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Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium
of a model microcavity

P. R. Eastham and P. B. Littlewood
Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom

~Received 31 January 2001; published 8 November 2001!

We consider a generalization of the Dicke model. This model describes localized, physically separated,
saturable excitations, such as excitons bound on impurities, coupled to a single long-lived mode of an optical
cavity. We consider the thermal equilibrium of this model at a fixed total number of excitons and photons. We
find a phase in which both the cavity field and the excitonic polarization are coherent. This phase corresponds
to a Bose condensate of cavity polaritons, generalized to allow for the fermionic internal structure of the
excitons. It is separated from the normal state by an unusual reentrant phase boundary. We calculate the
excitation energies of the model, and hence the optical absorption spectra of the cavity. In the condensed phase
the absorption spectrum is gapped. The presence of this gap distinguishes the polariton condensate from the
normal state and from a conventional laser, even when the inhomogeneous linewidth of the excitons is so large
that there is no observable polariton splitting in the normal state.

DOI: 10.1103/PhysRevB.64.235101 PACS number~s!: 71.35.Lk, 71.36.1c, 71.35.Aa, 64.60.Cn
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I. INTRODUCTION

In the strong-coupling regime for matter and light, rad
tive decay of a material excitation gives way to coupled
cillations of the polarization of the matter and of the elect
magnetic field. The quasiparticles corresponding to s
coupled modes are known as polaritons.1 The classic realiza-
tion of polaritons is excitons in a bulk semiconduct
coupled to photons in free space, as discussed many y
ago by Hopfield.2 In this example, wave-vector conservatio
ensures that each exciton is coupled only to a single mod
the electromagnetic field, leading to the formation of pola
tons which are superpositions of a single exciton and pho
Recently, there has been a lot of interest in polaritons form
from photons confined in cavities: such cavity polarito
have now been observed for confined photons coupled
atoms,3 to two-dimensional excitons in quantum wells,4 to
bulk excitons,5 to excitons in films of organic
semiconductors,6,7 and to charged exciton complexes.8

Since polaritons are photons coupled to other excitatio
they are bosons, and so are candidates for B
condensation.9 Recent observations10–14 of bosonic behavior
for cavity polaritons have renewed interest in this idea.

However, there is a conceptual difficulty with a Bose co
densate of polaritons: while polaritons are usually conside
in the low-excitation linear regime, Bose condensates
stabilized by nonlinearities.15 For cavity polaritons, there is
also the following more practical difficulty. Bose conde
sates are characterized by coherence, and in a polariton
densate this coherence will appear in the photons. Given
how is a polariton condensate distinct, conceptually and
servationally, from a laser?

In this paper we address these problems by developin
theory of polariton condensation in the Dicke model.16 This
nonlinear model of confined photons coupled to matter is
of the basic models of laser physics. It allows us to go
yond the conventional linear-response concept of a polari
including effects due to finite excitations of the matter in t
0163-1829/2001/64~23!/235101~12!/$20.00 64 2351
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cavity. In the language of semiconductors, it includes
‘‘saturation’’ or ‘‘band-filling’’ nonlinearity, produced by the
fermionic internal structure of the excitons.

Polaritons are not conserved particles, so there is u
mately no equilibrium condensate. We may, however, tr
polaritons as conserved particles if their lifetime is mu
longer than the time required to achieve thermal equilibri
at a fixed polariton number. We will study this quasiequili
rium regime, since it is in this regime that Bose condensat
is well defined.9

In Sec. II, we introduce the model, and explain how t
concept of a polariton can be generalized to allow for
nonlinearity of the model. We then present, in Secs. III a
IV, a simple variational technique for calculating the grou
state of the model at a fixed density of polaritons. In Sec
we investigate the thermodynamics of the model using
alternative technique based on functional integrals. T
technique demonstrates that the variational approach is
sentially exact, and allows us to consider finite temperatu
In Sec. VI, we use the expressions derived by the functio
integral method to study the phase diagram for condensa
while in Sec. VII, we use these expressions to calculate
excitation spectra of the model. These excitation spectra
vide a physical picture of the transition to the condens
state, and determine the absorption spectrum of the ca
Finally, in Sec. VIII we discuss our conclusions.

The functional integral approach to the thermodynam
of our model has already been the subject of a brief repo17

We extend this earlier report to allow for a distribution of th
energies of the electronic excitations, i.e., inhomogene
broadening, which is significant in many potential realiz
tions of the polariton condensate.

II. MODEL

The Dicke model16,18 consists of a set ofN two-level os-
cillators coupled to a single mode of the electromagne
field by the dipole interaction. The two-level oscillators d
not interact with one another, except through their comm
©2001 The American Physical Society01-1
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coupling to the electromagnetic field. We generalize
original Dicke model to include an energy distribution of t
two-level oscillators. Making the rotating-wave approxim
tion ~see, e.g., Refs. 18 and 19!, we consider the Hamiltonian

H5(
Eg~n!

2
~b†b2a†a!1vcc

†c1H8, ~1!

H85
g

AN
( ~b†ac1c†a†b!.

Here the two-level oscillators are indexed by the variablen,
which is summed over. We use a fermionic representation
the two-level oscillators, describing each one in terms o
pair of fermions with annihilation operatorsa and b. For
brevity we suppress the indexn on the fermionic operators
The fermions are subject to the single-occupancy constr

b†b1a†a51 ~2!

on each site.c is the annihilation operator for the cavit
mode,Eg(n) is the energy of thenth two-level oscillator,
andg is the strength of the dipole coupling.

The Hamiltonian ~1! is a simple model of a three
dimensional cavity~photonic dot!,20,21 containing localized,
physically separated electronic excitations. Although sim
fied, it is a useful starting point for many systems. For e
ample, each of the two-level oscillators could describe
presence or absence of a localized exciton in a given eig
state of the disorder potential in a disordered quantum w
on a given molecule in an organic film, or trapped on
particular impurity. The restriction to singly occupied stat
is an idealization of the hard-core repulsion produced by
fermionic structure of such excitations. It describes spinl
excitations localized in traps which are only big enough
contain a single exciton. It is straightforward to general
our calculations to describe larger traps, which allow fo
finite number of excitons on each site.

