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Abstract

In the setting of the principle of local equilibrium which asserts that
the temperature is a function of the energy levels of the system, we ex-
hibit plenty of steady states describing the condensation of free Bosons
which are not in thermal equilibrium. The surprising facts are that the
condensation can occur both in dimension less than 3 in configuration
space, and even in excited energy levels. The investigation relative to
non equilibrium suggests a new approach to the condensation, which al-
lows an unified analysis involving also the condensation of q-particles,
−1 ≤ q ≤ 1, where q = ±1 corresponds to the Bose/Fermi alternative.
For such q-particles, the condensation can occur only if 0 < q ≤ 1, the
case 1 corresponding to the standard Bose-Einstein condensation. In this
more general approach, completely new and unexpected states exhibiting
condensation phenomena naturally occur also in the usual situation of
equilibrium thermodynamics. The new approach proposed in the present
paper for the situation of 2nd quantisation of free particles, is naturally
based on the theory of the Distributions, which might hopefully be ex-
tended to more general cases.
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1 introduction

The investigation of the Bose-Einstein Condensation (BEC for short) has a very
long history after discovering a new particle statistics by Satyendra Nath Bose
(cf. [10]) and Albert Einstein (see e.g. [14]) at the beginning of 20th century.
It concerns the fact that a macroscopic amount of elementary particles having
integer spin (called Bosons in honour of N. Bose) can occupy the ground state
after the thermodynamic limit. The simplest and most important ideal model
is that consisting of free massive Bosons. We also mention the Gross-Pitaevskii
equation (cf. [21, 35]) describing a weakly interacting Bose-Einstein condensate
at low temperature. Many phenomena involving quasi-particles like phonons
or magnons can be described by the BEC. Recently, in [25] the condensation
of massless particles like photons has been pointed out as well. Also the phe-
nomenon of the superfluidity of the helium isotope He4 seems to be tightly but
not directly connected with the BEC. In fact, on one hand the superfluidity is
mentioned as one of the most important examples confirming the evidence of
the condensation effects. On the other hand, it is unclear if this phenomenon is
directly connected with the condensation of (quasi) particles, and was explained
by Lev Landau (cf. [27]) with a fluid composed of two indivisible components,
one in the superfluid phase and the other one in the normal phase. At zero
temperature, the He4 is entirely composed by the superfluid component. The
thermal agitation causes the excitation of the part of the dispersion spectrum
corresponding to phonons, and mainly to rotons. In such a way, as the tem-
perature increases, the portion of the superfluid component becomes lover and
lover until to disappear at the critical temperature, known as the λ-point.

The behaviour at low temperatures of particles obeying to Fermi-Dirac
statistics is completely different. Due to Pauli exclusion principle, it is well
known that Fermions (i.e. quantum particles of half-integer spin) does not lead
to any condensation by the Pauli exclusion principle. Nevertheless, the other
isotope helium He3 still exhibits superfluidity at a temperature very close to
0o Kelvin, even if these are Fermi particles. The superfluidity of He3 can be
justified with the fact that at very low temperature, He3-particles form the so
called sea of pair-particles which can be considered as Bosons. Namely, also
He3 can exhibit superfluidity. According to the BCS theory (cf. [7]), it is
precisely the same phenomenon occurring in superconductors where pairs of
electrons forms the so called Bardeen-Cooper pairs. The reader is also referred
to [18, 19, 20], where it is shown the condensation of Bardeen-Cooper pairs in
arrays of Josephson junctions. In this sense, the phenomenon of superconduc-
tivity is also connected with the BEC. Finally, in Sections 11.7 and 11.10 of the
monograph [6], the BCS pairing appears as a general phenomenon of Bosonisa-
tion in the setting of stochastic limit. For a exhaustive treatment of the various
condensation phenomena and perspectives, we mention the sample very far to
be complete, of books [29, 32, 37], and [13] with the literature cited therein, for
a rigorous mathematical approach to BEC.

Typically BEC is considered in states which are in equilibrium at a certain
temperature and with respect to the natural dynamics generated by a given
Hamiltonian. The definition of equilibrium states in terms of Kubo-Martin-
Schwinger (KMS for short) condition (cf. [26, 33]) w.r.t. to a given dynamics
has the advantage compared with the usual Gibbs prescription given in terms
of the Hamiltonian implementing the dynamics, of being valid also after the
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infinite volume limit, see e.g. [22]. It is known that an equilibrium state for a
given dynamics is automatically stationary for this dynamics.

Non Equilibrium Steady States (NESS for short) play also an important role
in non equilibrium thermodynamics. A natural class of NESS naturally emerges
from the stochastic limit of quantum theory, see e.g. [2, 3, 5, 6] and references
therein. States in this class are called local equilibrium (or local KMS states)
where the term local refers to the fact that the temperature is a function of
the Hamiltonian of the system so that any energy level can be thought to be
in equilibrium at a temperature depending on the level itself. Moreover, these
NESS are characterised in terms of a Local Equilibrium Principle, that can be
considered as a generalisation of the usual KMS equilibrium one. The Local
Equilibrium Principle was formulated in [2] for systems with pure-point spec-
trum dynamics. In [1] this principle was formulated for systems whose dynamics
is implemented by a strongly continuous 1-parameter unitary group acting on
a given Hilbert space. Several equivalent (or almost equivalent) formulations
of it were also discussed for systems with pure-point spectrum dynamics. The
present paper extends the above results in several directions as follows.

(i) Exploiting the fact that the quasi-free dynamics (i.e. one-parameter group
of Bogoliubov automorphisms) leave the Weyl C∗-algebra invariant, we give a
purely C∗-algebraic formulation of the Local Equilibrium Principle for quasi-
free (gaussian) NESS with respect to a given quasi-free dynamics, and a given
inverse temperature function β.

(ii) We characterise the structure of these states and we find that, for the affine
function β̃(h) = β(h)h = h−µ

T (with the Boltzmann constant k = 1), hence
including the chemical potential µ, they are reduced to the usual quasi-free
equilibrium states.

(iii) We extend the study the BEC phenomenon to the setting of local equi-
librium quasi-free states that, because of (ii), includes the equilibrium ones as
particular cases.

(iv) In the setting of local equilibrium, we exhibit states exhibiting BEC, not
only on the ground state, but also (or only) on some excited levels, depending
on the function β, entering in the definition of the Local Equilibrium Principle.

(v) We construct examples of local NESS for which BEC occurs also for spatial
dimensions d different from the usual ones (d ≥ 3 for free massive Bosons, and
d ≥ 2 for massless particles).

(vi) We construct local quasi-free NESS, exhibiting BEC in excited levels, for
which the rotation symmetry can be spontaneously broken. The rotationally
invariant ones are obtained by averaging on the spheres in momentum space
{p ∈ Rd | β(h(p)) = 0}, whenever h(p) is the one-particle Hamiltonian of a
free massive Boson.

(vii) We extend our analysis to include the case of q-Deformed Commutation
Relations with q ∈ [−1, 1], and we prove that BEC can occur also for the q-
relations provided that q ∈ (0, 1]. The case q ∈ (0, 1) opens some mathematically
(and maybe also physically) interesting possibilities which at the moment seem
to be unexplored.

(viii) Even in the usual case of equilibrium thermodynamics, we exhibit com-
pletely new states describing BEC, which are mathematically meaningful, and
could have promising physical applications.
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Many of the results of the present paper concerning the 2nd quantisation of
free particles, are obtained by using a new approach based on the theory of the
Distributions, which hopefully might be extended to more general situations.

