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Zusammenfassung

Im Rahmen dieser Arbeit wurde erstmals die Bose-Einstein-Kondensation (BEC) von
133Cs erreicht. Durch evaporative Kühlung in einer optischen Falle wird ein Kondensat
im absoluten Grundzustand (F = 3,mF = 3) erzeugt.

Cäsium zeigt einzigartige Streueigenschaften, die die Erzeugung eines Bose-
Einstein-Kondensates lange verhindert haben. In zahlreichen Experimenten weltweit
wurde viel Wissen über diese Eigenschaften gesammelt. Im Entwurf des hier
vorgestellten experimentellen Aufbaus wurden diese vorhandenen Ergebnisse genutzt,
um die speziellen Probleme im Umgang mit Cäsium zu vermeiden und seine beson-
deren Eigenschaften zur Erreichung des BEC einzusetzen.

Zwei CO2-Laser mit einer Leistung von je 100 W formen eine schwache quasi-
elektrostatische optische Dipolfalle, die in Verbindung mit einem magnetischen Levi-
tationsfeld ausschließlich den absoluten inneren Grundzustand der Cs-Atome fängt,
wodurch eine vollständige Spinpolarisation sichergestellt ist. Die Unterdrückung
inelastischer Zweikörper-Verluste in diesem System wurde in ersten Experimenten
genutzt, um detaillierte Messungen zu Dreikörper-Rekombinationsraten bei großen
Streulängen durchzuführen [Web03b]. Die Möglichkeit, durch ein magnetisches Feld
die Streulänge a einzustellen, erlaubte erstmals die experimentelle Bestätigung der the-
oretisch vorhergesagten Skalierung der Rekombinationsrate mit a4. Der in der Theorie
enthaltene Skalierungsfaktor wurde zu nlC = 225 bestimmt. Dieser Wert stimmt im
Rahmen der Fehlergrenzen mit den Vorhersagen überein.

Ein entscheidendes Ergebnis aus den Messungen zur Dreikörper-Rekombination
ist die Beobachtung von Rekombinationsheizen. In einer Erweiterung des ex-
perimentellen Aufbaus wurde eine optische Mikrofalle implementiert, in der die
Auswirkungen des Rekombinationsheizens vermieden werden. Gleichzeitig erlaubt
die Mikrofalle effiziente evaporative Kühlung durch Absenken des optischen Poten-
tials. Nach Optimierung des Evaporationspfades durch Einstellung einer geeigneten
Streulänge wurde bei einer kritischen Temperatur von 50 nK der Phasenübergang zum
BEC mit bis zu 16000 Atomen im Kondensat beobachtet [Web03a].

In ersten Experimenten zeigt sich die starke Abhängigkeit der inneren Energie
des Kondensates vom magnetischen Feld. Durch Einstellung verschiedener Streulän-
gen werden implodierende, explodierende und nicht wechselwirkende “eingefrorene”
Kondensate erzeugt. In Expansionsmessungen wurde eine mittlere kinetische Energie
von bis hinunter zu 1

2kB · (220 ± 100) pK gemessen.
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Abstract

This thesis reports on the realization of the first Bose-Einstein condensate (BEC) of
133Cs. Condensation is achieved in the lowest internal state (F = 3,mF = 3) by
evaporative cooling in an optical trap.

Cesium has unique scattering properties, which have prevented Bose-Einstein con-
densation for many years. Much knowledge has been collected on these properties in
many experiments world-wide. The experimental setup constructed during this thesis
was designed with that knowledge in mind to avoid the peculiar pitfalls cesium has to
offer and to use its special properties on the path towards BEC.

A shallow quasi-electrostatic optical dipole trap formed by two 100-W CO2 lasers
in combination with a magnetic levitation field allows for selective trapping of the
absolute internal ground state, ensuring perfect spin polarization. In first experiments,
the complete suppression of inelastic two-body losses in this setup was used to perform
detailed measurements of three-body recombination effects at large scattering length
a [Web03b]. The magnetic tunability of a via Feshbach resonances was employed to
experimentally confirm for the first time the theoretically predicted a4 scaling of the
three-body recombination rate coefficient and to determine the value of a universal
scaling factor nlC included in the theory. The value of nlC = 225 agrees with the
predictions within its error limits.

A further result of the three-body recombination measurements, strong evidence
for recombination heating, has been of crucial importance for identifying a suitable
path towards condensation. An extension of the setup, an optical microtrap (“dim-
ple”), avoids the detrimental effects of recombination heating and allows for efficient
evaporative cooling by lowering the optical potential. Using the tunable scattering
length to optimize the evaporation path, Bose-Einstein condensation was achieved at
a critical temperature of 50 nK, with a maximum of 16000 atoms in the condensate
phase [Web03a].

First experiments with the BEC demonstrate the strong dependence of the con-
densate mean-field energy on the magnetic field. By briefly switching to different
scattering lengths just before releasing the sample from the trap, imploding, explod-
ing, and non-interacting “frozen” condensates are realized. The lowest kinetic energy
measured in the expansion of a condensate is 1

2kB · (220 ± 100) pK.
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Chapter 1

Introduction

Almost 80 years ago, the concept of Bose-Einstein statistics was derived for a cer-
tain class of particles1 [Bos24, Ein25]. This theoretical frame implies phenomena that
are far from self-evident, and, as Einstein wrote, “. . . express indirectly a certain hy-
pothesis on a mutual influence of the molecules which for the time being is of a quite
mysterious nature” (in: [Cor02]).

One of these phenomena is the increased probability for entering a quantum state
which is already occupied; the most prominent application of this phenomenon is the
laser. Another effect is already noted in Einstein’s 1925 paper: “I maintain that, in
this case, a number of molecules steadily growing with increasing density goes over in
the first quantum state (which has zero kinetic energy) while the remaining molecules
separate themselves according to the parameter value A = 1 [. . . ] A separation is
effected; one part condenses, the rest remains a ‘saturated ideal gas.’ ” (in: [Cor99]).

This effect, soon called Bose-Einstein condensation (BEC), was derived for a low-
temperature ideal gas, a system not readily available for studies at that time. It is
therefore not amazing that the idea was generally not taken too seriously, and early
notions of linking superfluidity in liquid helium to BEC did not win much recognition.
Today we know that both superfluidity and superconductivity are indeed closely con-
nected to BEC, however these are special, strongly interacting systems in which the
condensation process is not readily observable.

It was already noted in 1959 [Hec59] that spin polarized hydrogen might be a
very good candidate for a more weakly interacting BEC, remaining in a metastable
gaseous state down to zero temperature. This thought led to many low-temperature
experiments starting in the late 1970s using refrigeration techniques with liquid helium
dilution refrigerators to cool the sample. However, the experimental difficulties were
great, and this line of research was overtaken by the field of laser cooling of heavier
alkali atoms, which grew strongly in the 1980s and, finally, in 1995 led to the first
realization of BEC with 87Rb and 23Na [And95, Dav95]. Not much later, condensation

1The first publication by Bose specifically refers to photon statistics [Bos24], Einstein extended the
concept to systems with conserved particle number [Ein25]. Today we know the statistics applies to all
particles with integer spin and call these bosons.
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1 Introduction

of the original first candidate for BEC in dilute ultracold atomic gases, hydrogen, was
achieved [Fri98].

This creation of a dilute, experimentally accessible, weakly interacting macro-
scopic matter wave led to an explosion of research activity. A multitude of experiments
employed the unique possibilities in these systems to study effects that previously had
only been predicted theoretically or that elude observation in their “natural surround-
ings”, like in “classical” condensed-matter physics. A Bose-Einstein condensate can
serve as excellent model system for quantum effects, and BECs have helped to un-
derstand many phenomena of the quantum world. In the course of this world-wide
research effort, only a few more atomic species, namely 7Li [Bra95], 85Rb [Cor00],
41K [Mod01], 4He [Rob01], and, lately, 174Yb [Tak03], have been Bose condensed.

In the frame of this thesis, we have added a new and peculiar species to the “BEC
zoo”, cesium (133Cs). This atom is of particular interest in physics. It features a large
hyperfine splitting in the ground state, and the corresponding microwave transition has
been the primary frequency standard since 1967. It is the heaviest stable alkali atom;
indeed, cesium has more isotopes (32) than any other element, with mass numbers
ranging from 114 to 145, and 133Cs is the only stable one among them [Los03]. Its sin-
gle valence electron is loosely bound, giving rise to a rich spectrum of electron-nucleus
and atom-atom interactions. Of all elements, cesium is the most electropositive2, has
the largest polarizability, and features the strongest van der Waals interaction strength
[Chi01a].

These unique properties make cesium relevant for many applications in funda-
mental metrology, like measurements of parity violation [Woo97], gravity [Sna98],
the electron electric dipole moment [Chi01b], or variations of fundamental constants
[Mar03a]. A Bose-Einstein condensate of cesium will constitute an ideal sample for
future precision measurements.

Cesium has been studied extremely well over the years, and especially in the cold
atom community has been found to show unexpected behavior in many experiments.
Much knowledge on otherwise subtle effects has been gained in trying to understand
these peculiarities. The following chapter will introduce this special atom and its role
and history in the physics of ultracold quantum gases.

2Cesium reacts explosively with cold water, and reacts with ice at temperatures above -116 °C.
Cesium hydroxide, the strongest base known, attacks glass [Los03].
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Chapter 2

The cesium atom

From the beginning of research in dilute atomic Bose-Einstein condensation with alkali
atoms, attempts have been made at condensation of 133Cs. Its transition properties and
high-energy scattering properties are well known, since it is the frequency standard,
and many spectroscopy and laser cooling techniques have been developed in cesium.

However, the standard path towards BEC, capturing the atoms in a magneto-optical
trap and then evaporatively cooling them in a magnetic trap [Ket99, Cor99], has up to
now not been successful with this element. I will try to explain what makes it so
difficult and at the same time interesting.

2.1 An alkali atom

All experiments described in this work operate on 133Cs, the only stable isotope of
cesium. The combination of its nuclear spin 7/2 with the spin 1/2 of the single valence
electron makes it a boson. The energetically lowest electronic states of this heaviest
stable alkali atom are shown in Fig. 2.1.

The transition from the 62S1/2 ground state to the 62P3/2 excited state (the D2 line)
is the closed transition employed in 133Cs laser cooling. The natural line width of this
transition is Γ2 = 2π · 5.22 MHz. The line width of the 62S1/2 → 62P1/2 (D1) transition
is Γ1 = 2π · 4.56 MHz. The hyperfine splitting of the ground state is 9.2 GHz, the SI
definition of the second is based on this microwave transition. The hyperfine splitting
of the 62P3/2 excited state is much smaller, at 150-250 MHz.

Due to its large mass of 133 amu (2.207·10−25 kg), the energy imparted by the recoil
from scattering of a single photon, expressed in temperature units as recoil tempera-

ture, is only 200 nK. This makes cesium very well suited for laser cooling applications.
An excellent overview of all properties of cesium relevant in this context is given in
[Ste02].

11



2 The cesium atom
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Figure 2.1: 133Cs D lines

2.2 Inelastic scattering: Why cesium wasn’t first

Due to its mass and its large hyperfine splitting, cesium is well suited to optical cooling
techniques [Kas95, Boi96]. Since the wavelength band used in early optical telecom-
munications was centered at 850 nm1, high-power semiconductor diode lasers for ad-
dressing the 852 nm D2 line were readily available, making it relatively easy to set
up efficient and robust laser cooling experiments. It is therefore no surprise that ce-
sium was initially considered to be a prime candidate for Bose-Einstein condensation
[Mon93].

In general, to achieve BEC atoms are captured and pre-cooled in a magneto-optical
trap [Raa87] and then for evaporative cooling transferred into a (nearly) conservative
trapping potential [Ket99]. Atom traps can be made conservative to a very high degree,
causing almost no heating to a trapped sample. However, through collisions atoms can
change their internal degrees of freedom. These inelastic collisions can be endother-
mic or exothermic, respectively converting kinetic energy into potential energy or vice
versa. Endothermic collisions are usually excluded due to the low kinetic energy avail-
able at µK temperatures, however exothermic collisions release energy into the sample
and cause heating and/or loss from the trap.

Inelastic collisions are characterized by the number of atoms involved in such a
process. Because the density dependence increases with higher atom number, usually
only two-body and three-body losses are considered. Two-body losses are dominant
when they cannot be suppressed through careful choice of the internal state of the
trapped atoms, while three-body losses in most cases only play a role at high density.

1Modern telecom applications focus on longer wavelengths around 1300 nm and 1550 nm.
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2.2 Inelastic scattering: Why cesium wasn’t first

Early experiments on cesium in magnetic traps focused on samples polarized in the
upper hyperfine ground state F = 4, magnetic sublevel mF = 4. In this doubly polar-
ized state (stretched state, both nuclear and electronic spin are aligned with the applied
magnetic field), spin-exchange collisions, which constitute the main inelastic two-body
loss process, are forbidden. The next strongest contribution to inelastic collisions was
then thought to be the much weaker direct magnetic dipolar interaction between the
spins of the unpaired electrons of two atoms. However, the spin relaxation rates were
measured to be three orders of magnitude higher than expected [Söd98, Arl98]. It
was later understood that this is caused by a contribution to the the dipolar interaction
from the second-order spin-orbit interaction (also called indirect spin-spin coupling)
[Leo98]. This contribution can be very high for heavy atoms due to relativistic effects.
Actually, in 87Rb, the first atomic species to be condensed [And95], achieving BEC
is greatly simplified because the terms for the direct and indirect contributions to the
dipolar interaction partly cancel, giving very low relaxation rates [Mie96]. In cesium,
however, the terms also have opposite signs but the second-order contribution is much
larger, completely dominating the interaction [Mie96, Leo98]. For some more details
on dipolar interactions see also [Tie93].

The next step in magnetic trapping experiments was to move to the F = 3,mF = −3
lower hyperfine state. This avoids hyperfine-changing interactions, as these are now
endothermic. The effect of dipolar relaxation could be somewhat suppressed by operat-
ing at very low magnetic bias fields around 1 G [GO98a]. However, the inelastic losses
where still too high, and both the experiments in Paris [GO98b] and in Oxford [Hop00]
did not reach quantum degeneracy. The maximum phase-space density reached in both
experiments was a factor of about one hundred away from condensation.

Solving the problem of the strong inelastic two-body losses requires using the ab-
solute ground state of cesium, F = 3,mF = 3. In this state, all inelastic two-body
processes are endothermic and are thus fully suppressed at sufficiently low tempera-
ture. The F = 3,mF = 3 state cannot be captured in a magnetic trap, as it is a high-field
seeker and would require a local maximum of the magnetic field, which is forbidden
[Win84]. Therefore, several experiments turned to using optical dipole forces for trap-
ping, which are independent of the magnetic substate. Experiments in Paris [Per98],
Stanford [Vul99], Berkeley [Han00], and in our group [Ham02a] explored this path
towards high phase-space densities of 133Cs. However, optical traps by themselves do
not allow for “cutting” into the potential for evaporative cooling, but can only effect
evaporation by lowering the total potential depth. This weakens the confinement of
the trapped sample und thus renders evaporation less effective. The Berkeley experi-
ment, using a similar setup to the one developed in this thesis, successfully employed
radio-frequency evaporation in a magnetically levitated optical trap [Han01] to reach
a phase-space density within a factor of two from BEC, but was eventually limited by
three-body recombination [Wei02]2.

2Three-body recombination in cesium will be treated extensively in Ch. 7.
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2 The cesium atom

2.3 Elastic scattering and more cesium specialties

In contrast to inelastic processes, elastic collisions, which only redistribute kinetic en-
ergy but leave the internal state of the involved particles unchanged, are necessary
for evaporative cooling to ensure thermalization in the ensemble. The prospects for
evaporative cooling in a certain setup are therefore often characterized by the ratio be-
tween those two types of collisions, which are appropriately named “bad” and “good”
collisions.

In the many experiments carried out with ultracold cesium atoms, much knowledge
on its elastic scattering properties has been collected. A short excursion into scattering
theory will help to understand the results.

Scattering theory treats collisions between low-energy atoms by a partial-wave ex-
pansion of the scattering wave function [Sak94]. At the energy scales we are interested
in within the scope of this thesis, with cesium atoms at a temperature around or below
1 µK, the centrifugal barrier prevents collisions with nonzero angular momentum3.
The elastic scattering process now is fully isotropic, and the only parameter governing
the scattering behavior is the phase shift δ0 between incoming and outgoing s wave.

The phase shift in the zero-energy limit is usually parameterized by the s-wave
scattering length

a = − lim
k→0

tan δ0(k)
k

, (2.1)

where k denotes the collision wave vector of the relative motion of the atoms. The scat-
tering length completely describes the scattering behavior, independent of short-range
details of the potential. A quantum mechanical interpretation of the scattering length
is the position of the last node of the scattering wave function outside the interaction
region. If the scattering length is negative, it signifies a virtual node in the negative
range region, and this is equivalent to a attractive net interaction. Positive scattering
lengths correspond to repulsive interaction. Zero scattering length means the incoming
and outgoing wave functions are indistinguishable and cancel, this destructive interfer-
ence implies that there is effectively no interaction at all (Ramsauer-Townsend effect).
The scattering cross-section σ is in the low-energy limit given by σ = 4πa2. This
relation is valid for nonidentical particles, which is the case for an unpolarized trapped
sample. If the sample is fully polarized, as is the case in typical BEC experiments, we
have identical particles. Then, for bosons all even partial wave contributions vanish
for symmetry reasons4, and the odd contributions double, making the s-wave collision
cross-section in the low-energy limit

σ = 8πa2. (2.2)
3Even for the lowest (angular momentum quantum number l = 1) contribution, an incident p-wave,

the centrifugal barrier in 133Cs is kB · 37 µK [Chi01a].
4In contrast, for fermions the odd partial waves vanish, which effectively means that in the s-wave

limit fermions do not collide at all. This renders evaporative cooling very ineffective at low energies,
and makes cooling of fermions towards the BCS transition much more difficult than achieving BEC in
bosons.

14



2.3 Elastic scattering and more cesium specialties

The scattering length depends very sensitively on the details of the short-range
interaction potential. When the potential depth is slightly lower than the threshold for
the appearance of a new bound state, the scattering length a is large and negative; if it
is slightly larger, a is large and positive [Dal99b]. Right at the threshold, a diverges,
this is called a zero-energy resonance. In a van der Waals r−6 potential, this means that
the scattering length very sensitively depends on the C6 coefficient of this potential.

Evidence for the existence of a zero-energy resonance in cesium has been found
several years ago in Paris [Arn97]. In the experiment, the s-wave collision cross-
sections were measured in a polarized sample of cesium atoms in the F = 4,mF =

4 state at varying temperatures between 5 µK and 60 µK5. The cross-section varied
strongly with temperature and was found to within the experimental uncertainty fulfill
the relation

σ =
8π
k2
. (2.3)

This relation is the scattering cross-section in the unitarity limit, where the low-energy
limit k → 0, which is a prerequisite for the validity of Eq. 2.2, is no longer valid.

The more general expression covering both limits is6

σ = 8π
a2

1 + k2a2
, (2.4)

and we see that the relation between k and a characterizes the crossover between the
limiting cases. At ka ≪ 1, Eq. 2.4 simplifies to the expression for the low-energy limit,
while ka ≫ 1 signifies the unitarity limit. The validity of the unitarity case down to a
temperature of 5 µK in the experiment therefore gives a lower limit of the magnitude of
the scattering length of |a| > 260 a0 [Arn97], where a0 = 0.53 Å denotes Bohr’s radius.
This lower limit is already exceptionally high as compared to the values |a| . 100 a0

measured for other alkali atoms, signifying that in Cs a zero-energy resonance is very
close.

It is important to note that there is not one Cs scattering length. The scattering
length depends on the potential between two atoms, and this in general depends on
the internal state of the atoms. In cesium atoms, with their single valence electron,
two atoms can form a singlet or triplet state, depending on whether the electronic
spins are antiparallel or parallel, respectively. In collisions, the free atom states are
projected onto the singlet and triplet potentials and thus the scattering problem can
be described by the solutions for these two potentials. Correspondingly, the singlet
scattering length aS and the triplet scattering length aT are the important parameters
describing ultracold collisions. The aforementioned experiment [Arn97] measured
collisions between atoms polarized in the F = 4,mF = 4 ground state. This stretched
state is the single state governed only by the triplet potential, thus the experiment gives

5The limit of pure s-wave scattering is well fulfilled in this case since in the polarized sample p-
wave collisions are fully suppressed. The centrifugal barrier for the next-order d-wave collisions is
much higher at kB · 191 µK.

6We still neglect the range of the interaction potential, i.e. assume a contact interaction.
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2 The cesium atom

a direct indication for the value of aT . Collisions between atoms in all other states have
to be treated as mixtures, and in particular the singlet scattering length aS cannot be
observed directly.

Collecting the experimental data then present, a paper published in 1998 [Kok98]
tried to summarize the “Prospects for Bose-Einstein Condensation in Cesium” (paper
title). The authors calculate large negative singlet and triplet scattering lengths, and
also a negative scattering length for the magnetically trappable F = 3,mF = −3 state.
This would severely limit the prospects for BEC, since a condensate with attractive
interactions is only stable for a very small atom number7. At the predicted magnitudes
of several hundred a0, the size of a stable condensate would be restricted to typically
less than 100 atoms [Rup95]. However, the conclusion of a negative scattering length
was rather indirect, and all experiments on collision rates could only give lower bounds
for the magnitude of the scattering rate, as the sign plays no role in the elastic collision
cross-section.

2.4 Feshbach resonances and Cs questions answered

Comprehensive results on cesium ultracold scattering properties were finally attained
in a collaboration between the group experimenting with cesium in an optical dipole
trap at Stanford and the theory group at NIST, Gaithersburg. In two Physical Review
Letters [Chi00, Leo00], they presented a series of experiments and their subsequent
theoretical analysis that allowed to pin down accurately the values of the singlet and
triplet scattering lengths and the van der Waals C6 coefficient.