H8 couples the photons to excitations of the two-lev
oscillators, created by the operatorS15(1/AN)(b†a. If
Eg(n)5Eg then the excited states which are created byS1

from the vacuum are eigenstates of the bare HamiltonianH.
If furthermore N is large and the two-level oscillators a
near to their ground state,

1

2 ( ^b†b2a†a&'2N/2, ~3!

then S1 is approximately a bosonic creation operator, a
the Hamiltonian ~1! becomes two coupled boso
oscillators.22 Polaritons are usually presented as the eig
states of such a model.

Away from the low-excitation limit ~3!, S1 is not a
bosonic creation operator, and the conventional descrip
of polaritons breaks down. To go beyond the low-excitat
limit, we generalize the concept of a polariton to be t
quantum of excitation of the coupled matter-light syste
The polariton number is then the total number of photo
and excited two-level oscillators,
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Npol5L1N/25c†c1
1

2 ( ~b†b2a†a!1N/2, ~4!

which is a conserved quantity for the model~1!. Equation~4!
defines the operatorL, which we refer to as the excitatio
number. We define a corresponding excitation densityrex
5^L&/N, which is the total number of photons and electron
excitations, per two-level oscillator, minus one-half. Sin
the numbers of photons and electronic excitations are p
tive, the lowest excitation density is20.5. Since the numbe
of electronic excitations is always less thanN, the electronic
contribution torex is always less than 0.5.

The thermal equilibrium of the Dicke model, in the a
sence of an externally created population of polaritons,
been studied extensively since the pioneering exact solu
of Hepp and Lieb.24 These authors showed that, even in t
absence of external excitation, the Dicke model has a ph
transition to a Bose condensed state. Such an equilibr
condensate is a static, coherent state of photons: it
ferroelectric.25 Here we are interested in the thermal equili
rium of a population of polaritons: the quasiequilibriu
problem posed by Eq.~1! at a fixed excitationL. The quasi-
equilibrium condensate which we find in this regime is
time-varying generalization of the ferroelectric state disco
ered by Hepp and Lieb.

III. VARIATIONAL APPROACH

We can write down a variational state which describes
polariton condensate by noting that Bose condensates
described by coherent states. This produces a variati
wave function closely related to the BCS wave function us
to describe superconductors and exciton condensates. A
been stressed by Comte and Nozie`res,26 this class of wave
function can describe an exciton condensate in both the l
and high-density limits. It thus permits a smooth interpo
tion from low densities, where the excitons are simp
bosons, to high densities, where their fermionic inter
structure is revealed. In a similar way, it allows us to explo
the polariton condensate beyond the low-density regime
which polaritons are usually considered.

The constituents of our proposed condensate are the e
tations of the whole system, counted byL. In general, such
an excitation is a superposition of an excitation of the cav
mode and an excitation of the electronic states. Thus we
for our trial wave-function a coherent state of such a sup
position:

ul,w&5elc†1(1/AN)(
n

wnb†auvac&, ~5!

where the stateuvac& has a single fermion in the lower sta
of each two-level oscillator. The state~5! has a finite polar-
ization of the electronic excitations as well as a finite amp
tude for the cavity field.l andwn are the variational param
eters. Expanding the exponential, Eq.~5! explicitly becomes
a superposition of a coherent state of photons and a B
state of the fermions,
1-2
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BOSE CONDENSATION OF CAVITY POLARITONS . . . PHYSICAL REVIEW B64 235101
ul,u,v&5elc†

)
n

~vnb†1uneifna†!u0&. ~6!

Here l,un ,vn , and fn are the variational parameters, an
u0& denotes the vacuum state with no fermions in any of
levels. By construction, this variational state obeys
single-occupancy constraints~2!. We fix the overall phase o
the condensate by choosingl to be real. Thefn have been
explicitly introduced to make theu andv real. They are the
phase differences between the cavity field and the polar
tions of the electronic states.

To find the ground state of Eq.~1! at fixed excitation
number we minimize

^H2mexL&5ṽcl
21(

n
«̃n~vn

22un
2!12

g

AN
lunvn cos~fn!,

~7!

ṽc5vc2mex ,

«̃n5
Eg~n!2mex

2
,

with respect to the variational parameters, subject to the
malization conditionsun

21vn
251.

Although the overall phase of the condensate is arbitr
the relative phasesfn are not: there is only one order param
eter. The relative phasesfn are fixed by the last term in Eq
~7!, the dipole coupling. This term ensures that all the tw
level oscillators which have a finite dipole moment (un
Þ0,1) are mutually coherent,fn5f, when the energy is
minimized. It is the dipole interaction which is responsib
for Bose condensation, and its accompanying coherence,15 in
the present system. Settingfn50 and defining an intensive
l by rescalingl→lAN, the condensate parameters a
given by the real solutions withlunvn,0 to

ṽcl1
g

N (
n

unvn50, ~8!

2«̃nunvn2gl~vn
22un

2!50.

mex was introduced as a Lagrange multiplier constrain
the excitation number. It is the chemical potential for o
coupled modes, and is related implicitly to the excitati
density by

rex5
1

N K c†c1
1

2 ( b†b2a†aL 5l21
1

2N (
n

~vn
22un

2!.

~9!

Eliminating un and vn from Eqs.~8! and ~9! we can re-
write these expressions as

ṽcl5
g2l

2N (
n

1

uEnu
, ~10!
23510
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1

2N (
n

«̃n

uEnu
, ~11!

where we define

En5sgn~ «̃n!A«̃n
21g2ulu2. ~12!

Equation~10! is analogous to the BCS gap equation, with
order parameterl.

IV. ZERO-TEMPERATURE PROPERTIES

To investigate the expressions~10!–~12!, we replace the
summations over sites with an integral over the energy
tribution of the two-level oscillators. We take this distribu
tion to be a Gaussian with meanE0 and variancesg. The
remaining parameters in our quasi-equilibrium problem
then the excitation densityrex and the dimensionless detun
ing between the energy of the cavity mode and the cente
the exciton line,D5(vc2E0)/g.

