatment conditions, suggesting that treat-
ment alters cross-strain signaling interactions. Ecological interactions between
sensitive and resistant populations grown in co-culture are only weakly compet-
itive and heterogeneous across each treatment condition (Figure 4). If a strong
and symmetric competition existed between sensitive and resistant populations,
the net ecological interaction coefficients (α and β) would be at least equal to
1, with the inter-population reduction in available carrying capacity reducing
by one per-individual – equivalent to the assumed reduction caused by intra-
population competition [30]. Instead, α and β are substantially below 1 in both
the vehicle and treatment conditions. Thus, the net ecological interactions are
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Figure 5: Ecological dynamics alter predicted coculture growth. A) Predicted
growth in silico using 100 realizations from the posterior distributions of the
Lotka-Volterra coculture models with 5 treatment cycles – alternating between
vehicle and treatment growth models. Despite the lack of a fitness cost of resis-
tance, changes in LCC1 carrying capacity and ecological interactions between
populations induce cycling behavior in the system. B) Predicted growth in sil-
ico from 100 posterior realizations and net ecological interaction fixed at robust
symmetric competition between populations, α = β = 1. By assuming stronger
competition than actually occurring in this system, sensitive populations are
predicted to be outcompeted and rapidly decline despite the alternating treat-
ment conditions.

overall less competitive because of pro-growth interactions between the popula-
tions (Figure 4). The net ecological interactions captured by α and β are near
0 in the presence of vehicle – co-culture growth of the two populations is only
weakly altered by inter-population interaction. While the magnitude of these
interactions approaches zero, their sign can fluctuate across sensitivity analyses
and should not be too closely interpreted (INSERT SUPP FIG). These inter-
actions are heterogeneous across treatment conditions, with α and β between
0 and 1; each additional cell in one population reduces the available carrying
capacity of the other population by between 0.1 and 0.7 cells (based on their
respective credible intervals). While more competitive than with vehicle treat-
ment alone, the net ecological interactions with treatment again place almost
all posterior density for α and β below 1, with pro-growth interactions between
the populations reducing overall competition.
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Heterogeneous ecological effects alter population dynamics

The observed heterogeneity ecological dynamics has important implications for
coculture growth dynamics, altering predicted growth patterns under varying
treatment regimes. A metronomic therapy regimen alternating between ve-
hicle and treatment dynamics induces cycling behavior in the system, with
sensitive and resistant populations both decreasing in the presence of treat-
ment because of the heterogeneous ecological dynamics across populations and
treatment conditions (Figure 5). Importantly, this dynamic is driven not just
by changes in relative amounts of inter-population competition, but also by
changes in population-specific fitness under the different treatment conditions
(i.e. r, K). Despite the absence of a fitness cost of resistance in this system,
both populations persist and neither is outcompeted. However, assuming robust
competition between the populations (setting α = β = 1) alters dynamics such
that the sensitive population is rapidly outcompeted (Figure 5B). Assuming
stronger competition than is actually occurring substantially alters predicted
dynamics.

Discussion

Tumors are complex ecological environments, composed of heterogeneous inter-
acting populations. In this work, we show that assumptions of a fitness cost
of resistance and strong inter-population competition between therapy-sensitive
and -resistant populations can be oversimplifications and lead to inaccurate
predicted dynamics. As we show, the ecological dynamics between populations
can vary with treatment conditions, altering growth dynamics. This change is
driven by the interaction between the populations, not a change in the growth
parameters (relative to monoculture). We do not attempt to generalize our
quantitative results outside of our specific in vitro system (see e.g. [31]), but
argue that heterogeneity in ecological dynamics across treatment conditions can
contribute to the identified population cycling behavior in empirical adaptive
therapeutic systems (see e.g. [17, 14]) and that pro-growth interactions can
suppress competitive dynamics more than commonly assumed in the adaptive
therapy literature.

Mathematical modeling of adaptive therapy often includes the impact of
inter-population competition, either through the arrest of growth when resource
constrained (spatially constrained) in lattice-based or agent-based frameworks
(e.g. [7, 28]) or through the use of a mean-field approximation averaging over
the impact on the population as a whole (e.g. [32, 17, 29]). The Lotka-Volterra
model framework is a popular implementation of the latter approach, providing
interpretable coefficients and a strong basis in ecological theory [30]. In Zhang
et al., the Lotka-Volterra model is used for three populations, with a fitness cost
of resistance assumed and competition assumed to be stronger than we identify
here, showing that adaptive therapy can induce oscillations in tumor burden
that delay time to progression [32]. Strobl et al. relax the fitness cost of resis-
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tance assumption but assume robust competition (set α = β = 1), finding that
adaptive therapy can limit time to progression even without a fitness cost of
resistance [29]. In our system, we experimentally identify stronger pro-growth
mutualistic interaction between sensitive and resistant populations than com-
monly assumed, but show that these can still contribute to cycling dynamics –
even without a fitness cost of resistance. Furthermore, we carefully quantify the
uncertainty in this empirical system, fitting full posterior distributions to the ob-
served data. With this uncertainty, we quantify the range of predicted outcomes
under different treatment regimens – not just the expected mean behavior.