The measurements rely on the observation of Feshbach resonances in ultracold
collisions. Feshbach resonances in atomic interactions arise from an unbound incident
(scattering) state having an energy close to a bound state in a different molecular po-
tential [Tie93, Tie92]. If there is some coupling between the states, a similar effect
as in the aforementioned zero-energy resonance occurs: When the molecular state is
degenerate with the incident state, the scattering length diverges. If the molecular state
lies slightly higher, the scattering length is large and positive; if it is slightly lower,
large and negative. The peculiarity about Feshbach resonances is that in general dif-
ferent molecular states have a different magnetic moment. The position of molecular
states relative to each other and to the scattering state therefore varies with the mag-
netic field, and the dispersive behavior of the scattering length can be observed by
varying the applied magnetic field.

Figure 2.2, taken from [Chi01a], nicely illustrates the principle of Feshbach reso-
nances. At the crossing points of scattering state and bound states, the scattering length
diverges, while the elastic cross-section is unitarity limited. We see that the width of

7A homogeneous condensate with negative scattering length would always collapse, however the
spatial localization introduced by the trapping potential can dynamically stabilize small condensates
(see Sec. 3.2.3).
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Figure 2.2: Feshbach resonances. The lowest graph shows the different magnetic field de-
pendence of the potential energy of the scattering state and two bound states. The arrows
indicate two Feshbach resonances at the level crossings. The middle graph displays the corre-
sponding s-wave scattering length a, with zero-crossings of the scattering length (Ramsauer-
Townsend effect) indicated by arrows. In the upper graph, we see the corresponding elastic
scattering cross-section, which is unitarity limited to 8π/k2 for identical bosons. Figure taken
from [Chi01a].

the resonances depends on the difference in magnetic moment between the scattering
state and the bound states.

Feshbach resonances can only appear if there is an appreciable coupling between
the different states. Here comes into play the infamous second-order spin-orbit inter-
action that prevented Bose-Einstein condensation in the magnetically trappable states
of cesium (Sec. 2.2). This interaction couples incident s-wave states to higher angular
momentum molecular states, and thus together with the relatively strong van der Waals
interaction provides a rich spectrum of Feshbach resonances.

Indeed, more than 30 Feshbach resonances were found in the collision measure-
ments presented in [Chi00], which were carried out with various mixtures of atomic
states. Altogether, the Stanford experiment observed around 60 resonances in both
elastic and inelastic processes [Chi01a]. All resonances could be explained by a com-
plete model describing the Cs ground state interactions [Leo00], using only four fit
parameters: the singlet scattering length aS , the triplet scattering length aT , the van
der Waals coefficient C6, and a general scaling factor for the indirect spin-spin cou-
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Figure 2.3: Lower graph: Calculated scattering length a [Jul03] against the magnetic field
strength B for the 133Cs F = 3,mF = 3 absolute ground state. The calculated curve includes
resonances with s and d angular momentum bound states, g-wave resonances are not visible in
the scattering length but their calculated position is indicated by arrows. The upper graph shows
a measurement of the radiative loss rate from the Stanford group [Chi03a], where Feshbach
resonances appear as inelastic losses (cf. [Chi00, Chi03b]).

pling. The model predicts all observed resonance positions, with impressive quantita-
tive agreement of the scattering rates.

This thorough analysis finally gave reliable values for the fundamental interaction
parameters of cesium. The singlet and triplet scattering length obtained are aS =

280 ± 10 a0 and aT = 2400 ± 100 a0, respectively, the van der Waals coefficient was
found to be 6890 ± 35 a.u. (1 a.u. = 2R∞hca6

0 = 0.0957345 · 10−24 J nm6). The
model allows to calculate the scattering properties for any of the 133Cs ground state
substates. The calculated scattering length for the F = 3,mF = 3 absolute ground state
[Jul03, Ker01] at a range of magnetic fields is shown in Fig. 2.3.

We see that the scattering length varies very strongly with the applied magnetic bias
field. The overall shape of the curve is dominated by an extremely broad resonance
with an s-wave molecular state, with a zero crossing of the scattering length at 17 G.
The other resonances visible in the scattering length curve are resonances with d-wave
molecular states, while some extremely narrow g-wave resonances are not visible in
the curve, but indicated by arrows.

The strong variability with the magnetic field is a very interesting feature of the Cs
F = 3,mF = 3 scattering length. The extremely broad variation around the 17 G zero
crossing, with relatively weak dependence on the exact magnetic field strength, allows
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2.5 New hope for magnetic traps

for very precise tuning of the scattering length. At the same time, the many narrow res-
onances, most notably the strong resonance at 48 G, allow for very quick variation over
a broad scattering length range. Of great convenience is the fact that these resonances
appear at magnetic field strength values very easily attainable experimentally.

In most alkali species, only very few resonances have been found, and these often
appear only at very high field strengths. The first demonstration of a Feshbach reso-
nance in a BEC was done with 23Na at a bias field of 907 G [Ino98]. In the widely used
87Rb, about 40 resonances have been found [Mar02], but only one, at a field of 1007 G,
is wide enough to be used for tuning of the scattering length at typical experimental
B-field precision. Notable exception is 85Rb, where a resonance at 155 G could be
exploited in a BEC [Cor00], however in this system the atoms are not in their absolute
ground state and experience two-body decay.

2.5 New hope for magnetic traps

For the F = 3,mF = −3 magnetically trappable state, [Leo00] predicts favorable
conditions for BEC, i.e. a sufficiently high ratio of elastic to inelastic collisions, at
certain magnetic field values. A recent experiment in Oxford [Tho03] tries to use
that information and their previous experience to finally achieve BEC in a magnetic
trap. The trapping potential is specially designed to minimize both inelastic two-body
and three-body losses, and to enable evaporation at low density on extremely long
time scales. Indeed, the predictions are fully confirmed, and by carefully optimizing
the evaporation parameters a phase-space density of within a factor of four from the
BEC transition was achieved. However, the evaporation efficiency falters in the last
evaporation stages and limits the attainable phase-space density [Tho03, Ma03].

The reduced efficiency of evaporation is attributed to the hydrodynamic regime:
At the extreme scattering lengths present in cesium, the scattering cross-sections at
ultralow energy become so large that an atom collides many times during one trap os-
cillation period. This changes the nature of motion, rather than having single particles
oscillating in the potential one now observes collective motion.

In terms of the speed of evaporative cooling, the hydrodynamic regime limits the
thermalization rate. Usually, thermalization just depends on the elastic collision rate
[Ket96]. However, in the hydrodynamic regime thermalization is mediated by collec-
tive rather than single-particle motion. The thermalization rate is then given by the
transit time of these excitations across the sample, which is of the order of the trap
oscillation period [Vul99]. Once in this regime, a further increase in density, which
naturally happens in radio-frequency evaporation in a magnetic trap since the potential
curvature stays constant and the temperature decreases, does not speed up the cooling
process because thermalization has become density independent. However, inelastic
processes happen locally and their rate continues to increase; thus, the budget of evap-
oration vs. inelastic losses can degrade significantly.

In the Oxford experiment, this problem is not easily solvable. Reducing the scatter-
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2 The cesium atom

ing length on a Feshbach resonance to avoid the hydrodynamic regime is expected to
increase the rate of inelastic two-body losses [Leo00]. The group expects to improve
the efficiency by implementing a novel evaporation scheme [Tho03].

2.6 Our approach to cesium BEC

The experimental setup presented in this thesis was designed to employ all previously
available knowledge about the Cs scattering properties to finally achieve Bose-Einstein
condensation of this elusive alkali atom.

Knowing about the many difficulties involved with magnetic trapping of 133Cs, we
targeted from the beginning optical trapping of the F = 3,mF = 3 lowest-energy state,
which is insensitive to any two-body inelastic processes. We use a very shallow optical
trap formed by two CO2 lasers. In the vertical direction, this trap is too weak to hold the
Cs atoms against gravity, so a vertical magnetic field gradient enacts a counter-force
of equal magnitude. The large, shallow trap was supposed to fulfill three functions:

• the large trapping volume allows for the transfer of many atoms into the trap,

• the low density minimizes higher-order inelastic loss processes, esp. three-body
recombination, and

• spin-selective trapping enforces perfect spin polarization and allows for radio-
frequency evaporation.

In the course of the experiments, actually none of these points was as well fulfilled as
we had expected. The large volume really allows for a large ensemble to be captured
in the trap, however we never optimized the mode matching to perfection and lose
quite many atoms through initial plain evaporation. The low density does minimize
three-body recombination losses, but on a level far higher than was initially expected.
And radio-frequency evaporation works, but was not the tool that made Bose-Einstein
condensation possible.

However, the basic design decisions made in setting up the experiment permitted
everything necessary to succeed in the end:

• the use of a quasi-electrostatic trap and much effort to optimize the vacuum
conditions keep technical heating at a minimum and allow for experiments on
very long time scales,

• excellent optical access to the experiment region gives great flexibility in extend-
ing the experiment, and

• the magnetic field configuration allows to dynamically change the bias field over
a large range without affecting the trap operation.
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2.6 Our approach to cesium BEC

In the following chapters, the path towards our cesium BEC will be shown. Some
basic thoughts on trapping forces, together with the knowledge about the peculiarities
of cesium, influenced the basic experiment design done in the summer of 2000, while
our group was still in Heidelberg. After our move to the University of Innsbruck in
August of the same year, the experiment setup started to fill the lab. The MOT captured
atoms for the first time on July 27, 2001, and for about one year the construction
of further elements of the levitated trap and characterization of the system went in
parallel. August 2002 saw our measurements on three-body recombination [Web03b].
We spent September with some preliminary analysis of that data and used the newly-
found knowledge to modify the setup, and in the early morning hours of October 5,
2002, observed the first Bose-Einstein condensate of cesium [Web03a]. The Outlook
will give a hint on what has happened since [Her03].
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Chapter 3

BEC basics

The theory of Bose-Einstein condensation in dilute gases has been covered extensively
in several review articles [Ket99, Dal99a, e.g.] and, recently, in a comprehensive text-
book devoted exclusively to this topic [Pet02]. A very good introduction can also
be found in [Bon02]. I will give an overview of the main concepts involved in the
description of the phase transition and the properties of a BEC.

3.1 The phase transition

Figure 3.1 shows a commonly used illustration for the different regimes in a Bose gas.
The key quantity in this picture is the thermal de Broglie wavelength

λdB =

√

2π~2

mkBT
, (3.1)

Figure 3.1: The transition from a classical gas to a Bose-Einstein condensate. (A) In the classi-
cal case at high temperature, the size of the atoms is much smaller than their average distance
d, they behave as point-like particles. (B) At reduced temperatures, the thermal de Broglie
wavelength λdB becomes noticeable, quantum effects start to play a role. (C) When the atomic
wave functions start to overlap, the transition to Bose-Einstein condensation occurs. (D) At
T = 0, a pure condensate remains, described by a single macroscopic wave function. Figure
adapted from [Ket99].
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3 BEC basics

which gives the size of the single-atom wave function at a temperature T . When a sam-
ple is cooled down, λdB increases, and if the density is kept constant or even increased
during this process, at some point the wave functions of the individual atoms begin to
“overlap” in space. In terms of the phase-space density

D = nλ3
dB, (3.2)

which relates the number density n to the volume λ3
dB occupied in space by an atom,

the start of this overlap is characterized by D approaching unity. Now, the quantum
nature of the atoms comes into play, and a process akin to stimulated emission in optics
leads to macroscopic population of a single state. This marks the phase transition to
Bose-Einstein condensation.

To quantitatively understand this phenomenon, we take a look at quantum statistics.
For non-interacting bosons in thermal equilibrium, the mean occupation number Nν of
a single-particle state ν with energy εν in a trapping potential is given by the Bose
distribution function [Man88]

Nν =
1

e(εν−µ)/(kBT ) − 1
. (3.3)

The chemical potential µ that appears in Eq. 3.3 is fixed by the total particle number
N via the condition N =

∑

ν Nν, thus it can be calculated in a given external potential
as a function of N and T . At high temperatures, the atoms are distributed among many
energy levels, and the mean occupation number Nν of any single state is much less
than one. Consequently, the chemical potential must be much smaller than the energy
ε0 of the ground state (ν = 0) of the system to keep exp

(

(εν − µ)/(kBT )
)

≫ 1 for all
states. When the temperature is lowered at constant N, µ rises in order to conserve
∑

ν Nν. However, the chemical potential can never reach or exceed ε0 since this would
imply diverging or negative occupation numbers in the ground state.

The criterion for Bose-Einstein condensation can now be obtained by considering
the sum Nex of the occupation numbers of the excited states (ν > 1). This sum reaches
its maximum for the limit of the chemical potential as µ→ ε0, yielding

Nex,max =

∞
∑

ν=1

1
e(εν−ε0)/(kBT ) − 1

. (3.4)

When the temperature drops far enough that Nex,max < N, the “excess” atoms that
cannot be accommodated in the excited states enter the ground state, whose occupation
number N0 can grow arbitrarily large when µ approaches ε0. This marks the onset of
Bose-Einstein condensation, and the temperature where Nex,max drops below N is called
the critical temperature Tc.

It is important to note that kBTc is in general much higher than the energy differ-
ence (ε1 − ε0) between the ground and first excited states. This means that the BEC
forms at a temperature much above what would be necessary to just “freeze out” the
motional degrees of freedom in the external potential. It also implies that above Tc the
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3.1 The phase transition

occupation number of the ground state is comparable to that of the other states, i.e. in
general of order one, which is the reason why Bose-Einstein condensation appears as
a distinct phase transition.

To derive a useful condition for the BEC transition, one applies some common
tools of thermodynamics. It is convenient to replace the sum of states by an integral
over the density of states g(ε). In many contexts the density of states varies as a power
law of the energy of the general form

g(ε) = Cαε
α−1, (3.5)

where α depends on the shape of the potential and Cα is a constant. Applying the
integral form of Eq. 3.4 leads to a general condition for the critical temperature [Pet02]

kBTc = N1/α [CαΓ(α)ζ(α)
]−1/α
, (3.6)

where Γ(α) is the gamma function and ζ(α) =
∑∞

n=1 n−α is the Riemann zeta function.
For a three-dimensional harmonic oscillator potential, which is a good approxi-

mation for the kind of traps used in most experiments, the parameters are α = 3 and
C3 = (2~

3ω̄3)−1, where ω̄ = 3
√
ωxωyωz is the geometrically averaged trap frequency.

By entering these values into Eq. 3.6, we obtain a useful expression for the critical
temperature,

Tc ≈ 4.5
(

ω̄/2π
100 Hz

)

N1/3 nK. (3.7)

Since the critical temperature depends on the particle number N and the trap fre-
quency ω̄, it is not a convenient parameter for monitoring the progress towards con-
densation in an actual experiment where both N and ω̄ vary strongly over time. We
now return to the phase-space density D introduced in the beginning of this section.
For a thermal sample in a harmonic trap, the peak density n̂ can be calculated from the
Boltzmann distribution as

n̂ = Nω̄3

(

m

2πkBT

)3/2

. (3.8)

Substituting Eq. 3.8 for n and Eq. 3.1 for λdB in the definition 3.2 yields an expression
for the phase-space density1 of a thermal gas in a harmonic trap,

D = N

(

~ω̄

kBT

)3

. (3.9)

Entering T = Tc from Eq. 3.6, we find that all dependencies on the trap and sample
parameters cancel out, and that in a harmonic potential the BEC transition occurs when
the value calculated according to Eq. 3.9 reaches

Dc = ζ(3) ≈ 1.202. (3.10)

1This is of course just the peak value at the region of highest density in the trap center. The phase-
space density generally varies across a trapped sample, but usually the peak value is considered as “the”
phase-space density, as it determines the crossover to BEC.
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3 BEC basics

This result comes remarkably close to the naïve picture of overlapping wave functions.
For other potential shapes, different values for Dc are obtained, e.g. in a 3D box
potential we get Dc = ζ(3/2) ≈ 2.612, which is also the value in free space. Since
the phase-space density can easily be calculated from the measurable quantities in a
trapping experiment, it is a suitable and via the picture conveyed by Fig. 3.1 very
intuitive parameter to monitor the approach to the phase transition.

The concepts developed here are suitable not only to understand the transition to
the condensate, but also to calculate the number of atoms in the ground state at a
certain temperature. In the typical case of a harmonic potential, the expression for the
condensate fraction is fairly simple [Pet02],

N0/N = 1 −
(

T

Tc

)3

. (3.11)

We get the expected result that at T = 0 all atoms are in the ground state, which is true
for any potential shape. The T 3 scaling, which is particular for the harmonic potential,
results in a large condensate fraction at relatively high temperatures: at Tc/2 already
90% of the atoms are in the condensate, and at 0.2 Tc one observes an almost pure
BEC with more than 99% of the atoms in the ground state.

It should be noted that all results shown here are exactly valid only in the thermo-
dynamic limit N → ∞ and for an ideal, non-interacting gas. Both finite-number and
interaction effects can be treated theoretically and result in corrections of the order of
a few percent [Bon02, Pet02].

3.2 Properties of a trapped Bose-Einstein condensate

The density-of-states approach is useful for describing thermal ensembles, but those
standard methods are not applicable in a BEC. For this regime, a different set of theo-
retical tools has been developed, which I will discuss based on the treatment in [Bon02]
and in [Dal99a].

The ideal gas

For an ideal gas in an external potential U(r), we have the Hamiltonian H = − ~
2

2m
∇2 +

U(r), and the solution for the ground state wave function of a three-dimensional har-
monic oscillator is

Φ(r) =
(

mω̄

π~

)3/4

exp
(

− m

2~
(ωxx2 + ωyy

2 + ωzz
2)
)

. (3.12)

For a non-interacting gas, this is indeed exactly the condensate wave function, occu-
pied by a large number of atoms. The shape of the wave function is a Gaussian, the
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3.2 Properties of a trapped Bose-Einstein condensate

width of which in each spatial direction is determined by the harmonic oscillator length

aho =

√

~

mω
≈ 8.72 µm

/

√

ω

2π
/Hz for 133Cs (3.13)

to σi = aho,i =
√

~/(mωi), where i = x, y, z. In the context of the following sections,
aho without an additional index will refer to the geometric average of the oscillator
length, aho ≡

√
~/(mω̄).

Bogoliubov approximation

In a real gas, the wave function of the condensate is influenced by the interaction
between the atoms. The general ansatz is to write down the many-body Hamiltonian
in second quantization for interacting bosons in the external potential. In principle,
one can directly calculate the ground state and the thermodynamic properties of the
BEC from this Hamiltonian by solving the many-body Schrödinger equation, however
this is very complicated. The solution is to use a mean-field approach, which allows to
characterize the many-body system by a relatively small set of parameters describing
quantitatively the behavior of the system. Based on an idea developed by Bogoliubov
[Bog47], one decomposes the boson field operator2 Ψ̂ into two contributions,

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t), (3.14)

where Φ(r, t) ≡ <Ψ̂(r, t)> is the expectation value of the boson field operator and Ψ̂′ a
first-order perturbation term representing excitations. Φ is called the condensate wave
function or “order parameter”, it is a complex function which via n(r, t) = |Φ(r, t)|2
relates to the condensate density.

3.2.1 The Gross-Pitaevskii equation

The term Ψ̂′ in Eq. 3.14 can be neglected for temperatures T ≪ Tc, for which the
occupation of excited trap states is very small. In this case, we obtain a “zero-order”
theory which describes the wave function of a pure condensate3. In the many-particle
Schrödinger equation, Ψ̂ is replaced by Φ, and the result is the very useful Gross-
Pitaevskii (GP) equation [Gro61, Pit61]

i~
∂

∂t
Φ(r, t) =

(

−
~

2∇2

2m
+ U(r) + g|Φ(r, t)|2

)

Φ(r, t), (3.15)

where

g =
4π~2a

m
(3.16)

2Ψ̂(r) and Ψ̂†(r) here denote the operators that in second quantization annihilate and create a particle
at position r, respectively.

3A discussion of finite-temperature effects can be found in [Dal99a].
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3 BEC basics

is the coupling constant representing the inter-particle interactions (a denotes the scat-
tering length).

One obtains a time-independent variant of the Gross-Pitaevskii equation by writ-
ing Φ(r, t) as φ(r, t) exp(−iµt/~), where µ is the chemical potential and φ is real and
normalized to the total number of particles,

∫

dr φ2 = N. Then, Eq. 3.15 becomes

(

−
~

2∇2

2m
+ U(r) + gφ2(r)

)

φ(r) = µφ(r). (3.17)

The total energy of the ensemble is in the stationary case a functional of the density
distribution

E[n] =
∫

dr

[

~
2

2m
|∇
√

n|2 + nU(r) +
gn2

2

]

= Ekin + Eho + Eint. (3.18)

The energy terms can be assigned to different sources:

• Ekin is the kinetic energy, which is induced by the confinement of the condensate
through the uncertainty relation,

• Eho is the potential energy from the trapping potential,

• and Eint is the mean-field interaction energy.

The energy scale helps to understand the different regimes in a Bose gas. The
derivation of the GP equation relies on the approximation that the ensemble is a dilute
gas, which is defined by the relation between the density and the scattering length
n|a|3 ≪ 1. This is also called the “weakly interacting” regime. This is true for a
thermal gas, where in this case the kinetic energy is much larger than the interaction
energy. However, in the condensate phase the kinetic energy of the trapped atoms is
extremely small; the relation between the kinetic energy and the interaction energy can
be derived from Eq. 3.18 to [Dal99a]

Eint

Ekin
∝ N|a|

aho
, (3.19)

and this can easily be larger than 1 even when n|a|3 ≪ 1. In the first BEC experiments
in 1995, N|a|/aho was of the order 1 in a condensate of a few thousand 87Rb atoms
[And95] and about 103–104 in the first sodium condensate [Dav95]. In most BEC
experiments, the energy scale in the condensate is dominated by the interaction term.

3.2.2 The Thomas-Fermi approximation

In the case of repulsive interactions (a > 0), a trapped condensate dominated by the
interaction energy is stable. In this case, we can apply the Thomas-Fermi approxi-
mation, which consists in neglecting the kinetic energy term in the GP equation 3.17.
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3.2 Properties of a trapped Bose-Einstein condensate

Figure 3.2: Left: Density distribution of a Bose-Einstein condensate in a harmonic trapping
potential in the Thomas-Fermi limit. The shape of the condensate is an inverted parabola,
reflecting the shape of the external potential. Right: The density distribution mirroring the
shape of the external potential Uext leads to a mean-field interaction potential UMF that exactly
cancels Uext, resulting in a flat effective potential Ueff. Figure taken from [Bon02].