For a Gaussian density of states, the summation on
right of Eq. ~10! diverges asl→0, and approaches zero a
l→`. Thus for anymex,vc there is always a condense
solution,lÞ0, to Eq.~10!: the system is condensed at arb
trarily small excitation densities. This behavior is produc
by the tails of the Gaussian distribution. Because of th
tails, we have excitons at arbitrarily low energies, and he
also bound exciton-photon states at arbitrarily low energ
It is impossible to populate just the excitons, because
matter how smallmex is, there is always a bound state in
volving photons below it. We expect that if the density
states has a lower cutoff, and is continuous at this cut
there would be a finite criticalmex below which there is no
condensed solution to Eq.~10!.

Let us investigate the dependence ofmex on rex in the
absence of inhomogeneous broadening,s50. At low densi-
ties,rex'20.5, mex can be obtained from Eq.~10!. Expand-
ing this expression for smalll and comparing the leading
terms, we find thatmex is given by the conventional linear
response polariton energy, mex5ELPB5 1

2 @(vc1Eg)
2gAD214#. At finite densities we calculatemex numeri-
cally, by solving Eqs.~10! and ~11! to determinerex(mex).
The results are plotted in the right-hand panel of Fig. 1,
D50,1, and 3. At low densities we are describing a cond
sate of conventional polaritons, and so havemex5ELPB . As
the density is increased the exciton states saturate, for
the excitations to become more photonlike. Thus the che
cal potential approachesvc at high densities. ForD.2 the
separation between the excitonlike and photonlike exc
tions persists torex50.5, where the exciton states are com
pletely saturated. This results in a discontinuity inmex at this
point, since no further excitation can be added to the exc
states.

The dependence ofmex on rex in the inhomogeneously
broadened case is also illustrated in the right-hand pane
Fig. 1. It is qualitatively rather similar to the homogeneo
case. Instead of the finite intercept of the homogeneous
we now havemex→2` as rex→20.5. This behavior is
again caused by the tails of the Gaussian distribution.
1-3
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demonstrate howmex approaches the conventional polarito
energyELPB in the homogeneous, low-density limit, we com
pare the behavior ofmex with the density of states for th
linear-response excitations of the empty (rex520.5) cavity.
This density of states is the optical absorption spectrum
the cavity, and is plotted in the left-hand panel of Fig. 1
s50.5 andD50,1, and 3. We will describe how it is calcu
lated in Sec. VII. At very low densities,mex lies in the tails
of the exciton distribution. With increasing density, the
states quickly saturate, producing a sharp rise inmex . As mex
reaches the polariton peak, the sharp rise in the densit
states for the coupled modes produces a kink in the chem
potential. In the homogeneous limit, this kink moves to ze
density and corresponds to the usual polariton energy. S
the density of states at this point is infinite in the homog
neous limit, these polaritons are simple bosons.

Figure 2 shows the occupation of the two-level oscillat

FIG. 1. Right-hand panel: dependence of the chemical pote
on excitation density for detuningsD50, 1, and 3 and variance
s50, 0.5, and 1. Left-hand panel: absorption spectrum for a mic
cavity atrex520.5 andT50 for s50.5 and the same three detu
ings.

FIG. 2. Occupation of the two-level oscillators at zero tempe
ture as a function of energyE for D53, T50, s50.5, and densities
rex520.4, 20.2, 0, 0.2, 0.4, 0.6~dot-dashed curves, increasin
from left to right! andrex5100 ~dotted curve!. The shaded region
shows the Gaussian distribution of oscillator energies used.
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in the polariton condensate, forD53, s50.5, and various
densities. The occupation number of thenth two-level oscil-
lator is

1

2
~vn

22un
211!5

1

2
S 12

«̃n

uEnu D .

As is clear from the figure, this is a Fermi step broadened
the interaction with the photons, just as the electronic dis
bution in a BCS superconductor is a Fermi step broade
by the pairing interaction. The states in the broadened reg
of the step have a finite dipole moment and are involved
the condensate. The Fermi step moves up through the exc
line as the excitation is increased fromrex520.5 and the
low-lying electronic states saturate. At very large densit
there are a large number of photons, and the Fermi ste
almost completely flat: rather than the electronic syst
completely saturating in the high-density limit, it approach
half filling. This is because the half filled state maximizes t
polarization of the electronic states and hence minimizes
dipole interaction between the excitons and the macrosc
cally occupied cavity mode.

Careful inspection of Fig. 2 reveals that the broadening
the Fermi step produced by the photons does not incre
monotonically with density. This corresponds to a nonmon
tonic dependence of the field amplitudel on density. This
dependence is illustrated in Fig. 3. The field amplitude
related to the electronic polarization by the first of Eqs.~8!. It
is proportional to the electronic polarization and inverse
proportional to the separation between the chemical poten
and the cavity mode. The electronic polarization depends
the density of states in the vicinity of the chemical potent
~Fig. 2!; the peak in the density of states at the center of
exciton line produces the peak in Fig. 3.

al

-

-

FIG. 3. The order parameterl as a function of density, for
s50.5 and D50 ~top curve!, 1 ~middle curve!, and 3 ~bottom
curve!. l2 is the photon number per two-level oscillator in the co
densed state.
1-4
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V. LARGE- N EXPANSION

The variational approach of Secs. III and IV becomes
act in the thermodynamic limitN→`. Physically, this is
because it corresponds to a mean-field treatment of the in
action between electronic excitations. This interaction,
tween a large number~N! of electronic excitations, is medi
ated by a small number~one! of cavity modes. In a mean
field treatment of this interaction, each electronic excitat
is coupled to the average field produced in the cavity by
other electronic excitations. This becomes exact when th
are a large number of electronic excitations contributing t
small number of field modes, since the fluctuations of
field are then negligible.

In this section, we develop a mean-field theory for t
thermodynamics of the model~1! from the functional-
integral representation of the partition function. In this re
resentation, the partition function can be rigorously eva
ated, for largeN, using a saddle-point analysis.27 From such
an analysis, we derive finite-temperature generalization
the variational expressions~10!–~12!, thus demonstrating
that they are rigorous in the limit of largeN.

