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Abstract

Multivariate and network meta-analysis have the potential for the estimated mean of one effect to 

borrow strength from the data on other effects of interest. The extent of this borrowing of strength 

is usually assessed informally. We present new mathematical definitions of ‘borrowing of 

strength’. Our main proposal is based on a decomposition of the score statistic, which we show 

can be interpreted as comparing the precision of estimates from the multivariate and univariate 

models. Our definition of borrowing of strength therefore emulates the usual informal assessment. 

We also derive a method for calculating study weights, which we embed into the same framework 

as our borrowing of strength statistics, so that percentage study weights can accompany the results 

from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. 

Our proposals are illustrated using three meta-analyses involving correlated effects for multiple 

outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).
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1 Introduction

Meta-analysis is the synthesis of results from multiple studies that address the same research 

question. Multivariate meta-analysis1,2 can be used when multiple correlated effect 

estimates, of more than one quantity of interest, are available. The multivariate approach is 

gaining popularity as, in contrast to standard univariate meta-analyses, the utilisation of 

correlation can lead to more precise estimation.3 This has been referred to as borrowing of 
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strength (BoS): conditional on the modelling assumptions we can utilise additional 

information for each effect of interest by using related (or indirect) information from other 

correlated effects in the same analysis. This is especially important when some of the 

available studies do not report all the effects included in the multivariate meta-analysis. This 

type of indirect information has been found to be useful in reducing the impact of reporting 

bias,4 but here we focus on its capacity to provide more precise inference.

Network meta-analysis5–8 has been proposed in order to perform a single meta-analysis 

involving more than two treatment groups. This type of analysis allows the use of both direct 

and indirect evidence when estimating the treatment effects, where the strength is borrowed 

from indirect information. Network meta-analyses can be fitted as multivariate meta-

analyses9 and so our methods, although developed in the context of multivariate meta-

analysis, can also be used for network meta-analyses. We illustrate this particular application 

in section 5.

The extent of BoS has frequently been assessed informally and claimed to be small, because 

multivariate meta-analyses have been found to provide similar numerical results to multiple 

univariate meta-analyses.10–12 However, examples do exist where the BoS appears to be 

larger, and where there is an important statistical (and sometimes, clinical) impact of using a 

multivariate, rather than a univariate, meta-analysis.4,13,14 We will show that our method is 

equivalent to comparing the results from multivariate and univariate meta-analyses and so is 

closely related to these informal assessments of BoS. This differs from the I2 statistics that 

have been developed for multivariate meta-analysis15–17 which instead describe the impact 

of the between-study heterogeneity by comparing the results from multivariate fixed-effect 

and random-effects models.

A related issue is the quantification of study weights in multivariate and network meta-

analysis. Study weights in classical univariate meta-analysis are well-known: in a fixed-

effect model they are inversely proportional to the within-study variances, and in a random-

effects model they are inversely proportional to the sum of the within-study variance and the 

estimated between-study variance. How to define study weights in a multivariate or network 

meta-analysis is less obvious. A second aim of this paper is to provide formulae for the 

weighting of each study in these types of meta-analyses. This enables researchers to report 

the contribution of each study to the analysis. Our definition of weights follows naturally 

from our measure of BoS, and reduces to the usual weights univariately. Alternative 

measures of multivariate weights based on the hat matrix have also been suggested in the 

context of network meta-analysis6 and based on data-point coefficients in the context of 

multivariate meta-analysis of multiple outcomes.14 We prefer our method for calculating 

study weights because we are able to embed both study weights and BoS statistics into a 

single framework, where the weights can be separated into direct information and BoS. 

Hence, our framework enables us to clearly identify the studies that contribute the most 

weight to the analysis, and also to explain the way in which they provide this weight. We 

return to the possibility of using data point coefficients and the hat matrix to define study 

weights in section 3.2.
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We begin by examining the fixed-effect (common true effect for all studies) model because 

this greatly simplifies the mathematics. This is because there is then no need to estimate the 

between-study covariance matrix. A wide variety of methods for estimating the between-

study variance are available in the usually more plausible random-effects model.18 As we 

explain in section 4, this is now also the case multivariately. In the context of the 

multivariate random-effects model it is most natural to estimate the between-study 

covariance matrix using likelihood based methods when applying our proposed methods. 

This is because our proposals are based on a score decomposition and so are based on the 

likelihood function. In section 5 we estimate the between-study covariance matrix using 

restricted maximum likelihood estimation. However non-likelihood based methods for 

estimating the between-study variance structure are very popular in meta-analysis.19 Upon 

making the usual meta-analytic approximation of taking the between-study covariance 

matrix as known and equal to its estimate when making inferences about the average effects, 

our methods can be applied regardless of the estimation method used for the between-study 

covariance matrix. Our methods for calculating BoS statistics and study weights can 

therefore be used whenever the standard procedure for making inferences about the average 

effects2 is used. Hence our proposals are very widely applicable.

The paper is set out as follows. In section 2 we present our proposed definition of BoS for 

the multivariate fixed-effect model and in section 3 we describe our proposed definition of 

weights for this model. In section 4 we explain how to extend our methods to the 

multivariate random-effects model. In section 5 we apply our methods to three example 

datasets, where the last example is a network meta-analysis. We conclude with a discussion 

in section 6.