Solving for φ yields an expression for the density,

n(r) =























µ − U(r)
g

for µ − U(r) > 0,

0 otherwise.
(3.20)

Figure 3.2 shows the resulting density distribution. The balance of the mean-field
interaction potential and the trapping potential results in a flat effective potential. The
density distribution according to Eq. 3.20 differs qualitatively from the distribution of
a thermal cloud or an ideal-gas condensate in that it does not have a Gaussian shape but
mirrors the potential shape, resulting in the case of a harmonic potential in an inverted
parabola.

Several parameters of the condensate are easily derived in the Thomas-Fermi ap-
proximation. The peak density can be directly read off Eq. 3.20,

n̂ =
µ

g
=
µm

4π~2a
. (3.21)

Via the normalization condition for the density,
∫

dr n(r) = N, the chemical potential
is related to the particle number as

µ =
~ω̄

2

(

15Na

aho

)2/5

, (3.22)

and the radius along one axis (i = x, y, z) is given by [Ket99]

Ri =

√

2µ
mω2

i

= aho
ω̄

ωi

(

15Na

aho

)1/5

. (3.23)
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3 BEC basics

Another important parameter is the mean interaction energy per particle,

Eint/N =
2
7
µ. (3.24)

When the trapping potential is turned off, this energy is converted into kinetic en-
ergy and determines the expansion of the condensate. Since the interaction energy
distribution follows the same inverted parabola shape as the density distribution, the
expansion will also show a parabolic shape. This clearly distinguishes the condensate
from a thermal cloud, and in time-of-flight expansion measurements of partially con-
densed samples one observes a two-component distribution with a small inverted BEC
parabola sitting on top of a relatively large thermal Gaussian.

3.2.3 Attractive forces: Condensate collapse

When the force between the condensate atoms is attractive (a < 0), the gas tends to in-
crease its density in the center in order to decrease the interaction energy (cf. Eq. 3.18),
which is equivalent to a contraction of the BEC. A counter-acting force comes from
the zero-point kinetic energy, which grows with decreasing spatial extension and can
dynamically stabilize the BEC at a certain size. However, if the atom number is large,
the kinetic-energy effect, which depends less strongly on n than the inter-particle in-
teraction energy, is too weak to stop the collapse. This gives an upper limit Ncr to the
particle number of a stable BEC, which can be calculated by numerically integrating
the Gross-Pitaevskii equation to [Rup95]

Ncr = 0.575
aho

|a|
. (3.25)

A variational calculation [Pet02] gives a slightly higher factor of 0.67. The calculations
are strictly valid only for spherical traps, therefore one can expect deviations from the
exact predictions in anisotropic traps. In typical experiments, the critical atom number
is of the order of around a thousand.

A short discussion of the properties and dynamics of collapsing condensates is
given in [Dal99a], including an overview of theoretical papers available at that time.
One should note that the dynamic stabilization of the condensate is an effect of the
quantum pressure induced by the spatial localization. An unconfined condensate with
attractive interaction is always unstable. A comprehensive and fairly up-to-date treat-
ment of the rich spectrum of condensate dynamics associated with different interac-
tions and reactions to perturbations of the condensate wave function can be found in
[Pet02].
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Chapter 4

Trapping of ultracold atoms

The methods used in atom trapping experiments have now become a standard in hun-
dreds of experiments around the world, and the first textbook on the matter of laser
cooling [Met99] has been published several years ago now. Therefore, the discussion
here will be kept short while introducing the most important terms. I will give a short
explanation of the radiation pressure forces which are used to capture and precool the
atoms first. The next section covers the main experimental tool in this experiment, the
optical dipole force, which is used in different regimes at various steps of the cooling
process towards BEC. An introduction to magnetic forces on atoms concludes the list
of trapping mechanisms. Finally, I give a short treatment of loss and heating sources.

4.1 Radiation pressure forces

If an atom (treated as a two-level system) is exposed to light resonant on a closed dipole
transition, it will absorb and spontaneously re-emit photons. If the light is directed,
like from a collimated laser beam, the absorbed photons will impart a directional re-
coil momentum onto the atom. Spontaneous emission, however, occurs isotropically,
therefore the recoil from the emitted photons will average to zero.

On average, each cycle of absorption and spontaneous emission will impart one
photon recoil psc = ~k. The radiation pressure force is determined by F = ṗ = Γsc · psc,
with the spontaneous scattering rate

Γsc =
Γ

2
·

S

1 + S + (2δ/Γ)2
. (4.1)

Here Γ denotes the natural line width of the transition, δ = ω − ω0 the detuning of the
laser frequency ω from the transition frequency ω0. S = I/I0 is the saturation param-

eter, the relation of the laser intensity I to the saturation intensity I0 = ~Γω3
0/(12πc2),

at which the excitation probability in a two-level system is 1/4.
The most important parameter in the scattering rate for many laser cooling appli-

cations is the detuning δ. It is evident that the smaller |δ|, the higher the scattering
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4 Trapping of ultracold atoms

rate and therefore the stronger the force. Trapping and cooling schemes rely on this
relation: In an optical molasses [Chu85], six lasers detuned below the resonance point
into the trap center. When an atom moves, the Doppler effect brings it into resonance
with a laser beam propagating opposite to its direction of motion, and the spontaneous
force slows it down. In a MOT [Raa87], the molasses is combined with a magnetic
quadrupole field. The Zeeman effect, which brings the atoms closer to resonance when
they are off-center, adds a centering force. A combination of these effects is also used
to slow an atomic beam in a Zeeman slower (cf. Sec. 5.2). All of these laser cooling
techniques are extensively covered in [Met99].

4.2 Optical dipole forces

Radiation-pressure traps limit the attainable temperatures because they rely on pho-
ton scattering to hold the atoms. The minimum energy in such a trap can be brought
close to one photon recoil, equivalent to a temperature of 200 nK in the case of ce-
sium, but not below. A handle to conservative trapping of atoms is their magnetic or
electric dipole moment. Magnetic trapping will be covered in Sec. 4.3. The electric
dipole forces are used in optical dipole traps, which are discussed here based on the
comprehensive review in [Gri00].

Introducing an atom into an electric field E induces a dipole moment p. The oscil-
lating electric field of a laser drives an oscillation of the dipole moment, and we can
view this quite analogously to a classical forced harmonic oscillator. If the driving laser
frequency is below that of an atomic resonance (red-detuned), the dipole will oscillate
in phase with the electric field, and the potential Udip = −<pE>/2 is attractive. If the
driving frequency is above the resonance frequency (blue-detuned), the potential is re-
pulsive. All dipole traps employed in this work are red-detuned. Close to a resonance,
the radiation pressure will dominate over the dipole force −∇Udip; optical dipole traps
are operated in the far-detuned regime |δ| ≫ Γ, where the photon scattering rate is
small.

In a complex notation, the dipole moment p(r, t) = ê p̃(r) exp(−iωt)+ c.c. is related
to the electric field E(r, t) = êẼ(r) exp(−iωt) + c.c. via

p̃ = α(ω)Ẽ, (4.2)

where p̃, Ẽ are the complex amplitudes. The real part of the complex polarizability
α(ω) gives the interaction potential Udip = −<pE>/2 = −Re(α)|Ẽ|2, while the imagi-
nary part accounts for the energy Psc dissipated via photon scattering, Psc = Γsc · ~ω =
2πωIm(α)|Ẽ|2/c.

In a classical Lorentz model, which considers the atom harmonically bound to its
electron, the polarizability α(ω) can be calculated in a straightforward way [Gri00].
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4.2 Optical dipole forces

The result for the dipole potential and the photon scattering rate is

Udip(r) = −3πc2

2ω3
0

(

Γ

ω0 − ω
+

Γ

ω0 + ω

)

I(r), (4.3)

Γsc(r) =
3πc2

2~ω3
0

(

ω

ω0

)3 (

Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r), (4.4)

where I = 2πǫ0|Ẽ|2 denotes the intensity of the laser. As a semi-classical extension, we
can insert for the damping rate Γ the quantum mechanical transition rate

Γ =
ω3

0

3πǫ0~c3
|<e|µ|g>|2 , (4.5)

where <e|µ|g> is the dipole matrix element for the transition. Now, Eqs. 4.3,4.4 are
an excellent approximation in the case of large detuning and low saturation, where the
photon scattering rate is very low (Γsc ≪ Γ).

There are different regimes in which to operate an optical dipole trap. I will discuss
three cases, all of which are relevant in different stages of our experiment.

4.2.1 Near-resonant dipole traps

This kind of trap operates with laser frequencies relatively near to an atomic resonance.
They are far-detuned in the sense of the relation |δ| ≫ Γ (e.g., in the first optical dipole
trap [Chu86], |δ| ≈ 104Γ). However, the absolute value of the detuning δ = ω − ω0 is
much smaller than ω0, and in Eq. 4.3 the rotating-wave approximation Γ/(ω0 + ω) ≪
Γ/(ω0 − ω) can be applied, giving

Udip(r) = −
3πc2

2ω3
0

Γ

δ
I(r). (4.6)

Up to now, we have considered a two-level atom. In real atoms, there are more
energy levels to be taken into account; in the case of the alkalis, a proper treatment of
the fine structure and hyperfine structure of the D line suffices. If we are working with
linearly polarized light at a detuning larger than the hyperfine splitting of the excited
state (∼200 MHz for Cs, see Fig. 2.1), but smaller than the fine structure splitting
between the D1 and D2 lines (16.6 THz), the correction can be explained in simple
terms. We expand Eq. 4.6 by splitting the term Γ/(ω3

0δ) into 1Γ1/(3ω3
1δ1)+2Γ2/(3ω3

2δ2),
where the indices 1 and 2 denote the D1 and D2 lines, respectively. The factors 1/3 and
2/3 account for the relative line strengths. Since Γ scales with ω3 (cf. Eq. 4.5), we can
approximate Γ1/ω

3
1 ≈ Γ2/ω

3
2. With the further assumption that we are working close
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to the D2 line, δ2 ≪ δ1, the result is

Udip,near res. = −
πc2

ω3
2

Γ2

δ2
· I, (4.7)

Γsc,near res. =
πc2

~ω3
2

(

Γ2

δ2

)2

· I. (4.8)

The assumptions made here are good for dipole traps operated at low power levels
close to resonance (typically in the GHz range), which is in our experiment valid for
the 3D optical lattice used in the Raman sideband cooling scheme (see Sec. 6.2). The
laser used there is a diode laser detuned from resonance by 9 GHz at a power of 70 mW.

4.2.2 Far off-resonance traps (FORT)

In near-resonant red-detuned dipole traps, resonant scattering is typically strong
enough to always have a small fraction of atoms in the excited state. This makes them
unsuitable for the study of ground state dynamics (most prominently, for the attain-
ment of BEC) and provides a strong loss and heating mechanism through excited-state
collisions and photon scattering. Looking at Eqs. 4.7 and 4.8, we find the relation

Γsc =
1
~

Γ

δ
Udip. (4.9)

Thus, the larger the detuning δ, the smaller the photon scattering rate at the same trap
depth. This is used in the FORT [Mil93] by operating at very large detuning, typically
in the range of several tens of nanometers or more, which in frequency units is in the
THz range.

In this regime, the assumptions made in the derivation of Eqs. 4.7,4.8 are no longer
valid. Instead, we start again with the more general equations 4.3,4.4. Assuming the
detuning is larger than the fine structure splitting between the D1 and D2 lines of Cs of
42 nm, we model the system as a two-level atom with an effective transition defined
by the weighted average of both D lines,

ωeff =
1
3
ω1 +

2
3
ω2 ⇒ λeff = 866 nm. (4.10)

In the same way we obtain an average line width

Γeff =
1
3
Γ1 +

2
3
Γ2 = 2π · 5.00 MHz, (4.11)

and putting these into Eqs. 4.3,4.4 we get an expression for the potential and the scat-
tering rate in the FORT:

Udip,FORT = −
3πc2

2ω3
eff

(

Γ

ωeff − ω
+

Γ

ωeff + ω

)

· I, (4.12)

Γsc,FORT =
3πc2

2~ω3
eff

(

ω

ωeff

)3 (

Γ

ωeff − ω
+

Γ

ωeff + ω

)2

· I. (4.13)
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4.2 Optical dipole forces

Note that in this case neither the rotating wave approximation is valid (the contribution
is 10.3% for a laser at 1064 nm), nor can the term (ω/ωeff)3 in Γsc be omitted (gives
about a factor of two at 1064 nm).

A FORT is implemented in this experiment by the “dimple” (see Sec. 8.2), which is
formed by a focused beam from an Yb fiber laser at 1064 nm with a maximum power
of 150 mW.

4.2.3 Quasi-electrostatic traps (QUEST)

Lasers at Nd:YAG wavelength (1064 nm) are available at high powers at moderate cost
and are frequently used in optical trapping experiments. However, in in the center of a
1064 nm FORT with a trap depth of kB · 20 µK, the photon scattering rate for cesium
atoms calculated by Eq. 4.13 is approximately (8 s)−1. Thus, in a 1 minute experimen-
tal cycle, each atom would scatter about seven photons. If we assume that the cooling
towards BEC in a temperature range around or below one hundred nanokelvin might
take that long, seven photon recoils of ∼200 nK each would effectively make conden-
sation impossible. Since in the initial planning stages of the experiment the time scale
for the attainment of BEC was not clear, conservative thinking suggested looking for a
better solution.

The solution was found in a concept that takes the advantages of the far off-
resonance trap to the extreme. The QUEST [Tak95] operates at a laser wavelength
of 10.6 µm. The frequency of this laser is so small that the quasi-electrostatic approx-
imation ω ≪ ω0 is valid. In this approximation, equations 4.12 and 4.13 simplify
further to

Udip,QUEST = −
3πc2

ω4
eff

Γeff · I, (4.14)

Γsc,QUEST =
6πc2

~ω5
eff

(

ω

ωeff

)3

Γ2
eff · I. (4.15)

Here we use the effective line width and transition frequency of the weighted av-
erage of the D1 and D2 lines as defined in the previous section. A different treat-
ment uses the measured static polarizability of the ground state of the cesium atom of
αstat = 6.63 ·10−39 Cm2/V [Lid97]. The relation between potential U and light intensity
I is then given by the simple expression

Udip,QUEST = −
αstat

2ǫ0c
· I, (4.16)

which results in values about 5% higher than obtained from Eq. 4.14. I will use this
relation in further trap potential calculations. In general, since the laser is far red-
detuned from any atomic dipole resonance, the potential of a QUEST is attractive for
all atomic species and can be calculated by the static polarizability. Even trapping of
molecules has been demonstrated [Tak98].
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4 Trapping of ultracold atoms

The relation between the photon scattering rate and the trap depth in the QUEST
can be obtained from a comparison of Eqs. 4.14 and 4.15:

Γsc =
2
~

(

ω

ωeff

)3 (

Γeff

ωeff

)

Udip. (4.17)

In the center of a 20 µK trap, the scattering rate results to 4.1 · 10−5 s−1. This corre-
sponds to 3.6 photons per day and can be safely ignored for experimental purposes.
The power necessary to create the same potential as with a FORT at 1064 nm is higher
by a factor of 2.96; this is no problem, however, as CO2 lasers are readily available with
cw powers in the kilowatt range at relatively low cost. In our experiment, the “work-
ing horse” main trap is a QUEST created by the crossed foci of two 85 W CO2-laser
beams.

4.3 Magnetic forces

As opposed to the electric dipole moment, which is induced by the electric field, any
atom with total spin ,0 has a permanent magnetic dipole moment µ, which in a mag-
netic field B leads to a potential Umag = −µ · B.

Quantum mechanically, the energy µ ·B is quantized according to the projection of
the spin operator onto the magnetic field axis. Due to Larmor precession, the atomic
spin follows the magnetic field vector B adiabatically as long as the Larmor frequency
ωL is large compared to the rotation frequency of the magnetic field axis in the frame
of reference of the atom. This is typically true for ultracold atoms moving in mag-
netic fields generated by macroscopic coils, as long as there is no zero crossing of the
magnetic field, which can abruptly reverse the B field axis.

Because of this adiabatic following, the potential energy of an atom in a magnetic
field is dependent on just the field strength B, and the quantized energy sublevels of
the potential are given by Umag = mFgFµBB, where gF denotes the Landé factor, µB ≃
−9.3 · 10−24 J/T Bohr’s magneton, and the quantum number mF can take the values
−F,−F + 1, . . . , F. For cesium in the F = 3 ground state, the Landé factor can be
calculated to gF = −1/4 [Hak00, Ste02]. The result for the potential energy of an atom
in the F = 3,mF = 3 absolute ground state in a magnetic field B is

Umag(F = 3,mF = 3) = −3
4
µBB = −kB · 50.4 µK · B/G. (4.18)

It should be noted that this state cannot be captured in a magnetic trap, since cre-
ating a potential energy minimum for this “strong-field seeker” would require a local
maximum of the magnetic field, which is forbidden [Win84]. In our experiment, we
want to cancel the gravitational force. The gravitational potential is Ugrav = mCsgz,
where g = 9.81 m/s2 denotes the gravitational constant, z the vertical position. In
temperature units, we get

Ugrav = 1568 µK · z/cm, (4.19)
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4.4 Loss & heating

and together with Eq. 4.18 the required vertical magnetic field gradient for levitating
133Cs in the desired state is

∂B

∂z
=

4
3

mCsg

µB

= 31.3 G/cm. (4.20)

A more precise treatment has to include the quadratic Zeeman effect, which ex-
pands Eq. 4.18 to

Umag(F = 3,mF = 3) = −
3
4
µBB +

15
16

µ2
B

∆E0
B2, (4.21)

where ∆E0 = h · 9.193 GHz denotes the Cs ground state hyperfine splitting. The
correction as compared to the linear Zeeman effect is typically a few percent.

4.4 Loss & heating

Every real-world atom trapping setup includes some mechanisms which lead to loss
of atoms from the trap or heating of the ensemble. In the following sections, I will
try to evaluate the most important loss and heating mechanisms that are applicable to
our setup. The treatment here includes only single-particle losses as an effect of the
trapping setup. Loss and heating arising from interactions in the trapped sample are
treated in Ch. 7.

Photon scattering

The topic of photon scattering in the optical dipole traps has been treated in Sec. 4.2. In
conclusion, in a CO2-laser trap photon scattering is negligible. In a FORT, one has to
take care of the time scale the experiment takes. In a near-resonant optical lattice, the
photon scattering rate is considerable. We actually use this for cooling (see Sec. 6.2),
but spontaneous emission limits the maximum time we keep the atoms trapped in the
lattice to about ten milliseconds.

Background gas collisions

The typical background gas pressure attainable in a room temperature environment is
at or a little below p = 10−11 mbar. In a stainless steel chamber like the one used in our
experiment, the main components from outgassing of the chamber walls is hydrogen.
In between large glass surfaces, diffusion of He also plays an important role.

Background gas molecules are in thermal contact to the laboratory environment at
300 K, while the trapping potentials in our experiment have a depth of only a few µK.
Thus, a collision with background gas atoms typically leads to immediate loss from
the trap. This process results in exponential loss of atoms from the trap, a calculation
of the 1/e lifetime based on [Bjo88] gives at p = 10−11 mbar a result in the range above
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4 Trapping of ultracold atoms

one hundred seconds [Web00]. The precise number depends on the exact composition
of the background gas, which we cannot determine in our apparatus.

Heating arises from diffractive collisions [Bal99], which impart only a very small
part of the background gas molecule’s energy onto the trapped atom. The probability
for such an event, however, is extremely small in our shallow trap, and as such can be
neglected [Eng00a].

Trapping potential fluctuations

Intensity fluctuations and beam pointing instabilities of the trapping laser modulate the
potential shape of the optical dipole trap and can induce parametric heating [Sav97,
Geh98]. Motivated by these theoretical considerations, O’Hara et al. [O’H99] in their
first experimental demonstration of long-time storage of atoms in a quasi-electrostatic
trap employed an extremely stable, self-built CO2-laser system. However, a look at the
calculations shows that the relevant figure for intensity noise of their laser is two orders
of magnitude lower than required in experiments on the timescale of several hundred
seconds [Web00]. Experiments conducted in our group [Eng00b] have proven the
stability of a standard industrial CO2 laser to be sufficient for long-time, low-heating
measurements with ultracold atoms.

Position instabilities are more difficulty to analyze quantitatively. Typical CO2-
laser resonator design, however, ensures a high pointing stability of the output beam,
and the optical path to the experiment can be set up with stable optics mounts to avoid
any mechanical vibrations. The positive experience in our group supports the conclu-
sion that laser fluctuations are not a major source of heating in a QUEST.

Similar considerations apply to magnetic forces. Here, the long-standing experi-
ence in many magnetic trapping experiments, which were the first to lead to a BEC,
shows that with moderate effort the field stability can be maintained at a high level. In
our experiment, the magnetic field plays only a minor role as a trapping force, and the
field stability has proven not to be critical as a heating source.

38



Chapter 5

Technical setup

Many requirements have to be met to laser cool and manipulate dilute gases of ultra-
cold atoms. To isolate the atoms from the laboratory environment, they are kept under
ultrahigh vacuum (UHV) conditions. The Zeeman slowing technique requires careful
magnetic field design to slow the atoms from their initial speed of several hundred
meters per second to a velocity within the capture range of a magneto-optical trap.
The atoms are captured and pre-cooled via optical forces that are supplied by diode
lasers. Precise control of the magnetic fields is essential for our trapping scheme in
every stage of the experiment, and the CO2 lasers require some particular effort to op-
erate. The last part of this chapter is dedicated to the computer system that controls the
experiment timing.

5.1 The vacuum system

The vacuum system is basically an airtight stainless steel compartment with several
integrated pumps and a cesium source. The setup comprises four parts: The cesium

oven is the source of a cesium atomic beam. The differential pumping section keeps
the pressure difference of several orders of magnitude between the oven and the exper-
iment region. It also provides a shutter for the cesium beam. The central experimental

chamber provides the space and optical access for the atom trap. All experiments are
carried out in the center of this chamber. Finally, the main pumping section creates the
ultrahigh vacuum conditions necessary for precision experiments.

