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In an atomic Bose-Einstein condensate quenched to the unitary regime, we predict the sequential
formation of a significant fraction of condensed pairs and triples. At short distances, we demonstrate
the two-body and Efimovian character of the condensed pairs and triples, respectively. As the system
evolves, their size becomes comparable to the interparticle distance, such that many-body effects
become significant. The structure of the condensed triples depends on the size of Efimov states
compared with density scales. Unexpectedly, we find universal condensed triples in the limit where
these scales are well-separated. Our findings provide a new framework for understanding dynamics
in the unitary regime as the Bose-Einstein condensation of few-body composites.

Introduction.—Bose-Einstein condensation (BEC)
gives rise to such spectacular manifestations of quantum
statistics as superfluidity, superconductivity, and super-
solidity [1–4]. The paradigmatic theories of Bogoliubov
and Bardeen-Cooper-Schriefer (BCS) describe BECs
of weakly coupled bosons and fermionic pairs, respec-
tively and have been applied in many fields of physics
[4–10]. Here, the quantum statistics of the medium
alters one-body dynamics, producing quasiparticles,
and two-body dynamics, producing Cooper pairs, with
the latter persisting even in the absence of a two-body
bound state. These guiding concepts however must
be reconsidered when describing strongly-interacting
systems such as liquid helium [11], ultracold gases [12],
nuclear matter [13–16], and strongly-coupled polarons
[17–22]. The occurrence of a richer few-body physics
including three-body bound Efimov states amongst
these strongly-interacting bosons and multi-component
fermions [23, 24] necessitates the key shifting of many-
body paradigms from two to three-body correlations.
Here, the fundamental question reemerges of whether
bound states in vacuum (polymers: dimers, trimers,
etc.) can be bound by the medium and converted into
condensed few-body composites (n-tuples: pairs, triples,
etc.) possessing long-range order.

Recently, the versatility of ultracold atomic plat-
forms was utilized to shed new light on these open
problems. Despite strong three-body losses, quasi-
equilibrated states were achieved in single-component
Bose gases quenched to the unitary regime n|a|3 � 1,
with n the atomic density and a the s-wave scattering
length [25–28]. Specifically, a macroscopic population
of Efimov trimers was reported in Ref. [26], following a
second sweep of interactions to weak interactions. His-
torically, this technique was used to measure the con-
densation of Cooper pairs in the BCS-BEC crossover via
their conversion into weakly bound dimers [29, 30]. It

is thus natural to ask whether the molecules measured
in Ref. [26] reveal the existence of few-body conden-
sates of pairs and triples in the unitary Bose gas. It
is unknown whether the hypothesized universality of the
medium [31], parametrized by the density (Fermi) scales
kn = (6π2n)1/3, En = ~2k2n/2m and tn = ~/En, produces
universal pairs and triples, or conversely whether a (non-
universal) sensitivity to the Efimov effect and finite-range
physics is preserved at the many-body level. Answering
this question in such a nonequilibrium and strongly in-
teracting quenched system requires a model both ergodic
[32] and nonperturbative [33–37], which recovers the vac-
uum three-body spectrum [38–41]. Although widely used
in statistical physics [42–44], the cumulant model was re-
cently adapted to quantum gases and found to fulfill these
requirements [45, 46].

In this Letter, we study a uniform BEC quenched to
the unitary regime and develop a general theory of simul-
taneous atomic, pair, and triple condensation in strongly-
interacting systems possessing the Efimov effect. Within
the cumulant model, we construct generalized conden-
sate wave functions and predict significant pair and triple
condensation and associated off-diagonal long-range or-
dering (ODLRO) occuring between depleted atoms. We
show that the Efimovian character of the triples is guar-
anteed at short distances, however at later times triples
have a size comparable to the interparticle spacing. Re-
markably even when Fermi and Efimovian scales are well
separated, medium effects lead to the persistent produc-
tion of triple and pair BECs with universal populations
and internal structures.

Model.—We model the system of N spinless bosons
in a cubic volume V using a single-channel Hamiltonian
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Figure 1. Atomic (blue), pair (orange), and triple (green)
condensate fraction dynamics in the (a) trimer, (b) crossover,
and (c) universal density regimes. The grey dot-dashed lines
indicate universal results in the doublet (Hartree-Fock Bo-
goliubov [47]) model. The comparison of Efimovian (κ∗) and
Fermi (kn) scales strongly determines the relative populations
of the condensed few-body composites.

with pairwise s-wave interactions

Ĥ =

∫
d3rψ̂†(r)

(
− ~2

2m
∆r

)
ψ̂(r)

+
1

2

∫
d3rd3r′ψ̂†(r)ψ̂†(r′)V (|r− r′|)ψ̂(r′)ψ̂(r),

(1)

where ψ̂(r) = (1/
√
V )
∑

k âke
ik·r are field operators and

âk annihilates a boson of momentum ~k. At unitar-
ity (|a| → ∞), the actual potential can be replaced
by a simpler nonlocal separable potential V̂ = g|ζ〉〈ζ|
with s-wave form factors 〈k|ζ〉 = θ(Λ − |k|), interac-
tion strength g = −π3~2ā/m and cutoff Λ = 2/πā,
where ā = 0.955rvdW is the mean scattering length and
rvdW is the van der Waals length for a particular atomic
species [38, 48–50]. This sets the three-body parameter
κ∗rvdW ≈ 0.211, which is the wave number of the ground-
state Efimov trimer at unitarity (see [37, 38, 45, 51]).

We model the postquench many-body dynamics of
an initially pure, noninteracting atomic condensate us-
ing the method of cumulants whose hierarchical struc-
ture reflects the sequential growth of intrinsically higher-
order correlations [43, 45, 46, 52–55]. Within the U(1)
symmetry-breaking picture, we study the dynamics of
the singlet 〈âk〉 = δk0

√
V ψ0, which describes the atomic

BEC in the k = 0 mode. In the frame rotating with the
condensate phase θ0, we study also the doublets

nk = 〈â†kâk〉, ck = e−2iθ0〈â−kâk〉, (2)

describing the single-particle momentum distribution

and pairing, respectively, and the triplets

Mk,q = eiθ0〈â†k−qâ†qâk〉, Rk,q = e−3iθ0〈âq−kâkâ−q〉,
(3)

introducing ergodic processes and the Efimov effect
[32, 38, 45, 56]. Truncating the cumulant hierarchy can
be justified at early times due to the sequential nature
of correlation buildup [45, 51]. However the increasing
importance of quadruplets, in particular for energy con-
servation, limits our study to times t . tn.