2 the local equilibrium condition

As a first step in posing the problem, we consider a physical system with a finite
degrees of freedom, whose observables are typically described by the C∗-algebra
of all the bounded operators B(H) acting on a separable Hilbert space H. The
time-evolution is given in Heisenberg picture by

a ∈ B(H) 7→ αt(a) = eıHtae−ıHt ∈ B(H) , t ∈ R ,

where the Hamiltonian H ≥ 0 of the system is a self-adjoint operator acting on
H, which is generally unbounded. To simplify the matter, we suppose that

H =

∞∑

n=0

εn|ψn〉〈ψn| (2.1)

is positive with compact resolvent, with eigenvalues εn ∈ σ(H) and the corre-
sponding eigenvectors ψn ∈ H, repeated according the multiplicity and rear-
ranged in increasing order if needed. Fix any positive function (i.e. the local
inverse temperature) β : R+ → R+ such that e−β(H)H is a trace-class operator.
According to the Local Equilibrium Principle (see e.g. [1] for details and the
literature on the topic), define the state

ωβ(a) := Tr
(
e−β(H)Ha

)
, α ∈ B(H) . (2.2)

Denote F(H) the sub algebra consisting of all the finite-rank operators acting
on H, and vij := |ψi〉〈ψj |, the ψi being the eigenfunctions of H according to
(2.1). It is immediate to show that

z ∈ C 7→ ωβ(aαz(b)) , a ∈ B(H) , b ∈ F(H) ,

is well defined and entire. The Local Equilibrium Principle (LEQ for short)
simply means

ωβ(aαt+iβ(εi)(vij)) = e[β(εi)−β(εj)]εjωβ(αt(vij)a) , a ∈ B(H) .

The LEP, which reduces to the usual KMS boundary condition (cf. [13, 22])
when β is the constant function, is not immediately generalizable to arbitrary
dynamical systems (A, αt) consisting of a C∗-algebra, and an action αt of one-
parameter group of possibly outer ∗-automorphisms of A. A natural way to get
such a possible generalisation at least for inner time-evolution, is to look at the
modified evolution

a ∈ B(H) 7→ α
(β)
t (a) := eıβ(H)Htae−ıβ(H)Ht ∈ B(H) . (2.3)

In the discrete spectrum Hamiltonian case discussed below,

z ∈ C 7→ ωβ(aα
(β)
z (b)) , a ∈ B(H) , b ∈ F(H) ,
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is again well defined and entire, and the state ωβ satisfies the KMS boundary
condition w.r.t. this modified evolution at inverse temperature 1/T = 1.

We end by reporting the property analogous to the well-known one concern-
ing the KMS boundary condition in momentum space. Consider any continuous
compactly supported function f on R, together with its Fourier (inverse) trans-
form f̌ . Then for each a ∈ B(H)

µa(f) :=

∫ +∞

−∞

f̌(t)ωβ(a
∗α

(β)
t (a)) , νa(f) :=

∫ +∞

−∞

f̌(t)ωβ(α
(β)
t (a)a∗)

define Radon measures on R. In this simple situation, µ and ν are linear com-
binations of Dirac measures supported in a subset

Ka ⊂ {β(εn)εn − β(εm)εm | εn, εm ∈ σ(H)} ,

depending of a. In addition, such measures are equivalent with Radon-Nikodym
derivative given by

dµa

dνa
(k) = e−k

where the k ∈ Ka. The last simple calculation has the following meaning.
The set the Bohr Frequencies of a physical system as before consists of all the
possibly energies of the quanta that it can emit or absorb while interacts with the
environment, see [4] for a simple explanation. It is given by {εn − εm | εn, εm ∈
σ(H)}. In the more general case of LEQ, the natural Bohr Frequencies (or
the so-called Arveson Spectrum in the mathematical language) for the possible
transition of the system are precisely those {β(εn)εn−β(εm)εm | εn, εm ∈ σ(H)}
of the modified Hamiltonian Hβ := β(H)H. We end the present section with
the following facts. First, we observe the similar dependence of the temperature
directly on the Arveson Spectrum of the involved automorphism arising from
the spectrally passive states in [15]. Second, we point out again quasi-free states
with non constant temperature described in [12] for non equilibrium relativistic
thermodynamics.

3 local equilibrium principle for free Bosons

Let h the one-particle Hilbert space. The Canonical Commutation Relations
(CCR for short) algebra describes Bose particles and is generated by

a(f)a†(g)− a†(g)a(f) = 〈f |g〉1I f, g ∈ h0 . (3.1)

for a dense subspace h0 ⊂ h. It is well-known that the CCR cannot be repre-
sented as bounded operators acting on some Hilbert space even if h = C. The
standard procedure is to pass to the CCR represented in the Weyl form. It is
the universal C∗-algebra CCR(h0) generated by unitary operators satisfying the
relations

W (h)∗ =W (−h) , W (0) = 1I , (3.2)

W (f)W (g) = ei
Im(f,g)

2 W (f + g) , f, g ∈ h0 .

Thus, with CCR(h0) we denote the universal C
∗-algebra generated by the Weyl

operators {W (f) | f ∈ h0} satisfying the relations (3.2).
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Let h > 0 be the one-particle Hamiltonian. Suppose that eıhth0 = h0.
Then the time evolution is generated by a one-parameter group of Bogoliubov
automorphisms which acts on the Weyl generators as

αt(W (f)) := eıt dΓ(h)W (u)e−ıt dΓ(h) =W (eıthf) , f ∈ h0 , t ∈ R . (3.3)

Here, H = dΓ(h) is the second quantised Hamiltonian, and we have identified
W (f) with its image πF (W (f)) in the Fock representation because CCR(h0) is
a simple C∗-algebra, see e.g. [13, 30] and the references cited therein.

For systems for which h is finite-dimensional, the second quantised Hamil-
tonian H := dΓ(h) has compact resolvent, which typically occurs when one
considers a free gas confined in a box of finite volume. In this framework,
e−β(H)H is automatically trace-class, see e.g. Proposition 5.2.27 of [13]. Thus,
the unique state ωβ satisfying the LEP w.r.t. the time evolution (3.3) is the
quasi-free state uniquely determined by the two-point function

ωβ(a
†(g)a(f)) =

〈
f
∣∣(eβ(h)h − 1

)−1∣∣g
〉
, f, g ∈ h .

By using the CCR (3.1), we have

ωβ(a(g)a
†(e−β(h)hf)) = ωβ(a

†(f)a(g)) , (3.4)

ωβ(a
†(g)a(eβ(h)hf)) = ωβ(a(f)a

†(g)) .

The boundary conditions (3.4) gives the natural generalisation for LEP in the
cases of quasi-free states of CCR algebras, providing several nontrivial examples
for which the dynamics is neither inner, nor has pure-point spectrum in general.

We start with a separable Hilbert space h, together with a self-adjoint
positive Hamiltonian (in general unbounded) h > 0, which are nothing but
the one-particle Hilbert space with the relative one-particle Hamiltonian. Let
ε ∈ R 7→ e(ε) ∈ B(H) be the right-continuous resolution of the identity associ-
ated to h (cf. Section VIII.3 of [36]) according to

h =

∫
ε deh(ε) . (3.5)

Fix a Borel function β : R+ → R+ which is positive almost everywhere w.r.t.
the measure class determined by the projection-valued measure de(ε). The key-
point to manage open thermodynamical systems where exchange of matter is
also allowed, is to introduce the chemical potential, see e.g. [28]. In order to
achieve the chemical potential for local equilibrium, we follow the fact pointed
out in Section 2 which asserts that a state satisfying the LEP is indeed an
equilibrium one for a modified Hamiltonian at inverse temperature 1/T = β = 1.
For the activity z (cf. pag. 47 of [13]), it leads to z(1/T, µ) = z(1, µ) = eµ, where
µ is the chemical potential. This justifies the definition for µ ∈ R in

γµ(x) := eβ(x)x−µ . (3.6)

For the q-particles with q ∈ (0, 1] we have a natural restriction to the value of
the allowed chemical potentials µ coming from the positivity condition of the
occupation number, see below. For the Bose case q = 1, such a condition simply
leads to µ ≤ 0.
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A quasi-free state is a mean-zero gaussian state ω, a-priori defined on the
whole CCR(h). Is uniquely determined by its two-point function as it is ex-
plained in Section 5.2.3 of [13]. In fact, we can start with a quadratic form Q
on h such that

ωQ(a
†(f)a(f)) = Q(f) , f ∈ h .

This means nothing but that in a more rigorous form,

ωQ(W (f)) = exp{−(‖f‖2/4 +Q(f)/2)} , f ∈ h ,

which is meaningful also when Q(f) = +∞. A standard procedure to manage
quasi-free states (see Theorem 5.2.31 of [13], for the situation describing BEC)
is to consider the domain DQ ⊂ h made of all the elements on which Q is finite,
and consider the sesquilinear form FQ defined by polarisation on all of DQ such
that

ωQ(a
†(f)a(g)) = F (g, f) , f, g ∈ DQ .