2 BoS in the fixed-effect model

2.1 Notation and model

Suppose the data from study i = 1, …, n are the estimate yi (a p-dimensional column vector 

containing the estimates of the parameters of interest, where p is the dimension of the 

multivariate meta-analysis) and its within-study covariance matrix Si (a p × p matrix 

containing the within-study variances and covariances). The entries of these within-study 

covariance matrices are typically obtained from information contained in the study 

publications or from individual patient data. Within-study correlation occurs because 

different effects are calculated using correlated data from the same sets of patients. For 

example, if the effects of interest relate to time-to-event outcomes such as overall survival 

and disease-free survival, then they will almost necessarily be positively correlated within 

studies. Wei and Higgins20 and Riley et al.21 describe strategies for calculating the within-

study correlations. We follow the convention of taking the Si as fixed and known but they are 

estimated in practice. This can be quite a crude approximation in practice, especially when 

the studies are small or the dimension of the multivariate meta-analysis is high.

The multivariate fixed-effect meta-analysis model is then

(1)
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where β is the vector containing the average effects, which are the parameters of primary 

interest, and we take Vi = Si. We show how to extend our methods to the multivariate 

random-effects model in section 4.

The score equation for β from the multivariate fixed-effect model is

(2)

so that Umv is obtained by summing over the independent . The maximum likelihood 

point estimate of β from the multivariate meta-analysis is then

(3)

where

with variance

Missing outcome data can be conveniently handled in all equations by allocating the missing 

data inordinately large variances and correlations of zero, and imputing an arbitrary value for 

the missing estimates (such as zero or a sample average). Hence, it is not necessary that all 

studies provide all p estimates; this is important because some missing outcome data are 

very common in application. We focus on BoS in the estimation of βr, the rth component of 

β, where r takes integer values from 1 to p.

We obtain the univariate fixed-effect model for the rth effect by taking the corresponding 

marginal model from model (1) as

where Virr = Sirr. The resulting score equation for βr is

(4)
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which gives the usual univariate fixed-effect inferences,  and 

, where .

2.2 BoS by comparing variances

The simplest way to study BoS is to compare the variances of the estimated rth component 

of β under the univariate and multivariate models. We define

(5)

where  and  are the variances of  under the multivariate and univariate 

fixed-effect models, respectively. RV refers to ‘Relative Variance’; if  then the 

variance of  is the same under these two models and the additional effects included in the 

multivariate meta-analysis have lent no strength to . As  increases the variance 

of  from the multivariate meta-analysis decreases, relative to its variance from the 

univariate meta-analysis, and the additional effects lend more strength.

Riley et al.3 establish, if the variance structure is treated as fixed and known, that the 

precisions of the point estimates from a multivariate meta-analysis are always greater than or 

equal to those from separate univariate meta-analyses. Thus, under a fixed-effect model, 

equation (5) cannot be negative.

2.2.1 Calculations for a simple case—In order to further examine how the 

statistic describes the BoS in a multivariate meta-analysis, it is helpful to consider a simple 

special case. Suppose p = 2 and there are two groups of studies, G = A, B, where the within-

study correlation is assumed common for all studies in each group. This means that there are 

only two values of within-study correlation in the studies that comprise the meta-analysis. 

Thus, we have

where ρG denotes the within-study correlation in group G. So the sum of the inverse 

variances over all studies in both groups is given by

(6)

where we write
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for r, s = 1, 2. We focus on estimating β1. Under multivariate analysis  is

where ρ* is the correlation in the covariance structure in equation (6), so that

Under univariate analysis,  is

so, using the definition of ρ*2 given above, the BoS is

In order to interpret this result, we consider three even more special cases. Firstly, if ρA = ρB 

= 0 then . This means that if there is no within-study correlation between the two 

estimated effects then no BoS is possible. Secondly, if all within-study covariance matrices 

are proportional to each other, so that Si = kiS, we then have ρA = ρB = ρ and (wA12 + 

wB12)2 = (wA11 + wB11)(wA22 + wB22). This means that  when all Si are 

proportional; Riley et al.3 previously noted that BoS is zero when all within-study 

covariance matrices are identical.

Finally, if the first effect of interest is missing in group B (represented as ), then we 

have wB11 = wB12 = ρB = 0 and after some algebra we can derive
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where  and  Thus, in this setting,  This 

means that, when within-study correlations are non-zero, some BoS by the first effect is 

inevitable when its data are missing in this way but also that this BoS is bounded by the 

magnitude of the correlation ρA in the complete (no missing data) studies.

These observations show that our  statistic corresponds to our intuitive understanding 

of the nature of BoS in these simple situations: no BoS is possible when the two types of 

estimated effects are independent and, when there is missing data, some BoS is inevitable 

but the available within-study correlations constrain the extent to which this is possible. It is 

obvious that no BoS is possible when all within-study covariance matrices are identical, 

because then the data are independently and identically normally distributed so that the point 

estimate of β is the sample mean. However, this result establishes a stronger statement that 

no BoS is possible when the within-study covariance matrices are proportional to each other.

2.3 Decomposing the score function for β

We now derive an alternative BoS statistic which we will see is in fact the same as 

The alternative derivation presented in this subsection is more opaque than the one presented 

previously, but has the advantage that it leads to a definition of study weights, as explained 

in section 3.

Using the standard property of score equations for normally distributed outcomes with 

known variance structure, we have that

This is the usual approximation used in the asymptotic theory of maximum likelihood but 

this is exact for normally distributed data with known variance structure because then the 

log-likelihood is perfectly quadratic. We define  where, because the Vi = 

Si are treated as constants, M is also regarded as a constant. Hence

(7)

and note that

where the right hand side is a multiple of the usual estimating equation and so an estimating 

equation for βr from the multivariate model is
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Appendix 1 shows that

(8)

where er is the unit vector with 1 in the rth position. Hence, we can write

(9)

where all 2n terms in the final expression in equation (9) are independent. We prove this 

independence in Appendix 2.