Off-diagonal long-range ordering.—The triplet model
contains anomalous averages at the one-body level (ψ0)
in the atomic condensate and at the two- (ck) and three-
body (Rk,q) levels within the quantum depletion. These
cumulants are intimately connected to the eigenfunctions
of the reduced density matrices, signalling ODLRO and
condensation [57–59]. We begin from the spectral decom-
position of the one-body density matrix

ρ(1)(r1, r2; t)=〈ψ̂†(r2)ψ̂(r1)〉=
∑

ν

Nν(t)ϕ∗ν(r2, t)ϕν(r1, t),

(4)
where ϕν are orthogonal one-body eigenstates. Only one
eigenvalue Nν=0 is assumed to be macroscopic such that
ϕ0 is responsible for ODLRO at the one-body level

lim
|r1−r2|→∞

ρ(1)(r1, r2; t) = N0(t)ϕ∗0(r2, t)ϕ0(r1, t). (5)

Within the cumulant approach, the long-range part of
ρ(1) is simply |ψ0|2, such that N0 = V |ψ0|2 coincides

with the condensate population 〈â†0â0〉 and fraction n0 =
N0/V .

In the presence of one-body condensation, ODLRO oc-
curs trivially at all higher orders [54, 59]. We isolate
therefore the atomic condensate from the fluctuations
ψ̂(r) = ψ0 + δψ̂(r), satisfying 〈δψ̂(r)〉 = 0. To study
intrinsically few-body ODRLO amongst fluctuations, we
adapt the treatment of Yang [59] and spectrally decom-
pose the corresponding p-body density matrices

〈δψ̂†(r′1) . . . δψ̂†(r′p)δψ̂(rp) . . . δψ̂(r1)〉
=
∑

ν

N (p)
ν (t)ϕ(p)∗

ν (r′1, . . . , r
′
p, t)ϕ

(p)
ν (r1, . . . , rp, t), (6)

where ϕ
(p)
ν and N

(p)
ν are the orthogonal p-body eigen-

states and eigenvalues, respectively. Analogous to
Eq. (5), when the p-body density matrix is nonzero
in the long-range limit |∑p

i=1 ri − r′i|/p → ∞, there
exists intrinsic p-body ODLRO. In the triplet model,
this limit is dominated by the anomalous contraction
〈δψ̂† . . . δψ̂†〉〈δψ̂ . . . δψ̂〉, such that nonzero c or R cumu-
lants generate ODLRO. The associated normalized pair
and triple wave functions are

ϕ
(2)
0 (r, t) =

c(r, t)√
N

(2)
0 (t)

, ϕ
(3)
0 (r,ρ, t) =

R(r,ρ, t)√
N

(3)
0 (t)

, (7)
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with N
(2)
0 =

∑
k |ck|2, N

(3)
0 =

∑
k,q |Rk,q|2, and Jacobi

vectors r ≡ r1 − r2, ρ = r3 − (r1 + r2)/2. We note that
pair or triple condensation may generate trivial ODLRO
in density matrices with p ≥ 4. If one were to study,
e.g., quadruple condensation, such contributions should
be removed.

Condensate fractions.—Unlike one-body condensation,

the macroscopic eigenvalues N
(p)
0 cannot be directly re-

lated to condensed fractions. To understand this, we con-
struct composite operators annihilating condensed pairs
and triples

b̂
(p)
0 =

1√
p!

[
p∏

i=1

∫
d3riδψ̂(ri)

]
ϕ
(p)∗
0 (r1, . . . , rp). (8)

Evaluating the quantum average of the commutators in
the triplet model gives

〈[b̂(2)0 , b̂
(2)†
0 ]〉 = 1 +

2

N
(2)
0

∑

k

|ck|2nk, (9)

〈[b̂(3)0 , b̂
(3)†
0 ]〉 = 1 +

3

N
(3)
0

∑

k,q

|Rk,q|2nk(1 + nq), (10)

which approximate the canonical relations only for weak
excitations (nk � 1) or localized pairs and triples relative
to the medium. In the opposite limit, composite bosons
are created on top of densely populated Fourier modes,
leading to Bose enhancement of atoms within the created
composite and an overestimation of the condensed frac-
tion [60]. Consequently, the rapid quantum depletion of

the atomic condensate in the unitary regime yields b̂
(p)
0

that are approximately bosonic only at t . tn (see [51]).
The renormalization procedure

B̂
(p)
0 =

b̂
(p)
0√

〈[b̂(p)0 , b̂
(p)†
0 ]〉

, (11)

effectively ensures that the bosonic canonical relations
are preserved on average at all times, which we use
to compute the pair and triple condensate fractions as

n
(p)
0 /n = 〈B̂(p)†

0 B̂
(p)
0 〉/(N/p).

The postquench dynamics of the condensate fractions
are shown in Fig. 1. Compared to the doublet model,
three-body processes in the triplet model lead to an ac-
celerated depletion of the atomic condensate, reaching
n0/n ≈ 0.4 by t = tn. At early times, the formation of
condensed triples follows sequentially the universal pair
condensate growth, reflecting the hierarchical structure
of the cumulant equations of motion (see [38, 51]). At
later times the dynamics depend strongly on the density
regime, repeating log-periodically with the density typ-
ical of the Efimov effect [39–41]. In the trimer regime
[Fig. 1(a)], the ground-state Efimov trimer resonantly
overlaps with the scale set by the density (kn/κ∗ ∼ 1),
and triple condensation dominates clearly at later times,

becoming comparable to the atomic condensate frac-
tion. Condensed atoms can be converted to pairs and
triples via low energy two and three-body scattering,
respectively [56, 61, 62]. As this overlap becomes less
resonant (kn/κ∗ . 1), the system enters the crossover
regime where particle-number oscillations between pair
and triple BECs visible in Fig. 1(b) are analogous to
the atom-dimer coherences of Ref. [63]. In the universal
regime [Fig. 1(c)], Efimovian and Fermi scales are well
separated (kn/κ∗ � 1), and the oscillation becomes in-
creasingly faster relative to tn. This is the characteristic
dynamical signature of the Efimov effect [38, 40, 41, 64].
At later times, pair condensation remains dominant while
the nonuniversal oscillations fade and the condensate
fractions converge universally, approaching n

(2)
0 /n ≈ 0.2

and n
(3)
0 /n ≈ 0.1 by t = tn.

Short-range expansions.—We study now how the
short-range behavior of the condensate wave functions
c(r, t) and R(r,ρ, t) are dictated by few-body physics.
This can be understood from the corresponding cumu-
lant equations of motion which are identical to few-body
Schrödinger equations at momenta large compared to the
many-body scales [1, 38, 45, 51]. For distances larger
than the short range of the potential (rvdW < r <
k−1n , a), the pair and triple condensate wave functions
can be expanded in terms of the zero-energy few-body
scattering wave functions

c(r, t) =
r→0

1

4π
Ψ

(2)
0 (t)φ(r), (12)

R(r,ρ, t) =
R→0

23/2

31/4s0
Ψ

(3)
0 (t)Φ(R,Ω), (13)

which define the macroscopic order parameters Ψ
(p)
0 (see

the Supplemental Material [51]). Here φ(r) = 1/r − 1/a
is the zero-energy two-body scattering state, and

Φ(R,Ω) =
1

R2
sin

[
s0 log

R

Rt

]
φis0(Ω)√
〈φis0 |φis0〉

(14)

is the zero-energy three-body scattering state for hy-
perraddius R =

√
r2/2 + 2ρ2/3 and hyperangles Ω =

{ρ̂, r̂, α = arctan(r/ρ)} [65]. Here, s0 ≈ 1.00624, Rt =√
2 exp{Im ln[Γ(1 + is0)]/s0}/κ∗, and Γ is the gamma

function. The hyperangular function describing s-wave
pairwise scatterings is φs(Ω) = (1+P̂13+P̂23) sin(s(π/2−
α))/ sin(2α)

√
4π where P̂ij swaps particles i and j [66].