The four sections are connected in a linear setup with a total length of 1.66 m. The
components are aligned along a single optical axis at a height of 250 mm above the
optical table which the vacuum system is fixed to. A complete cross-section through
the central axis is shown in Fig. 5.1.
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Figure 5.1: Overview of the vacuum system (side view). From left to right: (1) cesium oven with the electrical feedthroughs for the dispenser
current, (2) pumping section with the beam shutter and titanium sublimation pump; in front and back: Varian UHV-24p ionization gauge
and VAT series 54 all-metal angle valve, Varian Vacion Plus 20 StarCell 20 l/s ion getter pump, (3) VAT series 01 viton sealed gate valve,
(4) differential pumping tube with Zeeman slowing coils, (5) experiment chamber, (6) main pumping section with titanium sublimation pump;
in front and back on upper T-piece: Varian UHV-24p ionization gauge and VAT Series 57 all-metal angle valve, (7) 60 l/s Varian triode ion
getter pump.
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5.1 The vacuum system

5.1.1 Cesium oven

The cesium oven is basically a 64 mm diameter stainless steel tube with a 30 mm long,
1.5 mm diameter copper nozzle on one end. The nozzle collimates the cesium atoms
leaving the oven into an effusive beam with an opening angle of 6°. Four stainless
steel current feedthroughs (Vacuum Generators ZEFT1AN) hold ten cesium dispenser
sticks (SAES Getters CS/NF/8/25 FT10+10) (cf. Fig 5.2) to provide the cesium vapor.
The ten dispensers together contain a total of 108 mg of cesium. They are activated for
the first time by sending a current of 5-7 A through them, the typical operating current
is between 2 A and 4 A. The dispensers provide an almost pure cesium vapor.

The oven is heated by a wrapping of heating tape to 100 °C. At this temperature,
the most probable thermal velocity of cesium is 215 m/s [O’H89], the vapor pressure is
7 ·10−4 mbar [Ste02]. At the typical 3.5 A operating current the dispensers probably do
not set free enough cesium to saturate the vapor, but we cannot measure the pressure
in the oven directly and therefore will assume poven = 7 · 10−4 mbar.

Figure 5.2: A look into the cesium oven tube (left) and the dispensers mounted to the current
feedthroughs (right) before assembly of the oven setup.

5.1.2 Differential pumping

Differential pumping maintains the pressure difference between the oven and the ex-
periment region. It is provided by two measures: good pumping and a low conductance
between the regions. In the following paragraphs, the pumping geometry is explained,
with the formulas and typical numbers taken from [O’H89].

The first differential pumping stage is implemented by the oven nozzle and the
pumps mounted onto the 6-way cross the oven is connected to. From below, a titanium
sublimation pump (Vacuum Generators SBST110) is mounted into the crosspiece. The
titanium sublimation pump consists of three 2 mm diameter rods of an alloy of 85% Ti
and 15% Mo. Sending a current of 60 A through one of these rods for about 1 minute
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heats it enough to sublimate Ti and sputter the surrounding walls with a thin film.
Titanium is a surface getter for almost all active gases, with an average pumping speed
per area of ∼5 ls−1cm−2. In our geometry, the Ti coating is applied to a surface of
approx. 180 cm3, giving a pumping speed of ∼900 l/s for air. As we do not know
the pumping efficiency for the Cs vapor, the pumping speed per area may vary by a
factor of 2-3 up or down (typical values are between ∼3 ls−1cm−2 and ∼20 ls−1cm−2).
An additional uncertainty is the geometry of the deposition of Ti on the surfaces; if
this is not isotropic from the sublimation rods, the effective pumping surface may be
much smaller than calculated. We have no way of observing the area covered with
titanium. As a rule of thumb, the pumping speed of the titanium sublimation pumps
can be considered an estimation to within a factor of about five.

The sublimation pump does not absorb inert molecules like the noble gases and
methane; to pump those, a 20 l/s ion getter pump (Varian Vacion Plus 20 StarCell) is
attached next to the sublimation pump.

Under ultrahigh vacuum conditions, the mean free pathΛ of a gas atom or molecule
is much larger than the dimensions of a typical vacuum system. For air at room tem-
perature, Λ ≃ 60 m at p = 10−6 mbar, increasing linearly at lower pressure. For the
cesium gas in the oven at 100 °C, Λ ≃ 170 m if we assume the pressure to be equal to
the cesium vapor pressure of 7 · 10−4 mbar. Therefore, the condition of the mean free
path being much larger than the dimensions of the system is well fulfilled in every part
of our setup. This regime, in which gas molecules do not interact with each other and
the viscosity is not defined, is called the molecular flow regime. It is well understood
and allows to calculate the gas flow and conductance of various tube geometries easily.

A characteristic quantity of the gas for which flow and conductance are to be cal-
culated is its average thermal velocity v given by

v =

√

8kBT

πm
, (5.1)

where m is the mass of a gas molecule, T the temperature. The main gas load in our
vacuum chamber, as far as maintaining the pressure difference between the oven and
the experiment chamber is concerned, is the hot cesium gas at 100 °C. The average
thermal velocity results as v = 244 m/s.

The conductance C of a long round tube with diameter d and length l is given by
the relation

Ctube =
π

12
v

d3

l
. (5.2)

To calculate the pressure maintained in the pumping region, one compares the vacuum
setup to an electrical circuit. Tubes with finite conductance C are equivalent to resistors
with resistance 1/C, while the equivalent of the electrical potential is the pressure p.
A pump with a given pumping speed X can be treated as a conductance C = X towards
open space (p = 0). Therefore, if volume no. 1 with a pressure p1 is connected via a
conductance Ctube to volume no. 2 which is pumped with a pumping speed Cpump, the
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pressure p2 results as

p2 =
Ctube

Ctube +Cpump
p1

≈ Ctube

Cpump
p1. (5.3)

The approximation is valid if the pumping speed Cpump is much larger than the con-
ductance of the connection Ctube, which is true for both differential pumping stages in
our apparatus.

Following Eq. 5.2, the nozzle of the cesium oven, at l = 30 mm and d = 1.5 mm,
has a conductance for the hot cesium gas of Cnozzle = 7.18 · 10−3 l/s. With the pumping
speed of the titanium sublimation pump Cpump ≈ 900 l/s, the improvement in pressure
between the oven and the pumping section is calculated to Cpump/Cnozzle = 1.25 · 105.
Assuming poven = 7·10−4 mbar, the pressure in the pumping section ppump is expected to
value 4·10−9 mbar. Indeed, when the oven dispensers are turned on, an ionization gauge
(Varian UHV-24p) mounted opposite the ion getter pump measures ppump ≈ 10−8 mbar.
The difference of a factor of two is well within the accuracy of the pumping speed
estimation.

The second differential pumping stage consists of the Zeeman slower tube (cf.
Sec. 5.2) in conjunction with the main pumping section (Sec. 5.1.4). The tube is com-
posed of five consecutive sections of a stepwise larger diameter. Length l and diameter
d of the sections given as l× d (each in mm) are: 65× 4, 55× 5, 55× 6, 40× 7, 35× 9.
The total conductance CZeeman is given by [O’H89]

1
CZeeman

=
1

C1
+

1
C2
+

1
C3
+

1
C4
+

1
C5
, (5.4)

where C1 to C5 are the conductances of the five sections of different diameters as
calculated by Eq. 5.2. The resulting conductance for cesium is CZeeman = 3.40 ·10−2 l/s.
Together with the pumping speed of the main pumping section of 200 l/s (Sec. 5.1.4),
the differential pumping across this tube should support a pressure difference of a factor
of 6000. We observe that the pressure in the main vacuum chamber stays always about
three orders of magnitude lower than in the first pumping section if the pressure there
is varied, which is in good agreement with the calculation, considering the inaccuracy
of the pumping speed and conductance determinations.

Both the ion getter and the titanium sublimation pumps operate efficiently only
under high vacuum conditions. Next to the ionization gauge, an all-metal angle valve
(VAT series 54) allows to connect a turbomolecular pump, which in conjunction with
a roughing pump can bring the vacuum vessel from atmospheric pressure into the
10−8 mbar range.

Mounted on the upper flange of the 6-way pumping crosspiece, a wobble stick
with a 6 mm diameter circular rod acts as an atomic beam shutter. The wobble stick is
moved via an externally mounted hinge by an electric servo drive. Activated by a TTL
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signal from the control computer, the rod can be moved into the atomic beam path,
completely blocking the line-of-sight between the oven nozzle and the Zeeman slower
tube. This shuts off the atomic beam going to the experiment region after loading
the atom trap, otherwise the beam would locally increase the pressure to unacceptable
values. A viton sealed gate valve (VAT series 01) allows to completely separate the
oven section from the main vacuum chamber, which makes it possible to replenish the
cesium dispensers if necessary without breaking the vacuum in the main chamber.

5.1.3 Experiment chamber

Figure 5.3: Central vacuum chamber. Top (left) and side view (right) of the heart of our
experimental setup. 4 ZnSe- and 6 Quartz viewports are distinguishable in the top view.

The main experimental chamber is shown in Fig. 5.3. It was produced in the insti-
tute workshop from non-magnetic stainless steel of grades AISI 316LN (DIN W.-Nr.
1.4429) and AISI 316L (1.4435). Both materials are virtually ferrite-free and specified
with a magnetic permeability of µ 6 1.005. All weldable flanges directly connected to
the main chamber body are 316LN material, which has the higher hardness (all flanges
from Vacuum Generators, various types). The tubings are made from 316L, which is
easier to process. The chamber body has been milled from a massive block of stainless
steel grade 316LN (Höverstahl 1.4429 ESU). The basic shape is a cylinder of 275 mm
diameter and a height of 100 mm. It was milled to a 12-sided footprint with an edge
length of 70mm. A central bore of 164 mm diameter along the cylinder axis provides
the experimental space. From 11 of the side faces, 40 mm bores give optical access.
To each of these, a CF40 flange is welded with the outer flange face at a distance of
145 mm from the trap center. The 12th face is opened up to a diameter of 64 mm for
better pumping speed and welded to a 316L tube of 64 mm diameter and 62 mm length
with a final CF63 flange at a distance of 195mm from the trap center. On the top and
bottom faces of the main cylindrical shape, CF150 flanges have been milled into the
chamber body.
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To the CF40 flange opposite to the main pumping section, the Zeeman slower tube
is connected. The remaining ten CF40 flanges are occupied by viewports, six quartz
viewports with 35 mm clear view (Larson Electronic Glass VQZ-150-F2-AR with
anti-reflection (AR) coating 850-1050 nm) and four ZnSe viewports with 22 mm clear
view (Larson, AR coating 10.6 µm). The four ZnSe viewports are placed at 90° angles
to accommodate the crossed-beam CO2-laser trap (Sec. 5.5), they are distinguishable
from the six quartz viewports in the top view in Fig. 5.3 by their different construction.

On the top and bottom faces of the chamber body, the CF150 flanges hold two
large custom-made re-entrant viewports (United Kingdom Atomic Energy Authority,
Special Techniques Group; AR coating 852-1064 nm by Laseroptik Garbsen). Their
construction includes a 158 mm diameter stainless steel tube ranging 35 mm into the
vacuum chamber, closed off by a stainless steel plate of 8 mm thickness. In the center
of this plate, a 95 mm diameter quartz window is enclosed. The inner faces of the two
viewports have a distance of 30 mm from each other, giving excellent optical access
and the opportunity to mount magnetic field coils close to the trap center.

To minimize magnetic field distortion, all viewports are made from 316LN stain-
less steel with non-magnetic seals. The connections to the vacuum chamber are made
with titanium bolts (Grade 2 titanium, Gustoc-Titanbau GmbH) because stainless steel
bolts were not available in non-magnetic grades.

5.1.4 Main pumping section

The main pumping section provides the UHV base pressure for the experiment cham-
ber and supports differential pumping against the Cs oven pressure (Sec. 5.1.2). The
titanium sublimation pump (Vacuum Generators SBST110) mounted here coats a sur-
face of approx. 700 cm3, which is good for a pumping speed of 3500 l/s (cf. Sec. 5.1.2).
This pump, however, is connected to the main chamber through an aperture of 64 mm
diameter, which limits the pumping speed at the experimental region to ∼200 l/s for
the hot Cs gas from the oven, ∼400 l/s for air at room temperature [O’H89]. A 60 l/s
ion getter pump (Varian VacIon 911-5034) provides noble gas pumping.

The pressure in the vacuum chamber is measured by an ionization gauge (Var-
ian UHV-24p) mounted onto a T-cross above the titanium sublimation pump. Thus,
the sublimation pump sits between the gauge and the experimental region, causing
a systematic error in the pressure measurement. The gauge reads typically between
5 · 10−12 mbar and 1 · 10−11 mbar. The lifetime measurements in our atom trap give
very long time scales consistent with a pressure in the low 10−11 mbar range or below
in the experiment region.

Opposite to the ionization gauge, an all-metal angle valve (VAT series 57) provides
access for roughing the vacuum system.
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5.1.5 Preparation

The pressure attainable in a vacuum system is determined by an equilibrium between
the flux of gases into the chamber and the pumping rate. In our case, where good opti-
cal access is required, we cannot install arbitrarily large pumps close to the experiment
region. Therefore, to reach UHV conditions, we have to minimize the gas load.

In a stainless steel chamber with CF flanges and UHV grade viewports, the leak rate
from the outside environment is negligible except for a small flux of Helium through
large glass surfaces. The main source of vacuum pollution is outgassing of impurities
(in stainless steel mainly hydrogen) from the chamber walls. It is therefore imperative
to remove these impurities.

Simple cleaning with acetone is the first step but only removes surface contamina-
tion. The speed of outgassing of impurities which sit deeper inside the walls increases
exponentially with temperature. Therefore, exposing the apparatus to an elevated tem-
perature under vacuum for some amount of time will clean the system.

The baking procedure was executed in two steps. In a first step, the main vac-
uum chamber and pumping section were closed off with blank flanges instead of the
viewports. This setup was then heated at 350 °C for five days while pumping with a
turbomolecular pump, which kept the pressure at ∼10−6 mbar. After cooling down, the
base pressure was measured to be below 10−10 mbar. This baking procedure was used
to pre-clean the stainless steel components of the vacuum system to a high degree.
This cannot be done with viewports installed since those are not designed for baking
temperatures this high.

The second baking step was then implemented with the vacuum system fully
assembled. The starting pressure with two turbomolecular pumps working was
∼10−8 mbar. The temperature was slowly raised to 195 °C at a speed of 2 °C per
hour, since especially the large inverted viewports are sensitive to temperature gradi-
ents and the ZnSe viewports are specified to a maximum baking temperature of 200 °C.
Through careful insulation, the temperature varied by no more than five degrees centi-
grade across the whole structure. The temperature was held for ten days; in this time,
the pressure at the elevated temperature sank from initially ∼10−6 mbar to ∼10−7 mbar.
After lowering the temperature slowly to room temperature again and turning on the
ion getter pumps, the pressure was below 10−10 mbar. Flashing the titanium subli-
mation pumps lowered the pressure to the final value of ∼10−11 mbar. The vacuum
apparatus has been closed off and untouched (with the exception of occasionally flash-
ing the titanium sublimation pumps) since then, which at the time of this writing covers
a time period from June 2001 till July 2003.

5.2 The Zeeman slower

One primary design goal for an atom trap is to maintain excellent vacuum in the exper-
iment region. How this goal is achieved is described in the previous section. A second
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important goal is a high loading rate, which is necessary for short experiment cycle
times. The most probable velocity for atoms leaving the Cs oven is 215 m/s. As the
capture velocity of the magneto-optical trap is a few 10 m/s, below 0.1% of the atoms
from the unslowed atomic beam could be captured by the MOT.

A proven method for slowing down an atomic beam is the Zeeman slowing tech-
nique [Phi82, Pro85]. The atoms are decelerated by resonant photon scattering from a
counter-propagating laser beam, where the Doppler shift of the quickly moving atoms
is compensated by a DC magnetic field via the Zeeman effect. As the atoms are slowed
down, the magnetic field needs to be adjusted for the Zeeman effect to match the
Doppler effect. This is achieved by the magnetic field spatially decreasing along the
beam axis, so that atoms of decreasing velocity classes are addressed by the slowing
laser along the beam path. If the magnetic field decreases slowly enough, all atoms
slower than a maximum velocity determined by the highest magnetic field are deceler-
ated to below the MOT capture velocity.

The Zeeman slower used in this experiment is a carbon copy of the design em-
ployed in the GOST experiment in our group [Man99, Mos99]. It uses four coils of
180, 135, 115, and 92 turns, respectively. The first coil has a mean diameter of 11 cm,
the others 6 cm each. The aluminum carrier for the slowing coils is visible in Fig. 5.1.
With the first (large) coil operated at 4 A and the following three at 2 A, the slower is
designed to decelerate atoms from a 160 m/s maximum velocity [Mos99]. However,
experimental optimization in our setup gave optimum loading at 3.5 A and 1.75 A,
respectively. A calculation of the resulting field geometry is shown in Fig. 5.4.

Figure 5.4: Magnetic field of the Zeeman slower vs. position on the beam axis (distance
measured from the trap center)

The B-field calculation includes the field from the MOT coils at their 8 A operating
current (see Sec. 5.4). This gradient field provides both confinement in the MOT and
the last field gradient for Zeeman slowing. From the magnetic field and the detuning
of the slowing laser of 50 MHZ from the cooling transition, it is possible to calculate
the slowing forces and the corresponding velocity profile. For a detailed discussion of
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Zeeman slowing and the calculations see [Eng97]; the result for our case is shown in
Fig. 5.5. The figure displays a calculation of the slowing effect on the fastest atoms
that can be captured, at a starting velocity of 140 m/s. It shows the slowing along
the beam axis and the transversal spreading of the atom beam assuming zero initial
transversal velocity. We see that the slowing force varies strongly along the beam
path, which is a sign for mismatched magnetic fields. The original design currents for
the Zeeman slowing coils give a better force profile and a higher maximum starting
velocity [Mos99]; nevertheless, in our experiments the displayed configuration works
best and gives, if the cesium dispensers are operated at 4 A, a MOT loading rate close
to 108 atoms/s. In typical experiments, we turn down the dispenser current and load at
only ∼107 atoms/s, since the MOT atom number is not the limitation for experiments
in the dipole trap.

Figure 5.5: Simulation of the Zeeman slower’s effect for an atom starting at 140 m/s. The
x-axes display the distance from the trap center. From left to right, top to bottom: velocity
along the beam axis, transversal velocity, slowing force (photon recoil × scattering rate), and
beam radius.
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5.3 Diode lasers

Several near-infrared laser wavelengths must be supplied to the experiment for imple-
mentation of the various loading and cooling steps. These are all resonant with the
cesium D2 line, operating on different hyperfine substates of the 62S1/2 and 62P3/2 lev-
els (see Sec.2.1). The typical notation is (F1→F2), which signifies a laser resonant to
the transition from the 62S1/2, F = F1 state to 62P3/2, F

′ = F2.
Six different near-resonant laser beams are necessary for operation of the experi-

ment:

• MOT cooling laser, slightly red detuned from (4→5),

• Zeeman slowing beam, 50 MHz red detuned from (4→5),

• MOT repumper, on (3→3),

• pumping beam for Raman cooling, slightly blue detuned from (3→2),

• lattice laser for Raman cooling, on (4→4),

• absorption imaging beam, on (4→5).

The complete laser setup is described in [Mar03b] and is similar to the setup in
the GOST experiment [Ham02a]. A frequency reference is obtained by the so-called
“master laser”, powered by a 852nm laser diode (SDL-5420) which is stabilized via a
Littrow-type extended-cavity setup [Tha01]. It is frequency stabilized 160 MHz below
the cesium (4→5) transition by modulation transfer spectroscopy [Raj79, Ber01] on a
beam that passes through a double-pass 80 MHz acousto-optic modulator (AOM). The
frequency width of the master laser is about 100 kHz with no significant long-term
drift of its absolute frequency.

The MOT cooler, repumper and Zeeman slower beams are obtained from DBR
(distributed Bragg reflector) laser diodes (SDL-5712-H1). These 100 mW laser diodes
feature periodic layers of spatially varying index of refraction on the back side of the
active laser area, which work as a wavelength-selective reflector and keep a line width
of about 1 MHz without an external cavity.

The MOT cooler and Zeeman slower lasers are frequency stabilized by beat locks
[Sch99] with the master laser. The beating signal between the each of these lasers
and the master laser is detected on a fast photodiode. This signal is mixed down and
compared to the frequency from a voltage-controlled oscillator (VCO) to obtain a dis-
persive error signal [Ham02a]. Changing the frequency of the VCO from 160 MHz
allows to detune the laser from the (4→5) resonance with radio frequency precision.
The tuning range is in the present setup limited by the VCO frequency range to be-
tween −90 MHz and +60 MHz. The MOT and the Zeeman slower laser are coupled
into polarization maintaining single-mode optical fibers (OZ Optics PMJ-3A3-850-5
and Thorlabs FS-PM-4621, respectively) to transport the light to the experiment and
provide 31 mW and 31.5 mW of optical power, respectively, at the fiber outputs.
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The laser providing the repumper and optical pumping beams, which address tran-
sitions from the lower F = 3 hyperfine state, cannot be referenced to the master
laser easily, as the frequency difference is ∼9 GHz. It is frequency stabilized to a
Cs absorption cell via a technique (published under the acronym DAVLL by the JILA
group [Cor98]) that employs the Zeeman effect: In a magnetic field of ∼130 G, the σ+
and σ− components of a linearly polarized laser beam are shifted in opposite direc-
tions (circular dichroism). By detecting these components separately and subtracting
the signals, a dispersion-like signal useful for locking is obtained. This scheme works
on the Doppler broadened absorption line, thus having a very large capture range but
also a small slope in the error signal, making it unsuitable for narrow-band looking.
Also, it is sensitive to temperature variations in the spectroscopy cell, which has to
be temperature stabilized to avoid frequency drifts of the laser. However, for the re-
pumper we do not need RF precision frequency control, and it is fairly simple to set
up and very robust once working properly. The laser is frequency locked in the middle
between the (3→2) and (3→3) transitions, detuned 75 MHz from both.