2.4 Defining BoS statistics using the score decomposition

Premultiplying equation (9) by M, and taking the rth component, gives a decomposition of 

the estimating equation for βr into independent terms:

(10)

where Mrr is the entry in the rth row and column of M. We take the variances of the terms in 

equation (10) to express the information contributed to the estimation of βr. The variance of 

the term on the left hand side of equation (10) defines the total information contribution of 

all estimates from all studies included in the multivariate meta-analysis to the estimation of 

βr. The variance of the first term on the right hand side of equation (10) defines the direct 

information contribution of estimates from all studies (i.e. the estimates that would be 

included in a univariate meta-analysis that estimates βr). This is because this term results 

from the estimating equation from a univariate meta-analysis. Finally, the variance of the 

second term on the right hand side of equation (10) defines the indirect information 

contribution of the other estimates (i.e. the estimates that would not be included in a 

univariate meta-analysis, and so provide indirect evidence about this parameter). As we 

explain above, the terms that are used to express the direct and indirect evidence are 

independent; this independence ensures that we can clearly distinguish between the two 

types of evidence in this way.

Furthermore, because the summations in equation (10) run across all studies, we further 

define the study specific total, direct and indirect information contributions to the estimation 

of βr. Specifically, we define the total information contribution of study i to estimation of βr 

as

We define the direct information contribution of study i to the estimation to βr as
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The indirect information contribution of study i to the estimation to βr can then be taken as 

 We define the BoS for effect r (from all studies) as

(11)

where SD refers to ‘Score Decomposition’;  We 

also define the BoS for effect r that is due to the ith study as

(12)

2.5 Equality of the two BoS expressions

Although  and  are motivated in entirely different ways, it is straightforward 

to show that they are equivalent. From equation (7), var(MUmv) = M so 

 Similarly, 

Again using equation (7), , so . Hence 

, as stated.

3 Weights

The derivation of our BoS statistic using the score decomposition (sections 2.3 and 2.4) is 

much less intuitive than the derivation from comparing variances (section 2.2), but the 

advantage of the score decomposition derivation is that it immediately leads to a definition 

of study weights. The weights of studies in fixed-effect univariate meta-analyses (p = 1) are 

inversely proportional to the within-study variances and are usually rescaled to add up to 

100%. These weights are typically displayed in standard output and forest plots and convey 

important information about which studies contribute the most to the estimated average 

effect.

We can also use the variance of the terms that result from the decomposition (10) to define 

the weight of study i for effect r as

(13)

Jackson et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2017 May 06.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



We call these “study weights” which reduce to the usual weights univariately. This definition 

of weights motivates us to further define the direct information for effect r that is due to the 

ith study as

(14)

so that

(15)

This means that the study weights for the rth outcome are equal to the sum of the studies’ 

direct information and their BoS for the rth outcome. Since , equation 

(14) means that a study that does not provide the rth effect provides no direct evidence to the 

estimation of βr so that  Study weights and BoS statistics can be displayed in 

tabular and graphical forms, and this is illustrated in the examples in section 5.

3.1 Invariance to scaling

It is straightforward to show that our BoS statistics and our study weights are invariant to 

scaling, where each effect in the meta-analysis is multiplied by an effect specific fixed 

constant. We will use the notation  to denote the scaling transformation, where C is 

a diagonal matrix containing effect specific scaling factors. Then  and 

β* = Cβ, so that Umv* = C−1Umv and M* = CMC. This means that M*Umv* = CMUmv, so 

that  Upon dividing both sides of the resulting score decomposition 

for the scaled data by Crr we recover the score decomposition for the original data (10). 

Hence, our BoS statistics and study weights that are based on this decomposition apply to 

both the scaled and original data and so are invariant to scaling.

3.2 Data-point coefficients

It follows from equation (3) that the rth component of , like its univariate counterpart, is 

a weighted sum of all the observations yis, where the weight for the sth effect in the ith study 

is Wirs, the (r, s) element of Wi. We call these “data-point coefficients” and these values 

have previously been proposed as weights.14 These coeffcients also give an indication of the 

weight that each estimate yis contributes to  and so we suggest that these might be 

worth reporting. The data-point coefficients also reduce to the usual weights univariately but 

are not invariant to scaling. The data-point coefficients provide p weights per outcome and 

study, because each individual estimate provides a data-point coefficient, whereas the 

proposed weights wir give one weight per outcome and study.

The use of the hat matrix has also been proposed to define weights in the context of network 

meta-analysis.6 For a multivariate meta-analysis (after imputing any missing data as 

explained in section 2.1) the design matrix is obtained by stacking identity matrices, so that 
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the main block diagonal of the hat matrix contains the Wi matrices. This means that using 

the diagonal entries of the hat matrix as weights is equivalent to using the data-point 

coefficients Wirr for this purpose.

4 The random-effects model

The previous sections have assumed a fixed-effect model; in other words that there is no 

between-study heterogeneity in any of the effects of interest. This is a strong assumption that 

greatly simplified the development of our methods because all variance components are 

treated as known under the fixed-effect model. Using a multivariate random-effects model is 

in general more plausible than assuming an absence of between-study heterogeneity. 

However, the between-study covariance matrix must also be estimated in a multivariate 

random-effects meta-analysis.

Upon relaxing the fixed-effect assumption, the multivariate random-effects model is given 

by equation (1) where Vi = Si + Σ so that

where Σ is the between-study covariance matrix. The main diagonal of Σ therefore contains 

the between-study variances and the other entries of Σ are between-study covariances. A 

variety of approaches for estimating Σ have been suggested.22–26 Once Σ has been 

estimated, however, the standard procedure for making inferences about the average 

treatment effects approximates the true between-study variance with .2 We suggest also 

making this approximation, so that all the previous methods in sections 2 and 3 can still be 

used but Vi = Si now becomes . However, since our new methods are based on a 

decomposition of the score function, using this standard approximation in conjunction with 

our proposals is most natural when the estimation of Σ is also based on the likelihood 

function.