In the posterior predictions from the fitted differential equation model, the
predicted cycling behavior is caused not just by the ecological interaction be-
tween populations, but also by the relative fitness of the susceptible population
in the absence of therapy. The change in susceptible carrying capacity between
the treatment and vehicle conditions allows the susceptible population to rapidly
increase during treatment cycling, with resistant populations decreasing to com-
pensate because of the weakly competitive interaction between the populations.
While the carrying capacity is commonly nondimensionalized when working with
the Lotka-Volterra equations to ease computation, doing so can potentially de-
crease biology accuracy when the true carrying capacity is unknown or differs
across conditions. These results suggest that therapeutic treatment models that
do not account for the sources of variability in population response to treatment
may improperly estimate the impact of therapies or the relative contribution of
potential mechanisms.

Understanding precisely how the interactions between sensitive and resistant
cells occur, and how these are affected by treatment, are beyond the scope of the
present study. Nonetheless, individual cancer cells in a population have several
well-established means to communicate. The most widely studied mechanisms
involve the secretion of materials (paracrine communication) as free molecules
such as secreted growth factors or cytokines [33, 34, 35]. Growth factors in
the tumor microenvironment can induce ligand-independent activation of ER
[36, 37], conferring endocrine resistance [33, 34]. Paracrine communication also
includes the packing of intracellular materials into microvesicles that are then
released into the microenvironment and beyond [38, 39, 40]. The cargo of mi-
crovesicles can be complex and includes small molecules such as amino acids,
simple sugars, and non-coding RNAs (ncRNAs) but also larger macromolecules
such as lipids, mRNAs and cDNAs [41]. The ability to communicate regula-
tory molecules such as ncRNAs or cDNAs that could be incorporated into the
genome, could allow for the target cells to either temporarily or permanently
acquire features of the cell from which the microvesicles originated.

Since cells are often packed tightly together in the tumor microenvironment,
this cell-cell contact also enables juxtacrine communication. Juxtacine commu-
nication can arise from adjacent protein-protein interactions, such as where the
extracellular membrane of one cell expresses a receptor that binds a ligand in the
extracellular membrane of it neighbor. Cells can also directly share components
of their respective cytosols through gap junctional intercellular communication
facilitated by pores formed by the connexins. GJIC generally allow for the
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sharing or relatively small molecules such as amino acids, glucose, and second
messengers like Ca++, IP3, and cAMP [42, 43, 44, 45].

In vitro systems are idealized, ignoring many complexities of in vivo tu-
mor dynamics, but the robust literature on intratumor mutualism suggests
that mutualistic dynamics persist outside of idealized settings [22]. Our re-
sults suggest that this mutualism can be strong enough to completely counter
inter-population competition in idealized conditions, suggesting that mutualism
cannot be ignored by adaptive-therapeutic modeling. As we show, systems lack-
ing both a fitness cost to resistance and robust competition are able to produce
oscillations in resistant population size – suggesting that these dynamics can
contribute to empirical observations. When modeling these systems, assum-
ing robust competition or, indeed, competition at all (i.e. α, β > 0) can be a
mistake.

The observations here may have clinical relevance. The ER+ breast cancer
subtype is characterized by a feature generally referred to as “dormancy”, where
many tumors recur a decade or more after what had otherwise appeared to have
been a curative intervention with an endocrine therapy. Why these tumors
remain dormant and clinically undetectable for so long is poorly understood.
Cycling in the growth rate of mixed cell populations could lengthen the time
it takes for a population to grow to a clinically detectable size. Similarly, the
reduction in carrying capacity could limit the size to which these tumors can
grow. Hence, only once a tumor can escape both the growth rate and carrying
capacity constraints could it reach a size that would be detected clinically as a
breast cancer recurrence. Understanding the molecular features driving these
changes in carrying capacity and growth rate remains an area of active research.

Methods

We grow susceptible (LCC1) and resistant (LCC9) populations in monoculture
and in coculture with and without treatment, for a total of eight treatment con-
ditions, and observe growth every two hours. We apply the logistic growth model
to cell monocultures, producing estimates of population growth parameters. We
apply the Lotka-Volterra model to cell co-cultures, producing estimates of net
ecological interactions between populations, in vehicle and in treatment. Using
the model-based estimates, we simulate growth in the presence of a metronomic
therapy regime.

Cell culture

LCC1-egfp cells are estrogen-independent and sensitive to 4-hydroxy-tamoxifen
(4-OHT) and fulvestrant are derived from LCC1 cells ([46]) that stably express
enhanced green fluorescent protein (egfp), while LCC9-mCherry cells are derived
from LCC9 cells ([47]) that stably express m-cherry fluorescent protein and are
resistant to both 4-OHT and fulvestrant. LCC1-egfp and LCC9-mCherry cells
were cultured in phenol red-free, Modified IMEM media supplemented with
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5% charcoal-stripped fetal bovine serum. Five thousand LCC1-egfp and LCC9-
mCherry cells per well were seeded in a 12-well plate either alone or in co-culture
in presence or absence of 500nM fulvestrant. The cells were kept in Incucyte®
SX-3 live cell analyzer, at 37°C, housed inside a CO2 incubator. The red and
green fluorescent images representing LCC9 and LCC1 cells respectively were
captured every two hours during the length of the experiment.