From this laser, the resonant (3→3) repumping light is obtained by shifting the
frequency by +75 MHz in an AOM. The light coming from the AOM is split into two
parts which are combined with the MOT and repumper lasers by coupling into their
respective optical fibers with orthogonal polarization. The repumper powers available
at the fiber outputs are 2.1 mW for the MOT and 5 mW for the Zeeman slower. The
optical pumping light for the Raman cooling scheme (see Sec. 6.2) is split off from the
same laser beam but shifted in the opposite direction, by -66.5 MHz, to be 8.5 MHz
blue detuned from the (3→2) transition. It is coupled into a separate optical fiber (OZ
Optics PMJ-3A3-850-5) and delivers 130 µW at the output.

The optical lattice for Raman cooling is formed by the light from a separate diode
laser. The laser diode (SDL-5420) is operated at 120 mW and frequency stabilized by
injection locking [Sie86, Ger99]. A laser beam picked off from the master laser, which
runs 160 MHz red-detuned from the (4→5) transition, is shifted by another -170 MHz
through an AOM, which results in a frequency 80 MHz below the (4→4) transition.
This beam is used to seed the lattice laser. By using an 80 MHz AOM to switch the
lattice laser, the light arriving at the experiment is right on the (4→4) transition. After
the AOM and a 30 µm pinhole to improve the beam quality, the power available at the
experiment is 70 mW.

For imaging purposes, two probe laser beams are split off from the master laser.
Each passes through a double-pass AOM at 80 MHZ used to shift their frequencies
onto the (4→5) transition. The light is delivered to the experiment via optical fibers
(Thorlabs FS-PM-4621). The power is very small and has not been measured exactly,
it is adjusted to get proper exposure on the CCD cameras.

For turning on and off the lights by computer control, each laser beam except the
Zeeman slower incorporates an AOM in its beam path. It is thus possible to switch the
light and adjust the intensities with microsecond precision. Except for the two imaging
lasers, additional mechanical shutters, which close a few milliseconds after the AOMs
are powered down, prevent stray light from disturbing the experiments.
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5.4 Magnetic fields

Magnetic fields are needed for several purposes: the magneto-optical trap needs a
quadrupole field to operate, we want to tune the interaction between the Cs atoms via
a homogeneous bias field, and we use a combination of both fields to magnetically
levitate the atoms. The fields are supplied by two pairs of coils mounted on the outside
of the vacuum chamber, as shown in Fig. 5.6.

Figure 5.6: Magnetic field coil setup. Left: Schematic figure including the optical dipole trap.
Right: Construction drawing with coil positioning on the vacuum chamber. The outer coils are
set up in a Helmholtz configuration and provide a homogeneous bias field in the trap center.
The inner coils, in Anti-Helmholtz configuration, generate the MOT quadrupole field and the
levitation field gradient.

The outer pair of coils (bias coils) is connected in a way that the current flows in
the same direction in both coils. The distance between the coils is nearly identical to
the radius of one coil, therefore the configuration is very close to a pair of Helmholtz
coils and gives a very homogeneous field in the center. The copper wire used has a
rectangular cross-section of 1.25×2.75 mm2, and each of the coils has a total of 143
windings. Every 24 windings (two layers of wire) have their own connector, so that we
can individually address five sets of 24 windings each and one of 23 windings. The five
24-winding sets are connected in parallel to make a low inductance (L ≃ 315 µH) coil.
A programmable power supply (Delta SM 30-100D) provides up to 100 A, generating
a homogeneous bias field of up to 190 G. The power supply is operated in constant
current mode, the current noise has an amplitude of approx. 6 mA (equiv. ∼11 mG).
This noise can be reduced by a factor of twenty by operating the supply in constant
voltage mode; in the present experiments, however, the noise is no limitation and for
technical reasons it is more convenient to use the constant current mode. The field
is switched by a circuit [Win02] that sinks the induction current of the coils to allow
for short switching times; in practice, the current can be turned off in 5 µs, but the
magnetic field takes about 7 ms to drop to zero due to eddy currents in the vacuum
chamber body. The time scale for switching on the current is limited by the voltage
reserve of the power supply to 360 µs, the magnetic field is stable after 1.5 ms.
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The inner pair of coils (gradient coils) is connected in an Anti-Helmholtz configu-
ration. The current flows in opposite directions in the upper and lower coils, thus the
field strength is zero in the trap center, growing linearly in each direction. The current
directions are matched to the bias coils so that when both coil pairs are operated at the
same time, they create a positive field gradient along the vertical z axis (field strength
grows when going upwards). The coils are wound with the same wire as the bias coils,
with a total 110 windings each organized two sets of 31, one of 48 windings. The two
sets of 31 windings are connected in parallel and form the actual gradient coil used in
the experiment (inductance L ≃ 170 µH), the 48-winding set is free for future use. The
gradient coils are powered by a similar power supply as the bias coils (Delta SM 45-
70), and the same noise considerations apply. The currents are switched by an identical
circuit as in the case of the bias coils, with on/off switching times of 120 µs/4 µs. The
magnetic field total rise/fall times are 0.6 ms/1 ms. At a current of 37.7 A, the coils
provide a vertical B field gradient of 31.3 G/cm as is necessary to compensate gravity
for ground state cesium atoms (see Sec. 4.3). The maximum gradient possible with the
present power supply, at a current of 70 A, is 58 G/cm.

Both coil pairs are mounted on aluminum supports that are slitted on one side to
prevent eddy currents in the supports themselves. They are electrically insulated from
the stainless steel vacuum chamber by plastics spacers. The heat produced by the coils
is a total of 250 W at typical operating currents (40 A in the bias coils, 38 A in the
gradient coils) or 1.1 kW at maximum currents. The heat is dissipated by water cooled
5 mm copper tubes integrated into the support structure (visible in the cross-section
on the right side of Fig. 5.6). The cooling keeps the coil temperatures always below
50 °C at the standard operating currents. When the bias coils are operated above
80 A for extended periods of time, the temperature rises close to 100 °C, and tests
have shown increased losses from the atom trap. The loss mechanism has not been
further investigated, direct heating of the vacuum chamber can be excluded since the
aluminum supports do not show an increase in temperature. Without further study, the
maximum safe operating current for the bias coils is limited to 80 A, giving a maximum
bias field of 150 G. The gradient coils are always operated at 38 A or below and
have not been tested thoroughly at higher currents, but probably similar considerations
apply.

Environmental B-field compensation

A laboratory environment features many devices that produce magnetic fields, both
static and dynamic. The dynamic B-field noise, predominantly 50 Hz noise from
power line transformers, would need some effort to compensate, as it requires dy-
namic B-field control. We have measured the noise to have an amplitude up to 15 mG
close to the trap center depending on the equipment operated nearby. The single most
notable noise source are the AC line cooling fans we use too cool electronics equip-
ment. Repositioning of the fans reduced the noise amplitude to 3 mG. At this level, it
is below the noise generated by current ripple in our power supplies and thus tolerable
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in current experiments.
The static magnetic fields at the trap center, however, are much larger. The largest

sources of static fields, the earth’s magnetic field and the stray field from our large
60 l/s ion getter pump, both have a strength of the order of 0.5 G. To countervail these
fields, we have installed a set of compensation coils, shown in Fig. 5.7.
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Figure 5.7: B-field compensation setup. Left: 3D view of the coil configuration. Right: Top
view with vacuum chamber.

To be able to compensate magnetic fields in all spatial directions, three orthogonal
sets of coils have been mounted around the trap. In the vertical direction, the spare
23-winding set of the bias coils is employed. For the horizontal axes (the orientation
of the x and y axes relative to the vacuum chamber can be seen on the right in Fig. 5.7),
two pairs of extra compensation coils were constructed. They are wound onto square
supports of 50 cm side length, which are mounted directly onto the optical table at a
distance of 40 cm from the trap center. At 70 windings for each single coil, a current
of 2 A sent through a coil pair produces a field strength of 1 G in the trap center. The
current for the horizontal compensation coils is provided by two highly precise power
supplies (HighFinesse BCS 2/20) that are specified with a ripple below 10−4 and can
be computer controlled to supply a current from -2 A to +2 A. In the vertical direction,
a similar power supply (HighFinesse BCS 3/15) allows to send ±3 A through the 23-
winding coil, giving a maximum field strength of 5.5 G. Altogether, the complete set
of coils allows to apply a homogeneous field of up to 1 G at the trap center pointing
into an arbitrary spatial direction.

5.5 CO2 lasers

The workhorse of the experiment is the optical potential of two crossed CO2-laser
beams.

The 10.6 µm laser light is produced by two independent lasers (Coherent-DEOS
GEM-100L), which are specified for an output power of 100 W cw each. The power
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level they typically deliver is 120-130 W. The laser heads are pumped by 1 kW of
100 MHz radio frequency power each. To minimize laser intensity noise, the RF
drivers have been modified to receive their power from separate, highly stable DC
power supplies (Agilent 6573A).

The laser head geometry and the active medium gas mixture are designed to allow
laser operation only on one specified CO2 emission line, with a total gain profile width
of ∼60 MHz. They run on a single longitudinal line and are fitted with a piezoelec-
trically mounted end mirror to allow for precise tuning of the laser frequency. This
makes it possible to use the lasers for optical lattice formation, however in the present
application we want no interference to occur between the lasers and actually employ
frequency shifting AOMs to ensure that this is not the case (see below).

The laser heads are very sensitive to temperature fluctuations. A variation of the
cooling water temperature by more than 0.15 °C invariantly leads to mode hopping,
which is accompanied by strong laser intensity fluctuations and leads to almost com-
plete loss of atoms from the dipole trap. As our cooling water supply shows peak-
to-peak temperature fluctuations of 0.3 °C, this initially proved to be a problem. One
solution would be to stabilize the lasers with the piezoelectric mirrors, which requires
setting up a spectroscopy system to derive an error signal. This is possible and was
tried in a test setup with an SF6 spectroscopy cell, but is not necessary for our current
purposes and requires some effort due to the special optics and detectors required for
the far-infrared light.

The simpler solution we went for was to actively temperature stabilize the cooling
water. For this purpose, we mounted a temperature sensor (Farnell 25 kΩ NTC resis-
tor) into the water flow at each laser head’s cooling water input. Immediately before
the water flows into the laser, it is sent through a 150 mm long, 16.5 mm outer diameter
aluminum tube that is wrapped in a flexible heating pad (Minco HK5172R220L12B
Kapton heater). Connected to the 230 V AC power line, this pad supplies a maxi-
mum of 240 W of heating power, which is sufficient to heat the water by ∼0.3 °C at
a flow of 10 l/min. This is just enough to compensate the cooling water temperature
fluctuations. The heater is regulated by a microprocessor temperature controller (Eu-
rotherm 2500E/S/4LOOP/MODBUS) through a solid state relay. The time scale of the
temperature control is approx. 1 s, we achieve in this way a short-term stability of
±0.01 °C. Residual long-term drifts over many hours are compensated by occasionally
re-adjusting the offset voltage on the piezo mirrors to ensure the laser is running in the
center of its gain profile.

For the CO2 lasers to operate stably with minimum noise, they need to run contin-
uously. Fast switching of the light is accomplished by inserting acousto-optic modula-
tors into the beam path. Each of the laser heads includes an integrated output telescope
providing a beam waist (1/e2 radius) of 3 mm. This waist is optimized to match the
aperture of the AOMs (IntraAction AGM-408BB1M) used to switch the laser light.
The AOM aperture has a diameter of 8 mm; at a 1/e2 radius of 3 mm, 97.1% of the
laser power is contained within this aperture. To focus the laser more strongly would
exceed the laser power density the AOMs are specified for.
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The AOM material is germanium, which has some small absorption at the 10.6 µm
wavelength of the lasers. Additionally, the anti-reflective coating is not perfect, and
together with some geometric cut-off the transmission through our AOMs is 88%.
This measured optimum is the same for both AOMs and in perfect agreement with the
specified total insertion loss of 12%. The driving electronics (IntraAction GE-4050)
delivers up to 50 W of radio-frequency power at 40 MHz into the AOM. At maxi-
mum power, 90-92% of the transmitted laser power are deflected into the first order of
diffraction. In total, about 80% of the power incident onto the AOM is delivered into
the first order. The diffraction angle is 78 mrad, which at a distance of 30 cm gives
a distance of 23 mm between 0th and 1st order and allows for easy separation of the
beams. The 0th order light is dumped into a water-cooled beam trap.

We use the diffracted beam for the optical dipole trap. The AOMs allow fast on
and off switching of this light, the total optical rise time is ∼1 µs (manufacturer speci-
fication). They are adjusted to frequency shift one laser beam by +40 MHz, the other
by -40 MHz; since the laser frequencies are within < 60 MHz of each other, the light
frequencies arriving at the trap are different by 20-140 MHz. This ensures that any
interference patterns are modulated fast enough compared to the atom dynamics in the
trap to be of no consequence. Therefore, we can simply add the potentials formed by
the laser beams to calculate the total trap potential.

Even though they are water cooled, the 50 W of radio frequency power and several
Watts of absorbed CO2-laser power lead to strong thermal effects in the AOMs. The
diffracted beam is astigmatic and moves with varying RF power. For this reason, the
modulators are always operated at zero or full power; this ensures that the beams, when
turned on, have a fixed position.

The CO2-laser light coming from each of the AOMs is directed to the experiment
chamber via three 50 mm diameter gold coated copper mirrors (Laser Beam Products
SNICU50-10-00). It is then sent through a meniscus lens of 190.5 mm focal length
(Laser Beam Products LZ38-7-190) to form a focus in the trap center. The strong
astigmatism of the laser beams caused by the acousto-optic modulators leads to the
focal point distance from the lens to differ by up to 85 mm when measured in the
horizontal or vertical plane.

Figure 5.8 shows the measured beam waists of the two lasers after the focusing
lenses. The lenses are both mounted at the optimum distance from the trap center to
minimize the focus ellipticity, i.e. where the fit curves cross. This distance is 231 mm
for Laser 1 (at this point, the beam waist in both horizontal and vertical directions is
w0 = 590 µm) and 230 mm for Laser 2 (w0 = 640 µm). The lenses are mounted on 3D
translation stages to allow for fine adjustment of the focus positions.

The power of the laser beams after passing through all optical elements is estimated
to 85 ± 5 W at the trap center. Because of space limitations, we cannot measure the
power after passing through the vacuum chamber. The test setup used to obtain the
beam waist data, however, was composed of the same number of optical elements at
roughly the same beam path length. From the power measured there we subtract the
previously measured transmission loss of one ZnSe UHV viewport, which amounts to
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Figure 5.8: Beam waists of the CO2-laser beams after the f = 190.5 mm focusing lenses
measured in the horizontal (open symbols) and vertical (solid symbols) directions. The lines
show least-squares fits of Gaussian beam propagation.

. 2%. The CO2 lasers display a slow output power drift of a few percent, which is
included in the ±5 W error estimate.

5.6 Experiment control

Many processes on the atomic scale happen in a matter of microseconds or millisec-
onds. In an ultracold, low density ensemble, however, interaction dynamics can be-
come extremely slow, taking place in a time scale of minutes. All of these processes
have to be precisely controlled and, in measurements, the time scales need to be well-
known to obtain exact data.

Combining the wide range of time scales from microsecond to minutes requires
some effort. Quite commonly, slow control is handled by one device, such as software
timing on a personal computer, which then triggers extremely precise timing boards
to control fast processes. These fast timing boards are often “dumb” buffered devices,
which, if operating on microsecond timing cycles, are limited by on-board memory to
a burst of pulses that cannot last longer than on the order of a second. This combination
of techniques is not very flexible and often lacking in ultimate real-time performance.

We have chosen an integrated solution that allows microsecond precision control of
the experiment while at the same time working self-sufficiently for many minutes. The
central element is a real-time control and measurement system (Keithley ADwin-Gold
with option ADwin-Gold-DA) which incorporates a dedicated digital signal processor
(Analog Devices SHARC ADSP21062, 40 MHz) with 4 MB of on-board memory. The
system is running a real-time operating system and features integrated timers which
can be programmed at a resolution down to 25 ns. Our version of the ADwin system
includes 32 TTL-compatible digital I/O channels, 2×8 multiplexed 100 kHz (10 µs
settling time) 16-bit analog inputs, and 8 independent 16-bit analog outputs with a
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±10 V output range and 10 µs full-range settling time.
Custom automation programs written in a proprietary BASIC dialect with real-time

extensions (ADbasic) can be downloaded onto the system. The event-driven programs
are triggered by the system timers, but although these can be set to fire as quickly
as every 25 ns, even short program sequences take several microseconds to execute.
Therefore, we have set the timing interval to 10 µs, which allows to reliably and repro-
ducibly program I/O operations and is matched to the settling time of the analog chan-
nels. The program used to control the experiment is a simple self-written scheduler
that takes a timing table as input and sets the outputs accordingly. It is downloaded,
fed with data and started from a personal computer and then runs for a full experiment
cycle completely independent on the ADwin system. The significant advantage over a
simple buffered I/O card is that the timing table is organized in a flexible way so that
the program can output a burst of fast timing pulses and then wait for minutes without
wasting memory. The advantage over doing the control directly from a personal com-
puter is that the timing is always precise down to below 1 µs, independent of the load
of the host computer.

As mentioned above, the timing interval, which is the shortest time between two
separate output changing operations, is set to 10 µs. However, the precision is higher
than that: The timer event is generated with a jitter of below 100 ns. Upon event gener-
ation, the scheduler program looks up all output operations planned for this time step.
Operations scheduled for the digital output channels 0-15 are then performed simulta-
neously. About 0.5 µs later, operations on channels 16-31 become effective. The time
differences between event generation, the setting of channels 0-15 and of channels 16-
31 are well-defined, so that a 90 µs pulse on one digital output channel will last exactly
90.0 ±0.1 µs, with all pulse edges on the first 16 channels completely simultaneous, the
edges on channels 15-31 consistently delayed by ∼0.5 µs. The analog channel timings
are a little less well-defined, they are set individually after the digital outputs in ∼1 µs
time intervals and then need up to 10 µs to settle on their intended value. Currently,
none of the analog inputs are in use, therefore data acquisition is not implemented in
the program.

The front end to the scheduling program is a graphical user interface designed in
LabVIEW (National Instruments LabVIEW 6.1). It integrates analog and digital out-
put channels in a single tabular front panel. Standard delay times for digital outputs,
e.g. shutter lag times, can be set in a separate table and are applied to the times en-
tered. Scaling of analog outputs is also handled from a central conversion table, for
example the magnetic bias field can be entered as a field strength value in Gauss and
is automatically converted into the proper voltage to control the power supply. A set
of variables can be used instead of fixed values for timings and analog values. The
program allows to change these variables systematically from one experimental cycle
to the next. A nested loop logic enables complex procedures to be carried out automat-
ically, for example a lifetime measurement in the trap with time-of-flight temperature
measurements at each trap holding time. The variable values for each experiment run
are saved to disk.
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Imaging system

We use four CCD cameras to observe the atoms in the experiment. Two small video
”finger cameras“ (Conrad Elektronik) show fluorescence images of the MOT on video
screens and are used for monitoring and adjustment purposes. One triggerable slow-
scan frame transfer CCD camera system (Theta System SIS-99/PH, 1024 × 1024 pix-
els, 14 bit resolution) offers low-noise imaging at high resolution, and a triggerable
progressive-scan frame transfer video camera (Hitachi KP-F2A) allows to take pre-
cisely timed pictures from a second perspective. The slow-scan camera system in-
cludes a proprietary frame grabber and a separate computer system, while the trigger-
able video camera is connected to the control computer via a standard monochrome
frame grabber board (MATRIX Vision MVtitan-G1). Both are controlled by self-
written LabVIEW programs.

The exposure is timed for both cameras by trigger signals from the ADwin board.
The electronic shutters allow for very short exposure timings. In the slow-scan camera,
the frame transfer takes about 0.5 ms both at the beginning and the end of the expo-
sure. Light hitting the CCD active area during this time will be smeared out over the
image, which has to be taken into account for the timing and limits the minimum ex-
posure time depending on the lighting situation. The read-out into the computer needs
about 600 ms. Including some image analysis, the typical minimum period between
individual pictures is not much less than about one second. A framing mode, where
the charge on the chip is only moved for a partial frame to allow multiple exposures
onto the active area within a short time, is currently not supported.

In the triggered video camera, the frame transfer is much faster and takes less than
100 µs, easily allowing for sub-ms exposures. Image readout is done in about 30 ms,
the camera is able to take moving images at 30 fps. The CCD chip is actually a bit
more sensitive to 852 nm light than the slow-scan camera, but due to the large readout
noise the signal-to-noise ratio is much worse.

After exposure, the LabVIEW program automatically reads the image into the
computer memory and displays it. In absorption imaging mode, two consecutive pic-
tures are divided by each other and the result is shown instead of the individual images.
The pictures are immediately processed by a MATLAB (The MathWorks MATLAB
6.5 R13) procedure that uses Gaussian fits to the atom cloud to calculate position, size
and atom number. The operator can set up the program to save for each image only
the data obtained from the fit or also the image itself. The saved data are logically
connected to the experiment settings stored by the control program to enable auto-
mated data analysis, e.g. calculation of the sample temperature from a time-of-flight
measurement series.

Usually, only one camera is used at the same time since the absorption imaging
we employ in most measurements is destructive. The slow-scan camera, which we use
most of the time, looks into the vacuum chamber from the side, at a 90° angle to the
atomic beam (top viewport on the left side of Fig. 5.3). The focusing optics consists
of a 40 mm diameter, f = 200 mm achromatic doublet (Linos Photonics 322293 NIR-
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ARB2) shortly behind the UHV viewport at a distance of 200 mm from the trap center
and a 50 mm diameter, f = 250 mm achromat (Thorlabs LAC376-B) that focuses
the light onto the CCD chip. The diffraction limited resolution of this lens setup is
calculated to 5 µm, the pixel size is 6 µm (cf. Sec. 6.6). Correspondingly, the full field
of view covers about 6 mm in each direction. The triggered video camera looks into the
vacuum chamber from above at a slight angle from the vertical direction. The imaging
lenses are not permanently fixed, currently a 2/3 reducing optics of two achromatic
lenses delivers a field of view of about 6 mm at a pixel size of 11.1 µm. Both CCD
cameras together give full spatial information on the atom distribution in the trap at
any given time.
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Chapter 6

Trap properties and experimental

procedures

In this chapter, I will explain the properties of the various potentials we use to trap
ultracold cesium atoms and give some details on how the experiment is performed.
Various steps lead us towards our goal of achieving quantum degeneracy in 133Cs. The
last section explains the imaging and temperature measurement procedure.