From Eqs. (12) and (13) we see then at unitarity that
the pairs have a universal behavior ∼ 1/r at short dis-
tances, whereas the triples have an Efimovian character,
diverging as 1/R2 and oscillating log periodically with
the three-body parameter.

At short distances, the total probability to measure
clustered pairs and triples is encoded in the two- and
three-body contact densities C2 and C3, respectively, cen-
tral to a set of universal relations between system prop-
erties [65, 67]. In the presence of pair and triple conden-
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Figure 2. Macroscopic (a) pair and (b) triple order parameter
dynamics over a range of densities within the triplet model.
Black solid line: universal results within the doublet model.
(inset) Residual exponents Ψ

(p)
0 ∝ Λγp evaluated at fixed

t = 0.05tn converge as expected to 0 as the system becomes
increasingly dilute with respect to the range of the interaction
(Λ/kn →∞).

sation, these clusters can be divided into contributions
from the order parameters and higher-order cumulants

C2 =
m2g2

~4
〈(ψ̂†)2ψ̂2〉 = |Ψ(2)

0 |2 + δC2, (15)

C3 = − m2g2

2~4Λ2

(
H ′ +

J ′

aΛ

)
〈(ψ̂†)3ψ̂3〉 = |Ψ(3)

0 |2 + δC3,
(16)

whereH ′ and J ′ are log-periodic functions of Λ, ψ̂ = ψ̂(0)
are local field operators, and δCp’s are contributions ab-
sent in the triplet model (see the Supplemental Mate-

rial [51]). This establishes the square modulus of Ψ
(p)
0 as

a probability density, analogous to ψ0 at the one-body
level. The dynamics shown in Fig. 2 can be understood
from Refs. [33, 40, 41, 45], namely, early-time growths

|Ψ(p)
0 (t)| ∝ t(p−1)/2 with primary (p = 3) and secondary

(p = 2) visibility of nonuniversal trimer oscillations in
the crossover regime (kn/κ∗ = 0.82 and 0.61).

Internal structure.—We study now the longer-range in-
ternal structure of the pair and triple condensate wave
functions, focusing on the interplay between Efimovian
and Fermi scales. Fig. 3 shows the triplet model results
for the normalized pair and triple condensate wave func-
tions at t/tn = 0.15, 0.5, 1. To visualize the triple conden-
sate wave function, we average Rk,q over internal configu-
rations at a fixed hypermomentum K2 = k2+q2+kq cos θ

where cos θ = k̂ · q̂. The corresponding ϕ
(3)
0 (K) captures
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Figure 3. Internal structures of the normalized (a) pair and
(b) triple condensate wave functions as the system evolves for
densities within the crossover (orange) and universal (light
blue) regimes. The filled circles in (a) indicate the three-body
parameter. (insets) Normalized pair and triple condensate
wave functions in the universal regime at t = tn compared

to the vacuum ground-state Efimov trimer |Ψ(0)
3b (K)| (black

dotted) for density kn/κ∗ = 0.35.

variations of the coherent tripling physics with changes
in the overall three-body momentum scale [51].

At early stages of evolution (t = 0.15tn), the pair
and triple wave functions are relatively constant over the
range of momenta considered consistent with the buildup
of local correlations between nearby particles [33]. Ac-
cordingly, the small amount of clustered pairs and triples
are dominated by few-body physics. This explains why
their condensation dynamics shown in Fig. 1 follow the
corresponding contact growth laws. We note that the lo-
cal, structural origin of these laws was not recognized in
Ref. [39].

At later times, both pair and triple wave functions be-
come increasingly nonlocal. From the insets of Fig. 3 we
see that as the system approaches more deeply the uni-
versal regime, both condensate wave functions acquire a
universal form by t = tn. Together with the universal
behavior of the triple condensed fractions in Fig. 1(c),
this remarkable finding suggests the existence of a con-
densate composed of universal Efimovian triples at later
times despite strongly non-universal short-distance be-
havior [see Fig. 2(b)]. In the crossover regime results in
Fig. 3(a), we find the development of a peak at momenta
kn ∼ κ∗ reminiscent of the Cooper pair in the BEC-BCS
crossover [68]. The absence of this peak in simulations
of the doublet model and universal regime of the triplet
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problem with characteristic timescale t
(0)
3b = m/~κ2
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of a trimer character in the triple condensate.

model [Fig. 3(a)] ties it to the Efimov effect.
To study the presence and role of the ground-state Efi-

mov trimer |Ψ(0)
3b 〉 in the triple condensate |ϕ(3)

0 〉, we eval-
uate the overlap

P
(0)
3b (t) = | 〈ϕ(3)

0 |Ψ
(0)
3b 〉 |2, (17)

as shown in Fig. 4 (see the Supplemental Material [51]).
In the universal regime, the ground-state Efimov trimer is
localized relative to the Fermi scales. At all times in this
regime, P

(0)
3b reflects therefore the short-range behavior

of the triple condensate wave function encapsulated by

Ψ
(3)
0 , contributing the characteristic trimer oscillations

visible in Fig. 4. After a small initial increase, the rapid

decrease of P
(0)
3b in this regime reflects the local to non-

local transition of the triple condensate wave function,
which bears little resemblance to the trimer as shown in
the inset of Fig. 3(b). This is responsible also for the
decreased visibility of the trimer oscillations in Fig. 1(c).
Consequently, this local to nonlocal structural transition,
generated by the medium effect of the strong quantum-
depletion, is the underlying mechanism by which macro-
scopic observables, such as the condensate fractions in
Fig. 1(c), display a universal scale invariance. This oc-
curs despite continued local sensitivity to the three-body
parameter [Eq. (13)] which becomes less relevant as the
coherent physics begins to occur predominantly on the
Fermi scale. In the trimer regime, we find no decrease of

P
(0)
3b for t . tn, and the early-time increase is more grad-

ual. From Fig. 3(b) it is clear that although the coherent
physics occurs predominantly on the Fermi scale at later
times as before, when one has kn ∼ κ∗ the condensed
triples are increasingly dominated by the ground-state
Efimov trimer. In short, the non-universal, trimer char-
acter of the triple condensate increases at later times in

the trimer regime, whereas it decreases in the universal
regime where one finds triples without a vacuum equiva-
lent.

Conclusion.— Using the cumulant model that includes
three-body correlations, we have shown that novel types
of few-body condensates are generated within the quan-
tum depletion of a quenched unitary Bose gas. Cru-
cially, the regime of universal pair and triple condensa-
tion demonstrates a strongly-interacting many-body sys-
tem behaving universally even in the presence of non-
universal few-body physics such as the Efimov effect.
We expect the molecular fractions produced following an
interaction sweep back to weak interactions [26, 29] to
reflect the few-body composites present in the unitary
regime. However the highlighted difficulties of counting
composite bosons extended in the medium requires a pre-
cise modeling of the projection and remains the subject
of future work [37, 70]. Additionally, the tripling fluctu-
ations discussed in this Letter raise interesting prospects
for measuring non-Gaussian many-body states [71, 72].