Thus, we fix a value of µ ≤ 0, and a dense subspace h0 ⊂ h such that

(i) eıhth0 = h0, t ∈ R.

Among the quasi-free states ωQ on CCR(h0), we consider those for which

(ii) h0 ⊂ DQ, and γµ(h)h0 ⊂ DQ, with γµ in (3.6).

The natural generalisation of the LEP to quasi-free states of Bosonic systems is
one of the (equivalent) conditions given in (3.4).

Definition 3.1. Suppose that the dense subspace h0 ⊂ h and the quasi-free
state ω ∈ S(CCR(h0)) fulfill (i)-(ii) above. Then ω satisfies the Local Equi-
librium Principle at local inverse temperature β and chemical potential µ ≤ 0
if

ω(a†(f)a(γµ(h)g)) = ω(a(g)a†(f)) , f, g ∈ h0 . (3.7)

It is immediate to prove (cf. Section 5.3.1 of [13]) that a quasi-free state
satisfying the LEP is invariant w.r.t. the modified evolution (2.3), provided
eıβ(h)hth0 = h0, t ∈ R. In general, it is not clear if it is invariant also w.r.t.
the natural time-evolution of the system generated by the one-parameter Bogoli-
ubov automorphisms t 7→ eıht. However, it is possible to see by direct inspection
for all the cases under consideration in the present paper, that those are indeed
invariant w.r.t. the dynamics generated by the one-particle Hamiltonian. An-
other nontrivial question arises in introducing the chemical potential µ in order
to investigate the thermodynamics of open systems. Our ansatz is to take for
the occupation number nε at energy ε and chemical potential µ (independent
on the energy levels),

nε =
1

eβ(ε)ε−µ − 1
.

Another reasonable choice would be

nε =
1

eβ(ε−µ)(ε−µ) − 1
.

Both choices leads to equivalent results in the usual equilibrium situation (i.e.
if β = const.), but these might lead to different situations in non equilibrium
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ones. The most general situation in introducing the chemical potential would
be that it also depends on the energy levels. Another quite natural choice will
be briefly discussed in Section 7.

As we are going to see, for the Bose case and also for q-particles with q > 0,
we can exhibit a multitude of quasi-free states satisfying LEP and exhibiting
BEC. Among such states, we will find many ones which exhibit unexpected prop-
erties, even in the equilibrium situation. Due to Pauli exclusion principle, the
Fermi case and also q-particles with q ≤ 0, leads to only one stationary quasi-free
state satisfying LEP. In fact, the same analysis can be donemutatis-mutandis for
Fermi particle for which the condensation never occur. Consider the Canonical
Anti-commutation Relation algebra which is the C∗-algebra CAR(h) generated
by annihilators c(f) satisfying

c(f)c†(g) + c†(g)c(f) = 〈f |g〉1I f, g ∈ h . (3.8)

For the gas of free Fermions, fix a density ρ > 0 and consider the (unique)
solution of the equation ∫

R+

dN(ε)

eβ(ε)ε−µ + 1
= ρ

in the unknown µ ∈ R. Here, the cumulative function N is the so-called in-
tegrated density of the states and describes the density of eigenvalues of the
Hamiltonian in the infinite volume limit. At the knowledges of the authors,
the integrated density of the states might not exists for a chosen finite volume
exhaustion of the underlying physical space, or it may depend on the chosen
exhaustion even in the amenable cases. The reader is referred to [17] for the
rigorous definition of the integrated density of the states and some relevant prop-
erties for some relevant amenable and non amenable cases. Then the quasi-free
state ωβ,µ determined by the two-point function

ωβ,µ(c
†(f)c(g)) =

〈
g
∣∣(eβ(h)h−µ + 1)−1

∣∣f
〉
, f, g ∈ h

is the unique quasi-free state fulfilling the LEP for the inverse local temperature
function β and the chemical potential µ.

We end the present section by pointing out that our framework of local equi-
librium can be easily generalised to self-adjoint, not necessarily semi-bounded
Hamiltonians h, provided that for the local temperature function β, β(x)x is
semi-bounded, almost surely w.r.t. the measure class determined by the resolu-
tion of the identity ε 7→ eh(ε) of h in (3.5).

4 local equilibrium principle and the Bose-Einstein

condensation

In order to exhibit states describing the BEC even in the more general context
of local equilibrium, we specialise the matter to the simplest model describing
non relativistic free Bosons living on Rd. To simplify, we put m = 1/2 for their
mass. Analogous considerations can be done for Bosons on lattices Zd. Indeed,
fix the functions in the class

Ď(Rd) ⊂ S(Rd) ⊂ L2(Rd, d
dx)

8



made of the Fourier anti-transform of all the infinitely often differentiable func-
tions with compact support in momentum space. The corresponding one-
particle Hamiltonian will be

h = −
d∑

j=1

∂2

∂x2j
≡ −∆

given by the opposite of the Laplace operator on Rd. It is immediate to see
that (i) before Definition 3.1 is satisfied. The one-particle Hamiltonian −∆ is
nothing but the multiplication for the function

k2 :=

d∑

j=1

k2j

in the momentum space after Fourier Transform, where as usual, k = (k1, . . . , kd).
Thus, we can consider any non negative Borel function β : (0,+∞) → (0,+∞)
with β > 0 almost everywhere w.r.t. the Lebesgue measure on R.

The first interesting phenomenon is that, in the setting of local equilibrium,
particles can condensate also on excited levels of the energies. The main result
of the present section concerning the condensation regime for which µ = 0 (cf.
Section 5) is summarised in the following

Theorem 4.1. Let 1
eβ(p2)p2−1

∈ L1
loc(R

d), and the function xβ(x) ∈ L∞
loc(R+).

Suppose that for some x0 ∈ [0,+∞), limx→x0
xβ(x) = 0. For each D ≥ 0, con-

sider the point-mass measure νD,k := Dδk. Then the quasi-free state ωβ,νD,k
∈

S(CCR(Ď(Rd))) with two-point function

ωβ,νD,k
(a†(f̌)a(ǧ)) :=

∫

Rd

f(p)g(p)

eβ(p2)p2 − 1
d
dp+Df(k)g(k) , f, g ∈ D(Rd) , (4.1)

satisfies the LEP w.r.t. the local inverse temperature function β and chemical
potential µ = 0, provided k2 = x0.

Proof. Thanks to 1
eβ(p2)p2−1

∈ L1
loc(R

d), (4.1) is well defined for each f, g ∈

D(Rd). In addition, as xβ(x) ∈ L∞
loc(R+) then

∫

Rd

e2β(p
2)p2

|f(p)|2

eβ(p2)p2 − 1
d
dp ≤ e2‖xβ(x)⌈[0,r2]‖∞‖f‖2∞

∫

p≤r

ddp

eβ(p2)p2 − 1
d
dp < +∞ ,

where supp(f) ⊂ Dr, Dr being the disk of radius r centred in the origin. Finally,

if k2 = x0, the function ̂eβ(h)hf̌ is uniquely defined in k as

( ̂eβ(h)hf̌
)
(k) =

(
lim
p→k

eβ(p
2)p2)

f(k) =
(
lim

x→x0

eβ(x)x
)
f(k) = f(k) ,

because the function eβ(p
2)p2

coincides a.e. with a measurable function which is
continuous in k2 = x0. Collecting together, we have first that eβ(h)hf̌ is in the
domain of the form (4.1). In addition, by using the commutation relation (3.1),
we compute

ωβ,νD,k
(a(ǧ)a†(f̌)) =

∫

Rd

(
1 +

1

eβ(p2)p2 − 1

)
f(p)g(p) d

dp+Df(k)g(k)

=

∫

Rd

eβ(p
2)p2

eβ(p2)p2 − 1
f(p)g(p) d

dp+Deβ(k
2)k2

f(k)g(k) = ωβ,νD,k

(
a†(f̌)a

(
eβ(h)hǧ

))
,
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that is (3.7) is satisfied for µ = 0.