There is one caveat here, however: using  when calculating the  statistic under the 

random-effects model in this way might be thought to give more credence to the multivariate 

model fit. This is because  is forced to be as estimated from the multivariate analysis, but 

univariate and multivariate random-effect meta-analyses will in general provide different 

estimates of the between-study variances (the diagonal entries of ). Thus, when calculating 

BoS statistics for the random-effects model we are faced with a dilemma: when calculating 

 in equation (5), is it really appropriate to use the rth diagonal entry of  from the 

multivariate analysis? If we instead use the univariate estimate of the between-study variance 

when calculating  we obtain an alternative or modified BoS statistic

(16)
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The notation  emphasises that the univariate estimate of between-study variance 

is used when calculating the variance of the univariate estimate of the average effect, 

because τ2 is conventionally used to denote the between-study variance in univariate 

analyses; the multivariate estimates of the between-study variance components continue to 

be used when calculating  in equation (16). However, this modified 

presents further issues. First of all, the equivalence between  and  is lost when 

using this alternative approach. Secondly, because of the differences between the univariate 

and multivariate estimates of the between-study variances,  can be negative. From a 

theoretical viewpoint it would seem clear that for BoS in the multivariate random-effects 

model it is preferable to use equation (5) with both variances derived using  from the 

multivariate random-effects model. Some meta-analysts may however prefer to use equation 

(16) in application.

When the modified BoS statistic (16) differs substantially from its counterpart then we 

suggest presenting both types of BoS statistics and we do this for the first two examples in 

section 5 (Table 2). In large samples we can anticipate little difference between the 

univariate and multivariate estimates of the between-study variances but their estimation is 

less robust in meta-analyses with small numbers of studies. If the multivariate estimates of 

the between-study variances are larger than the univariate estimates then equation (16) could 

be very considerably less than zero. This tells us that the use of a multivariate, rather than a 

more conventional univariate, meta-analysis has important implications (resulting in 

markedly different point estimates) for the estimation of the between-study variance 

components. This is the case for our first two examples and is especially so for the final 

effect (stroke) in our first example. Our methods based on the score decomposition do not 

describe the implications of using a multivariate meta-analysis for the estimated variance 

components when using random effect models, rather they measure the BoS afforded by the 

multivariate approach using the estimated variance components from the fitted multivariate 

model. Some may prefer the convention of truncating negative modified BoS statistics to 

zero but we present negative values in order to clarify the extent to which the fitted 

multivariate model results in wider confidence intervals than the fitted univariate model.

5 Examples

In this section, we apply our methods to some contrasting real examples that have appeared 

in the literature. For all our examples we fit random-effects models using restricted 

maximum likelihood (REML) to estimate the between-study covariance matrix. We use the 

Stata mvmeta package26 with its defaults throughout, so that the entire observed Fisher 

information matrix (including the variance components) is used to compute the covariance 

matrix of the treatment effect parameters. Hence the uncertainty in the between-study 

covariance matrix is reflected in the results that follow. By using methods based on the score 

decomposition, the BoS statistics are unchanged by acknowledging the uncertainty in the 

between-study variance components in this way. However methods based directly on either 

equation (5) or (16) would be changed by this. The Stata mvmeta package has now been 
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updated to calculate BoS statistics and study weights using the wt option. This updated 

package is available at the second author’s website.

5.1 Meta-analysis of randomised trials with multiple outcomes

Riley et al.21 use individual participant data (IPD) for a total of 28581 patients from 10 

randomised controlled trials to evaluate whether hypertension treatments lower systolic 

blood pressure (SBP) and diastolic blood pressure (DBP), and also whether these treatments 

reduce the risks of a subsequent diagnosis of cardiovascular disease (CVD) or stroke. Each 

trial randomised patients to either an active anti-hypertensive drug or placebo, and all four 

outcomes were recorded in every trial. For SBP and DBP, analysis of covariance models 

were used in each study to calculate adjusted (for baseline blood pressure scores) treatment 

effect estimates and their standard errors, in terms of mean differences (treatment minus 

placebo), where negative values indicate a greater blood pressure reduction in the treatment 

group. For CVD and stroke, Cox regression models were used in each study to calculate the 

treatment effect estimates (and their standard errors) in terms of log hazard ratios, with a 

hazard ratio of less than one indicating lower outcome risk in the treatment group. 

Nonparametric bootstrapping was used to obtain the within-study correlations between each 

pair of treatment effect estimates, as described elsewhere.21 These correlations are small, 

except for those between the estimated treatment effects on SBP and DBP. Table 1 

summarises the data required for multivariate meta-analysis, and the results from univariate 

and multivariate random-effects meta-analysis are shown in the top part of Table 2. The 

meta-analyses were performed on the log hazard ratio scales for CVD and stroke but the 

estimates and confidence intervals in Table 2 have been converted to the hazard ratio scale. 

The multivariate and univariate meta-analysis results are in reasonable agreement, and 

suggest that anti-hypertensive drugs are effective at reducing blood pressure and the risk of 

CVD and stroke.

Table 2 also shows the BoS statistics from equation (11) and the alternative BoS statistics 

from equation (16). The first set of BoS statistics show that, with the exception of the 

treatment effect for stroke, very little BoS occurs. This should be anticipated because all 

studies provide data on all four treatment effects. The estimated between study standard 

deviations are larger in the multivariate than in the univariate meta-analyses and so the 

 statistics (16) can be negative, and are so for all four effects. However, the variance 

components are imprecisely estimated in a relatively high dimension example with just 10 

studies such as this one and so we should not be too surprised by this finding.