Acknowledgments.—We thank Jinglun Li, Denise
Ahmed-Braun, Paul Mestrom, Thomas Secker, and Gijs
Groeneveld for fruitful discussions. M.V.R. acknowledges
support by MURI-AFOSR FA9550- 19-1-0399. M.W. ac-
knowledges financial support from the FWO-Vlaanderen
under the project G016219N. V.E.C. acknowledges fi-
nancial support from Provincia Autonoma di Trento
and the Italian MIUR under the PRIN2017 projectCEn-
TraL. S.M. and S.J.J.M.F.K acknowledge financial sup-
port by the Netherlands Organisation for Scientific Re-
search (NWO) under Grant No. 680-47-623.

∗ sil.musolino@gmail.com
† colussiv@gmail.com

[1] A. Leggett, Quantum Liquids: Bose condensation and
Cooper pairing in condensed-matter systems, Oxford
Graduate Texts (OUP Oxford, 2006).

[2] L. Pitaevskii and S. Stringari, Bose-Einstein Conden-
sation and Superfluidity , International Series of Mono-
graphs on Physics (OUP Oxford, 2016).

[3] M. Tinkham, Introduction to Superconductivity
(McGraw-Hill, New York, 1996).

[4] S. A. Moskalenko and D. W. Snoke, Bose-Einstein con-
densation of excitons and biexcitons: and coherent non-
linear optics with excitons (Cambridge University Press,
2000).

[5] G. C. Strinati, P. Pieri, G. Röpke, P. Schuck, and M. Ur-
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I. FEW-BODY MODEL AT UNITARITY

The results of the main text are produced using the calibrated two-body model employed in Refs. [1–3] that
describes well the broad, entrance-channel dominated Feshbach resonances used experimentally [4–8]. In this section,
we briefly outline this model and implications of the finite-range effects on the three-body level.

A. Calibrated two-body model

Eq. (1) of the main text is written in terms of a local potential V (|r − r′|). In general, a local potential can be
always expanded as a sum of nonlocal separable potentials as

〈k|V̂ |k′〉 =
∑

j=1

gj〈k|ζj〉〈ζj |k′〉, (S1)

with form factors |ζj〉 and interaction strengths gj [9]. We make the unitary pole approximation, valid in the unitarity
limit [10], replacing the actual potential by a separable one and choosing s-wave form factors 〈k|ζ〉 = θ(Λ − |k|)
that are functions of the relative momentum where θ(x) is the unit step function defined such that θ(x ≥ 0) = 1
and θ(x < 0) = 0. This step function form factor therefore provides a cutoff on the relative two-body momentum.
Therefore, the momentum space representation of Eq.(1) of the main text reads as

Ĥ=
∑

k

εkâ
†
kâk +

g

2V

∑

p,p′,q

ζp−p′+2qζp−p′ â
†
p+qâ

†
p′−qâpâp′ (S2)

where εk = ~2k2/2m is the kinetic term. Using a separable potential, it is possible to obtain a closed, analytic

expression for the Lippmann-Schwinger equation for the two-body T operator T̂ (z) = V̂ + V̂ Ĝ
(0)
2B(z)T̂ (z) as

T̂ (z) =
g|ζ〉〈ζ|

1− g〈ζ|Ĝ(0)
2B(z)|ζ〉

, (S3)

where Ĝ
(0)
2B(z) is the two-body free Green’s function [11]. The low energy limit of the on-shell T -matrix for s-wave

scattering is given as always by

4π~2

m
a =
|k|→0

〈k,−k|T̂ (~2k2/m+ i0)|k′,−k′〉, (S4)

which fixes the interaction strength g = U0Γ where U0 = 4π~2a/m and Γ = (1 − 2aΛ/π)−1, which gives g =

−2π2~2/mΛ on resonance. Taking the limit Λ → ∞ would yield V̂ equivalent to a renormalized contact potential,
which leads also to the unphysical Thomas collapse on the three-body level [12]. Instead, we calibrate as Λ = 2/πā
in order to reproduce finite-range corrections to the binding energy of the shallow s-wave dimer −~2/m(a− ā)2 away
from resonance, where ā ≈ 0.956rvdW is the mean-scattering length that is set by the van der Waals length rvdW for
a given atomic species [13].
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B. Efimov states

On the three-body level, the spectrum of three-body bound Efimov states is highly sensitive to the finite-range
physics of the calibrated two-body model. The use of a pairwise separable potential renders the vacuum three-body
problem solvable following the work of Skorniakov and Ter-Martirosian [14]. Here, we outline this solution as well
as the construction and normalization of the three-body wave function in momentum space necessary to evaluate
Eq. (23) of the main text. To solve the three-body problem in vacuum, we begin with the decomposition into Faddeev
components

|Ψ3b〉 = |Ψ(1)〉+ |Ψ(2)〉+ |Ψ(3)〉
= (1 + P̂+ + P̂−) |Ψ(1)〉 ,

(S5)

where P̂+ and P̂− are permutation operators [15, 16]. Each Faddeev component satisfies a bound state equation in
momentum space, given for example by

Ψ(1)(q1,p1) = G
(0)
3B(q1, p1, E)

∑

p′1,q
′
1

〈q1,p1|T̂23(E)|p′1,q′1〉 〈p′1,q′1|P̂+ + P̂−|Ψ(1)〉 ,
(S6)

where G
(0)
3B(q1, p1, E) = 1/(E − q21/m − 3p21/4m) is the vacuum three-body Green‘s function and T̂23 = V̂23 +

V̂23Ĝ
(0)
3B(E)T̂23 is the two-body transition matrix obeying the Lippmann-Schwinger equation, and E is the bind-

ing energy. Here, we have parametrized the Faddeev component by the Jacobi vectors q1 = (k2 − k3)/2 and
p1 = (2k1 − k2 − k3)/3. Following the original formulation of Ref. [14], we make the ansatz

Ψ(1)(q1,p1) = G
(0)
3B(q1, p1, E)ζ(q1)F(p1), (S7)

and inserting this ansatz in Eq. (S6) yields the integral equation

F(p1) = 2g τ

(
E − 3p21

4m

)∑

p′1

ζ(2p′1 + p1)ζ(2p1 + p′1)

E − p2
1

m −
p
′2
1

m −
p1·p′1
m

F(p′1). (S8)

where τ(z) = 1/(1 − g 〈ζ|Ĝ(0)
3B |ζ〉). The Efimov trimer binding energies correspond to the nontrivial solutions of

Eq. (S8). Here, we quote the previous results of Refs. [1, 3] for the first few binding energies at unitarity using
the separable step function form factor: κ∗/Λ ≈ 0.317 for the ground Efimov trimer and κ(1)/Λ ≈ 0.0131 for the
first excited Efimov trimer. We note that our result for κ∗ is comparable to existing results from broad Feshbach
resonances using more realistic interaction potentials [17, 18]