The functional integral techniques used here have pr
ously been used27,28 to calculate the partition function an
excitation energiesin the absence of a constraint on the p
lariton numberof a simplification of the Dicke model. While
the Hamiltonian of the model discussed in Refs. 27 and 2
given by Eq.~1! with Eg(n)5Eg , the local constraints pro
hibiting two fermions on the same site, Eq.~2!, are replaced
with a global constraint. In contrast, we retain Eq.~2! as
local constraints, as well as including a distribution ofEg
and a constraint on the polariton number.

As in Secs. III and IV, we work in a grand-canonic
ensemble, using a chemical potentialmex to constrain the
excitation number. We consider the partition function asso
ated with this ensemble,

Q5Tr e2b(H2mexL).

The coherent-state functional-integral formalism allows us
expressQ, for the model~1!, as the constrained functiona
integral

Q5E Dc)
n

@Dhnd~h̄nhn21!#e2S,

with the action

S5E
0

b

dtc̄~]t1ṽc!c1(
n

h̄nMnhn .

We have introduced a Nambu spinor

hn5S bn

an
D

for each two-level oscillator. The matrixMn is

Mn5S ]t1 «̃n gc/AN

gc̄/AN ]t2 «̃n
D .
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Rescaling the boson fieldc→ANc and transferring the
fermionic integrals into the action gives

Q5E DcuJue2NSeff,

with an effective action

Seff5E
0

b

dtc̄~]t1ṽc!c2
1

N (
n

Sf,n , ~13!

Sf,n5 lnE Dhnd~h̄nhn21!e2*0
b h̄ nPnhn,

in which thePn are the matrix operatorsMn after rescaling
the boson field, andJ denotes the trivial Jacobian arisin
from this rescaling.

A. Mean-field equation

For large N, the dominant contribution to the partitio
function Q comes from those functionsc0(t) which mini-
mize the actionSeff . Such functions obey the Euler-Lagrang
equation. For the action~13!, this takes the form

~]t1ṽc!c0~t!5
1

N (
n

dSf,n

dc̄
U

c(t)5c0(t)

52
g

N (
n

^ān~t!bn~t!&, ~14!

where the right-hand side of this expression is the polar
tion of the two-level oscillators in thermal equilibrium drive
by an external fieldc0(t). This polarization appears becau
the field c0(t) modifies the eigenstates29 of the electronic
system. A thermal population of these new eigenstates
correspond to a finite polarization of the original fermion
Equation~14! is a self-consistency condition: the cavity fie
is driven by the polarization of the fermions, which itse
arises from the renormalization of the fermions produced
the photons.

Assuming that the self-consistent fieldc0(t) is indepen-
dent oft, we can calculate the polarization term on the rig
of Eq. ~14! by making a Bogolubov transformation,

hn5S cos~u!eif 2sin~u!

sin~u! cos~u!e2 ifD S dn

gn
D , ~15!

from the bn and an fermions to new fermionsdn and gn .
This transformation diagonalizesPn when f5argl and
tan 2u5gulu/ «̃n . The dn and gn quasiparticles then hav
energies6En respectively, withEn defined by Eq.~12!.
Since Eq.~15! is a rotation inh space, it preserves the sing
occupancy constraints. Thermally populating the new fer
ons in accordance with the single occupancy constraints
have
1-5
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^ānbn&5
1

2
eif sin~2u!^d̄ndn2ḡngn&

5
1

2
eif sin~2u!tanh~bEn!,

and Eq.~14! becomes

ṽcl5
g2l

2N (
n

1

En
tanh~bEn!. ~16!

Equation~16! is the finite-temperature generalization
the variational result~10!. This generalization is rathe
straightforward: we have just acquired tanh(bE) factors de-
scribing the thermal occupation of the two-level oscillato

If we remove the constraint on the polariton number,
settingmex50, and setEg(n)5Eg , then Eq.~16! is the form
originally derived by Hepp and Lieb24 for the unconstrained
equilibrium of the Dicke model. In that problem, the exi
tence of a condensate requires

vcEg

g2
,1, ~17!

since otherwise Eq.~16!, with mex50 andEg(n)5Eg , has
only the trivial solutionl50. However, it is shown in Refs
30 and 31 that theA2 terms of the minimal-coupling Hamil
tonian, neglected in the model~1!, modify the inequality~17!
in a way which is inconsistent with the Thomas-Kuhn-Re
sum rule. This sum rule requireskEg /g2.1, wherek is the
coupling constant for theA2 term, while the modified in-
equality ~17! reads

~vc12k!Eg

g2
,1. ~18!

Since this inequality cannot be satisfied, the phase trans
in the unconstrained case is an unphysical artifact of
model ~1!. However, we do not believe that theA2 terms
prevent condensation in the constrained case, becaus
inequality corresponding to Eq.~18! will be

~ṽc12k!~Eg2mex!

g2
,1,

and the parametermex is not restricted by the sum rule.

B. Effect of fluctuations

Let us now consider the effect of small fluctuationsdc~t!
around the mean-field solution. ExpandingSeff to second or-
der in a functional Taylor series around the mean-field so
tion we have

Q'e2NS0E D~dc!uJue2NS2[dc,dc̄] . ~19!

HereS0 is the action evaluated on the extremal trajectory a
S2 is the quadratic action from the second order term in
Taylor series.S2 is the effective action for small fluctuation
23510
.
y

on
e

the

-

d
e

of the electromagnetic field. The kernel ofS2 , G21, is the
inverse of the thermal Green’s function for the photons.

The integral over fluctuations in Eq.~19! contributes a
term

1

N
ln detG21

to the free-energy density. Since the mean-field solut
should be a minimum of the action, the eigenvalues ofG21

should be positive. Then ln detG21 is finite asN→`, there
is no fluctuation contribution to the free-energy density
this limit, and the mean-field theory becomes exact.

C. Effective action for fluctuations

However, we have yet to check whether the solutions
Eq. ~16! are actually minima of the action or merely extrem
i.e., whether the mean-field solutions are stable against fl
tuations. To check this, we will need the effective actionS2,
which we derive in this section.