Image Processing

We process cell culture images from the eight different treatment conditions
using scikit-image in Python [48]. We use a two-stage process, using a sigmoid
correction and local adaptive thresholding in the initial stage to remove back-
ground noise and equalize cell brightness intensity. The second stage locally
contrasts and thresholds, removes artifacts, and counts individual cells. There
are 8 separate images (one per field) per well per time point; fields are aggre-
gated to the smallest independent unit, the well. There are two replicates for
each treatment condition. We validate cell counts on images manually counted
by two individuals using simple linear regression.

Ecological models

To characterize the growth of each population independently, we apply the well-
characterized logistic growth model to in vitro monoculture growth data. The
logistic growth model is expressed as a differential equation:

dN

dt
= riN(1 − N

Ki
)

where N is the population size at time t, ri is the condition-specific intrinsic
growth rate, and Ki is the condition-specific carrying capacity. The four con-
ditions are LCC1 & vehicle, LCC1 & therapy, LCC9 & vehicle, and LCC9 &
therapy. The intrinsic growth rate (r) governs a population’s rate of exponential
growth in the absence of constraints, inversely proportional to the doubling time;
r is the sum of the population’s instantaneous birth and death rates without
resource constraints [30]. The carrying capacity (K) is the maximum popu-
lation size that can be supported by the environment – it is population- and
environment-specific [30].

To characterize the growth of sensitive and resistant populations in co-
culture, we use the Lotka-Volterra model, an extension of the logistic growth
model for interacting populations. The Lotka-Volterra model extends the logis-
tic growth model with a linear interaction term, allowing for both intra- and
inter-population competition [30]. It is represented as a system of paired ordi-
nary differential equations:

dS

dt
= rSS(1 − S

KS
− αR

KS
)
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dR

dt
= rRR(1 − R

KR
− βS

KR
)

where S and R are the sensitive and resistant population sizes at time t respec-
tively, ri are the intrinsic growth rates, Ki are the carrying capacities, α and β
are the ecological interaction terms, and the impact of intra-population compe-
tition is fixed at 1. We fit the model separately for each treatment condition,
applying posterior distributions from the logistic growth models of monoculture
growth as informative prior distributions on the r and K parameters in the
Lotka-Volterra model. Net ecological interaction terms (α and β) are assumed
by the model to represent a constant mean inter-population effect acting equally
on every individual cell. As cells are grown on complete media, the only limit-
ing resource in this in vitro system is space, so the competitive mechanism is
pre-emptive competition [30].

Model parameter inference from cell culture data

We fit the ecological models to the cell culture time series with a Bayesian
approach using Hamiltonian Monte Carlo. Models are implemented in the R
language interface to Stan [49]. We remove the first 48 hours from the time
series to remove the period of no growth after initial introduction and remove
the last 22 hours from the treatment coculture condition because of a sudden
decline in one biological replicate judged to be due to laboratory error. Missing
cell culture time points are imputed from the model.

All logistic growth parameters are assigned weakly informative priors to reg-
ularize inference. Coculture parameters are assigned informative priors using
the posteriors from monoculture growth models except for α and β, which are
assigned standard normal priors. Prior predictive distributions suggest appro-
priately specified prior distributions [50, 51] We perform HMC sampling with
4 chains with 10000 iterations per chain. In all cases, traceplots indicate the
chains are well-mixed , the Gelman-Rubin split R̂ statistic is less than 1.01, and
effective sample size is ratio is above 50%, there are no divergent transitions,
transitions that exceed maximum treedepth, or transitions with high Bayesian
fraction of missing information, suggesting that the chains have converged and
there are no numerical issues with model fit. We find that the posterior predic-
tive distributions recover the data, suggesting no systematic errors in model fit
. We represent uncertainty in the posterior predictive distributions with 95%
curve-wise credible intervals, representing the region with high probability of
containing the entirety of the true curve – not just the probability of containing
each point along the curve. Cell culture time series, Stan model code, R lan-
guage analysis code, and original model diagnostics and results are available on
Github.

Treatment simulations

We predict cell population dynamics under a range of treatment conditions. For
the treatment cycling condition, we simulate population dynamics under growth

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.18.481041doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481041
http://creativecommons.org/licenses/by-nc-nd/4.0/


and treatment parameterizations for 100 Monte Carlo simulations. In each
simulation, we examine 5 treatment cycles, with 100 time points per cycle. We
stochastically parameterize growth dynamics by simulating realizations of each
growth parameter from normal distributions with the same first two moments as
those of the respective marginal posterior distributions. For the condition with
specified competition, we fix the ecological interaction coefficients (α and β) at
1 and repeat the treatment cycling as specified. We solve the system using the
‘ode‘ function in the ‘deSolve‘ package with the LSODA integrator. We repeat
this procedure for 100 Monte Carlo simulations.

Data availability

Original count data, sample images, image processing code, and analysis code
are available at https://github.com/bansallab/breast_cancer.
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