6.1 The MOT

The basic technical setup of the magneto-optical trap and the Zeeman slower has been
described in Ch. 5. For Zeeman slowing, 31.5 mW of light detuned typically 50 MHz
below the cooling transition is available, together with about 5 mW of repumping
power. At the output of the optical fiber, the light is first circularly polarized by a quar-
ter wave plate and then expanded via a telescope to a beam of a diameter of roughly
5 cm. The beam enters the vacuum system through a viewport on the far end of the
large ion getter pump (on the very right in Fig. 5.1), at a distance of 142 cm from
the cesium oven. It is focused onto the nozzle of the oven. In the MOT region, at a
distance of 76 cm from the viewport, the beam waist is approximately 1.2 cm and the
central intensity about 14 mW/cm2.

The MOT light, at a total power of 31 mW slightly red-detuned by a computer-
controlled amount from the cooling transition plus 2.1 mW of repumping light, is
split into five single beams. Four of those enter the vacuum chamber horizontally, the
fifth enters from below at an angle slightly deviating from the vertical direction and
is retro-reflected. The beams are expanded to a beam waist of about 1 cm, resulting
in an intensity of about 4 mW/cm2. The configuration of the MOT beams is shown in
Fig. 6.1.

The MOT is operated at a detuning of 4.5 MHz for loading, with a quadrupole
field gradient of 7.8 G/cm. The loading rate from the Zeeman-slowed beam is up to
5 ·107 s−1, with maximum observed atom numbers in the MOT of 3 ·108. Typically, the
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Figure 6.1: Configuration of the MOT light beams. The black circular arrows indicate the
circular polarization orientation of the individual MOT beams, the white arrows the current
direction the quadrupole coils.

MOT is operated at a lower atom flux to minimize the consumption of cesium from the
dispensers, and the atom number after 4 s of loading is around 3 · 107. The measured
1/e lifetime of the trapped atoms in the MOT is 200 s. After a molasses phase of 5 ms
with the cooling laser detuned 90 MHz below resonance, the temperature is 10 µK.

6.2 Raman sideband cooling

In the levitated optical dipole potential, we trap 133Cs in its lowest internal state,
62S1/2, F = 3,mF = 3. When the cesium atoms are captured in the MOT and pre-
cooled in a molasses, they end up in a mixture of states and have to be spin polarized.
This can typically be done by optical pumping, however this process induces some
heating due to the scattering of several photons in the pumping process. A better al-
ternative is Raman sideband cooling, which can be utilized to simultaneously cool and
polarize the atoms.

A schematic overview of the principle of degenerate Raman sideband cool-
ing is shown in Fig. 6.2. In our experiment, we follow the scheme described in
[Ker00, Tre01]. The atoms are captured in a 3D optical lattice formed by four laser
beams resonant with the 62S1/2, F = 4 → 62P3/2, F

′ = 4 transition, which is detuned
by 9.2 GHz from resonance for atoms in the F = 3 lower hyperfine state. Besides
generating the trapping potential, the laser light provides Raman coupling of degener-
ate energy levels. A magnetic offset field is applied and its strength adjusted so that
the Zeeman splitting between levels with ∆mF = 1 exactly matches the spacing of the
vibrational energy levels in the lattice potential. Thus, a state with vibrational quantum
number ν in the external potential and magnetic quantum number mF is coupled to a
state ν− 1 with magnetic quantum number mF − 1. A mainly σ+ polarized laser beam,
8.5 MHz blue detuned from the 62S1/2, F = 3 → 62P3/2, F

′ = 2 transition, provides
optical pumping from a state F = 3,mF = mF,0 to F = 3,mF = mF,0 + 1. In the Lamb-
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Dicke regime, the optical pumping process normally preserves ν, so eventually the
atoms will end up in the state ν = 0,mF = 2, which is a dark state for the σ+ polarized
light. From this state they are pumped into the ν = 0,mF = 3 absolute ground state by
a weak π polarization component of the pumping light. The slow pumping in the last
cooling stage suppresses reabsorption heating [Cas98]. After the optical cooling in the
lattice, the potential is ramped down within several ten microseconds to adiabatically
release the ensemble and thus minimize the free-space temperature [Kas95].

F F F

Figure 6.2: Raman sideband cooling scheme (see text).

The geometry of our Raman cooling setup is derived from [Tre01]. Four linearly
polarized laser beams at a total power of 70 mW and 1/e2 beam diameters of 1 mm
form the optical lattice, the four-beam geometry ensures the stability of the lattice po-
tential under phase fluctuations of the laser light [Gry93]. A rough estimate of the lat-
tice potential strength, not taking into account the exact polarizations of the individual
beams, gives an estimation for the vibration frequency of the order of 140 kHz. This
frequency is equivalent to a spacing of the vibrational levels of ~ω ≈ kB · 6 µK. The
matching magnetic field strength to provide a Zeeman splitting of the same amount
between neighboring mF sublevels results to 400 mG.

Experimentally, we optimize the cooling process by adjusting the magnetic field
strength and direction while monitoring the number of atoms captured in the lattice
and their temperature. When the cooling is inefficient, i.e. the atoms are not rapidly
pumped into a dark state, photon scattering will heat the atoms and lead to strong
loss from the lattice. Thus, maximizing the number of captured atoms will optimize
the cooling cycle. Not only the magnetic field strength, but also the direction of the
field is varied via the compensation coils. This compensates for imperfections in the
σ+ pumping laser polarization and at the same time provides the weak π component
necessary to depopulate the ν = 0, F = 3,mF = 2 state. The magnetic field strength
where the cooling process works optimally is found to be about 220 mG. This value is
in good agreement with the calculation of 400 mG within the systematic uncertainty of
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both values, each of which we cannot determine to better than within a factor of two.
The result of the Raman sideband cooling process is quite satisfactory for our

purposes. Within 8 ms, about 95% of the atoms are polarized into the desired
F = 3,mF = 3 state at a temperature of around 1 µK. We have cooled and polarized up
to 3 · 107 atoms in our setup; higher atom numbers are not collected in the relatively
small lattice for geometric reasons. The original publication [Tre01] cites temperatures
down to 200 nK, which we have not achieved. The reasons for this are not clear, but
may have to do with the much stronger lattice potential in our case (140 kHz vibration
frequency as compared to 21 kHz). However, the Raman cooling process is only one
step in loading our levitated optical dipole trap, and the temperature is not a limiting
factor here due to the strong heating in the transfer into the LevT (Sec. 6.4).

6.3 The LevT

The LevT (Levitated Trap) is the main trap around which the various experiments
are carried out. It consists of a quasi-electrostatic optical dipole trap combined with
magnetic levitation to cancel the influence of the gravitational forces.

6.3.1 Optical potential

The CO2-laser setup provides two crossed beams at a power of 85 W each at a wave-
length of 10.6 µm. The optical dipole potential is proportional to the light intensity,
which in the laser beams has a Gaussian profile

I(r, a) =
2P

πw2(a)
e−2r2/w2(a), (6.1)

where P is the total laser power, a the axial coordinate along the beam axis, and r the
radial coordinate. The position-dependent beam waist w(a) follows the relation

w(a) = w0

√

1 +
(

a

zR

)2

. (6.2)

Here, w0 denotes the minimum beam waist in the focus, the Rayleigh range zR = πw
2
0/λ

is a measure of the axial extension of the focal region.
The CO2-laser beams are weakly focused to a minimum beam waist of w0 ≃

400 µm, with a corresponding Rayleigh range of zR ≃ 5 cm (cf. Sec. 5.5, esp.
Fig. 5.8). The laser beams cross a little below 1 zR off-focus, where the slope
∂w/∂a . w′(zR) = w0/(zR

√
2) ≈ 5.6 · 10−3. Since this variation is weak, we do

not include it explicitly into the potential shape calculations and assume w(a) = const;
however, through the uncertainty of the beam crossing position of ∼3 mm, it leads to
an error estimate of ∼15 µm in the beam waists. The values for Laser 1 and Laser 2
are w1 ≡ wy = 590 ± 15 µm and w2 ≡ wx = 640 ± 15 µm, respectively. The laser
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beams both run in the horizontal plane and cross at right angles. We define a coor-
dinate system where Laser 2 propagates along the x-axis, Laser 1 along the y-axis,
and the z-axis is oriented vertically pointing upwards. The axis orientations relative
to the experiment chamber are consistent with the compensation coil setup (Sec. 5.4,
Fig. 5.7), see also Fig. 8.2. Note that this (for historical reasons) is a left-handed coor-
dinate system; when we do calculations of the potential shapes, the orientiation of the
y-axis is reversed, with the axis pointing in the opposite direction of the propagation
of Laser 1.

As we have taken care to avoid interference effects between the CO2 lasers by
maintaining a large frequency difference (see Sec. 5.5), the total optical potential is
just the sum of the potentials of the single lasers,

UCO2(x, y, z) = −Û1e−2(x2+z2)/w2
1 − Û2e−2(y2+z2)/w2

2 , (6.3)

with the individual trap depths (Eqs. 6.1, 4.16)

Û1,2 =
αstat

πǫ0c

P1,2

w2
1,2

= kB · 5.76 · 104
µK ·

P1,2/W

w2
1,2/µm

2
. (6.4)

The resulting trap depths are Û1 = kB ·(14.1±1.1) µK and Û2 = kB ·(11.9±0.9) µK.
The sum Û1+ Û2 = kB ·26 µK is the potential in the trap center. However, the effective
trap depth is the lower of the two individual potential depths, since if the atoms escape
into a single beam, they experience no restoring force to the trap center and are lost.

If the thermal energy of the trapped ensemble is much smaller than the potential
depth, the Gaussian potential shape U(r) = Û exp(−2r2/w2) can be approximated as a
radially symmetric harmonic oscillator,

U(r) ≈ −Û

(

1 − 2
r2

w2

)

. (6.5)

For the combined potential of the two lasers, the three-dimensional harmonic potential
is

Uharm(x, y, z) = −
(

Û1 + Û2

)

+ 2
Û1

w2
1

x2 + 2
Û2

w2
2

y2 + 2
(

Û1

w2
1

+
Û2

w2
2

)

z2, (6.6)

and the trap oscillation frequencies result as ωx/2π = 16.0 ± 0.9 Hz, ωy/2π =
13.6 ± 0.8 Hz, ωz/2π = 21.0 ± 1.2 Hz. We have performed measurements of the
actual trap frequencies in the trap by exciting oscillations of the atomic ensemble and
monitoring its movement [Mar03b]. The results are ωx/2π = 14.9 ± 0.8 Hz, ωy/2π =
11.6 ± 0.6 Hz, ωz/2π = 17.7 ± 0.3 Hz, which is systematically lower than the result
of the calculation. Since the measurement is quite direct and thus should expose no
significant systematic error, we assume a deviation of the real potential shape from
the measured CO2-laser beam profiles, maybe caused by some distortion of the beam
by the UHV viewports. For calculations of average ensemble properties, like the den-
sity or phase-space density, we use the geometric average ω̄ of the trap frequencies
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ω̄ = 3
√
ωxωyωz. The result from the calculated parameters is ω̄/2π = 16.6 ± 0.6 Hz,

from the measurements we get ω̄/2π = 14.5±0.5 Hz, which is the value used in further
calculations.

Figure 6.3: Potential of the CO2-laser trap in the horizontal x-y plane at z = 0 (left) and in the
vertical x-z plane at y = 0 (right). The calculation includes the transversal magnetic forces of
the levitation field at a bias field of Bbias = 75 G (see text).

6.3.2 Magnetic levitation

Up to now, we have not considered the gravitational force mg, which causes a vertical
potential gradient of 157 µK/mm. This is much stronger than the maximum gradient
of the optical potential, and would lead to immediate loss from the trap. We use a
magnetic force to compensate gravity. The required vertical field strength gradient for
levitation of cesium F = 3,mF = 3 ground state atoms is ∂B/∂z = (4/3)mg/µB =

31.3 G/cm (Sec. 4.3). Because of Maxwell’s equation divB = 0, the vertical field
gradient leads to horizontal gradients ∂Bx/∂x = ∂By/∂y = (2/3)mg/µB in the case of
cylindrical symmetry. These cause an outward pointing force acting on the trapped
atoms.

We create the gradient field by combining a quadrupole field Bgrad and a homoge-
neous bias field Bbias (Sec. 5.4). For symmetry reasons, at z = 0 the quadrupole field
vector lies in the x-y plane and points radially outward from the trap center. The field
strength is Bgrad(ρ) = (2/3)mgρ/µB, with ρ being the radial coordinate. Since Bgrad is
in that plane perpendicular to the vertical bias field Bbias, the strength of the combined
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field can be calculated as

B(ρ) =

√

B2
bias +

(

2mgρ

3µB

)2

≈ Bbias













1 +
1
2

(

2mgρ

3µBBbias

)2










= Bbias +
2
9

m2g2ρ2

µ2
B
Bbias
, (6.7)

with a corresponding potential

UB(ρ) = −
3
4
µBB(ρ) = −

3
4
µBBbias −

1
6

m2g2

µBBbias
ρ2

= UBbias −
1
2

mα2ρ2, α = g

√

m

3µBBbias
(6.8)

which is the inverse of a harmonic potential with trapping frequency α.
When the levitation field is turned on, in the vertical direction gravity and the

magnetic force cancel exactly for the F = 3,mF = 3 state, leaving only the optical po-
tential. In the horizontal directions, the field gradients create an outward, anti-trapping
potential with a slight curvature which depends on the bias field. The effect is shown
in Fig. 6.4 for two different bias fields. The horizontal potential cross-sections are
taken along the y-axis, and show the strong perturbation of the optical potential by the
magnetic forces at low bias fields.
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Figure 6.4: LevT potential (solid lines) in the vertical direction (left) and along one of the
CO2-laser beams (center,right) at different bias fields. The dashed lines represent the potential
of the magnetic levitation field alone, the dotted lines the optical potential alone. At the 10 G
bias field, the trap depth in the horizontal direction is reduced by 35% through the transversal
magnetic forces.

Quantitatively, the potential depth of the combined trap can be calculated numer-
ically for a range of bias fields by evaluating the potential profile along the weakest
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(y) trap axis and calculating the difference between potential minimum and maximum.
For the trap frequencies, one simply adds the optical and magnetic potential, e.g. in
the x-axis we get

Ux = 2
Û1

w2
1

x2 −
1
2

mα2x2 =
1
2

m
(

ω2
x − α2

)

, (6.9)

which immediately gives an expression for the trap frequencies in the horizontal axes

ω′x,y =

√

ωx,y
2 − α2. (6.10)

The vertical trap frequency is unchanged by the levitation field.
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Figure 6.5: Calculated LevT trap depth and average trap frequency as a function of the bias
field. The percentage scales differ by a factor of 10. At 75 G, the trap depth is 11.1 µK (93%
of the maximum), the average trap frequency ω̄/2π = 16.5 Hz (>99%).

In Fig. 6.5, both the trap depth and the geometrically averaged trap frequency are
plotted as a function of the bias field. The trap depth is reduced appreciably by the
magnetic forces, even at the maximum field of 150 G the trap depth reduction val-
ues around 5%. However, the average trap frequency, which is the more important
parameter since it enters to the third power into calculations of the particle density, is
affected weakly, staying above 97% of the maximum down to 10 G. The graph does not
take into account the deviation of the measured from the calculated trap frequencies,
however the relative changes will be equivalent.

6.4 Loading the LevT & plain evaporation

To load the levitated trap, we simply turn on the CO2-laser potential and simultane-
ously ramp up the magnetic levitation field within about 500 µs immediately after
Raman cooling. The procedure is optimized by geometrically overlapping the posi-
tions of the two CO2-laser beams with the cloud released from the optical lattice. This
is done by imaging the positions on CCD cameras, which is possible because once the
CO2-laser beams are close to the atom cloud, they lead to a local increase in density
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Figure 6.6: Evolution of the number of atoms of a trapped sample in the LevT at 75 G bias
field. The solid line shows a simple exponential fit to the atom number taking into account
only the data points taken after more than three minutes, which gives a 1/e lifetime of 140 s.
Later measurements (Sec. 7.3) result in a more accurate value of the background gas limited
1/e lifetime of 180 s.

which shows up in absorption images. With one camera looking from the side and one
looking from above, we have full spatial information and can adjust by sight. Since
the length scales in our weakly focused trapping potential are on the order of hundreds
of microns and can be easily resolved by the imaging system, this procedure is very
precise. When the geometric optimization is done carefully, a subsequent optimization
for the number of atoms captured in the trap results in no further improvement.

Figure 6.6 shows the evolution of the number of atoms in the levitated trap. About
2 ·107 polarized atoms at a temperature of 1 µK are provided by Raman cooling. Since
in the levitation field atoms that are not captured in the trap do not fall out of the
field of view, it takes about 100 ms for the trapped atoms to become clearly distinct
from the expanding non-trapped fraction. At this time, 1.4 · 107 trapped atoms are
visible. The atom number drops very steeply in the beginning, with only 1.0 · 107

atoms visible after 200 ms. In the figure we see this extremely steep drop within the
first ten seconds, a somewhat slower decay up to 150 s, and after that a decay curve
that within the resolution of this data looks like a simple exponential.

The simple exponential decay on a long time scale is what we expect from losses
through background gas collisions at a vacuum system pressure in the 10−11 mbar
range. The non-exponential decay between 10 s and 150 s can be explained by three-
body recombination, which will be treated in Chapter 7. However, the very quick
initial loss of almost one order of magnitude in atom number needs a closer look.

The temperature evolution helps to understand the process. In Fig. 6.7, we see in
the left diagram an expanded view of the first 20 s of the atom number measurement.
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Figure 6.7: The first 20 s in the life of the LevT.

On the right, the corresponding temperatures as measured by time-of-flight imaging
are shown. We see that corresponding to the strongest atom loss, the temperature drops
from 5 µK at t = 100 ms to about 1 µK at 10 s. Later, the temperature stays roughly
constant, measurements even after 180 s show no significant drop below 1 µK.

Obviously, within the first 100 ms the atoms are strongly heated from the initial
1 µK to around or above 5 µK. The reason is clear when we look at the spatial extension
of the raman-cooled cloud, which has a 1/e radius of approximately 500 µm (in the
vertical axis). An equilibrium distribution in our trap would at 1 µK only have a
vertical 1/e radius of 100 µm. In the horizontal axes the relations are similar. Due
to this mismatch, when the CO2-laser trap is turned on nonadiabatically, the ensemble
gains much potential energy which is in turn converted into kinetic energy and through
collisions into temperature. Subsequently, the hot atoms evaporate out of the trap. This
plain evaporation out of an optical dipole trap has been thoroughly studied [Eng00b],
and the temperature drop to about 1/10 of the trap depth meets the expectations. Thus,
the initial fast drop in atom number from 2 · 107 to about 3 · 106 within 10 s can be
attributed to plain evaporation. In all further experiments in the trap, the end of these
initial 10 s of plain evaporation has been taken as a starting point. Depending on the
loading time in the MOT and the fine adjustment of the trap, about 2 · 106 to 4 · 106

atoms at a constant temperature of 1 µK are provided at this time.
The high losses in this initial stage are clearly not desirable. Turning on the optical

potential adiabatically is not an option, since the CO2-laser beams move and change
shape when the power is varied strongly. A solution might be to load the atoms into
the trap, wait 1/4 trap oscillation period until all atoms have moved into the trap center
and the ensemble is effectively compressed, and then reapply Raman cooling. How-
ever, without some technical modifications the magnetic field cannot be switched back
to the Raman cooling values quickly enough. It would also help to focus the trap-
ping light more weakly, which would improve the phase-space matching between the
Raman-cooled cloud and the trap. Up to now, the experimental conditions have been
sufficient for achieving the scientific goals (see later chapters) of the experiment, so
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the improvements have been postponed.

6.5 Radio-frequency evaporation

The combined magnetic and optical trap allows for the use of a cooling mechanism
that has proven very valuable in magnetic trapping experiments. Radio-frequency
(RF) evaporative cooling has been the key tool in the first BEC experiments and re-
mains the method of choice in magnetic trapping setups. In general, all Bose-Einstein
condensates so far have been achieved by evaporative cooling, most of them via RF
evaporation in a magnetic trap. For an introduction to evaporative cooling of trapped
atoms see [Ket96].
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Figure 6.8: Radio-frequency evaporation out of the levitated trap. Shown are the potential
energies of the F = 3,mF = 3 and F = 3,mF = 2 ground states (solid lines) along the vertical
axis for a bias field of 75 G. The double arrow indicates the radio frequency transition between
the states, which at a frequency of 26.2 MHz cuts into the trap about 300 µm below the trap
center. The dashed lines represent the gravitational plus magnetic potential alone. Note the
discontinuous energy scale.

Figure 6.8 shows the LevT potential for the two lowest-lying states of 133Cs, the
F = 3,mF = 3 absolute ground state the trap is designed for and the untrapped state
F = 3,mF = 2. The levitation gradient field causes a spatial variation of the Zeeman
splitting in vertical direction. Sending in a radio frequency resonant with the energy
splitting at a certain altitude transfers the trapped atoms at this position into the un-
trapped state, and they fall out of the trap. If we tune the frequency to the trap center
position, all atoms are lost; we have used this to calibrate the magnetic field gener-
ated by the bias coils [Mar03b]. When we start at a low radio frequency and slowly
increase the value, we will begin throwing out the atoms at the trap edge, which are
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hottest. Through elastic collisions, the ensemble rethermalizes, lowering the temper-
ature. Slowly moving this “radio-frequency knife” towards the trap center will then
continuously cool the sample.

At a 75 G bias field, the scattering length is tuned to 1200 a0, which at the low initial
peak density of 3 · 1011 cm−3 keeps the elastic scattering rate at ∼200 s−1, high enough
for efficient cooling. The Zeeman splitting between the states at this bias field is of
the order of h · 25 MHz, a frequency that is easily supplied by standard programmable
function generators (we use a Stanford Research Systems DS345 30 MHz arbitrary
waveform generator). The signal from the waveform generator is amplified and then
emitted by an antenna which is a simple coil with 5.5 cm diameter and six windings.