To obtainS2, we calculate the~functional! second deriva-
tives of Seff , and evaluate them on the extremac(t)
5c0(t)5l. In the frequency representation, the comp
nents ofS2 are

]2Seff

]c~v!]c̄~v8!
5bd~v82v!F iv1ṽc2

g2

N

3(
n
E

0

b

e2 ivt~^sn
2~t!sn

1~0!&

2^sn
2&^sn

1&!dtG , ~20!

and

]2Seff

]c~v!]c~v8!
52bg2d~v81v!

1

N

3(
n
E

0

b

eivt~^sn
1~t!sn

1~0!&

2^sn
1&^sn

1&!dt. ~21!

v and v8 denote bosonic Matsubara frequencies,sn
1

5bn
†an is the polarization operator for thenth two-level os-

cillator, and the integrands are the susceptibilities of the tw
level oscillators in the self-consistent fieldl.

Equations~20! and ~21! describe coupled fluctuations o
the cavity field and the electronic polarization. They a
analogous to the Dyson-Gor’kov-Beliaev equations27 of the
theory of superconductors and weakly interacting Bo
gases. Because we are working with a condensed sys
there is an anomalous contribution toS2, Eq. ~21!, from fluc-
tuations which do not conserve the number of excitatio
above the condensate, i.e., those in which an excitation
ters or leaves the condensate.
1-6
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BOSE CONDENSATION OF CAVITY POLARITONS . . . PHYSICAL REVIEW B64 235101
To calculate the susceptibilities which appear in Eq.~20!,
we rewrite them in terms of the renormalized two-level o
cillators using the transformation~15!, transform to the
Schrödinger representation, and take thermal and quant
mechanical averages over the renormalized eigenstates.
gives

S2@dc,dc̄#5
b

2 (
v

~dc̄~v!,dc~2v!!G21S dc~v!

dc̄~2v!
D ,

G215S K1 K2

K2* K1*
D , ~22!

K15 iv1ṽc1
g2

N (
n

F 1

En
tanh~bEn!

i «̃nv22«̃n
22g2ulu2

v214En
2

1dvanulu2g2G ,

K25
g4l2

N (
n

F 1

En~v214En
2!

tanh~bEn!1dvanG ,

an52
b

4En
2

sech2~bEn!,

which simplifies to

S25b(
v

dc̄~v!F iv1ṽc

1
1

N (
n

g2i

v22i «̃n

tanh~b«̃n!Gdc~v! ~23!

in the normal statel50.
An unusual feature of Eq.~22! is that it changes form a

zero frequency due to the Kronecker delta terms. Th
terms come from a static piece of the electronic suscepti
ties in Eqs.~20! and ~21!. This piece describes the gran
canonical fluctuations in the occupation numbers of
renormalized two-level oscillators. Hence the change in fo
of Eq. ~22! at zero frequency is due to the fluctuations of t
condensate density in the grand-canonical ensemble.

D. Nature of the extrema

We now use the expressions~22!–~23! to investigate the
nature of the extrema whenEg(n)5Eg . Considering first a
condensed solution,lÞ0, we use the extremal equation~16!
to eliminate (1/En)tanh(bEn) from the matrixG21. The ei-
genvalues of the resulting matrix are all strictly positive p
vided thatṽc.0, except for a single zero eigenvalue atvn
50. From Eq.~16! we see that the condensed solutions
ways haveṽc.0. Thus we conclude that, at a condens
solution, the action has a minimum in all but one directio
and is locally flat in this one direction.
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We show in the Appendix that the single zero eigenva
describes a change in the overall phase of the condensa
is the Goldstone mode corresponding to the broken ga
symmetry of the condensate. Because we are consideri
broken symmetry state, we should not integrate over th
fluctuations when calculating the partition function. Sin
the other eigenvalues ofG21 are always positive for the con
densed solutions, these solutions are stable against phy
fluctuations, and the mean-field theory is exact. In the A
pendix, we give a formal demonstration that the zero mo
does not contribute to the free-energy density asN→`, so
that the presence of the zero mode does not invalidate
discussion of Sec. V B.

Turning now to the normal solution,l50, we find from
Eq. ~23! that this is a minimum of the action unless

ṽc,
g2

2«̃
tanh~b«̃ !. ~24!

This is just the condition for the extremal equation~16! to
have a condensed solution. Thus we have the usual sce
of a continuous phase transition: there is a phase boun
~24!, at which the normal state becomes unstable an
stable, condensed solution appears.

E. Density equation

As well as the mean-field equation~16!, we need the
equation relating the densityrex to the corresponding chemi
cal potentialmex . This is obtained from the partition func
tion in the standard way,

rex5
1

bN

]

]mex
ln Q. ~25!

The asymptotic form for the partition function isQ;e2NS0,
where S0 is the minimal action. Inserting this asymptot
form in Eq. ~25! gives, for the solutionc0(t)5l,

rex5ulu22
1

2N (
n

«̃n

En
tanh~bEn!, ~26!

which is the generalization of Eq.~11! to finite temperatures
The first term in Eq.~26! is the contribution to the exci-

tation density from the macroscopic electromagnetic fie
while the second term is the contribution from the therm
population of renormalized electronic excitations. In the a
sence of a macroscopic electromagnetic field,l50, both the
photon contribution and the renormalization of the electro
excitations disappear. The expression~26! is then the famil-
iar form for the excitation of a set of two-level oscillators

VI. PHASE DIAGRAM

From Eqs.~24! and~26! we find critical temperatures fo
the transition between the normal and condensed states,
function of the excitation density, in the homogeneo
model:
1-7
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bcg5
4 tanh21~2rex!

D6AD228rex

. ~27!

The two-valued phase boundary~27! gives regions of reen
trance in the phase diagram, where the condensate exis
both the high- and low-temperature sides of the normal st
Note that the critical temperatures depend logarithmically
the density, with a scale set by the interaction strengthg.
This contrasts with a model of propagating, weakly intera
ing bosons, where the transition temperature varies a
power law of the density with a scale set by the mass of
bosons. At low densities, Eq.~27! is the phase boundar
separating a population of electronic excitations with ene
E0 from a population of conventional polaritons with ener
ELPB . To see this, note that such a transition would oc
when the chemical potential for the electronic excitatio
reaches ELPB , corresponding to a densityrex10.5
'e2bc(E02ELPB), which is the low-density limit of Eq.~27!.