Table 3 shows how we can tabulate the study weights and BoS statistics from the 

multivariate meta-analysis, where the weights are broken down into direct information and 

BoS as shown in equation (15). The direct information desrcibes the contribution of data 

from the same outcome, whereas the BoS describes the contribution of data for all other 

outcomes. Each study has four weights, one for each outcome, where the weights for each 

outcome sum to 1 (or 100% when expressed as a percentage). Table 3 confirms that the 

majority of the information in this analysis comes from direct information. This table also 

shows that the three smaller (larger within-study variances in Table 1) trials 2, 3 and 8 

contribute less weight to the analysis.
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To summarise, the proposed BoS statistics and study weights add further insight to the 

previous analysis of these data.21 For example, we can see that the study weights differ very 

considerably for the two survival outcomes but the weights are much more similar for the 

blood pressure outcomes.

5.2 Meta-analysis of partially and fully adjusted results

The Fibrinogen Studies Collaboration13 used a bivariate meta-analysis to account for the 

correlation between partially adjusted and fully adjusted risk factor effects. Specifically, they 

examine whether fibrinogen is a risk factor for CVD using individual patient data from 31 

studies. Log hazard ratios were estimated from a Cox regression, indicating the effect 

associated with a one unit increase in fibrinogen on the rate of CVD. All studies allowed a 

partially adjusted hazard ratio to be obtained, where the hazard ratio for fibrinogen was 

adjusted for the same core set of known risk factors, including age, smoking, BMI and blood 

pressure. However, a fully adjusted hazard ratio was only calculable in 14 studies, which 

additionally adjusted for cholesterol, alcohol consumption, triglycerides and diabetes. The 

data required for bivariate meta-analysis is provided in the supplementary material, where 

the within-study correlations are derived using nonparametric bootstrapping. The fully and 

partially adjusted effects of fibrinogen are modelled in a bivariate meta-analysis. We assume 

that the 17 missing fully adjusted hazard ratios are missing at random: this assumption is 

perfectly reasonable because the additional covariates that are included in the fully adjusted 

analyses are systematically missing in this meta-analysis.13

The bivariate and univariate random-effects meta-analysis results are shown in the bottom 

part of Table 2. Here the estimated between-study correlation in the random-effects meta-

analysis is one.13 These analyses give almost identical estimates for the summary hazard 

ratios and the between-study standard deviations for both partially and fully adjusted effects. 

However, by utilising the large within-study and between-study correlations (all close to 

one), the bivariate meta-analysis has increased precision for the fully adjusted summary 

result: the standard error of the pooled log hazard ratio is about 30% smaller in the bivariate 

(0.27) compared to univariate (0.39) analysis. This is due to the bivariate analysis borrowing 

strength from the partially adjusted estimates, especially in those 17 studies where only 

partially adjusted estimates were available. This is reflected by a large BoS statistic of 53%, 

indicating that 53% of the information in the fully adjusted pooled result is due to the 

partially adjusted estimates. In contrast, BoS is just 1.9% for the partially adjusted summary 

result, as partially adjusted estimates are available in all 31 studies and so it gains little from 

the fully adjusted results. If BoS is instead calculated using equation (16), then it is again 

53% for the fully adjusted result but negative (−8%) for the partially adjusted result. Figure 

1 shows augmented forest plots for the partially and fully adjusted effects. These plots show 

the univariate random-effects models’ overall summary results in the usual way. However 

the bottom of the forest plots are augmented with the bivariate meta-analysis estimates and 

confidence intervals and the BoS statistic from equation (11). Furthermore, the bivariate 

weights from equation (13) and the study specific BoS statistics (12) are also shown as 

percentages with the univariate weights. Figure 1 illustrates how additional information from 

the partially adjusted estimates is being borrowed in the bivariate meta-analysis. Our new 

results presented here provide much more insight into how the partially adjusted estimates 
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contribute to the estimate of the fully adjusted effect of fibrinogen than was hitherto 

possible. For example, from Figure 1 we can see that the partially adjusted results contribute 

heavily in the bivariate analysis; indeed they contribute almost half of the total information 

toward the fully adjusted summary result despite providing no direct evidence about this 

quantity. Furthermore, some studies that do not provide fully adjusted estimates provide 

more weight to the estimation of the fully adjusted estimate than some studies that provide 

both types of estimate.

5.3 Network meta-analysis: Thrombolytic treatments after acute myocardial infarction

Lu and Ades7 present a network meta-analysis of 28 trials that compare eight thrombolytic 

treatments after acute myocardial infarction: for brevity we refer to these treatments as A to 

H. Of interest is a comparison of the odds of mortality by 30–35 days for each pair of 

treatments. The supplementary material provides the raw data in terms of the number of 

deaths and the total patients for all studies. Here we use these data to estimate log odds 

ratios, and their variances and within-study correlations, for each pair of treatments in each 

study. As there are eight treatments, there are 28 comparisons of interest overall. However, 

only 13 of these comparisons are directly compared in the same trial. Further, the maximum 

number of trials providing direct evidence for a particular comparison is only eight (C versus 

A). Thus, there is an opportunity to borrow strength in this example because each treatment 

comparison can utilise correlated (indirect) information from other pairs of treatment in the 

network.

To model the data we choose a common reference group in all studies (here, we chose 

treatment A) and express all available treatment comparison estimates in relation to this 

reference group. We then fit a multivariate meta-analysis model, using the estimated log 

odds ratios as outcome data, in seven dimensions that describes the treatment effects of B, C, 

D, E, F, G, and H versus A. As the reference treatment A was unavailable in many studies, a 

data augmentation approach was used.9 Then for example, under the consistency 

assumption, the log odds ratio of C versus B can be expressed as the difference between the 

log odds ratio estimate of C versus A and the log odds ratio for B versus A. For further 

details, including how the within-study correlations were obtained, see White et al.9 and 

White.26 The multivariate model was fitted with a common between-study variance 

assumed for all treatment comparisons, and all between-study correlations forced to be 0.5: 

this form of between-study variance structure is justified under the assumption that the 

heterogeneity variance is the same for all treatment comparisons for every study.8

The study estimates and multivariate meta-analysis results are displayed in Figure 2 for all 

those comparisons where direct evidence was available in at least one trial. In order to 

conveniently evaluate BoS for all pairwise comparisons, and not just those involving A, the 

model was repeatedly refitted using the other seven treatments B–H as the reference group. 