The two boundedness conditions in Theorem 4.1 have a different meaning.
The second one xβ(x) ∈ L∞

loc(R+), automatically verified in the usual equilib-
rium setting when β = const., can be relaxed case-by-case when one consid-
ers special examples of temperature function β(ε). The first one 1

eβ(p2)p2−1
∈

L1
loc(R

d) has an important physical meaning. First of all, we note that 1
eβp2−1

∈

L1
loc(R

d) is equivalent to 1
eβp2−1

∈ L1(Rd) in the equilibrium situation. This is

nothing but ρc(β) < +∞ where ρc(β) is the critical density for the function β,
which does not depend on the energy levels in equilibrium thermodynamics. A
key-role to study the appearance of the BEC is to look at the critical density
ρc(β) at inverse temperature β = 1/T , see [13]. In our situation (including the
equilibrium case), the critical density ρc(β) for the function β is given by

ρc(β) =

∫

Rd

ddp

eβ(p2)p2 − 1
. (4.2)

We will also show in Section 5 the natural role played by the critical density
in studying the condensation effects. In the more general situation of LEP,

1
eβ(p2)p2−1

∈ L1
loc(R

d) is in general weaker than ρc(β) < +∞. This means

that we can easily exhibit quasi-free states describing condensation effects, for
which ρc(β) = +∞. A similar phenomenon can happen in studying BEC in
equilibrium thermodynamics for inhomogeneous systems. We show that this
last phenomenon is of different nature than the analogous one described in
[18, 19]. In order to do that, we start by looking at the local density of particles
ρω(x) of a quasi-free state ω. It is given by

ρω(x) = ω(a†(δx)a(δx)) ,

where δx is the Dirac distribution centred in x ∈ Rd, provided that the r.h.s. is
meaningful, otherwise it is infinite. For the state in (4.1), we get for the local
density of particles

ρωβ,νD,k
(x) =

∫

Rd

|δ̂x(p)
∣∣2

eβ(p2)p2 − 1
d
dp+D|δ̂x(0)

∣∣2 .

From this simple calculation, we conclude that the ρωβ,D
(x) is homogeneous and

assume the form

ρωβ,νD,k
(x) = ρc(β) + ρcond(ωβ,νD,k

) ,

where

ρcond(ωβ,νD,k
) = lim

Λ↑Rd

D

vol(Λ)

∫

Λ

∣∣δ̂x(0)
∣∣2 ddx = D .

Thus, the local density of particles ρωβ,D
(x) of the state ωβ,D is finite if and

only if the critical density (4.2) of the model is finite too. This means nothing
else that the models for which the critical density is infinite, still provide states
exhibiting BEC effects, but all of them have infinite local density of particles.
Namely, such states are in some sense unphysical.

We pass to investigate the role played by the natural action αR, R ∈ O(d)
of the rotation group on CCR(Ď(Rd)). For non trivial R ∈ O(d) and non zero
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k as in Theorem 4.1, we have Rk 6= k but ‖Rk‖2 = x0. Thus, if there exists
x0 > 0 such that limx→x0

β(x)x = 0, the rotation symmetry is spontaneously
broken. With ν any bounded positive Radon measure on the sphere Sk ⊂ Rd

of radius k, it is easy to see that for f, g ∈ D(Rd), the quasi free-state with
two-point function

ωβ,ν(a
†(f̌)a(ǧ)) :=

∫

Rd

f(p)g(p)

eβ(p2)p2 − 1
d
dp+

∫

Sk

f(p)g(p) dν(p) (4.3)

satisfies the LEP. We immediately see that

ρωβ,ν
(x) = ρc(β) + ν(Rd) ,

where the last addendum on the r.h.s. takes into account of the portion of the
condensate. In general, ωβ,ν is not rotationally invariant. However, we get

Proposition 4.2. With D ≥ 0 and Ωk the normalised rotationally invariant
measure on the sphere Sk, the states ωβ,DΩk

in (4.3) are rotationally invariant.

Proof. Let R ∈ O(d) be an orthogonal matrix with Rt its transpose one. Define

fR(x) := f(Rtx). We easily get f̂R = (f̂)R. By taking into account that the
function 1

eβ(p2)p2−1
is rotationally invariant, we get after an elementary change

of variable,

ωβ,DΩk

(
αR(a

†(f̌)a(ǧ))
)
= ωβ,DΩk

(a†((f̌)R)a((ǧ)R))

=

∫

Rd

f(Rtp)g(Rtp)

eβ(p2)p2 − 1
d
dp+D

∫

Sk

f(Rtp)g(Rtp) dΩk(p)

=

∫

Rd

f̂(p)ĝ(p)

eβ(p2)p2 − 1
d
dp+D

∫

Sk

f(p)g(p) dΩk(p)

=ωβ,DΩk
(a†(f̌)a(ǧ)) .

We already have discussed that the existence of quasi-free states exhibiting
BEC for which the local density is finite, is determined by the convergence of
the integral in (4.2) describing the critical density. To see that we can have
the condensation even for spatial dimensions different from the usual one d ≥ 3
(or d ≥ 2 for the fotonic/phononic Hamiltonian h(k) = k), we consider simple
examples for which β ∈ C

(
(0,+∞)

)
, and

β(x) ≈ xα0 for x→ 0+ ; β(x) ≈ α∞
lnx

x
for x→ +∞ .

The condition ρc(β) < +∞ leads to α∞ > 0, whereas limx↓0 β(x)x = 0 leads
to α0 + 1 > 0. Concerning the critical density, we compute for the one-particle
Hamiltonian of the form h(k) = ks, s ≥ 1 (to avoid unphysical models, even if
the last restriction plays no technical role),

∫ +∞

0

ddp

eβ(ps)ps − 1
≈

∫ 1

0

pd−1−s(α0+1)
dp+

∫ +∞

1

pd−1−sα∞ dp ,

11
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Figure 1: The finite volume chemical potential at fixed density ρ.

which converges if and only if

s(α0 + 1) < d < sα∞ .

This means that for the NESS considered in the present paper, it is possible to
have or not BEC of free Bosons on Rd for dimensions different from those one
finds in equilibrium thermodynamics.

5 a new approach to the condensation

The standard way to find states exhibiting BEC on a locally compact manifold
M , which can be Rd (see e.g. [13]) or an infinitely extended network (cf. [18,
19]), is to start from the Bose-Gibbs grand canonical ensemble (cf. [28]) of the
finite volume theories based on a fixed exhaustion {Λn}n∈N, Λn ↑ M , together
with the associated sequence of finite volume Hamiltonians {HΛn

}n∈N. One
considers the finite volume density

ρΛ(β, µ) :=

∫

R+

dNΛ(ε)

eβ(ε)ε−µ − 1

associated to a compact region Λ ⊂M . Here, with HΛ =
∫
ε deΛ(ε), and NΛ is

the cumulative function obtained as

NΛ(ε) =
Tr(EΛ((−∞, ε]))

vol(Λ)
,

which is well defined provided HΛ has compact resolvent. Under the usual
conditions imposed to the function β, the standard properties of the Hamiltonian
H and the associated finite volume ones HΛ, the function ρΛ(β, µ) has the
behaviour described in Fig. 1, with ε0(Λ) > 0 the finite volume ground state
energy of the system. This means that, for each fixed density ρ > 0, the equation

∫

R+

dNΛ(ε)

eβ(ε)ε−µ − 1
= ρ

12



in the unknown µ has a unique solution µ(Λ) ∈ (−∞, β(ε0(Λ))ε0(Λ)), which
allows to determine the sequences {µ(Λn)} of the finite volume chemical poten-
tials. The critical density is now defined as

ρc(β) :=

∫

R+

dN(ε)

eβ(ε)ε − 1
,

where N is the Integrated Density of the States associated to the infinite volume
Hamiltonian of the system (see [17] for the rigorous definition), which exists for
most of the models of interests with natural choices of exhaustions. If ρc < +∞
and the fixed density in Fig. 1 of the system ρ > ρc, µ(Λn) → 0 (possibly by
passing to a converging subsequence if necessary), and the condensation phe-
nomena take place. The standard approach briefly outlined here and commonly
used to construct states exhibiting condensation, even if has a very clear phys-
ical justification, is extremely sensitive of the boundary conditions imposed to
the finite volume Hamiltonians (see e.g. [13] and the literature cited therein),
and a-priori also of the chosen finite volume exhaustion {Λn}n∈N (see e.g. [38]
and the literature cited therein). Due to the new phenomena relative to the
BEC arising from the LEP described in Section 4, it is expected that this ap-
proach might be not flexible enough to select/construct explicitly all the possible
states exhibiting BEC. For example, if one fix the density as described above,
one might select only rotationally invariant states which exhaust all of them in
the equilibrium situation but not in the more general setting of local equilib-
rium (cf. Theorem 4.1). In addition, even in equilibrium thermodynamics, we
will find states exhibiting BEC but for which the density of particles is infinite
(cf. Proposition 6.1). This suggests new approaches to the investigation of the
BEC, which is the goal of the present section. We will see that this approach
provides new and unexpected examples of states exhibiting condensation (cf.
Section 6), even in the usual situation of equilibrium thermodynamics where
the temperature is fixed.