For the inhomogeneous model, we calculate the ph
boundary numerically, assuming the same Gaussian distr
tion of energies as in Sec. IV. We obtain the critical chemi
potential for condensation,mc(bc), by demanding that Eq
~16! have a repeated rootl50, and then use Eq.~26! to
obtain the critical densityrc(bc).

In Fig. 4 we plot the homogeneous phase boundaries~27!,
along with numerical results for the inhomogeneous mo
with s50.5 and 1. On resonance,D50, the transition tem-
perature increases monotonically with density. The system
always condensed forrex.0, because to exceed this dens
would require a chemical potential above the center of
energy distribution of the electronic excitations, and hen
above the bosonic cavity mode. While forD,0 ~not illus-
trated! the phase boundary is qualitatively unchanged fr
the resonant case, forD.0 we find reentrant behavior. Thi
behavior is the result of the saturable nature of the electro
states. It can be understood by considering the limitsrex→
60.5 when D is large and positive. Near therex520.5
limit, the normal state consists of a small number of el
tronic excitations, weakly interacting with each oth
through the cavity mode. They condense when their den
exceeds a critical value set by the strength of their inter

FIG. 4. Phase boundaries forD50 ~left-hand panel!, D51 ~cen-
ter panel!, andD53 ~right-hand panel!, and variancess50 ~solid
lines!, s50.5 ~dotted lines!, and s51 ~dashed lines!. For D53,
s51 the upper branch of the phase boundary lies off the sc
while for D53, s50.5 the lower branch is indistinguishable fro
the homogeneous case.
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tion, which is determined byD and g. Near therex50.5
limit, the electronic system is constrained to be fully occ
pied, and the normal state consists of a small numbe
holes in an otherwise completely excited electronic syste
These holes again interact through the cavity mode, and
the transition occurs when the density of holes, 0.52rex ,
exceeds a critical value. AsD→` the critical densities of
holes and excitons become identical, so the phase diagra
symmetric aboutr50. For finiteD, the interaction is stronge
for the holes than for excitons, since they are nearer in
ergy to the cavity mode, and so the phase boundary beco
skewed to the forms shown.

At temperatures which are high compared with the inh
mogeneous broadeningsg, thermal fluctuations dominate
over the inhomogeneous broadening. Thus at these temp
tures the inhomogeneous broadening has little effect, as
be seen in Fig. 4. However, at low temperatures the inhom
geneous broadening suppresses condensation by incre
the energy separation between the electronic excitations
the photons, collapsing the phase boundaries towardsrex
50. The effects of inhomogeneous broadening are furt
illustrated in Fig. 5, which shows the dependence of the c
cal density ons at various temperatures for detuningsD50
andD51.

VII. EXCITATION ENERGIES

In this section, we use Eqs.~22! and ~23! to study the
excitation spectra of the quasiequilibrium states of the mo
~1!. The excitation spectra we calculate explain the form
the phase diagrams in Fig. 4. The excitation spectra of
two quasiequilibrium states are different from each oth
and also from the excitation spectrum of a conventional
ser. Since the excitation spectrum is directly related to
optical absorption spectrum of the cavity, which is an expe
mentally accessible quantity, these spectra offer a clear
perimental signature of polariton condensation.

A. Homogeneous model

We begin with the normal state of the homogeneo
model. The inverse of the normal-state Green’s function c
tained in Eq.~23! can be written as a sum of simple poles

e,

FIG. 5. Dependence of the critical density on the inhomo
neous broadenings, for D50 ~left-hand panel! and D51 ~right-
hand panel!, andb51 ~top curve!, 3, 5, 7, 9, 11, 13~lowest curve!.
1-8
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G~vn!5
C1

ivn1E1
1

C2

ivn1E2
. ~28!

The structure of this thermal Green’s function is clear:
have two excitations, with quasiparticle energies,

E61mex5@~vc1Eg!6gAD228rex#/2,

and corresponding weights,

C656~2«̃2E6!/~E22E1!.

These normal-state excitations are polaritons in the gen
sense of Hopfield:2 coupled modes involving the linear re
sponse of the electronic system around its equilibrium st
The gap in the spectrum is increased over the bare detu
D owing to the dipole coupling between the excitons and
cavity mode. The presence of excitation in the ground st
either driven by finite temperatures or by finitemex, causes
the two polariton branches to attract. This attraction is due
the decrease in the polarizability of the electronic states
their population increases and saturation occurs. It can
be understood in terms of an angular moment
representation16 for the collective states of the electronic sy
tem. In such a representation, the excitation of the electro
states corresponds to the z component of an angular mom
tum, while their polarization corresponds to the raising o
eratorS1 . Thus the polarizability of the electronic states
maximized at̂ Sz&52N/2.

Since condensation is a phase transition, we expe
qualitatively different excitation spectrum in the condens
state. From Eqs.~22! and ~16!, we find for the normal ther-
mal Green’s function

G11~ ivnÞ0!5
ṽc~v212g2ulu2!2 iv~v214E212ṽc«̃ !

~ ivn!2~ ivn1j!~ ivn2j!
,

~29!

with j5A(ṽc12«̃)214g2ulu2. The form~29! is only valid
at finite frequencies, since we have discarded the Krone
deltas in Eq.~22!. We are considering this finite-frequenc
form because it describes only the excitation spectrum of
condensate, while the zero-frequency form also includes
thermodynamic fluctuations of the condensate. The (ivn)2 in
Eq. ~29! is associated with the phase mode of the condens
discussed in the Appendix. The remaining poles ativ56j
describe the quasiparticle excitations. These quasipart
are coupled exciton-photon modes in the presence of
macroscopic electromagnetic field of the condensate.j is
analogous to the pair breaking energy in a superconducto
is the energy required to extract an exciton-photon comp
from the condensate. Note that if we remove the photon c
tribution to this energy, by settingṽc50, thenj becomes the
familiar expression29 for the energy of an electron-hole pa
in the presence of a classical electromagnetic field at
quencymex .