Using the binding energy of a specific Efimov trimer, the corresponding trimer wave function can be constructed
via Eqs. (S5) and (S7). In order to normalize the trimer wave function, we calculate the corresponding normalization
constant N by solving the integral

N = 〈Ψ3b|Ψ3b〉 = 3 〈Ψ(1)|Ψ(1)〉+ 6 〈Ψ(1)|P+|Ψ(1)〉

=
∑

q1,p1

Ψ(1)∗(q1, p1)

[
Ψ(1)(q1, p1) + Ψ(1)

(
|q1

2
+

3p1

4
|, |q1 −

p1

2
|
)]

(S9)

where we have used that 〈Ψ(1)|Ψ(1)〉 = 〈Ψ(2)|Ψ(2)〉 = 〈Ψ(3)|Ψ(3)〉 and the fact that the mixed terms 〈Ψ(i)|Ψ(j)〉 are
identical ∀i 6= j and i, j = {1, 2, 3} due to the particle exchange symmetry. Therefore, the three-body wave function
is normalized according to

1 =
1

N
∑

q1,p1

|Ψ3b(q1,p1)|2

=
1

N
∑

k1,k2

| − 1|3|Ψ3b(k1,k2)|2,
(S10)

where |−1|3 is the Jacobian for the change of variable from Jacobi to single-particle momenta coordinates (q1,p1,Q)→
(k1,k2,k3). Finally, we note that because both 〈Ψ(0)

3b |Ψ
(0)
3b 〉 = 1 and 〈ϕ(3)

0 |ϕ
(3)
0 〉 = 1, it is guaranteed by construction

that P
(0)
3b = | 〈ϕ(3)

0 |Ψ
(0)
3b 〉 |2 ≤ 1.
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II. CUMULANT EQUATIONS OF MOTION

To describe the coupled-correlation dynamics, we first introduce the cumulant of a p-body operator as

〈
l∏

i=0

â†ki

m∏

j=0

âk′j

〉

c

= (−1)m
l∏

i=0

∂

∂xi

m∏

j=0

∂

∂y∗j
ln
〈

e
∑l

i=0 xiâ
†
ki e

∑m
j=0 y

∗
j âk′

j

〉∣∣∣
x,y=0

. (S11)

which we refer to as a “p-uplet”. Next, we reproduce the equations of motion used to produce the results of the main
text. We note that this system of equations was analyzed in depth in previous work [3], and the explicit expressions
are reproduced here for reasons of completeness. As demonstrated in that work, the many equivalent models of the
quenched unitary Bose gas found in the literature [1, 2, 19–22] can be grouped under the umbrella of the doublet
model, which describes only the dynamics of the singlets and doublets. Here, instead we consider the dynamics of
singlets, doublets, and triplets, and we neglect quadruplets and higher order cumulants.

The dynamics of the singlet (ψ0) is given by the Gross-Pitaevskii equation for the Hamiltonian in Eq.(1) of the
main text

i~∂tψ0 =g

(
ζ20n0 +

2

V

∑

l

ζ2l nl

)
ψ0 +

gψ∗0
V

∑

l

ζ0ζ2lcl +
g

V 3/2

∑

l,s

ζlζ2s−lM
∗
l,s, (S12)

and the condensate phase derivative is given by

~
dθ0
dt

=− 1

2n0

(
ψ∗0 i~

dψ0

dt
− i~

dψ∗0
dt

ψ0

)
, (S13)

=−
[
gζ20n0 +

2g

V

∑

l

ζ2l nl +
g

V

∑

l

ζ0ζ2lRe cl +
g√
n0V 3

∑

l,s

ζlζ2s−lM
∗
l,s

]
. (S14)

The doublet equations of motion are

i~∂tnk = 2i Im

[
∆kc

∗
k + 2g

√
n0
V

∑

l

ζ2k−lζlMl,k + g

√
n0
V

∑

l

ζkζ2l−kM
∗
k,l

]
, (S15)

i~∂tck = 2Ekck + (1 + 2nk)∆k + 4g

√
n0
V

∑

l

ζl+kζl−kM
∗
l,k + 2g

√
n0
V

∑

l

ζkζ2l−kRk,l, (S16)

where the Hartree-Fock hamiltonian and pairing field [23] are defined as

Ek = εk + 2g

[
ζ2kn0 +

1

V

∑

l

ζ2k−lnl

]
, (S17)

∆k = gζ2k

[
ζ0n0 +

1

V

∑

l

ζ2lcl

]
. (S18)

At momenta large compared to the many-body scales, one has

i~∂tck ≈ 2Ekck +
gζ2k
V

∑

l

ζ2lcl, (S19)

which is identical to the two-body Schrödinger equation [1, 3, 24] and justifies the expansion Eq. (12) of the main text.
Additionally, the inhomogeneous drive terms involving n0 in Eq. (S16) and c in Eq. (S12) describe the direct coherent
exchange between atomic and pair condensates via low energy two-body scattering as described in Refs. [3, 25].

The triplet equations of motion are given by

i~∂tMk,q =
(
Ek − Eq − Ek−q

)
Mk,q −∆∗k−qM

∗
q,k −∆∗qM

∗
k−q,k + ∆kR

∗
k,q +MH3

k,q +MH4

k,q, (S20)

i~∂tRk,q =
(
Ek + Eq + Ek−q

)
Rk,q + ∆kM

∗
k,q + ∆qM

∗
q,k + ∆k−qM

∗
k−q,k +RH3

k,q +RH4

k,q, (S21)

where MH3

k,q and RH3

k,q contains doublet products and therefore represent the doublet sources, and are given by
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MH3

k,q√
n0/V

= 2g
(
ζ2k−qζqc

∗
k−qnq + ζk+qζk−qnk−qc

∗
q − nk(ζk+qζk−qc

∗
q + ζqζ2k−qc

∗
k−q)

)

+2g
(
ζ2q−kζknk−qnq − ζ2q−kζknk(1 + nq + nk−q)− ck(ζ2k−qζqc

∗
q + ζk+qζk−qc

∗
k−q)

)
, (S22)

RH3

k,q√
n0/V

= 2g
(
ζ2q−kζkck(1 + nq + nk−q) + ζ2k−qζqcq(1 + nk + nk−q) + ζk+qζk−qck−q(1 + nk + nq)

)

+2g
(
ζk−qζk+qckcq + ζqζ2k−qckck−q + ζkζ2q−kcqck−q

)
. (S23)

Instead, MH4

k,q and RH4

k,q contain products of doublets and triplets and the full expression can be found in Ref. [3].
Following that work, we do not numerically simulate the full expressions, taking only the dominant 1 + n+ n terms
required to produce the correct form of the interacting few-body Hamiltonian and many-body T-matrix. As discussed
in Ref. [3], this approximation of the full expressions can be used at times t . tn before the quantum depletion
becomes significant. Therefore, one has

MH4

k,q ≈ −
g

V

∑

l

ζ2q−kζ2l−kMk,l

(
nk−q + nq + 1

)
, (S24)

RH4

k,q ≈
g

V

∑

l

(
ζ2q−kζ2l−kRl,k

(
nq + nk−q + 1

)
+ ζ2k−qζ2l−qRl,q

(
nk + nk−q + 1

)

+ζk+qζk−q+2lRl,k−q
(
nk + nq + 1

)
)
, (S25)

which significantly reduces the computational burden. We direct the interested reader to Appendix B of Ref. [3] for
an in-depth discussion of the numerical simulation used to produce the results of the main text and of the violation
of energy conservation muddies the long-time dynamics in the triplet model.