We have optimized the RF evaporation process in several steps. First, the RF knife
is moved from a frequency ν = 25.5 MHz which does not affect the trap at all to the
point where it just barely starts to remove atoms (ν = 25.62 MHz). This sweep takes
two seconds and serves to define the starting point for the evaporation. From there
on, the ramp is optimized in 5 s segments for evaporation efficiency: We vary the end
frequency of the ramp down to the point where no atoms remain in the trap. For each
end frequency, temperature T and atom number N are measured, from which we can
derive the density n and the phase-space density D. The optimization is targeted at
maximizing for each ramp segment the evaporation efficiency

ǫ =
ln D

D0

ln N0
N

, (6.11)

where N0,D0 are the atom number and the phase-space density at the beginning of
the evaporation ramp, N,D the values after the ramp. The parameter ǫ simply states
the orders of magnitude gain in phase-space density per order of magnitude loss in
atoms. At the same time, the elastic collision rate, which can be calculated from the
density and temperature at known scattering length, has to be monitored to not to
drop too strongly, since evaporative cooling critically depends on elastic collisions for
thermalization. Under good conditions, forced evaporation experiments in magnetic
traps have efficiencies ǫ between 2 and 3, and the collision rate and density increase
during evaporation (runaway evaporation).

Figure 6.9 gives an overview of the evaporation results. The rightmost data point
shows the starting conditions, which in this experiment were 4·106 atoms at a tempera-
ture of 1 µK. The next, overlapping point is taken after the first 2 s ramp, which throws
away some very few atoms and slightly lowers the temperature. Then, we have the first
5 s evaporation ramp, ending at an RF frequency of ν = 25.7 MHz with 1.6 · 106 atoms
at 450 nK. The efficiency of this ramp is ǫ = 1.6. The next ramp segment goes to
ν = 25.76 MHz at ǫ ≈ 1, leaving 4.5 · 105 atoms at 200 nK. The final segment, in
this case ended at ν = 25.81 MHz, has a very low efficiency around 0.4. About 25000
atoms are left at around 60 nK. The collision rate stays in the range 100-200 s−1 during
the first two evaporation ramps, during the last ramp it drops sharply to around 20 s−1.

The results of the first two ramp segments are not very efficient, but quite repro-
ducible and were used in the measurements on three-body recombination presented in
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Figure 6.9: Results of radio-frequency evaporation in the LevT. The plot shows the increase
in phase-space density in relation to the loss of atoms. Each connecting line between the
measured atom number/phase-space density pairs corresponds to a segment of the evaporation
ramp; the slope corresponds to the evaporation efficiency ǫ, the maximum value of which is
1.6 in the first segment (rightmost line).

Chapter 7. The last evaporation segment, however, is not only extremely inefficient but
also varies strongly in its results. The reason is probably the noise in the magnetic bias
field, which is of the order of 15 mG (see Sec. 5.4). This corresponds in the RF scale
to 5 kHz, which in the last sweep of only 50 kHz very close to the trap center results
in a large uncertainty.

The bias field noise, however, is not sufficient to explain the generally low effi-
ciency of each step of the evaporation process. We have varied the time scales for
evaporation by a factor of ten, tried to optimize the RF power and optimized the evap-
oration ramps for keeping up the collision rate and/or density. No significant improve-
ment was found, the maximum phase-space density reached in a few single shots with
very few atoms ranged around 0.1. The reason lies in the inherent one-dimensionality
of our evaporation process: hot atoms can only leave the trap if their path leads them
through the single vertical layer of the trap where the RF knife is effective. This is
known to somewhat reduce the effectiveness of evaporation, but in our experiment has
much more severe consequences. We found the reason for this to be recombination
heating in three-body recombination, which will be discussed in the next chapter.

In view of the Oxford experiment (see Sec. 2.5) and their recent thorough study of
evaporative cooling in cesium [Ma03], one should note that we are also operating in
the hydrodynamic regime. However, in contrast to their magnetic trapping setup we
do not suffer from inelastic two-body losses. A comparative quantitative analysis of
the evaporation dynamics is planned and will further clarify the picture.
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6.6 Observation and thermometry

We use an absorption imaging technique to measure the number of atoms and observe
their spatial distribution. A resonant laser beam is used to cast a “shadow” of the atom
cloud onto a CCD camera. This method is a standard technique quite commonly used
in cold atom experiments [Ket99].

We use linearly polarized light resonant on the F = 4 → F′ = 5 transition. We
turn on the MOT repumper 500 µs before the imaging cycle to pump all atoms into the
F = 4 hyperfine state and then keep it on during the typically 200 µs absorption pulse.
The magnetic field is always turned off for imaging. In this situation, the absorption
cross-section σ is calculated by averaging the Clebsch-Gordan coefficients over all
mF substates and yields σ = 0.1945λ2 at zero detuning and if the laser intensity is
below saturation. We have verified that there is no broadening of the line and the
laser is sitting exactly on resonance by systematically detuning the imaging laser and
measuring absorption. The line width measured by this method is 5.3(1) MHz, in very
good agreement with the 5.22 MHz natural line width of the transition.

Our main camera looks at the cloud horizontally, and in the camera frame we call
the horizontal direction x, the vertical direction y. If the absorption coefficient of the
atoms for resonant light is given by σn, where n denotes the number density of atoms,
integrating the atomic cloud along the optical axis z of the imaging system yields the
transmission function

T (x, y) = e−ση(x,y), (6.12)

with η(x, y) =
∫

n dz being the column density along z.
An image is generated in two steps. First, we capture the shadow of the atom cloud.

Then, all light fields and magnetic fields are turned off for typically 900 ms to let all
atoms fall out of the trapping region, and we subsequently take a reference image of
the imaging light field. We divide the first image by the second and thereby obtain
T (x, y) in pixel units and η(x, y) = − ln

(

T (x, y)
)

/σ. If a pixel has dimensions l × l in
the image plane, the atom number Ncount can simply be calculated by

Ncount =

∫

η(x, y) dx dy =
∑

x,y

l2η(x, y). (6.13)

The result of this simple summation is at very low signal dominated by noise,
mainly given by the Poisson statistics of charge carriers on the CCD chip. The noise
is averaged out by a Gaussian fit to the distribution

η(x, y) = η̂e−(x/wx)2
e−(y/wy)2

, (6.14)

with wx,y denoting the 1/e radii of the cloud. The particle number Nfit is then given by

Nfit = πl
2wxwyη̂, (6.15)

when wx, wy are expressed in pixel units. At atom numbers above 105, and with a
suitably defined region of interest for the summation, Ncount and Nfit usually agree
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quite well. With the fit, down to about two- to three thousand atoms can be clearly
distinguished from the background.

We can determine the pixel dimension l, which enters into the particle number
calculations quadratically, quite precisely by letting an atom cloud fall down and fitting
the time-dependence of the position of the Gaussian distribution with a gravitational
parabola. The accuracy of this calibration is determined from the fit to be better than
1% and agrees with the calculated imaging magnification to within 0.5%. For our main
CCD camera with 7.5 µm square pixels and a factor 1.25 magnification in the imaging
setup, the calculated pixel size is 6.0 µm. The pixel size obtained from the fit to the
falling atom cloud is 6.02 µm, which is the value we use in further calculations.

The main source of a systematical error of our atom number determination lies
in the calculated absorption cross-section σ. The assumptions used in calculating the
absorption cross-section can be broken by very weak magnetic stray fields. Generally,
the method is prone to rather under- than overestimate the number of atoms. We es-
timate the typical systematic error depending on the experimental situation to up to
30%, which is confirmed by our experience in the experiments carried out so far.

It should be noted that absorption imaging is a destructive technique, which means
that for each individual picture a full experiment run is required.

Temperature measurement

We measure temperatures by a time-of-flight technique. Assuming Maxwell-
Boltzmann statistics in a thermal cloud, the velocity distribution in a trapped sample
follows a Gaussian function with standard deviation

σv =

√

kBT

m
, (6.16)

while the spatial density distribution in a harmonic trap is also Gaussian and can be
written as

n = n̂ exp
(

−
x2

2σ2
x

−
y2

2σ2
y

−
z2

2σ2
z

)

. (6.17)

If we turn off the trapping potential and let expand this distribution in free space,
the expansion in each spatial direction follows

σx,y,z(t) =
√

σ2
x,y,z(0) + σ2

vt2, (6.18)

which is, in contrast to the expansion of a BEC, an isotropic expansion. Therefore,
the temperature can be measured by taking absorption images at different times after
release from the trap along an arbitrary axis. A least-squares fit of the measured widths
to Eq. 6.18 with parameters σ(0) and σv gives the initial cloud size and the velocity
spread, which via Eq. 6.16 immediately yields a temperature value.
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6 Trap properties and experimental procedures

As a rather technical point, in describing the sample extensions we usually do not
use Gaussian σ widths, but the 1/e radii which we write as wx, wy, wz. These are a
factor

√
2 larger than the corresponding σ, and Eq. 6.18 is transformed to

wx,y,z(t) =
√

wx,y,z(0) + 2σ2
vt2. (6.19)

At the sub-µK temperatures common in our experiment, it is necessary to let ex-
pand the atom cloud for a very long time to clearly measure the expansion. There-
fore, we keep the levitation field turned on during the expansion phase. Through the
transversal force of the levitation field, the cloud is then spread strongly in the hor-
izontal direction. For this reason, we use only the vertical extension, which is not
influenced by the levitation field, to determine the temperature. The maximum expan-
sion time is limited by the loss of signal due to the horizontal spread to typically no
more than around 100 ms.
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Chapter 7

Three-body recombination

As explained in Sec. 2.6, we have designed our atom trap to minimize inelastic losses
from the trapped sample. However, the first lifetime measurement shown in Fig. 6.6,
Sec. 6.4 exposes a significant decay in atom number that exceeds technical effects
from the trapping setup (i.e. background gas collisions) and shows non-exponential
behavior.

To verify that this is an interaction effect, we have measured the atom loss and
temperature of the sample after previous RF evaporation and while exposed to different
magnetic bias fields. We apply the first RF ramp to cool the atoms to significantly
below the 1 µK limit of plain evaporation to 450 nK, in this series of measurements
about 1.3 · 106 atoms are then present. After this preparation at the usual 75 G bias
field, the bias field is quickly ramped to a variable value between 10 G and 100 G1 and
held constant for 10 s. Then, we ramp back to 75 G to have fixed conditions in the last
stage. The optical potential is then switched off, the atoms expand for 50 ms in the
levitation field, and we take one absorption image to determine both atom number and
temperature.

Figure 7.1 shows the data in comparison to the known s-wave scattering length.
We see clearly that strong losses in atom number are correlated to high scattering
length, and in particular all Feshbach resonances appear as loss features. Also, losses
are correlated to heating, which rules out evaporation. The strong dependence on the
scattering length shows that we are observing some inelastic interaction process within
the sample.

Our approach to trap and cool cesium in its absolute internal ground state rules
out inelastic two-body collisions. The next most probable effect, then, is three-body
recombination. In three-body recombination, two atoms form a molecule, while a
third atom takes away the binding energy. The third atom needs to be present to satisfy
momentum and energy conservation.

Three-body recombination is of general importance in many-body systems. It has
been studied in many areas of physics, and attempts to theoretically describe the pro-

1Below 10 G, the levitation gradient distorts the trapping potential too strongly for consistent mea-
surements (cf. Sec. 6.3).
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Figure 7.1: Remaining fraction of atoms N/N0 (upper curve) and temperature T (middle) after
10 s in the CO2-laser trap in a range of magnetic bias fields. Initially N0 = 1.3 · 106 atoms are
prepared at 450 nK. For comparison, the lower plot shows the calculated scattering length a

with additional Feshbach resonances indicated by arrows (see Sec. 2.4).

cess date back a long time. In dilute ultracold atomic gases, three-body recombina-
tion has previously been studied in few experiments only, the main challenge being
to distinguish three-body losses from two-body losses. In magnetic traps, this is in
general difficult, as dipolar relaxation is present as an inherent two-body loss mecha-
nism. In the special case of magnetically trapped 87Rb, experiments could nevertheless
provide reliable data because of the anomalously weak two-body decay in this species
[Bur97, Söd99]. In an optical trap, three-body loss in a Bose-Einstein condensate could
be observed [SK98a]. Three-body recombination in bosonic systems with large s-wave
scattering length a has been explored in experiments utilizing Feshbach resonances in
23Na [Ste99] and 85Rb [Rob00]. The results demonstrate the dramatic enhancement of
loss processes near the resonances.
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7.1 Theoretical predictions

7.1 Theoretical predictions

Three-body recombination in ultracold atomic gases has been treated theoretically in a
series of publications [Fed96, Nie99, Esr99, Bed00]. At very large scattering length, as
in our experiment, the molecules created in recombination are predicted to be formed
in the last bound state, which is a very weakly bound s level. Since three atoms need
to be present for recombination, the event rate νrec = αrecn

3 per unit volume and time
scales with the third power of the atom density n. In the limit of ultralow interaction
energies, the universal scaling law for the characteristic parameter αrec is given as
αrec = C~a4/m [Fed96], where m is the mass of the atom, and C a dimensionless factor.
Predictions for C give values between 0 and ∼70 [Fed96, Nie99, Esr99, Bed00], with
oscillatory behavior between C = 0 and Cmax = 67.9 expected for strong variations
of a on a Feshbach resonance [Bed00]. Previously available experimental data on
three-body recombination for various species roughly agree with the general trend of a
universal a4 scaling, with evidence for deviations from this scaling law near a Feshbach
resonance [Ste99].

In our experiment, we measure not three-body recombination events directly, but
three-body losses. The three-body loss rate coefficient L3 is related to αrec via L3 =

nlαrec, where nl denotes the number of atoms lost from the trap per recombination
event. Therefore, the central relationship for comparing measurements to theory is

L3 = nlC
~

m
a4. (7.1)

Usually, in discussing three-body recombination all atoms involved are assumed
to be lost, setting nl = 3. This results from the molecular binding energy ε being set
free as kinetic energy in the recombination process. The molecule and the third atom
receive ε/3 and 2ε/3, respectively; since typically ε is large compared to the trapping
potential depth, both are expelled from the trap. However, the binding energy of the
weakly bound last energy level of the dimer is given by [Lan77]2

ε =
~

2

ma2
, (7.2)

and at very large scattering length values ε may be below the trap depth and the third
atom cannot escape. If the potential of the atom trap does not confine the molecule, the
dimer is lost and nl = 2. If, however, the molecule is trapped and stays within the atom
cloud, it may quickly quench its high vibrational excitation in an inelastic collision
with a fourth trapped atom. The large amount of energy released in this situation
expels the collision partners, making nl = 3. In either case, the kinetic energy of the
remaining atom is distributed in the ensemble, giving rise to recombination heating.

2A correction to this fundamental relation gives ε = ~
2/

(

m(a − ā)2
)

, with ā = 95.5 a0 for cesium
[Gri93]. This correction is applied in later calculations.
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7.2 Measurement procedure and data analysis

To obtain more quantitative results on recombination loss and heating, we have studied
the time evolution of the atom number N and temperature T at various magnetic fields.
As in the first measurement (Fig. 7.1), the atoms are pre-cooled via radio-frequency
evaporation; for some measurements, we have additionally used the second RF ramp to
cool 4 · 105 atoms to 200 nK. The hold time, which was fixed in the first measurement,
is now varied over a range of several hundred seconds to obtain a decay curve and a
heating curve. Figure 7.2 shows a typical measurement at B = 56 G.
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Figure 7.2: Atom number and temperature as a function of time in the trap at a bias field of
56 G. The solid lines show a numerical fit to the data. The corresponding three-body loss
coefficient is L3 = 7(2) · 10−25 cm6/s.

To obtain the three-body loss coefficient L3 from these measurements, we have to
connect the measured quantities N and T to the loss rates treated in theory. Integrating
the local three-body loss rate L3n3 over the sample gives

Ṅ

N
= −L3

〈

n2
〉

. (7.3)

The average number density square in a harmonic potential can be calculated as

〈

n2
〉

=
1
√

27

(

mω̄2

2πkBT

)3

N2, (7.4)

and inserting this into Eq. 7.3 yields

Ṅ

N
= −γN2

T 3
, γ = L3

1
√

27

(

mω̄2

2πkB

)3

. (7.5)

With an additional loss term −αN for background gas collisions, we obtain a dif-
ferential equation for the atom number,

dN

dt
= −αN − γ

N3

T 3
. (7.6)
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Atom loss through three-body recombination leads to “anti-evaporation” heating.
With its n3 dependence, three-body recombination predominantly happens in the re-
gion of highest density in the trap center. The mean potential energy3 of an atom
undergoing a three-body process can be calculated by integrating over a thermal distri-
bution with weights proportional to n3, which yields 1

2kBT . As the ensemble average is
3
2kBT , for each lost atom an excess energy of 1kBT remains in the sample. To account
for recombination heating, we introduce an additional constant energy kBTh per lost
atom. Relating the total heating energy kB(T + Th) to the average energy 3kBT of a
trapped particle yields Ṫ/T = (Ṅ/N) kB(T + Th)/(3kBT ), and we obtain an expression
for the temperature evolution,

dT

dt
= γ

N2

T 3

(T + Th)
3

. (7.7)

Equations 7.6 and 7.7 form a set of two coupled nonlinear differential equations for
N and T , with parameters α, γ and Th. Doing a least-squares fit of these two equations
simultaneously to both the atom number and temperature measurements proves non-
trivial, especially since the differential equations cannot be solved analytically. We use
an iterative approach to find the best fit with following steps:

• choose values for α and γ,

• using these values, calculate a best fit of the numerical solution4 of Eq. 7.7 to the
temperature measurements, with Th as the single fit parameter,

• calculate the error sum of squares eN between the atom number measurements
and the numerical solution of Eq. 7.6.

These steps are repeated while varying α and γ to minimize eN using a nonlinear
optimization algorithm5. Since the iteration includes a nested least-squares fit for Th

and several integration runs, the procedure is very time-consuming. To minimize the
computing time, the initial guess for the parameters is obtained by fitting Eq. 7.6 to the
atom number measurement alone with parameters α and γ assuming constant temper-
ature. Then, the output of this is used to fit Eq. 7.7 to the temperature measurement
with Th as the only fit parameter.

The error limits for the fit parameters are based on χ2 statistics. In multi-parameter
fits, the 1-σ error for a fit parameter can be estimated by varying this parameter up
and down, resp., to the points where χ2 increases by one, while optimizing the other
parameters [Bev92]. We cannot give statistically sound 1-σ error bars on the atom
number and temperature measurements. Therefore, χ2 is estimated to be equal to the
number of degrees of freedom in the fit, which is the number of data points minus
the number of fit parameters. The criterion for an increase of χ2 by one therefore

3In the low-temperature limit, the recombination process does not depend on the kinetic energy.
4numerical integration performed with M 6.5 R13, function ode15s
5M 6.5 R13, optimization toolbox, function lsqnonlin [Col96].
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Figure 7.3: Measured values of L3 as a function of the bias field B. Filled symbols represent
measurements taken at an initial temperature of 200 nK, open symbols at 450 nK. The solid
line shows the calculation according to Eq. 7.1 with nlC = 225. The scale on the right-hand
side displays the corresponding scattering length values. The inset shows the region around the
48 G resonance with a model fit (see text).

is equivalent to the increase of the error sum of squares by a fraction of (degrees of
freedom)−1. This procedures has been carried out for γ and Th and gives the error bars
in Figs. 7.3 and 7.5.

7.3 Recombination rates

The data obtained for L3 as a function of the magnetic field is plotted in Fig. 7.3. The
inset shows an expanded view of the data taken on the 48 G Feshbach resonance. The
error bars represent the statistical errors derived from the fit as described above, which
typically range around 20% at magnetic fields above the 48 G resonance. Below the
resonance, where the recombination effect is very small due to the small scattering
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length, the errors quickly rise above 50%. The systematic uncertainty, however, is
dominant: Due to the scaling of L3 with N2ω̄6, small errors in these values amount
to large differences in the result obtained for L3. Taking the uncertainty in the trap
frequency and an estimated 30% in atom number, the systematic error can be up to a
factor of two.

In order to compare our data to theory, we do a least-squares fit of the expected
scaling law (Eq. 7.1) to our measurements, using the calculated a(B) (see Sec. 2.4).
The single fit parameter is nlC. The resulting curve is drawn as a solid line in Fig. 7.3.
The data clearly confirm the universal a4 scaling. In our experimental range, where a

varies by less than a factor of two, we do not find any indication of resonant behavior6

in C. The result from the fit is nlC = 225, corresponding to C = 75 for nl = 3 or
C = 112 for nl = 2. In comparison to theory, both values are somewhat above the
upper limit of Cmax ≈ 70, but in good agreement within our systematic error limit.

The scaling law for three-body recombination assumes an interaction cross-section
for pair collisions of σ = 8πa2 [Fed96]. This is only valid in the low-energy limit
though; the general term in an ensemble of identical bosons is

σ = 8π
a2

1 + k2a2
, (7.8)

where k is the collision wave number. We see that the relation between the scattering
length and the wave number characterizes two limits of Eq. 7.8: If ka ≪ 1, the expres-
sion simplifies to σ = 8πa2, this is the low-energy case. If however, ka ≫ 1, i.e. the
collision energy is high, we get the unitarity limit σ = 8π/k2 (see also Sec. 2.3).

In a thermal ensemble, we can calculate the inverse collision wave number as

k−1 =

(

4kBTm

π~2

)−1/2

. (7.9)

The crossover between the limiting cases is now easily characterized by the compar-
ison of this number to the scattering length. At 450 nK, k−1 = 1500 a0; at 200 nK,
k−1 = 2250 a0. Correspondingly, for the data on the 48 G Feshbach resonance, which
have been taken at 450 nK starting conditions and at very large scattering lengths, the
unitarity limit cannot be neglected. The cross-section does not enter into the theoreti-
cal predictions in a straightforward way. Therefore, we simply introduce a cutoff in a

to account for the finite temperature.
The cutoff is employed in the inset in Fig. 7.3, which shows the data on the Fesh-

bach resonance. The cutoff value of 1800 a0 results from a least-squares fit to the data.
In order to completely model the shape of the resonance feature, we also have to take
into account the width of the sample in the vertical B field gradient. The theory curve
is convoluted with a Gaussian of full 1/e width 260 mG, which is given by the vertical

6C is predicted to undergo one full oscillation period between 0 and Cmax when a varies by a factor
of 22.7 [Bed00].
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Figure 7.4: L3 as a function of the bias field B for the measurement shown in Fig. 7.1. The solid
line shows the calculation according to Eq. 7.1 with nlC = 165. The scale on the right-hand
side displays the corresponding scattering length values.

extension of the n3 distribution of the trapped sample. Our B-field scale is slightly ad-
justed for an optimum match with theory by introducing a 40 mG shift, which is well
within our calibration accuracy.