For our purposes, following the model described in Section 4 we consider
h(k) = ks. In order to exclude unphysical models, we suppose s ≥ 1, including
the massive non relativistic Hamiltonian h(k) = k2 (with the normalised particle
mass m = 1/2), and the massless relativistic one h(k) = k (corresponding to
the normalised speed of the light c = 1, or the velocity of the sound 1 in the
case of phonons). In order to avoid technicalities, we make some reasonable
restrictions to the function β : R+ → R+. Put β̃(x) := β(x)x and assume

(i) β̃ ∈ C([0,+∞)), with infR+ β̃ = 0.

(ii) If E := β̃−1({0}), then E ⊂ [0,+∞) is made of at most a finite numbers
of points, with the empty set allowed.

(iii) We assume also that

∫ +∞

a

x
d
s
−1

eβ̃(x) − 1
dx < +∞ ,

for each a > maxE.

Assuming the continuity of temperature function is just to avoid technicalities,
yet providing nontrivial examples, whereas infR+

β̃ = 0 can be assumed without

13



loosing generality just by passing to the new function β̃ − inf β̃. The second
condition is to avoid too general situations, perhaps already considered in Sec-
tion 4. The third one says that 1

eβ(ks)ks
−1 ∈ L1

loc(R
d) is simply equivalent to

1
eβ(ks)ks

−1 ∈ L1(Rd) as for equilibrium thermodynamics. Denote

Sr := {(p,k) ∈ R
d × R

d | p2 = k2 = r2} .

the sphere of radius r living in the diagonal of the product space Rd × Rd.
As our approach is quite general, we can manage the general q-Commutation
Relations for q ∈ [−1, 1], ±1 being the Bose-Fermi alternative. By using Fourier
Transform, we can consider the density creators and annihilators in momentum
space which are operator-valued distributions, by putting

a†(f̌) =

∫

Rd

f(k)a†(k) d
dk , a(ǧ) =

∫

Rd

g(k)a(k) d
dk . (5.1)

Then the q-Commutation Relations, corresponding to (3.1), (3.8) for the Bose-
Fermi cases, can be rewritten as

a(k)a†(p)− qa†(p)a(k) = δ(k− p)1I . (5.2)

It can be proven that the commutation relations (5.2), still generate an abstract
C∗-algebra, even for q ∈ (−1, 1), see e.g. [24]. In all the situations q ∈ [−1, 1]
considered here including the Bose/Fermi situation q = ±1, we denote by
CCRq(h) the involved C∗-algebra. In addition, the quasi-free states are also
well defined for the deformed cases −1 < q < 1 because their 2n+1-point func-
tions is 0, and 2n-point functions are described by the so-called q-determinant
(being the case q = −1 indeed a determinant, known as the Slater determinant)
which is seen to be positive for the case considered here, see [11, 31, 34]. The
LEP for q-particles, q ∈ [−1, 1], still assumes the form (3.7) in Definition 3.1.

The new approach in searching quasi-free states ω exhibiting condensation is
to look at those for which the two-point function is given by a distribution Fω,
at least for the situation of free particles considered in the present paper. For
such a purpose, we use the conventional integration symbology of the theory of
Distributions (cf. [40]) for the natural pairing F (f) between smooth functions
f and elements F of the topological duals

f × F ∈ D(Rl)×D
′(Rl) 7→ F (f) =:

∫

Rl

F (ξ)f(ξ) d
lξ .

With this symbology, for f, g ∈ D(Rd), we compute by considering (5.1),

ω(a†(f̌)a(ǧ)) =

∫

Rd×Rd

ω(a†(p)a(k))f(p)g(k) d
dp d

dk

=

∫

Rd×Rd

Fω(p,k)f(p)g(k) d
dp d

dk ,

where Fω ∈ D′(Rd×Rd) is some distribution given by Fω(p,k) := ω(a†(p)a(k)).
By positivity, such a distribution should satisfy for each f ∈ D(Rd),

∫

Rd×Rd

Fω(p,k)f(p)f(k) d
dp d

dk ≥ 0 .

14



A positive definite distribution as above is said to be a kernel. In addition, a
kernel is automatically real, that is it should satisfy in the sense of distribution,

Fω(k,p) = Fω(p,k) , (5.3)

where the bar stands for complex conjugation.
Let ω ∈ S(CCRq(Ď(Rd)) be a quasi-free state whose two-point function

satisfies (3.7). Suppose further that its two-point function is given by a kernel
Fω as described above. When we try to impose condition (3.7) to Fω, a product
of a distribution with a function which is in general not smooth, shall appear.
This product does not define any distribution in general. Thus, we suppose
further that e(β(h(p))h(p)−µ)Fω(p,k) defines still a distribution. Notice that, by
positivity, e(β(h(k))h(k)−µ)Fω(p,k) also defines a distribution. This will play a
crucial role in the following. By using the commutation rule 5.2, the LEP (3.7)
leads for the chemical potential µ, and the parameter q ∈ [−1, 1] to

∫

Rd×Rd

(
eβ(h(k))h(k)−µ

)
ω(a†(p)a(k))f(p)g(k) d

dp d
dk

=ω(a†(f̌)a(γµ(h)ǧ)) = ω(a(ǧ)a†(f̌)) = 〈g|f〉+ qω(a†(f̌)a(ǧ))

=

∫

Rd×Rd

(δ(p− k) + qω(a†(p)a(k)))f(p)g(k) d
dp d

dk ,

obtaining

∫

Rd×Rd

[(
eβ(h(k))h(k)−µ − q

)
Fω(p,k)− δ(p− k)

]
f(p)g(k) d

dp d
dk = 0 .

As the last should be satisfied for the total set in D(Rd × Rd) generated by
elementary tensors, we obtain

(
eβ(h(k))h(k)−µ − q

)
Fω(p,k) = δ(p− k) . (5.4)

Combining the reality condition (5.3) with (5.4), we get also

(
eβ(h(p))h(p)−µ − q

)
Fω(p,k) = δ(p− k) . (5.5)

The above computations tells us nothing but that the kernel Fω reproducing a
quasi-free state on CCRq(Ď(Rd)), which solves (5.4) (or equivalently (5.5)) are
the natural candidate to describe those satisfying the LEP for the q-deformed
relations at the inverse temperature function β and chemical potential µ. As we
will see below, in searching solutions of (5.4), we should divide for the function
e(β(h(p))h(p)−µ)− q which by positivity should be everywhere positive, with zero
possibly allowed on a negligible set w.r.t. Lebesgue measure on the momentum
space. This allows to compute the possible range of the chemical potential,
leading to µ ∈ (−∞, µq], where µq = +∞ for q ∈ [−1, 0], and µq = − ln q for
q ∈ (0, 1], 0 being the limiting value between the two situations. As it will be
more clear below, the the previous cases can be considered as the Fermi/Bose-
like alternative, with the separation case q = 0 is known to be the the Boltzmann
(or free) one.

In the Fermi-like/Boltzmann cases q ∈ [−1, 0], including the limiting Boltz-
mann case q = 0, we can freely solve (5.4) for each µ ∈ R. So the concept of
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critical density plays a role only in the Bose-like case q ∈ (0, 1]. For such values
of q, (5.4) (or equivalently (5.5)) can be solved only if µ < µq := − ln q, being
µq the critical value of the chemical potential for which the condensation can
occur. Concerning the critical density at the inverse temperature function β, it

is defined as ρ
(q)
c (β) := ρ(q)(β, µq) which leads to

ρ(q)c (β) :=

∫

Rd

ddp

eβ(h(p))h(p)−µq − q
=
ρ
(1)
c (β)

q
. (5.6)

We will se below the role played by the limiting value of the chemical potential

µq and critical density ρ
(q)
c , in the appearance of the condensate of q-particles.