In Fig. 6, we illustrate the evolution of the excitation e
ergies of the microcavity with increasing density. To expla
the relationship between the excitation energies and
phase diagram, we also plot the chemical potentials for
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normal and condensed states on this figure. The left pane
this figure should be compared to thegb52 line of the
corresponding phase diagram, which is the left-hand pane
Fig. 4. WhenD50 andrex520.5 the system is in the nor
mal state. Increasingrex populates the electronic excitation
increasing the chemical potential and decreasing the po
iton splitting. Eventually the chemical potential crosses
lower polariton branch from below and the system co
denses. At the critical density, the lower polariton bran
joins to the phase mode at the chemical potential, the up
branch joins to the ‘‘pair breaking’’ excitation, and an exc
tation appears below the chemical potential. This latter ex
tation has zero weight at the transition. It corresponds to
excited state to ground-state transition, where an excit
photon complex is absorbed into the condensate. There i
corresponding excitation in the normal-state Green’s fu
tion, because the ground state of theN11 particle system
(N11 excitons! cannot be reached from the excited states
the N particle system (N21 excitons and 1 polariton! by
adding a photon.

The relationship between the excitation spectrum and
phase diagram is slightly different when the transition occ
for rex.0. For example, in the right panel of Fig. 6 th
chemical potential crosses the lower polariton branch atrex

50 without the condensate appearing. It is not until t
chemical potential crosses the upper polariton branch tha
transition occurs. This can be understood by considering
signs of the quasiparticle weightsC6 . A positive quasipar-
ticle weight corresponds to absorption of an external field~a
particlelike transition!, whereas a negative quasipartic
weight corresponds to gain~a holelike transition!. For rex
.0, the lower polariton branch has a negative weight: it h
become holelike, and must be below the chemical poten
for stability. At the transition it is now this lower branc
which joins to the ‘‘pair forming’’ excitation of the conden
sate, while the upper branch joins to the phase mode and
‘‘pair breaking’’ excitation appears above the phase mode

FIG. 6. Excitation energies and chemical potentials as a func
of density for the homogeneous model atD50 ~left-hand panel!
and D52 ~right-hand panel!, both with gb52. Thin solid lines:
normal-state excitation energies. Thick solid lines: condensed-s
excitation energies. Dashed lines: normal-state chemical poten
Dot-dashed lines: condensed-state chemical potential. The sha
marks the condensed region for thisb.
1-9



t

l
t

g
e

e

P. R. EASTHAM AND P. B. LITTLEWOOD PHYSICAL REVIEW B64 235101
FIG. 7. Spectral functions~op-
tical absorption spectra! A(v), for
D50, gb52, s51, and chemi-
cal potentials (mex2Eg)/g525,
21.5,21.0,20.76,20.75,20.70,
increasing from top left to bottom
right through the transition a
(mex2Eg)/g520.76. The top
row of plots are in the norma
state, the bottom left-hand plot a
the transition and the remainin
plots in the condensed state. Th
vertical dashed lines mark th
chemical potential.
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B. Inhomogeneous model

Since the inhomogeneous model has a distribution of
citations, we must study the spectral functionA(v). A(v) is
proportional to the imaginary part of the retarded Gree
function,

A~v!52 ImGR~2v1mex!. ~30!

It is proportional to the optical absorption coefficient of t
cavity at frequencyv, i.e., the imaginary part of the electro
magnetic susceptibility. We obtainGR from the thermal
Green’s function using the standard32 continuation

GR~v!5 lim
h→01

G~ ivn5v2 ih!, ~31!

which will again omit the thermodynamic fluctuations of th
condensate described by the Kronecker delta pieces of
~22!. Inverting theG21 contained in Eq.~22! and using Eqs.
~30! and ~31! expressesA(v) in terms of integrals over the
distribution of energies of the two-level oscillators. W
evaluate these integrals in the limith→0 by settingh50 in
the integrands and deforming the contour of integrat
around the poles of the integrand on the real axis. The c
tribution to the integrals from the detour around the po
can be performed analytically, leaving a principal value in
gral which we evaluate numerically.

Figure 7 shows the evolution of our calculated absorpt
spectraA(v) as we increase the density through the tran
tion, for gb52, s51, andD50. The corresponding chem
cal potential is marked as the dashed line. For the em
cavity, rex520.5, we recover the absorption spectrum c
culated by Houdre´ et al.33 Comparison with Fig. 6 shows
that, for these parameters, the positions of the polar
peaks are largely unaffected by the inhomogeneous broa
23510
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ing. However, since the polaritons are now resonant wit
significant density of electronic states they become bro
ened. Increasing the chemical potential, but remaining in
normal state, we see the thermal occupation factors prod
ing gain below the chemical potential and increased abs
tion just above. The collapse of the polariton splitting evide
in Fig. 6 is hardly noticeable at these low densities. As
density is increased still further a pole appears inA(v) at the
chemical potential; this marks the onset of condensat
Above the critical density the coherent cavity field, oscilla
ing at frequencymex , produces a gap of magnitude 4gulu in
the spectrum. The peak on the high-energy side of the
connects smoothly to the upper polariton peak of the nor
state, just as in the homogeneous case. In the homogen
case we noted the appearance of an excitation below
chemical potential as we crossed the transition. This is
present in the inhomogeneous case, but for the parame
used in Fig. 7 it is far too weak to be visible.

VIII. CONCLUSIONS

Real microcavities are far more complex than the ide
ized model~1!. However, like our model, they consist o
photons coupled to electronic excitations which are boson
low densities, but reveal their fermionic internal structure
high densities. We have shown how the polariton conden
may be generalized to allow for the saturation nonlinea
produced by such fermionic structure. The saturation non
earity can produce~i! a collapse of the splitting between th
peaks in the absorption spectrum of the normal state w
increasing density,~ii ! a shift of the chemical potential of th
condensate away from the conventional polariton energy,
~iii ! an unusual reentrant phase boundary for condensati

Experimental work on cavity polaritons has concentra
1-10
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on microcavities containing high-quality GaAs quantu
wells. In these systems, the excitons are weakly bound,
rather delocalized. Thus while the saturation nonlinearity d
cussed here is present for these excitations, it will be acc
panied by other nonlinearities produced by the overlap of
wave functions of different excitons and the ionization
excitons.34,35 These effects may well prevent condensatio
but are separated from the saturation nonlinearity consid
here in systems with localized, tightly bound excitons. N
also that tightly bound excitons have a large dipole coupl
g, and hence the transition temperature will be large.