At momenta large compared to the many-body scales, one has in analogy with Eq. (S19) the simplification

i~∂tRk,q ≈
(
Ek + Eq + Ek−q

)
Rk,q +

g

V

∑

l

(
ζ2q−kζ2l−kRl,k + ζ2k−qζ2l−qRl,q + ζk+qζk−q+2lRl,k−q

)
, (S26)

which is identical to the three-body Schrödinger equation [1, 3] and justifies the expansion Eq. (13) of the main text.
Furthermore, unlike Eq. (S16), there are no inhomogeneous drive terms in Eq. (S23) depending solely on n0 or solely
on c. As discussed in Ref. [26], these terms are responsible for a direct coupling between the atomic condensate and
triples via low energy three-body scattering.

III. COUNTING COMPOSITE BOSONS

In this section, we explain why a renormalisation is needed to interpret the macroscopic eigenvalues of the density
matrices as condensate populations. We first outline the difficulties encountered when trying to count composite
bosons in our cumulant model, before then illustrating the general problem by considering a simple Fock states of
pairs.

A. Renormalization of the pair and triple condensate fractions in the cumulant model

We start by giving explicitly the factorized expression of the 2-body density matrix (valid both in the doublet and
triplet models):

ρ(2)(r1, r2; r′1, r
′
2) ≡ 〈δψ̂†(r′1)δψ̂†(r′2)δψ̂(r2)δψ̂(r1)〉

= N
(2)
0

[
ϕ
(2)
0 (r′1 − r′2)

]∗
ϕ
(2)
0 (r1 − r2) + 〈δψ̂†(r′1)δψ̂(r1)〉〈δψ̂†(r′2)δψ̂(r2)〉+ 〈δψ̂†(r′1)δψ̂(r2)〉〈δψ̂†(r′2)δψ̂(r1)〉. (S27)

Here, the Hartree and Fock terms fall off to zero when |r1−r′1| or |r1−r′2| exceed a few Fermi lengths. On the contrary
the anomalous term, written here directly in terms of the pair condensate wave function Eq. (7), is responsible for
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Figure S1. Total condensed fraction using the (a) renormalized and (b) bare condensate operators. The difference between the
bare and renormalized (c) pair and (d) triple condensate fractions as a function of the density and time spent in the unitary
regime. The black lines indicate results in the universal doublet model.

long-range ordering. The associated macroscopic eigenvalue is explicitly

N
(2)
0 =

∫
d3r1d3r2|〈δψ̂(r1)δψ̂(r2)〉|2 =

∑

k

|ck|2. (S28)

For fermionic pair condensates, this macroscopic eigenvalue is usually interpreted as the number of fermions in the
pair condensate [24, 27, 28]. Here, this interpretation appears problematic since in the doublet model (the bosonic

equivalent of BCS theory) N
(2)
0 always exceeds the number of bosons available for pairing1

N
(2)
0 =

doublet

∑

k

nk(1 + nk) ≥ N −N0, (S29)

as numerically confirmed in Fig. S1(b). This result follows from the relation |ck|2 = nk(1 + nk) valid for the doublet
model, based on a Gaussian Ansatz. We note that the inequality would be reversed in the case of Fermi statistics:

N
(2),fermions
0 =

BCS

∑

k

nk(1− nk) ≤ Nfermions (S30)

which explains why the renormalisation procedure was not previously proposed for fermionic pair condensates.

The origin of the overcounting in Eq. (S29) becomes clear when one expresses N
(2)
0 in terms of the (bare) pair

condensate operator (defined in Eq. (8)):

N
(2)
0

2
= 〈b̂(2)†0 b̂

(2)
0 〉. (S31)

Here the “superbosonic” commutation relation obeyed by b̂
(2)
0 , (〈[b̂(2)0 , b̂

(2)†

0 ]〉 ≥ 1, see Eq. (9)) forbids interpreting

b̂
(2)†
0 b̂

(2)
0 as a number operator and hence N

(2)
0 as a number of bosons. With this in mind, the renormalization

1 We note here in passing the relation between N
(2)
0 and the variance of the number of bosons N̂ex = N̂ − N0 outside the one-body

condensate: N
(2)
0 = VarN̂ex −

∑
k nk(1 + nk) =

doublet
VarN̂ex/2. This follows from expressing the trace of ρ(2) in two ways: Trρ̂(2) =

VarN̂ex + 〈N̂ex〉(〈N̂ex〉−1) using the definition of ρ(2) (first line of Eq. (S27)) and the fact N̂ex fluctuates in our broken-symmetry state,

and Trρ̂(2) = N
(2)
0 + 〈N̂ex〉2 +

∑
k n

2
k from the decomposed form on the second line of Eq. (S27).
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procedure Eq. (11) appears as a natural way to introduce a bosonic number operator B̂
(2)†
0 B̂

(2)
0 , whose average value

〈B̂(2)†
0 B̂

(2)
0 〉 =

(N
(2)
0 )2

2
∑

k |ck|2(1 + 2nk)
(S32)

we interpret as the number of pairs in the condensate. To support this interpretation, we remark that in the doublet

model 〈B̂(2)†
0 B̂

(2)
0 〉 (contrary to N

(2)
0 /2) is always lower2 than the maximal number of pairs

〈B̂(2)†
0 B̂

(2)
0 〉 =

doublet

(N
(2)
0 )2

2
∑

k nk(1 + nk)(1 + 2nk)
≤ N −N0

2
, (S36)

as shown in Fig. S1(a). We note that the inequality is saturated in the weakly-excitated regime (nk � 1) where

〈B̂(2)†
0 B̂

(2)
0 〉 ' N

(2)
0 /2 ' (N −N0)/2.