As before, ρ
(1)
c is simply denoted as ρc. We also omit the dependence on β when

this causes no matter of confusion.
According to the previous computations, the following theorem explains the

form of the kernels which are the candidate to reproduce the two-point function
of a quasi-free state satisfying LEP. Among the other things, we show how the
condensation regime naturally emerge without using the thermodynamic limit
of finite volume theories.

Theorem 5.1. Suppose that the inverse temperature function β fulfils (i)-(iii)
above. Let F be a kernel on Rd such that e(β(h(k))h(k)−µ)F (p,k) is still a dis-
tribution satisfying (5.5). Then the following assertions hold true.

(i) If µ > − ln(0 ∨ q) (with the convention that − ln 0 = +∞), no of such
kernels can exist.

(ii) non condensation regime: For each µ < − ln(0 ∨ q), there exists only
one kernel as above having the form

F (k,p) =
δ(k− p)

eβ(h(p))h(p)−µ − q
. (5.7)

(iii) condensation regime: Let q ∈ (0, 1] and µ = µq. If E = ∅, then

ρ
(q)
c < +∞ and

F (p,k) =
δ(p− k)

q(eβ(h(p))h(p) − 1)
(5.8)

is the unique kernel fulfilling the hypotheses.

Let E 6= ∅, and suppose that β⌈R+\E is infinitely often differentiable.

If ρ
(q)
c (β) = +∞, there is no of such kernels satisfying the additional

condition |f | ≤ |g| ⇒ F (f ⊗ f̄) ≤ F (g ⊗ ḡ).

If ρ
(q)
c < +∞, then F assumes the form

F (p,k) =
δ(p− k)

q(eβ(h(p))h(p) − 1)
+G(p,k) , (5.9)

where G ∈ D′(Rd × Rd) is supported in
⋃{

S
r

1
s
| r ∈ E

}
.

Proof. (i) and (ii): Being np = 1
eβ(h(p))h(p)−µ−q

the density of occupation number

at momentum p and chemical potential µ, it must be a.e. positive, w.r.t. the
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Lebesgue measure. This excludes µ > − ln(0∨ q). Conversely, if µ < − ln(0∨ q)
we can uniquely solve (5.4) by obtaining (5.7).

(iii): By (ii), the condensation regime can occur only if q ∈ (0, 1] and µ =
− ln q. So we reduce the matter to this case. If E = ∅, then condition (iii)

at the beginning of the present section together (5.6) imply that ρ
(q)
c < +∞.

In addition, being eβ(h(p))h(p) − 1 > 0 everywhere, (5.5) can be freely solved
w.r.t. F giving as the unique solution (5.8). Suppose now E 6= ∅. We first show
that, under the quite natural conditions imposed to β and to the kernel F ,
the critical density must be finite. Thanks to (5.6), we can reduce the matter
to q = 1. Suppose that ρc = +∞. By condition (iii) above, it means that
∫
Bx0

x
d
s
−1

eβ(x)x−1 dx = +∞, at least for some small neighbourhood Bx0
centred in

x0 ∈ E of radius δ containing eventually no further points of E. Choose a
positive function ϕ ∈ D(Rd) which is identically 1 on the spherical shell of
thickness δ around the sphere h(p) = x0 (the sphere of radius δ/2 centred in 0
if x0 = 0), and whose support does not contain further points p with h(p) ∈ E.
Choose a sequence {ϕn}n∈N ⊂ D(Rd) of positive functions with ϕn < ϕ, such
that the sphere h(p) = x0 is not contained in their support, monotonically
converging point-wise a.e. (w.r.t. the Lebesgue measure) to ϕ. By hypothesis
on F , we have for each n ∈ N,
∫

Rd×Rd

F (p,k)ϕn(p)ϕn(k) d
dp d

dk ≤

∫

Rd×Rd

F (p,k)ϕ(p)ϕ(k) d
dp d

dk < +∞ .

On the other hand, as ϕn(p)ϕn(k)
eβ(h(p))h(p)−1

is a smooth compactly supported function,

by using (5.5) and the Monotone Convergence Theorem, we obtain

∫

Rd×Rd

F (p,k)ϕn(p)ϕn(k) d
dp d

dk

=

∫

Rd×Rd

((
eβ(h(p))h(p) − 1

)
F (p,k)

)
ϕn(p)ϕn(k)

eβ(h(p))h(p) − 1
d
dp d

dk

=

∫

Rd×Rd

δ(p− k)

eβ(h(p))h(p) − 1
ϕn(p)ϕn(k) d

dp d
dk

=

∫

Rd

ϕn(p)
2

eβ(h(p))h(p) − 1
d
dp →

∫

Rd

ϕ(p)2

eβ(h(p))h(p) − 1
d
dp

≥

∫

B

ddp

eβ(h(p))h(p) − 1
d
dp = +∞

which is a contradiction.
Suppose now that ρc < +∞. Then δ(p−k)

eβ(h(p))h(p)−1
defines a distribution on

Rd × Rd because of (iii) at the beginning of the section. Then

G(p,k) := F (p,k)−
δ(p− k)

eβ(h(p))h(p) − 1

defines also a distribution. Now we show that suppG =
⋃{

S
r

1
s
| r ∈ E

}
. Pick

ϕ ∈ D(Rd × Rd) with K := suppϕ ⊂
{
S
r

1
s
| r ∈ E

}c
. We can suppose without

loosing generality that K is a smooth manifold with boundary. Consider the
compact slices K1 := K ∩ {(p,k) | h(k) ∈ E}, K2 := K ∩ {(p,k) | h(p) ∈ F}
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and choose open neighbourhoods Vi ⊃ Ki, i = 1, 2, such that the distances
between K\(V1 ∪ V2) and Ki, i = 1, 2, K\(V1 ∪ V2) and

⋃{
S
r

1
s
| r ∈ F

}
is

greater of 2δ for some δ > 0. Then there exists a finite open covering of K made
of Vi ⊃ Ki, i = 1, 2, (which cover the Ki), and some balls {Bj}

n
j=1 centred in

some points {ξj}
n
j=1 ⊂ K\(V1 ∪ V2) of radius δ (which cover K\(V1 ∪ V2)). Fix

a smooth partition of the unity

ψ = ψ1 + ψ2 +
n∑

i=1

fi

subordinate to this covering. After using (5.5) for the addendum containing
ψ1, (5.4) for that containing ψ2, and finally indifferently one of them for the
addenda containing the fi, we first note that

ϕ(p,k)

eβ(h(p))h(p) − 1

(
ψ1(p,k) +

n∑

i=1

fi(p,k)

)
,

ϕ(p,k)ψ2(p,k)

eβ(h(k))h(k) − 1

are smooth compactly supported functions. Then we compute,
∫

Rd×Rd

G(p,k)ϕ(p,k) d
dp d

dk

=

∫

Rd×Rd

(
(eβ(h(p))h(p) − 1)F (p,k)− δ(p− k)

)

×
ϕ(p,k)

eβ(h(p))h(p) − 1

(
ψ1(p,k) +

n∑

i=1

fi(p,k)

)
d
dp d

dk

+

∫

Rd×Rd

(
(eβ(h(k))h(k) − 1)F (p,k)− δ(p− k)

)

×
ϕ(p,k)ψ2(p,k)

eβ(h(k))h(k) − 1
d
dp d

dk = 0 .

We point out that the investigation of the condensation phenomena of q-
particles in the setting considered in the present section, can be reduced to find
the positive definite solutions of the equation (5.4) (or equivalently of the twin
one (5.5)) in the space of the distributions. As shown in Theorem 5.1, it is a
difficult task to find all the possible solutions of that equation. In addition, not
all the distributions G appearing in (5.9) give rise to a quasi-free states satisfying
LEP and exhibiting condensation. However, we will see in Section 6 that, even in
the standard equilibrium case when β is the inverse temperature of the system,
(5.4) admits solutions of the form (5.9) with nontrivial G, hence describing
condensation effects, which are completely new and unexpected. Concerning
the quasi-free states described in the previous section, the two-point function
(4.3) also have the form (5.9) with nontrivial G, including those in Proposition
4.2 which are rotationally invariant, even if the local inverse temperature is more
general than those considered in Theorem 5.1.