This refitting was for computational convenience only; the model fit does not depend on the 

choice of reference group. An equivalent approach would be to perform a single model fit 

and instead calculate the quantities required for pairwise comparisons not involving A as 

contrasts of pairwise estimates that do involve A. BoS for each pairwise comparison is 

presented in Table 4 and the values are often large, due to the large amount of ‘indirect’ 
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information available in the network. From Table 4 we can see that symmetrical results are 

obtained by this process so that the BoS statistics are the same regardless of which treatment 

is used as the reference. The weights for the contrasts with treatment A as the reference 

treatment are provided in the supplementary materials.

Table 4 shows clearly how the indirect information contributes to the analysis. For example, 

the comparison of H versus B has a BoS of 97.8%, as there are only 2 trials with direct 

evidence and neither of these two trials are large. This BoS is reflected by a substantial 

difference in the pooled estimates from multivariate (summary OR = 1.19, 95% CI: 1.06 to 

1.35) and univariate (summary OR = 3.87; 95% CI: 1.74 to 8.58) analyses, with the former 

much closer to one. BoS is 100% for some comparisons, such as D versus A, that have no 

direct evidence. In contrast, BoS is 0% for E versus B, as no indirect evidence contributes to 

this effect.

This example illustrates how BoS can be derived for any network meta-analysis model that 

can be expressed in the multivariate meta-analysis framework. Extensions might consider 

assuming different between-study variances for some comparisons or an inconsistency 

model. However, a global test for inconsistency is non-significant in this example.9

6 Discussion

We have proposed a framework for calculating BoS statistics and study weights in 

multivariate meta-analysis. Whilst recognising the potential usefulness of alternative ideas, 

we find our approach especially attractive because we are able to incorporate BoS statistics 

and weights into the same framework. Our weights are equal to BoS statistics when studies 

do not estimate the corresponding effect. We have shown how our proposed statistics can be 

displayed in both tabular form and in forest plots and have explained how they are a useful 

aid to inference.

The strategy of comparing the variance of estimates from the multivariate and univariate 

models in section 2.2 is highly reminiscent of comparing the variance of estimates from the 

random-effects and fixed-effect models in order to calculate I2 statistics that quantify the 

impact of between-study heterogeneity.15 I2 statistics however have a completely different 

interpretation to the BoS statistics and weights that we develop here. It is perfectly 

reasonable to obtain large BoS statistics and small I2 statistics, and vice versa.

Since our methodology takes the variance components as fixed and known when calculating 

BoS statistics and weights, it may be used with alternative random effects models, such as a 

reduced model where all between-study variances are assumed to be the same as in our third 

example. Our ideas are therefore broadly applicable. We have however assumed a ‘two-

stage’ approach to estimation. In the first stage we obtain estimates and within-study 

covariance matrices which we combine at the second stage. One-stage approaches allow us 

to relax the within-study normality assumption and so we do not in general use a 

multivariate normal model when using this type of approach. Extending our methods to 

handle non-normal data in the context of a one-stage approach is perhaps the most obvious 

avenue for further work. We are currently investigating how to best extend the methodology 
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to include study level covariates, so that our methods may be used in the context of 

multivariate meta-regression analyses. The equivalence of the use of data-point coefficients 

and entries of the hat matrix to define weights does not extend to multivariate meta-

regression models.

To summarise, we have proposed a method for calculating BoS statistics and study weights 

for conventional multivariate meta-analyses, which we have embedded into a single 

framework. We suggest that these new statistics are a useful aid to inference and should 

routinely accompany multivariate and network meta-analyses just as weights are 

conventionally shown on forest plots and in standard output from meta-analysis computer 

programs and packages. All our proposals are easily computed and so add very little to the 

computational demands of performing multivariate meta-analyses.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of 
this article: Richard Riley, Malcolm Price, Dan Jackson, and Ian White are supported by funding from a 
multivariate meta-analysis grant from the MRC Methodology Research Programme (grant reference number: MR/
J013595/1). Dan Jackson and Ian White are also supported by the Medical Research Council Unit Programme 
number U105260558.

References

1. van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate 
approach and meta-regression. Stat Med. 2002; 21:589–624. [PubMed: 11836738] 

2. Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Stat Med. 2011; 
30:2481–2498. [PubMed: 21268052] 

3. Riley RD, Abrams KR, Lambert PC, et al. An evaluation of bivariate random effects meta-analysis 
for the joint synthesis of two correlated outcomes. Stat Med. 2007; 26:78–97. [PubMed: 16526010] 

4. Kirkham JJ, Riley RD, Williamson PR. A multivariate meta-analysis approach for reducing the 
impact of outcome reporting bias in systematic reviews. Stat Med. 2012; 31:2179–2195. [PubMed: 
22532016] 

5. Higgins JPT, Jackson D, Barrett JK, et al. Consistency and inconsistency in network meta-analysis: 
concepts and models for multi-arm studies. Res Synth Methods. 2012; 3:98–110. [PubMed: 
26062084] 

6. Krahn U, Binder H, Konig J. A graphical tool for locating inconsistency in network meta-analyses. 
BMC Res Methodol. 2013; 13:35.

7. Lu G, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat 
Assoc. 2006; 101:447–459.

8. Salanti G, Ades AE, Higgins JPT, et al. Evaluation of networks of randomised trials. Stat Methods 
Med Res. 2008; 17:3105–3124.