In the triplet model, the macroscopic eigenvalue of the three-body density matrix is explicitly

N
(3)
0 =

∫
d3r1d3r2d3r3|δψ̂(r1)δψ̂(r2)δψ̂(r3)|2 =

∑

k,q

|Rk,q|2. (S37)

As shown in Fig. S1 (b), the sum of the weighted eigenvalues 2N
(2)
0 /2! + 3N

(3)
0 /3! never exceeds the number of bosons

outside the one-body condensate. Still, we consider the renormalized numbers 〈B̂(2)†
0 B̂

(2)
0 〉 and

〈B̂(3)†
0 B̂

(3)
0 〉 =

[
N

(3)
0

]2

6
∑

k,q |Rk,q|2(1 + 3nk(1 + nq))
(S38)

as better estimates of the pair and trimer condensate occupation numbers. In the time window we explore, the

corrections δN
(p)
0 = N

(p)
0 /p!− 〈B̂(p)†

0 B̂
(p)
0 〉 remain however small, as illustrated by Fig. S1 (c) and (d).

B. Counting pairs in a Fock state of pairs

We now argue that the difficulty in counting the number of composite bosons is not specific to cumulants models.
Rather, it occurs generally whenever the composite creation operator violates the bosonic commutation relations
as was discussed for fermionic pairs previously, c.f. Ref. [29–31]. We begin by considering the Fock state of pairs
composed of N composite bosons

|N〉 =

(
b†
)N |0〉√
N (N)

, (S39)

with the normalizationN (N) = 〈0| bN
(
b†
)N |0〉. As in Eq. (8) (with p = 2), the pair operator b̂ is a linear superposition

of two-body operators âαâβ . Note that the discussion here is general and remains valid when b̂ describes pairs of

fermions [31] or distinguishable bosons. To quantify the deviation of b̂ from bosonicity, we define

δĈ =
[
b̂, b̂†

]
− 1 (S40)

δ2Ĉ =
[[
b̂, b̂†

]
, b̂†
]

=
[
δĈ, b̂†

]
(S41)

2 To demonstrate the inequality in (S36), we compute

〈B̂(2)†
0 B̂

(2)
0 〉 −

Nex

2
=

∑
k,k′ nknk′ (1 + nk′ )(nk − 2nk′ )

2
∑

k nk(1 + nk)(1 + 2nk)
. (S33)

Exchanging indices in the sum of the numerator, one sees this quantity is negative for all distributions of {nk}:
∑

k,k′
nknk′ (nk − 2nk′ ) = −

∑

k,k′
n2
knk′ , (S34)

∑

k,k′
nkn

2
k′ (nk − 2nk′ ) =

∑

k,k′
nknk′ (nknk′ − n2

k − n2
k′ ) = −

∑

k,k′
nknk′

[
(nk − nk′ )

2 + nknk′
]
. (S35)
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We note that δ2Ĉ is a linear superposition of bilinear creation operators â†αâ
†
β and therefore commutes with b̂†.

Remarking that the result (25) of Ref. [31] is not restricted to pairs of fermions, we have

〈N | b̂†b̂ |N〉 = N

(
1 +
〈δĈ〉

2

)
+O(1/N) (S42)

with 〈δĈ〉 ≡ 〈N | δĈ |N〉, neglecting terms small in the thermodynamic limit3. Equation (S42) shows that the operator

b̂†b̂ overcounts the number of pairs, when b̂ is not a bosonic operator.
We note that the intuition that the state (S39) contains N pairs of bosons matches however an observable reality.

Consider the scenario where the pair wave function φ is adiabatically tuned by an external parameter, such as the
interaction strength, until it describes tightly bound dimers such that δĈ ≈ 0 and the bosonic commutation relations
are well-satisfied. Then N initially delocalised bosonic pairs convert into a condensate of N localized dimers whose
population can be measured.

The conclusion we draw from this paradox is that the number of pairs (or, more generally, of composite bosons)

cannot be measured directly by four-particle correlators such as the two-body density matrix or b̂†b̂, at least not in the
regime where the size of the pairs is comparable to the interparticle spacing. In the simple example considered in this
subsection, we knew the exact number of pairs N because we had access to the exact many-body state (S39). This is
not the case of most many-body theories (including the cumulant model), which describe only low-order correlations.
Experimentally, knowing the many-body state exactly requires a prohibitive quantum state tomography.

This discussion also shows that care must be taken when comparing the number of molecules measured after
interaction sweeps as in Refs. [6, 32] to the eigenvalues of the two-body density matrix, as is typically done for Cooper
pairs of fermions [27]. A detailed analysis of the adiabatic sweep is required, especially with theories whose access to
high-order many-body correlations is limited.

IV. LOCAL RELATIONS

In this section, we derive first the particular form of the contact relations Eqs. (15) and (16), and then use this
to obtain the proportionality constants in Eqs. (12) and (13) in order to obtain well-behaved macroscopic order

parameters satisfying Cp = |Ψ(p)
0 |2 in the triplet model.

First, we derive Eq. (15) of the main text from the cumulant expansion of the local contact relation [33]

C2 =
m2g2

~4
〈(ψ̂†)2ψ̂2〉 =

m2g2

~4
[
|ψ0|4 + 4n(0)|ψ0|2 + 2n(0)2 + |c(0)|2 + (ψ∗0)2c(0) + ψ2

0c
∗(0)

+2(M(0)ψ0 +M∗(0)ψ∗0) +Q(0)] , (S47)

where we have suppressed the internal degrees into the notation ‘(0)’ to indicate local evaluation of the cumulants.

Here, Q represents the quadruplet cumulant with Q(0) = 〈(ψ̂†)2ψ̂2〉c. From the correspondence between the cumulant
equations of motion and few-body Schrödinger equations at large momenta (see Ref. [3] for the lengthy equation of
motion for Q) and the known local lattice expression for the zero-energy two-body scattering wave function [34]

|φ(0)|2 =
16π2~4

m2g2
, (S48)

we infer the scaling of each cumulant in the expansion of Eq. (S47) with the cutoff in the limit (Λ/kn → ∞) at
unitarity (|a| → ∞)

ψ0 ∝ Λ0, n(0) ∝ Λ0, c(0) ∝ Λ1, M(0) ∝ Λ1, Q(0) ∝ Λ2. (S49)

3 By iteratively displacing the annihilation operator b̂ to the right, at the cost of introducing the residual commutator δĈ in successive
locations, we obtain

〈N | b̂†b̂ |N〉 =
〈0| b̂N b̂†b̂(b̂†)N |0〉

N (N)
= N +

∑N
p=1 〈0| b̂N (b̂†)pδĈ(b̂†)N−p |0〉

N (N)
(S43)

To simplify this expression, we consider the sequence up ≡ 〈0| b̂N (b̂†)N−pδĈ(b̂†)p |0〉. The fact that δ2Ĉ commutes with b̂† ensure that
up is an arithmetic sequence:

up − up−1 = 〈0| b̂N (b̂†)N−pδ2Ĉ(b̂†)p−1 |0〉 = 〈0| b̂N (b̂†)N−p+1δ2Ĉ(b̂†)p−2 |0〉 = up−1 − up−2 (S44)

Together with u0 = 0 (consequence of δĈ |0〉 = 0), this shows that the general term of the sequence is

up = 〈0| b̂N (b̂†)N−pδĈ(b̂†)p |0〉 =
p

N
〈0| b̂N δĈ(b̂†)N |0〉 =

p

N
uN (S45)

With this property, we obtain

〈N | b̂†b̂ |N〉 = N + 〈N | δĈ |N〉




N∑

p=1

N − p
N


 = N

(
1 +

N − 1

2N
〈δĈ〉

)
(S46)

and eventually Eq. (S42) above.
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Therefore, we find that the local contact relation reduces in this limit at unitarity to

C2 =
m2g2

~4
[
|c(0)|2 +Q(0)

]
, (S50)

where the first term describes the contribution of the pair order parameter, and the second term is δC2 of the main
text. In the triplet cumulant model, the quadruplets are set to zero by construction, and so one expects, analogous
to BCS theory [35], that δC2 6= 0 requires the inclusion of pairing fluctuations.