6 new states describing condensation

In the present section we show that new states exhibiting condensation can occur
even in the standard equilibrium thermodynamics. We reduce the matter to the
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Bosonic case with β the fixed inverse temperature. As usual, we put h(p) = ps,
s ≥ 1, and reduce the analysis to the simplest case of the partial derivative along
only one direction k1 in the momentum space. As for ϕ ∈ D(Rd), eıp

stϕ(p) is
in general not smooth when s = 1 or s is not integer, we slightly extend the
space of the test functions, even if it is not necessary for the unique physical
case s = 2 for which it is possible to exhibit such new states describing BEC.
We put

h0 = span {eıhtϕ̌ | ϕ ∈ D(Rd) , t ∈ R} .

In this case, the one-particle dynamics is meaningful on h0 by construction.

Proposition 6.1. Fix D > 0 and suppose that the critical density ρc < +∞.
Then the states whose two-point function is given by

ω(a†(f̌)a(ǧ)) =

∫

Rd

f(p)g(p)

eβps − 1
d
dp+D

∂f

∂p1
(0)

∂ḡ

∂p1
(0) , f̌ , ǧ ∈ h0 , (6.1)

are equilibrium states for the dynamics generated by the one-particle Hamilto-
nian h(p) = ps, provided s > 1.

Proof. Fix a generator f̌ = eıhtϕ̌. It is straightforward to see that

∫

Rd

|eβp
s

f(p)|2

eβps − 1
d
dp < +∞ .

In addition, if s > 1 we get

∂(γf)

∂p1
(p) = βsps−2p1e

βps

f(p) + eβp
s ∂f

∂p1
(p) .

Collecting together with γ(p) = eβp
s

, we conclude first that ω
(
a†(γf)a(γf)

)
<

+∞, which means that γf is in the domain of the form describing the two-point

function of ω. Second, ∂(γf)
∂p1

(0) = ∂f
∂p1

(0), leading to (3.7). Namely, the states

in (6.1) are equilibrium states at inverse temperature β and chemical potential
µ = 0.

The two-point function of the usual state ϕ exhibiting the condensation of
free Bosons is given by

ϕ(a†(f̌)a(ǧ)) =

∫

Rd

f(p)g(p)

eβps − 1
d
dp+Df(0)g(0) , (6.2)

and has the form (5.9) with

Gϕ(p,k) = δ(p)δ(p− k) .

Despite the product of two delta distributions, Gϕ(p,k) makes sense as a distri-
bution, giving precisely the condensation portion after the application of Fubini
rule in the formal integration as explained below. Concerning the two-point
function in (6.1), it assumes the form (5.9) with

Gω(p,k) =
∂2

(
δ(p)δ(p− k)

)

∂p1∂k1
=
∂2Gϕ(p,k)

∂p1∂k1
,
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which leads to
∫
Gω(p,k)f(p)g(k) d

dp d
dk =

∫
∂2Gϕ(p,k)

∂p1∂k1
f(p)g(k) d

dp d
dk

=

∫
d
dp
∂f(p)

∂p1
δ(p)

∫
d
dk
∂g(k)

∂k1
δ(p− k)

=

∫
d
dp
∂f(p)

∂p1

∂g(p)

∂p1
δ(p) =

∂f

∂p1
(0)

∂ḡ

∂p1
(0) .

The higher (even) derivatives of the delta-distribution can give rise to a con-
densate distribution only if the power s in h(p) = ps is sufficiently big. Con-
versely, it never appear in the case of photon/phonon one-particle Hamiltonian
h(p) = p, and only states like (6.1) involving the second derivative of the delta-
distribution and not the higher ones can appear in the free massive Bosons for
which h(p) = p2.

The local density of particles ρω(x) of the states in (6.1) is finite everywhere
in the configuration space:

ρω(x) := ω(a†(δx)a(δx)) =

∫

Rd

ddp

eβps − 1
+D

∣∣∣∣
∂δ̂x
∂p1

(0)

∣∣∣∣
2

=

∫

Rd

ddp

eβps − 1
+Dx21 .

(6.3)
Conversely, the mean density is infinite due to the contribution of the conden-

sation term D
∣∣∂δ̂x
∂p1

(0)
∣∣2 = Dx21. As the standard procedure in constructing

states exhibiting BEC as infinite volume limits of finite volume theory is to fix
the mean density of the model, the last computation easily explains because
such terms connected to the second derivative cannot appear in the standard
investigation based on Bose-Gibbs prescription for the grand canonical ensemble
construction.

States which are rotationally invariant (i.e. isotropic) are easily given by

ω
(
a†(f̌)a(ǧ)

)
=

∫

Rd

f(p)g(p)

eβps − 1
d
dp+D∇pf(0)·∇pg(0) , (6.4)

as well as states exhibiting condensation, which are connected to higher deriva-
tive of the Dirac distribution can be easily wrote down, provided that s is suffi-
ciently big. It is also possible to exhibit such states involving higher derivatives
of the delta-distribution in local equilibrium, obtaining a richer situation.

For all the states described in (6.4) (and also for those in (6.1)), the action of
the spatial translations in the configuration space Tx is spontaneously broken.
We easily compute

ω ◦ Tx
(
a†(f̌)a(ǧ)

)
= ω

(
Tx(a

†(f̌)a(ǧ))
)

= ω
(
a†(f̌)a(ǧ)

)
+D

[
x2f(0)g(0) + ıx·

(
g(0)∇pf(0)− f(0)∇pg(0)

)]
,

where as usual the dot denotes the real inner product. Contrarily to the states
in (4.1) for the rotation symmetry, for the states in (6.4) also the local density
of the particle changes for a term relative to the condensate which is simply
computed as

ρω◦Ty
(x) = ρω(x) +Dy2 .
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Figure 2: The density ρ
(cond)
ϕ (k1, k2) in momentum space relative to the states

(6.2) for two values ε1 > ε2.

Fix any mollifier δε(p), converging in the sense of distribution to the delta
distribution δ(p) as ε ↓ 0. In order to have an idea of the distribution of the
condensate in momentum space of the usual situation (6.2) and that of (6.4),
we end the present section by drawing the projection in the k1-k2 plane of

ρ(cond)ϕ (k1, k2) = δε(k1, k2, 0)
2 ,

ρ(cond)ω (k1, k2) =
∥∥∇pδε(p− k)⌈p=0,k3=0

∥∥2 ,

where ω is the standard equilibrium state exhibiting condensation (6.2) (cf.

Figure 3: The density ρ
(cond)
ω (k1, k2) in momentum space relative to the states

(6.4) for two values ε1 > ε2.

Fig. 2), and one in (6.4) (cf. Fig. 3), respectively.

7 remarks and outlook

In order to study the condensation regime, we have met the problem concern-
ing the way to introduce the chemical potential. We briefly discuss a further
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reasonable choice

nε =
1

z−1eβ(ε)ε − 1
=

1

eβ(ε)(ε−µ) − 1
(7.1)

corresponding to choice for the the activity

z(β, µ) = eβµ = eβ(ε)µ .

The analogous equation to (5.5) assumes the form
(
eβ(h(p))(h(p)−µ) − q

)
Fω(p,k) = δ(p− k) . (7.2)

It is simply to see that this different possibility introduces no change for the
cases q ∈ [−1, 0], and for the limiting Bosonic case q = 1. For the Boson-like
cases q ∈ (0, 1), we compute for the sake of completeness, the critical value

of the chemical potential µq, and hence the relative critical density ρ
(q)
c . The

key-point is the following

Lemma 7.1. Let the positive function β : (0,+∞) → [0,+∞) be continuous
and vanishing of a set E ⊂ (0,+∞) such that the set L(E) of its cluster points
is discrete. If lim supx↓0 < +∞, then the function G : R+ → R+ given by

G(µ) := sup(0,µ]
(
β(x)(µ− x)

)
is strictly increasing and continuous.

Proof. Define β(0) := lim supx↓0 and fix µ > λ. There exists a x̄ ∈ [0, λ] for
which β(x̄) > 0 such that by applying Weierstrass Theorem, we get

G(µ) = sup
(0,µ]

(
β(x)(µ− x)

)
≥ sup

(0,λ]

(
β(x)(µ− x)

)

≥ sup
(0,λ]

(
β(x)(λ− x)

)
+ β(x̄)(µ− λ) > sup

(0,λ]

(
β(x)(λ− x)

)
= G(λ) .