9. White IR, Barrett JK, Jackson D, et al. Consistency and inconsistency in network meta-analysis: 
model estimation using multivariate meta-regression. Res Synth Methods. 2012; 3:111–125. 
[PubMed: 26062085] 

10. Simel DL, Bossuy PMM. Differences between univariate and bivariate models for summarizing 
diagnostic accuracy may not be large. J Clin Epidemiol. 2009; 62:1292–1300. [PubMed: 
19447007] 

11. Sohn SY. Multivariate meta-analysis with potentially correlated marketing study results. Naval Res 
Logist. 2000; 47:500–510.

12. Trikalinos TA, Hoaglin DC, Schmid CH. An empirical comparison of univariate and multivariate 
meta-analyses for categorical outcomes. Stat Med. 2014; 33:1441–1459. [PubMed: 24285290] 

Jackson et al. Page 17

Stat Methods Med Res. Author manuscript; available in PMC 2017 May 06.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



13. Fibrinogen Studies Collaboration. Systematically missing confounders in individual participant 
data meta-analysis of observational cohort studies. Stat Med. 2009; 28:1218–1237. [PubMed: 
19222087] 

14. Riley RD. Multivariate meta-analysis: the effect of ignoring within-study correlation. J R Stat Soc. 
2009; 172:789–811.Ser A

15. Jackson D, Riley R, White IR. Quantifying the impact of between-study heterogeneity in 
multivariate meta-analyses. Stat Med. 2012; 31:3805–3820. [PubMed: 22763950] 

16. Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other 
multi-parameter associations. Stat Med. 2012; 31:3821–3839. [PubMed: 22807043] 

17. White IR. Multivariate random-effects meta-regression: updates to mvmeta. Stata J. 2011; 11:255–
270.

18. Rukhin A. Estimating heterogeneity variance in meta-analysis. J R Stat Soc. 2013; 75:451–469.Ser 
B

19. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7:177–188. 
[PubMed: 3802833] 

20. Wei Y, Higgins JP. Estimating within-study covariances in multivariate meta-analysis with multiple 
outcomes. Stat Med. 2013; 32:1191–1205. [PubMed: 23208849] 

21. Riley RD, Price MJ, Jackson D, et al. Multivariate meta-analysis using individual participant data. 
Res Synth Methods. 2015; 6:157–174. [PubMed: 26099484] 

22. Chen H, Manning AK, Dupuis J. A method of moments estimator for random-effect multivariate 
meta-analysis. Biometrics. 2012; 78:1278–1284.

23. Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform 
multivariate random effects meta-analyses. Stat Med. 2010; 39:1282–1297.

24. Jackson D, White IR, Riley RD. A matrix-based method of moments for fitting the multivariate 
random effects model for meta-analysis and meta-regression. Biometr J. 2013; 55:231–245.

25. Ma Y, Mazumdar M. Multivariate meta-analysis: a robust approach based on the theory of U-
statistic. Stat Med. 2011; 30:2911–2929. [PubMed: 21830230] 

26. White IR. Network meta-analysis. Stata J. 2015 (accepted). 

Appendix 1. Proof of equation (8)

Equation (8) asserts that  , where 

 and er is the unit column vector with 1 in the rth 

position. We use the standard result about the multivariate normal distribution that

Hence

as stated in equation (8).
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Appendix 2. Proof of the independence of all 2n terms in equation (9)

This independence of all 2n terms is established because the estimates from separate studies 

are assumed to be independent, so that the only dependence between these 2n terms could 

occur when  are from the same study. From equations (2) and (4), 

these expressions involving scores for the ith study are jointly multivariate normal, so 

establishing that there is no correlation between these terms proves their independence. Then 

. The law of total covariance, 

cov(X, Y) = E[cov(X, Y|Z)]+cov(E[X|Z], E[Y|Z]), with , 

noting that  given yir is a constant and making use of equation (8), shows that 

 so that  and hence all 2n terms 

are independent, as stated.
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Figure 1. 
Forest plots for the bivariate random effects meta-analysis of the partially and fully adjusted 

effects of fibrinogen. The modified BoS statistic (16) for the partially adjusted effect is 

negative which means that the corresponding multivariate confidence interval is wider than 

the univariate one in the first forest plot.

Jackson et al. Page 20

Stat Methods Med Res. Author manuscript; available in PMC 2017 May 06.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Figure 2. 
Forest plots for the network meta-analysis of thrombolytic treatments after acute myocardial 

infarction.
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Table 1.

Data required for a multivariate meta-analysis of the 10 hypertension trials.

Treatment effect estimates
(within-study variances) Within-study correlations

Trial SBP (1) DBP (2) CVD (3) Stroke (4) (1)&(2) (1)&(3) (1)&(4) (2)&(3) (2)&(4) (3)&(4)

 1   −6.66 (0.72) −2.99 (0.27) −0.09 (0.17) −1.91 (1.17) 0.79   0.01 −0.01 −0.02 −0.02 0.16

 2 −14.17 (4.73) −7.87 (1.44)   0.06 (0.13) −0.15 (0.17) 0.50   0.11   0.10   0.09   0.10 0.64

 3 −12.88 (10.31) −6.01 (1.77) −0.17 (0.20)   0.75 (0.35) 0.59 −0.21 −0.05 −0.04 −0.04 0.10

 4   −8.71 (0.30) −5.11 (0.10) −0.24 (0.03) −0.29 (0.07) 0.77   0.09   0.02   0.13   0.04 0.52

 5   −8.70 (0.14) −4.64 (0.05) −0.18 (0.03) −0.41 (0.11) 0.64   0.04   0.04   0.04   0.04 0.42