Next, we derive Eq. (16) of the main text by considering first the cumulant expansion of the local contact relation
[33]

C3 = − m2g2

2~4Λ2

(
H ′ +

J ′

aΛ

)
〈(ψ̂†)3ψ̂3〉. (S51)

The functions H and J are log-periodic in Λ as

H(ln(Λ/Λ∗)) = h0
C − s0S
C + s0S

, (S52)

J(ln(Λ/Λ∗)) =
j0 + j1(2SC) + j2(C2 − S2)

(C + s0S)2
, (S53)

where C = cos(s0 ln(Λ/Λ∗)) and S = sin(s0 ln(Λ/Λ∗)) and with universal constants A = 89.262, φ = −0.669,
h0 = 0.879, j0 = −0.148, j1 = −0.892, j2 = −0.087, and renormalization scale s0 ln(Λ∗/κ∗) = 0.971 mod π. The
′ notation indicates a partial derivative with respect to ln(Λ/Λ∗). In the limit (Λ/kn → ∞) at unitarity, one finds

that m2g2/2~4Λ2 scales as 1/Λ4, such that only terms scaling at least as Λ4 in the cumulant expansion of 〈(ψ̂†)3ψ̂3〉
remain. From Eq. (S49) we can see that any combinations of these cumulants will not contribute in this limit. Instead,
we infer the local lattice expression for the zero-energy three-body scattering wave function from Refs. [33, 36]

|Φ(0,0)|2 =
s20
√

3Λ2~4

4m2g2

[
−H ′ − J ′

aΛ

]−1
. (S54)

which displays the desired Λ4 scaling at unitarity. Therefore, the cumulants whose equations of motion correspond
to three-body Schrödinger equations at large momenta can contribute to the cumulant expansion of Eq. (S51) in the
(Λ/kn →∞) limit at unitarity

C3 = − m2g2

2~4Λ2

(
H ′ +

J ′

aΛ

)[
|R(0)|2 + S(0)

]
, (S55)

where the first term describes the contribution of the triple order parameter, and the second term is δC3 of the main

text. In the triplet cumulant model, the sextuplet S(0) = 〈(ψ̂†)3ψ̂3〉c is set to zero by construction, and so one expects
analogously that δC3 6= 0 requires the inclusion of tripling fluctuations.

The next step is to take the local limit of Eqs. (12) and (13)

c(0, t) =
r→0

α(2)Ψ
(2)
0 (t)φ(0), (S56)

R(0, t) =
R→0

α(3)Ψ
(3)
0 (t)Φ(0), (S57)

where the α(p)’s are the undetermined proportionality constants. We note that the local cumulants can be evaluated
on a numerical grid as

c(0, t) =
1

V

∑

k

ck, R(0, t) =
1

V 3/2

∑

k,q

Rk,q. (S58)

Next, we plug Eqs. (S56) and (S57) into the cumulant expanded contact relations Eqs. (S50) and (S55) and equate
the contributions of |c(0)|2 and |R(0)|2, respectively, to obtain

α(2) =
1

4π
, α(3) =

23/2

31/4s0
(S59)
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Figure S2. Comparison of the normalized triple condensate wave functions (|ϕ(3)
0 〉) over various times and densities correspond-

ing to Fig. 3(b) with the vacuum wave function of the ground-state Efimov trimer (|Ψ(0)
3b 〉). The wave functions have been

averaged using the procedure outlined in Sec. V.

Here, several comments about our “contact’ convention for the macroscopic order parameters are in order. We note
that multiplying the α(p)’s by m/~2 produces a pair order parameter with units of energy. This is typically done
in theories of the two-component Fermi gas due to the connection between the order parameter and the gap in the
weakly-attractive BCS regime [37]. We note that in this context the pair wave function is typically referred to as “F”

(c.f. Refs. [38]). We have chosen to omit these factors to make the interpretation of |Ψ(p)
0 |2 as a probability density

more apparent. Explicitly, one finds that integrating the macroscopic order parameters over the entire system yields
then the condensed contribution to the extensive contacts C2 and C3. Explicitly, in the zero-range limit of the triplet

model one has the extensive relation
∫
dV |ψ0|2 = N0 and

∫
dV |Ψ(p)

0 |2 = Cp, which demonstrates the connection
with the extensive contacts (

∫
dV Cp = Cp) and analogy with the order parameter of the atomic condensate. Finally,

we qualify that the converse relationship that pair or triple condensation is implied by a nonzero contact is not
necessarily true as evidenced by measurements and predictions in the nondegenerate unitary regime [39, 40] in which
case Cp = δCp, and the triplet model becomes insufficient.

V. TRIPLE WAVE FUNCTION AVERAGING

In order to study the internal structure of the triple condensate wave function in Fig. 3(b), we have averaged over
the internal configurations to reduce the overall dimensionality. The relevant cumulant Rk,q = 〈âq−kâkâ−q〉 describes
a three-body configuration with individual momenta k, −q and q− k, which can be reduced to a dependence on the
norms of the two single-particle momenta k and q and the angle between them k̂ · q̂ = cos θ. Here, we introduce the
hypermomentum K, characterizing the overall three-body momentum scale, which is generally defined in terms of
the two Jacobi wave vectors as K2 = q21 + (3/4)p21 and can be written in terms of the specific parametrization of the
R cumulant as K2 = k2 + q2 + kq cos θ. Starting from the 3-dimensional array Rk,q, we average all the components
with the same hypermomentum. Numerically, the averaging of R(K) is accomplished by the sum

R(K) =
1

Ncount(K)

∑

ijl

R(ki, qj , cos θl)Pijl(K), (S60)

where the summation is taken over all indices of the 3D grid array (ki, qj , cos θl). Here, Pijl(K) is a condi-
tional array, which reads 1 for indices (i, j, l) corresponding to a configuration with hypermomentum K − ∆K ≤√
k2i + q2j + kiqj cos θl < K+ ∆K falling within a bin of fixed width 2∆K and reads 0 otherwise. In order to take the

average, we divide by the number Ncount(K) =
∑
ijl Pijl(K), which records the total number of suitable configurations

counted for a fixed hypermomentum. We note that each configuration (i, j, l) corresponds to a distinct hyperangle
Ωijl, and therefore Eq. (S60) is equivalent to preforming the hyperangular average at fixed hypermomentum.

We apply this averaging procedure also the to the ground-state Efimov trimer (|Ψ(0)
3b 〉) and compare against the

normalized triple condensate wave functions (|ϕ(3)
0 〉) in Fig. S2, which includes additional time and densities to

supplement the comparison made in the inset of Fig. 3(b). Here, we see in Fig. S2(a) that there is a strong resemblance
between the wave functions between times t/tn = 0.5 and 1. In Fig. S2(b), there is a close resemblance instead at early

times near t/tn = 0.15. For both densities, these time windows coincide with the corresponding peaks of P
(0)
3b found
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in Fig. 4, which reinforces the conclusions of the main text and illustrates explicitly resemblance between condensed
triples and Efimov trimers at various times and densities.
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