Thus G(µ) is strictly increasing. Concerning the continuity, first notice that

lim
µ↓λ

sup
(0,λ]

(
β(x)(µ− x)

)
= sup

(0,λ]

(
β(x)(λ− x)

)
,

because for x ≤ λ,

b(x)(µ− x) = β(x)(λ− x) + β(x)(µ− λ) .

In addition,
lim
µ↓λ

sup
[λ,µ]

(
β(x)(µ− x)

)
= 0 .

Collecting together, we get

lim
µ↓λ

G(µ) = lim
µ↓λ

(
sup
(0,λ]

(
β(x)(µ− x)

)
∨ sup

[λ,µ]

(
β(x)(µ− x)

))
= G(λ)

For the reverse limit, first notice that, with µ fixed, and λ ≤ µ,

λ 7→ sup
(0,λ]

(
β(x)(µ− x)

)

is continuous. In addition,

lim
λ↑µ

sup
(0,λ]

(
β(x)(µ− λ)

)
= 0 .
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Then we get with µ > 0 fixed, λ < µ, and x ∈ (0, λ],

β(x)(µ− x)− sup
(0,λ]

(
β(x)(µ− λ)

)
≤ β(x)(λ− x) ≤ β(x)(µ− x) ,

which leads to limλ↑µG(λ) = G(µ).

The choice (7.2) for the occupation numbers introduces technical troubles
only for the unphysical cases q ∈ (0, 1), for which we are going to determine the
critical chemical potentials responsible of the condensation effects.

Proposition 7.2. Let β satisfy the hypotheses of Lemma 7.1.

(i) Suppose that lim supx↓0 β(x) = +∞, and define µq = 0.

(ii) Suppose that lim supx↓0 β(x) < +∞. Then for µ > 0, the function

Fq(µ) :=
− ln q

sup(0,µ]
(
β(x)(µ− x)

) , q ∈ (0, 1) , (7.3)

is continuous and strictly decreasing. Define µq = 0 if the equation

Fq(µ) = 1 , (7.4)

has no solution which happens if and only if lim supx↓0 β(x) ≤ 1, or µq as
the unique solution of (7.4).

In both situations, the following hold true. If µ < µq then

(
eβ(x)(x−µ) − q

)
≥ δ > 0 , x ∈ R+ ,

and if µ > µq there exists an open interval I ⊂ R+ such that

(
eβ(x)(x−µ) − q

)
≤ −δ < 0 , x ∈ I .

Proof. If lim supx↓0 β(x) < +∞, Lemma 7.1 assures that (7.3) is a continuous

strictly decreasing function. In all the situations, if x ≥ µ, then eβ(x)(x−µ) ≥
1 > q. If µ < µq and x < µ then for some ε > 0,

β(x)(µ− x) ≤ β(x)(µq − x)− ε ≤ sup
(0,µq ]

(
β(x)(µ− x)

)
− ε = − ln q − ε ,

which leads to
eβ(x)(x−µ) ≥ qeε > q .

Conversely, if µ > µq, we get in all the situations that there exists an open
interval I ∈ (0, µ) such that for some ε > 0,

β(x)(µ− x) ≥ − ln q + ε , x ∈ I .

But this immediately implies for x ∈ I,

eβ(x)(x−µ) ≤ qe−ε < q .
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Notice that, being ln q = 0, (7.4) is meaningful even for q = 1 providing
µ1 = 0 as expected. In addition, if β is constant, then βµq = − ln q, which
reduces to the usual formula of equilibrium thermodynamics. Proposition 7.2
explains why µq solving (7.4) is the critical value of the chemical potential for the
q-deformed situation, q ∈ (0, 1), for the choice (7.1) concerning the introduction
of the chemical potential. The corresponding critical density is easily given by

ρ(q)c =

∫

Rd

ddp

eβ(h(p))(h(p)−µq) − q
.

Unfortunately, there is no direct relation between {ρ
(q)
c | q ∈ (0, 1)} and ρ

(1)
c .

This introduces some additional technical troubles in order to manage (7.2) for
the unphysical cases 0 < q < 1 in the condensation regime µ = µq, without
affecting the substance of the results. We do not pursue this direction, which
perhaps can be managed in details for particular choices of the local temperature
function β.

We have discussed new ideas of Local Equilibrium Principle which is a suit-
able candidate to select stationary states in non equilibrium thermodynamics.
Roughly speaking, the Local Equilibrium Principle asserts that the tempera-
ture is a function of the energy levels. Even if the Local Equilibrium Principle
cannot be directly extended to general dynamical systems describing models
with infinitely many degrees of freedom, as well as general condensed matter
states appearing in nature, we have provided a wide class of nontrivial new
and unexpected examples involving Boson particles and describing the Bose-
Einstein Condensation. It is expected that the standard construction based on
the Bose-Gibbs grand canonical ensemble involving the thermodynamical limit
of the finite volume theories cannot directly cover all the examples we have
found. This suggested a new approach based on the theory of the Distributions.
This new approach allowed us to manage in an unified way the q-Commutation
Relations, and the condensation of the so called q-particles can appear in a nat-
ural way only for the Bose-like situation q ∈ (0, 1]. By using the new approach
to BEC described in Section 5, we found new examples even in the standard
case of equilibrium thermodynamics when the temperature is kept fixed by an
external thermal bath. All these new states might find applications in high
density/temperature non equilibrium physics, quantum optics, theory of super-
conductivity. Among such possible applications, we briefly outline the following
ones as promising perspectives.

The first one concerns the states in the usual case of equilibrium thermody-
namics described in Section 6. One consider the axially symmetric states whose
two-point function is given by

ω(a†(f̌)a(ǧ)) =

∫

Rd

f(p)g(p)

eβp2/2m∗ − 1
d
3p+D

(
∂f

∂px
(0)

∂ḡ

∂px
(0) +

∂f

∂py
(0)

∂ḡ

∂py
(0)

)

concerning the distribution of some quasi-particle of effective massm∗ at inverse
temperature β > 0. The spatial local density is easily computed as in (6.3)

ρω(x, y, z) =

∫

Rd

d3p

eβp2/2m∗ − 1
+D

(
x2 + y2) . (7.5)

The last addendum
ρcondω (x, y, z) = D

(
x2 + y2)
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describes the spatial portion of the condensate, and has the form of a z-axial
symmetric paraboloid. The helium superfluidity was explained (cf. [27]) by
the excitations of the quasi-particles corresponding to the rotonic part of the
spectrum ofHe4 as briefly outlined in the introduction. Even if the superfluidity
seems not directly connected with the BEC, it should be noted the surprising
analogy between the spatial distribution of the condensate (7.5) and the profile
(i.e. the meniscus) of the rotating He4 superfluid, apart from the finer regular
structure made of vortices, appearing inside the rotating superfluid, see e.g.
[16].

The second one concerns the cosmological application of the Local Equilib-
rium Principle for highly concentrated systems. For example, due to the net
energy flow, the black hole evaporation (cf. [8, 9, 23, 39]) is a non equilibrium
process. Then we can find states which are far from the equilibrium, for which
the temperature is a function of the total energy of the black hole which of course
changes during the evaporation process. Another possible application might be
to the thermodynamics of neutron, and also of exotic Boson and quark stars.
For such systems subjected to extreme conditions, first it might be expected
that NESS are the natural candidates to describe their thermodynamics. Sec-
ond, due to high pressure, the Fermions might form BCS pairs like in He3 or in
superconductors, and the BEC might take place. On the other hand, the Local
Equilibrium Principle allows states admitting portions of the condensate even
in excited levels. In fact, states similar to those in (4.3) with

h(p) = c
√
p2 +m2c2 −mc2

the one-particle Hamiltonian of a free Boson gas in a neutron or exotic star
(with m being the mass of the involved Boson and c the speed of light, where
in a rough approach we are neglecting the gravitational interaction between
particles), describe a portion of the condensate in excited levels which cannot
appear in the usual equilibrium thermodynamics. Such possible condensation
effects in excited levels might partially explain the open problem of the dark
matter of the universe.

We conclude by pointing out that the last two possible applications of the
Local Equilibrium Principle are only ideas which deserve of further insights, and
are still very far to be understood at this stage.
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