For real examples of localized oscillators, there will
some energyEm above which delocalized states exist. T
picture of a condensate formed from localized oscillat
then only holds whenEm2mex is large compared withb21

andg. By considering Fig. 6, we deduce that to complete
realize a reentrant phase diagram like that shown in Fig
requires an energy gapDE separating the localized and d
localized excitations; this gap must be large compared wig
and b21. Such a gap could occur in organ
semiconductors.6,7 In these systems, excitons are strong
bound and therefore small~Frenkel!. They readily self-trap
on local lattice distortions and on impurities in these, oft
highly disordered, materials. An energy gapDE could exist
in inorganic quantum wells if the excitons move in a pote
tial containing deep, well-separated traps, perhaps assoc
with interface islands in narrow quantum wells.36–38

The disordered quantum wells studied by Hegartyet al.39

provide an example of a system without a gap separating
localized and delocalized excitations. These systems sho
single inhomogeneously broadened exciton line, unlike
quantum wells of Refs. 36–38. The ‘‘mobility edge’’Em lies
near to the center of the exciton line. One may be able
form a condensate which does not involve delocalized e
tations using this type of quantum well if the inhomogeneo
broadening is large compared withg and b and the cavity
mode is placed low down in the exciton line. The transiti
would then occur when the chemical potential is well se
rated fromEm .

The polariton condensate described here is formed fro
quasithermal population of electronic excitations which
renormalized by the coherent photons in the cavity. T
renormalization, embodied in the Bogolubov transformat
~15!, produces a gap of magnitude 4gulu in the absorption
spectrum of the condensate. Such renormalizations,
hence the gap, are absent in conventional semicondu
lasers,40 for which a quasithermal population of thebare
electronic excitations is assumed. Thus the presence or
sence of a gap allows the polariton condensate to be di
guished from a conventional laser.

In a conventional laser, the renormalization of the el
tronic excitations by the photons, and hence the gap, is
sent because the electronic polarization is very hea
damped. The destruction of a gap by damping is well kno
in superconductors, where it is associated with magnetic
purities. Such impurities suppress the gap, eventually to z
The destruction of the gap does not coincide with the
struction of the order parameter, however: near toTc there is
a regime of gapless superconductivity, in which there is
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order parameter but no gap in the single-particle spectr
This regime should correspond to the conventional semic
ductor laser, although the actual damping mechanisms
differ.

The nonequilibrium analog41 of the crossover illustrated
in Figs. 6 and 7, from a two-peaked polariton spectrum t
‘‘Stark triplet,’’ has been observed experimentally in Ref. 4
In this experiment, the gapped absorption spectrum is
served simultaneously with the excitation pulse. Thus th
is no thermalization involved in producing this spectrum.
is the result of coherence in the excitation pulse, rather t
the spontaneous coherence of condensation. Nonethe
these experiments demonstrate the renormalization of
electronic states that is essential in the polariton condens

To reach the quasiequilibrium regime we have describ
requires a system where the polariton lifetime is long co
pared with the time required to reach thermal equilibrium
a fixed number of polaritons. Current semiconductor mic
cavities have lifetimes for the photons, and hence the pol
tons, of the order of picoseconds. Finding an exciton sys
which thermalizes on this time scale may be difficult. Ho
ever, there seems no reason to suppose it is impossible,
ticularly beyond the linear regime, since nonlinearities c
enhance relaxation.10 Furthermore, microcavities are avai
able with lifetimes far greater than picoseconds. For
ample, silica microspheres have confined modes with l
times of microseconds.43
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APPENDIX: THE PHASE MODE

In this Appendix we investigate the zero eigenvalue
G21 that appeared while studying the stability of the conde
sate in the homogeneous case. We first prove that this ze
also present in the inhomogeneous model, and that it
scribes phase fluctuations of the condensate. It is thus
Goldstone mode reflecting the degeneracy of the gro
state with respect to the phase of the order parameter.
then argue that this zero eigenvalue does not contribute to
free-energy density in the thermodynamic limit. Although t
physics we discuss in this Appendix is well understood
general, it is particularly transparent in our simple model

We note that, atv50, K1 is real and positive. The eigen
values ofG21 are thenK16uK2u. Since from the explicit
forms of K1 , K2, and the extremal equation~16! we have
uK2u5K1, as required in general by the Hugenholtz-Pin
relation,27,44 G21 has a zero eigenvalue.

To illustrate that the zero eigenvalue is the phase mod
the condensate, note that since argK252 argl52f we can
write

G21}S 1 e2if

e22if 1 D .
1-11
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The eigenvector of this matrix with zero eigenvalue is p
pendicular in the complex plane to the order parameterl.

Since we are considering a broken symmetry system,
should not include states with different phases of the or
parameter when calculating the partition function. Thus
physical grounds, we should discard this zero mode w
computing the partition function.

A formal approach which allows calculations in the pre
ence of this zero eigenvalue is to introduce symme
breaking terms which are taken to zero after the thermo
namic limit. This is the standard method for applyin
statistical mechanics to broken symmetry systems.45 The ap-
propriate symmetry-breaking terms for a Bose conden
s

,

ev

t-

23510
-

e
r

n
n

-
-
y-

d

system pin the phase of the order parameter. They
sources and sinks for the photons, and appear in the effec
actionSeff as (1/AN)(c̄J1 J̄c). These terms do not contrib
ute directly to Eq.~22!, but appear as a source term in E
~16!. The original zero eigenvalue ofG21 is now K12uK2u
52J/(c0AN). Since for the equilibrium solution we mus
havef2argJ5p, the contribution of the original zero ei
genvalue to the free-energy density is proportional to

lim
J→0

lim
N→`

1

N
lnS uJu

uluAN
D 50.
iz.
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