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by charging the probed structure electrically.
This measurement is more sensitive than the
one discussed above because the trapping
parameters can be adjusted independently
from the measured potential landscape by
using a separate wire for holding the BEC.

The optimal potential sensitivity of a BEC
used as a field sensor, �B���N/z0

3, is
achieved if the trapping parameters are
adjusted so that the cloud’s transverse size
matches the desired spatial resolution z0. Here
�N is the minimal atom-number variation
resolved by the imaging system, and � contains
all the atomic-physics parameters of the spe-
cific atom (��8.63�10�29 tesla cubic metres
for the 87Rb used in our experiment). Currently
available CCD (charge-coupled device) cam-
eras allow atom-shot noise-limited detection
with a �N value of better than 10 atoms per
pixel in absorption imaging, so that a sensitiv-
ity, �B, of 1 nanotesla is possible even at a high
spatial resolution of 1 �m (or 1 picotesla at
10 �m). By changing to a different atom with
higher mass and/or by reducing the inter-
atomic interaction, a significant increase in
sensitivity can be achieved. 

A comparison of different magnetic-field
measurement techniques1–4,12 (see supplemen-
tary information) shows that BECs as mag-
netic sensors could reach unprecedented
sensitivity over a large range of spatial resolu-
tion. The sample measurements we present
here reach higher sensitivities than those
obtained with established techniques operat-
ing at the same spatial resolution.
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BOSE–EINSTEIN CONDENSATES 

Microscopic magnetic-field imaging
Today’s magnetic-field sensors1 are not capa-
ble of making measurements with both high
spatial resolution and good field sensitivity.
For example, magnetic force microscopy2

allows the investigation of magnetic structures
with a spatial resolution in the nanometre
range, but with low sensitivity, whereas
SQUIDs3 and atomic magnetometers4 enable
extremely sensitive magnetic-field measure-
ments to be made, but at low resolution. Here
we use one-dimensional Bose–Einstein con-
densates in a microscopic field-imaging tech-
nique that combines high spatial resolution
(within 3 micrometres) with high field sensi-
tivity (300 picotesla). 

Trapped cold atoms are ideal magnetic 

sensors as they are very sensitive to changes in
magnetic-field landscapes, even in the pres-
ence of large homogeneous offset fields. Den-
sity modulations in trapped thermal atomic
clouds have already been used as a measure of
magnetic field variation caused by irregular
current flow in nearby conductors5–8. We have
produced a versatile, high-resolution sensor
based on Bose–Einstein condensates (BECs).
Its sensitivity is not limited by the temperature
T of the cloud, but is rather determined by the
chemical potential � of the condensate, which
can be orders of magnitude lower than kBT
(where kB is Boltzmann’s constant). 

The principles of the technique are shown in
Fig. 1a. A BEC is trapped at the measurement
site so that its density profile can be directly
imaged. The spatially varying density is a mea-
sure of the potential energy and hence of the
local magnetic-field variation. To probe spatial
magnetic-field variations, we start by confining
a one-dimensional BEC (in which � is smaller
than an energy quantum of transverse excita-
tion)9 in an elongated magnetic micro-trap
with strong transverse and weak longitudinal
confinement, created by small conductors
mounted on the surface of an atom chip10. 

As a demonstration, we measured the 
magnetic-field variations above the 100-�m-
wide current-carrying wire used to create the
trap itself. Scanning the position of the BEC
enabled us to reconstruct a full two-dimen-
sional magnetic-field profile (Fig. 1b) near 
the wire with unprecedented accuracy (sensi-
tivity of 4 nanotesla) at the measurement 
resolution (3 �m). From this map, we recon-
structed the local current flow in the wire11

and found extremely small angular deviations
(2�10�4 root-mean-square radians) from a
straight current path (for details, see supple-
mentary information). 

We also investigated an independent field
landscape by placing a BEC close (5 �m) to a
test wire structure. As long as this structure is
grounded and carries no current, the atomic-
density profile is homogeneous within the
detection sensitivity. This corresponds to an
upper bound in potential roughness of less
than 10�14 eV, corresponding to a temperature
of 200 picokelvin (field sensitivity of
300 picotesla). As soon as a small current
(about 5 mA) is passed through the wire, a
characteristic field profile is imaged. 

The technique is applicable not only to mag-
netic fields, but can also be used to detect vari-
ations in electrostatic fields, as can be shown
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Figure 1 | One-dimensional Bose–Einstein
condensate as a magnetic-field sensor.
a, Experimental set-up. A Bose–Einstein
condensate is created and trapped by a current-
carrying wire mounted on a silicon surface 
(atom chip) and is positioned above the sample 
to be probed. b, Two-dimensional scan of the
magnetic landscape (field component along 
the wire direction) above a 100-�m-wide and 
3.1-�m-tall gold wire. This profile has been
reconstructed from 28 equally spaced one-
dimensional atomic-density traces measured
10�m above the current-carrying wire at a
homogeneous offset field of 2 millitesla, so 
that relative field variations of only 4 p.p.m.
stemming from slightly irregular current flow
could be measured at a spatial resolution of 3�m.
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