 6 −10.60 (0.58) −5.56 (0.18) −0.23 (0.02) −0.20 (0.03) 0.50   0.00   0.03 −0.02   0.00 0.62

 7 −11.36 (0.30) −3.98 (0.075) −0.32 (0.02) −0.45 (0.02) 0.48 −0.01 −0.02 −0.03 −0.03 0.69

 8 −17.93 (5.82) −6.54 (1.31) −1.87 (1.17)   0.32 (0.83) 0.59 −0.02 −0.07 −0.03   0.00 0.35

 9   −6.55 (0.41) −2.08 (0.11) −0.33 (0.09) −0.48 (0.04) 0.45   0.11   0.08   0.03   0.03 0.78

10 −10.26 (0.20) −3.49 (0.04) −0.26 (0.03) −0.55 (0.03) 0.48   0.05   0.04   0.04   0.05 0.62

SBP:systolic blood pressure; SBP: systolic blood pressure; CVD: cardiovascular disease.
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Table 2.

Meta-analysis results for the first two examples.

Example Model Measure

Effect
type

Estimate 95% CI τ

BoS %
(equation (12)) BoS

r

′RV
%

(equation (16))

Hypertension Uni SBP MD −10.16 (−12.06, −8.27) 2.68 –     –

(section 5.1) Uni DBP MD   −4.58 (−5.59, −3.57) 1.47 –     –

Uni CVD HR     0.78 (0.69, 0.89) 0.00 –     –

Uni Stroke HR     0.68 (0.59, 0.79) 0.00 –     –

Multi SBP MD −10.22 (−12.14, −8.30) 2.73 0.9%   −2.4%

Multi DBP MD   −4.63 (−5.67, −3.60) 1.51 0.5%   −5.1%

Multi CVD HR     0.79 (0.69, 0.91) 0.05 4.2%   −8.3%

Multi Stroke HR     0.73 (0.61, 0.87) 0.14 20.8% −57.2%

Fibrinogen Uni Part HR     1.41 (1.33, 1.49) 0.10 –     –

(section 5.2) Uni Full HR     1.31 (1.22, 1.42) 0.07 –     –

Multi Part HR     1.41 (1.33, 1.50) 0.11 1.9%   −8.4%

Multi Full HR     1.31 (1.25, 1.38) 0.07 53.3%   53.1%

‘Uni’ indicates that the results are obtained from univariate meta-analyses and ‘Multi’ indicates that the results are obtained from multivariate meta-

analyses. ‘MD’ denotes mean difference and ‘HR’ denotes hazard ratio. Analyses were performed on the mean difference and log hazard ratios 

scales;  is the estimated between-study standard deviation on the mean difference and log hazard ratio scales and the BoS statistics are also on 

these scales. The estimated between study correlations in the multivariate meta-analysis for example one are (SBP, DBP): 0.79, (SBP, CVD): −0.31 

(SBP, Stroke): −0.53 (DBP, CVD): −0.83 (DBP, Stroke): −0.94, (CVD, Stroke): 0.97. The estimated between-study correlation in the multivariate 

meta-analysis for example two is 1.

SBP:systolic blood pressure; SBP: systolic blood pressure; CVD: cardiovascular disease; Part: partially adjusted effect of fibrinogen level; Full: 

fully adjusted effect of fibrinogen level.
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Table 3.

Study weights (%) and BoS (%) for each outcome, expressed as percentages, in the multivariate meta-analysis 

of the 10 hypertension trials.

Direct information % (equation (14)) BoS % (equation (12)) Weight % (equation (13))

Trial SBP DBP CVD Stroke SBP DBP CVD Stroke SBP DBP CVD Stroke

 1 10.94 10.49   2.69   0.6 0.04 0.00 0.35 3.29 10.98 10.49 3.03 3.88

 2   7.34   7.21   3.55   3.7 0.17 0.40 0.23 1.07 7.51 7.62 3.77 4.77

 3   5.04   6.62   2.24   1.91 0.47 0.05 0.76 1.80 5.50 6.67 2.99 3.71

 4 11.54 11.23 14.37   8.3 0.04 0.01 0.20 1.08 11.57 11.24 14.57 9.38

 5 11.77 11.48 13.78   5.37 0.03 0.01 0.15 2.69 11.80 11.49 13.92 8.06

 6 11.12 10.87 17.04 13.74 0.01 0.01 0.30 0.30 11.13 10.88 17.34 14.04

 7 11.53 11.37 23.63 19.82 0.01 0.02 1.05 5.07 11.55 11.39 24.68 24.89

 8   6.74   7.46   0.39   0.83 0.14 0.03 0.44 1.79 6.88 7.49 0.83 2.62

 9 11.36 11.21   4.73 11.84 0.01 0.00 0.72 3.52 11.37 11.21 5.45 15.36

10 11.69 11.52 13.37 13.11 0.01 0.01 0.03 0.17 11.70 11.54 13.4 13.28

Total 99.07 99.46 95.78 79.22 0.93 0.54 4.22 20.78 100     100     100   100   

SBP: systolic blood pressure; SBP: systolic blood pressure; CVD: cardiovascular disease.
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Table 4.

BoS (%) for each pairwise comparison in the thrombolytics network meta-analysis.

Pairwise
comparison A B C D E F G H

A – 18.86 1.12 2.11 100 53.46 80.63 11.45

B 18.86 – 100 6.82 0 30.02 60.58 97.81

C 1.12 100 – 100 100 100 57.24 11.44

D 2.11 6.82 100 – 100 100 100 100

E 100 0 100 100 – 100 100 100

F 53.46 30.02 100 100 100 – 100 100

G 80.63 60.58 57.24 100 100 100 – 100

H 11.45 97.81 11.44 100 100 100 100 –
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