The confirmation of our model in comparison to the detailed decay and heating
curves allows us now to re-evaluate the data taken for the first measurement shown
in Fig. 7.1. Here, we only have one data point per magnetic field value. Therefore,
our fit has too many parameters. We fix α to a value of 0.006 (corresponding to a
background-gas limited 1/e lifetime of 170 s), which is a typical value obtained in the
fits done before. However, α varies a bit over time due to small pressure variations in
the system, with typical values between 170 s and 200 s. Even though the time scale
in this measurement is fairly short (10 s), this introduces a systematic error.

The data are shown in Fig. 7.4. We see that the a4 scaling is well confirmed within
our measurement range. The value for nlC is at 165 somewhat lower than in the pre-
vious measurement, however the systematic uncertainty in this one-point fit does not
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7.4 Recombination heating

allow any conclusions. Also, the data here are taken at 450 nK starting temperature and
may be unitarity limited. We see this influence also in Fig. 7.3, where the few 450 nK
data points (open symbols) lie rather below the main fit curve. However, within the
systematic and statistical uncertainties of this measurement series, the values agree.

7.4 Recombination heating

Our results on recombination heating are displayed in Fig. 7.5. A trend towards smaller
Th at higher magnetic fields, corresponding to higher scattering lengths a, is visible. At
large values of a close to the Feshbach resonance, the values are correspondingly very
small. We compare the data to the scenario that the recombination heating arises just
from the binding energy ε of the last bound state of the dimer. As the atom involved
in the three-body recombination process receives 2ε/3, the recombination heat per
lost atom results to kBTh = 2ε/(3nl). Therefore, we assume kBTh to be between 2ε/9
(nl = 3) and ε/3 (nl = 2). This range is shown as a shaded area in Fig. 7.5. This
simple model shows reasonable agreement with the experimental data. The heating
measurements thus provide evidence of the formation of very weakly bound ultracold
molecules.

Figure 7.5: Recombination heat Th as a function of the bias field B. Filled symbols represent
measurements taken at an initial temperature of 200 nK, open symbols at 450 nK. The inset
shows the region around the 48 G resonance. The shaded area shows the expected range based
on the calculated binding energy of the last bound state of the Cs2 molecule (see text).
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7 Three-body recombination

This effect of recombination heating explains why the one-dimensional radio fre-
quency evaporation is so inefficient. Usually, if in 1D evaporation the hottest atoms
cannot escape immediately, they just re-distribute their energy among the sample and
we have to wait until eventually collisions will create an atom with a high velocity
component towards the evaporation surface. This only slows down the evaporation
process, but does not heat. The same is true for the hydrodynamic regime. However,
recombination heating converts molecular binding energy into kinetic energy and de-
posits 2ε/3 into an atom, which can be much higher than the average energy of the
sample. If this atom cannot escape immediately, it will via elastic collisions cause
significant heating. In our case, in the last RF evaporation stage we get down to tem-
peratures below 100 nK. The measured recombination heat Th at 75 G is in the range
of 500 nK, which is a lot higher than the average thermal kinetic energy but still easily
trapped in the 10 µK potential if the atom does not immediately enter the region of the
RF knife. Thus, especially at low temperatures T ≪ Th the effect of recombination
heating is severe.
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Chapter 8

Bose-Einstein condensation

From the measurements on three-body recombination, we have learned that one-
dimensional radio frequency evaporation as we have implemented it is not sufficiently
efficient to reach quantum degeneracy with cesium. A new experimental tool not only
provides very efficient evaporation, but on the way takes us on a “short cut” towards
BEC.

8.1 The dimple trick

Several years ago, it was suggested and also demonstrated experimentally that adia-
batically changing the shape of a potential can locally increase the phase-space density
of a trapped atomic gas [Pin97]. Later, this effect was used to reversibly form a Bose-
Einstein condensate in sodium by changing the peak phase-space density by a factor
of more than 50 [SK98b]. In a work in our group, the same effect was used to strongly
increase the phase-space density in a trapped cesium gas [Ham02a, Ham02b].

A change in the potential strength without modification of its shape cannot in-
crease the phase-space density, any compression will be compensated by an increase
in temperature and vice versa. Non-adiabatic changes will even decrease the phase-
space density. The “trick” is doing a local modification of the potential. If we have
a large trap loaded with cold atoms and locally introduce a small dip or “dimple” in
the potential shape, the large sample will by elastic collisions load atoms into the dim-
ple. Since the small sample trapped in the dimple is in thermal contact with the large
reservoir of atoms, the temperature will be the same. However, in the stronger dimple
potential the density, following the Boltzmann factor exp(U/kBT ), is higher, and thus
the phase-space density is locally increased. A necessary condition is that the dimple
is much smaller than the reservoir, because the reservoir has to take up the excess en-
ergy from the locally compressed sample in the dimple. If the dimple is too large, the
reservoir will be heated and thus the increase in phase-space density diminished. Also,
the dimple should be turned on adiabatically, otherwise the abrupt potential change
will introduce heat into the system. A theoretical discussion of the “dimple trick” can
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Figure 8.1: Illustration of the dimple principle. (A) Trapping potential of the reservoir. (B)
Reservoir plus dimple. (C) Turning off the reservoir potential leaves only the compressed
sample in the dimple.

be found in [Pin97] and [Wen00].
An example for this scheme is shown in Fig. 8.1. After the reservoir has been

prepared, the dimple is adiabatically turned on and loaded from the reservoir by elastic
collisions. If we now turn off the large potential, the reservoir atoms leave and we are
left with a smaller, but significantly denser sample. Now, the dimple is the only trap
and lowering the dimple potential allows for evaporative cooling.

The potential shapes shown in Fig. 8.1 are the actual calculated potentials of our
trap.

8.2 The 1064-nm trap

We apply the dimple to our potential by adding an additional laser beam to the setup.
From a 10 W Yb fiber laser (IPG Laser PYL-10) which is used in surface trapping
experiments in our group [Ham02a], we split off about 500 mW. The light is sent
through an AOM, coupled into a single mode optical fiber and thus transported into
our lab. At the fiber output, it is expanded to ∼8 mm diameter. By an f = 300 mm
lens, the light is focused into the vacuum chamber to a beam waist of 30 µm. The beam
encloses an angle of 30° with CO2-laser 2 (see Fig. 8.2). A small fraction of the light
is monitored on a photodiode, the signal of which is used to regulate the optical power
via the AOM. This allows to control the dimple power from the maximum of 150 mW
(which is limited by the AOM and fiber coupling efficiency) down to zero.

At a power of 50 mW, the dimple forms a cigar-shaped potential with a calculated
depth of kB · 9.2 µK (see Sec. 4.2.2; detailed potential calculations can be found in
[Mar03b]), a radial trap frequency of 254 Hz and an axial trap frequency of 2 Hz.
Because of the very weak axial confinement, the dimple is even after removal of the
reservoir always operated in conjunction with CO2-laser 2, which increases the axial
trap frequency to 6.2 Hz and has almost no influence on the radial trap frequency. The
radial frequency has been measured at this power, the result of 257 Hz agrees very
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8.2 The 1064-nm trap

CO2-laser 1

CO2-laser 2

from Cs oven
pumping
section

Figure 8.2: Configuration of the dipole potential laser beams (top view). The 12-sided shape
in the center indicates the vacuum chamber.

nicely with the calculation. The trapping potential along the beam axis of the CO2

laser can be seen in Fig. 8.1 (C).
Fig. 8.3 shows an image of the trapping potential in all spatial directions at a power

of 5 mW. The radial trap frequency at this power is about 90 Hz, the axial frequency
6 Hz, the trap depth below 1 µK. Due to the strong effect of the magnetic anti-trapping
force at the bias field of 23 G (see Sec. 6.3.2), any atom leaving the dimple into the
CO2-laser “tube” will be expelled from the trap center. Only atoms leaving almost
exactly perpendicular to the CO2-laser axis can re-enter the dimple and are able cause
heating, however the solid angle for this case is very small. Thus, evaporation by
reducing the dimple laser power is almost three-dimensional. Due to the levitation
field, the dimensionality stays constant during the evaporation. In contrast to our case,
typical magnetic trapping experiments suffer from gravitational sag, which effectively
reduces the evaporation surface in the last stages [Ket96].

Figure 8.3: Potential of the dimple trap at Pdimple = 5 mW and Bbias = 23 G in the horizontal
x-y plane at z = 0 (left) and in the vertical x-z plane at y = 0 (right).
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8 Bose-Einstein condensation

8.3 Evaporative cooling towards BEC

The experiment sequence is illustrated in Fig. 8.4. The first image (A) displays the
situation after the first 10 s of plain evaporation, with both CO2 lasers turned on and
without dimple. 2.5 · 106 atoms at a temperature of 1 µK form the reservoir at a peak
density of n̂ ≃ 2 · 1011 cm−3 and a phase-space density of D ≃ 6 · 10−4. Then (B),
the 1064-nm laser power is ramped up to 50 mW within 5 s to adiabatically load the
dimple. Immediately afterwards, CO2-laser 1 is turned off to remove the reservoir (C).
We measure in the dimple about 3 · 105 atoms at an almost constant temperature of
1.1 µK, but with a very much increased peak density of n̂ ≃ 8 · 1012 cm−3. Thus,
the use of the ”dimple trick“ increases the phase-space density to D ≃ 2.5 · 10−2, an
improvement by a factor of 40!

A CB

Figure 8.4: Three steps towards BEC of cesium: (A) The atomic reservoir at a magnetic bias
field of 75 G (scattering length tuned to 1200 a0). (B) Five seconds of collisional loading of
the dimple at 23 G (a = 300 a0). (C) Forced evaporative cooling by ramping down the dimple
power over 17 s, with the magnetic bias field kept at 23 G. The potential profiles shown in
Fig. 8.1 reflect a cut through the trap center along the axis of the CO2 laser that is not turned
off, with steps (A)-(C) equivalent to those shown here.

Starting with the ramping up of the dimple laser power, the magnetic bias field
is switched to a value of 23 G, corresponding to a scattering length a = 300 a0. This
serves to reduce three-body recombination losses at the increased density in the dimple
and to avoid getting too far into the hydrodynamic collision regime. At the same time,
the scattering length is still high enough to keep elastic collisions up, which are needed
for loading the dimple and subsequent evaporation. In the loaded dimple, the initial
elastic scattering rate is ∼300 s−1. We find that reaching the BEC transition is only
possible in a narrow window of ±2 G around the experimentally found optimum of
23 G.

After the loading of the dimple, we wait 2 s for some plain evaporation to occur.
At roughly constant phase-space density, the temperature is reduced to 800 nK while
about 35% of the atoms leave the trap. Now, the power of the 1064-nm laser is slowly
ramped down within 13 s. In the first 3 s, a linear ramp decreases the dimple power
from 50 mW to 10 mW. In this ramp, the temperature decreases to 260 nK, while the
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8.3 Evaporative cooling towards BEC
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Figure 8.5: Sample parameters during the loading of the dimple and the subsequent forced
evaporation. The starting point of the dimple loading ramp defines t = 0. At t = 5 s, one CO2

laser is turned off, which shows as a sudden decrease in the trap frequency.
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8 Bose-Einstein condensation
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Figure 8.6: Results of dimple loading and subsequent forced evaporative cooling for an end
power of 3.5 mW. The plot shows the increase in phase-space density in relation to the loss
of atoms. Each connecting line between the measured atom number/phase-space density pairs
corresponds to a segment of the evaporation ramp; the slope corresponds to the evaporation
efficiency ǫ, the maximum value of which is 3.8 in the last segment (leftmost line).

atom number decreases by a further 30% to 1.4 · 105, raising the phase-space density
to 0.07. The last ramp takes 10 s. If we set the end point of this ramp to a power of
3.5 mW, the remaining 65000 atoms have a temperature of 50 nK, and the calculated
phase-space density is 1.6. Here we observe the phase transition to Bose-Einstein
condensation.

Figure 8.5 shows some characteristic trap and sample parameters during evapora-
tion. The data at the end of the dimple loading phase are a bit ambiguous: After 5 s,
the second CO2 laser is turned off, abruptly changing the trap frequency in the dim-
ple and releasing the reservoir atoms. The 5 s values for density, scattering rate and
phase-space density are calculated still using the higher trap frequency for the dimple
in conjunction with both CO2 lasers but neglecting the influence of the reservoir, they
show the approximate status in the dimple at the end of the loading ramp. Unambigu-
ous are the values at t = 0 and after t = 7 s. We see that the truncation parameter η, the
ratio between the trap depth U and the temperature T , is roughly constant around 10.
This allows for highly efficient evaporation. At elastic scattering rates above 100 s−1

and trap frequencies close to that value, the evaporation time scale is fast enough to
not lose too many atoms to recombination losses.

In Fig. 8.6, the path towards BEC is shown starting with the standard 2·106 atoms at
1 µK after plain evaporation in the LevT. The first segment corresponds to the loading
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8.3 Evaporative cooling towards BEC

of the dimple, with a large gain in phase-space density. Then in plain evaporation
some atoms are lost, and finally the two-step forced evaporation ramp leads to the
phase transition. Note that the figure aspect ratio and horizontal scale are identical
to the display of the RF evaporation efficiency shown in Fig. 6.9. The evaporation is
very efficient, with ǫ = 3.8 (for the definition of ǫ, see Eq. 6.11, Sec. 6.5) in the last
segment.

In subsequent experiments, we have increased the maximum power of the dimple
in the 5 s loading ramp to 90 mW instead of 50 mW. Instead of waiting for plain
evaporation, the power is then immediately ramped down to 50 mW within 2 s. The
following evaporation path is identical. This procedure yields about 10% more atoms
at the critical temperature.

Figure 8.7 shows absorption images, Fig. 8.8 density profiles of the atom cloud af-
ter 50 ms of expansion at varied end powers of the last evaporation ramp. At 3.45 mW
end power, we see a thermal cloud just at the critical temperature of 46 nK. At 2.2 mW,
the condensate has started to form in the center, and finally at an end power of 1 mW,
we have an almost pure condensate of 16000 atoms. This condensate has in the 1 mW
dimple trap a Thomas-Fermi radius (Sec. 3.2.2) of 4.7 µm in the radial and 30 µm in
the axial direction. The chemical potential is µ = kB · 10 nK, the peak condensate
density n̂ = 1.4 · 1013 cm−3. We have measured the condensate lifetime in the trap to
be approximately 15 s.

Figure 8.7: The Bose-Einstein condensate of cesium enters the stage! The density profiles
shown in Fig. 8.8 are taken from these images. Left, dimple end power 3.45 mW; center,
2.2 mW; right, 1.0 mW.
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Figure 8.8: Vertical density profiles (integrated over a central 130 µm strip) of the atom cloud
after 50 ms of expansion at varied end powers for the last evaporation ramp. The numbers
give the dimple power, the solid line shows a Gaussian fit to the wings of the distribution from
which a temperature is derived: at 3.45 mW, T = 46 nK; at 2.2 mW, T = 30 nK.

8.4 Exploring the tunability

In first experiments with the cesium condensate, we have demonstrated the different
mean-field interaction regimes. With our tunable quantum gas, we can via the magnetic
field easily switch to different values of the scattering length a and thus strongly vary
the mean-field interaction in the condensate.

We create an almost pure BEC of 16000 atoms by ramping the dimple power down
to 1 mW. At this power, the trap depth is 180 nK, the average trap frequency ω̄/2π =
20.4 Hz (radial ωr/2π = 38 Hz, axial ωz/2π = 5.9 Hz). The bias field is at this point
still at 23 G, resulting in a scattering length of a = 300 a0. We want to study the
strength of the mean-field interaction through the free expansion of the condensate,
so we turn off the trap synchronously with the switching to a variable magnetic bias
field. The levitation field is kept on to facilitate studying the condensate expansion on
a long time scale1. The variable bias field is applied for a short time interval of 10 ms,
which is sufficiently long for the mean-field dynamics to take place. For subsequent
expansion at fixed conditions, the magnetic bias field is switched to 17 G. After a total
expansion time of 50 ms, the vertical extension of the cloud and the total number of
atoms are measured. The corresponding results (Fig. 8.9) show a marked dependence
on the magnetic field with three distinct regions:

Below 17 G (region I), the scattering length is negative. We can calculate from the
average trap frequency and the condensate atom number, that the minimum scattering
length at which our 133Cs BEC would be stable is acr ≃ −1.5 a0 (Eq. 3.25). The
calculation is strictly valid only for a spherical trap, however as the aspect ratio of
our trap at this power is only ∼6, the order of magnitude of the result should be right.
Consequently, our BEC “implodes” as soon as we tune the scattering length beyond
the zero-crossing. We see a large momentum spread due to the implosion dynamics

1Without the levitation field, the atoms fall out of the field of view of our CCD camera within 35 ms.
The absolute maximum falling time of a released sample is limited by the position of the lower UHV
viewport 15 mm below the trap to 55 ms.
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Figure 8.9: Expansion of the BEC and losses in atom number N after switching the bias field
to a variable value for 10 ms and subsequent expansion at 17 G for 50 ms.

and a substantial loss of atoms.
Between 17 G and 48 G (region II), the scattering length is positive and varies

smoothly from zero to about 1000 a0. The expansion shows the minimum width at
17 G and a following increase. We know that in the Thomas-Fermi approximation
the mean energy per particle scales with (Na)2/5 [Eq. 3.24]. Since the sample is not
in equilibrium within the trap potential in our case, no exact scaling of the expansion
energy with a is available, however it is clear that the rising scattering length creates a
strong mean-field effect, which is visible in the broadening of the momentum distribu-
tion.

For higher fields (region III), the behavior is dominated by the narrow Feshbach
resonance at 48 G. On this resonance, the cloud expands very rapidly as the condensate
explodes in response to the strong sudden increase of its internal energy. In addition,
a sharp loss feature is observed, which may indicate the formation of molecules in the
BEC [Don02]. At even higher fields, the data show an asymmetry and broadening
of the resonance together with a loss of atoms, which we attribute to the finite ramp
speed over the resonance [Cor00]. A small “explosion” feature is also visible on the
very narrow 53 G g-wave Feshbach resonance.

8.5 Creating an ideal gas

In a further series of experiments, we have measured the mean-field self-interaction of
the BEC on the zero-crossing of the scattering length at 17 G. As in the previous mea-
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Figure 8.10: Expansion of the condensate at low scattering length. The data points at left
show the 1/e half-widths of Gaussian fits to absorption images of the expanding cloud. The
horizontal expansion is dominated by the levitation field’s anti-trapping force (see text), a fit to
the vertical expansion yields a mean kinetic energy of 1

2 kB · 1200 pK.

surement, a condensate of 16000 atoms is prepared in a 1 mW dimple trap. Figure 8.10
shows the measured expansion of the condensate released from the trap immediately
after the magnetic field is switched to 17 G.

In the horizontal direction, the condensate expands strongly. This is due to the
fact that we let the condensate expand in the levitation field. Integrating the horizontal
force Fρ = mα2ρ (cf. Eq. 6.8, ρ is the radial coordinate, α a bias field dependent
constant characterizing the outward curvature of the potential) yields the relation for
the 1/e radius wρ

wρ(t) = wρ,0 cosh(αt), (8.1)

where wρ,0 denotes the original radial extension, assuming zero initial velocity. The
upper line drawn in Fig. 8.10 shows the expansion calculated from Eq. 8.1, with wρ,0
as the only adjustable parameter. The observed expansion is fully explained by the
magnetic forces and compatible with vanishing initial kinetic energy. In the vertical
direction, there is no such effect and we measure a very slow expansion with an average
kinetic energy as low as 1

2kB · 1200 pK.
In equilibrium, the radial size σΦ of the wave function of an ideal Bose condensed

gas is σΦ = aho,r (Sec. 3.2), which in our trap at 38 Hz radial trap frequency results in a
value of 1.41 µm. Since the density is derived from the wave function as n(r) = |Φ(r)|2,
the size of the corresponding density distribution is σr = σΦ/

√
2 = 1.0 µm.

The ground state energy in a harmonic oscillator is given simply by ~ω/2, which
for our trap parameters yields a value for the expansion energy of ∼ 1

2kB ·910 pK. How-
ever, in our experiment the density distribution of the ideal gas is not in equilibrium.
We create the condensate under strong repulsive interaction, leading to a spreading of
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8.5 Creating an ideal gas

the condensate. In the Thomas-Fermi approximation, the radius of the BEC created in
the evaporation process at a = 300 a0 is Rr = 4.67 µm (Eq. 3.23). An approximation
of the equivalent Gaussian radius is obtained by numerically calculating the standard
deviation of the inverted parabola shape of the condensate, resulting to σr = 0.447Rr.
The size of the BEC in this approximation is σr = 2.09 µm.

Since in the absence of interactions the condensate energy results only from the
momentum spread induced by the uncertainty relation via σp ∝ 1/σr, and the kinetic
energy follows E = p2/2m, we get a scaling law E ∝ 1/σ2

r . Therefore, to obtain
the expansion energy when the condensate is released from the trap, we simply scale
the energy in the equilibrium case and calculate a value of E & 1

2kB · 210 pK. We
see that the condensate still has much more energy than would be expected when the
interactions are perfectly cancelled. We attribute this to residual mean-field effects
from the finite time scale in switching the magnetic fields and imperfections in the
synchronization between turning off the trap and turning off the interactions.

In a further experiment, we have tried to improve the magnetic field switching
procedure. By optimizing the time at which the magnetic field is changed from the
BEC creation value of 23 G to 17 G, by optimizing the exact final magnetic field value,
and by maximizing the ramping speed, the average kinetic energy of the expanding
condensate could be reduced to a minimum of 1

2kB · (220 ± 100) pK. The expansion
curve is shown in Fig. 8.11.

In this experiment, the dimple power is ramped down to a value of 0.6 mW, the con-
densate consists of 10000 atoms. The relevant trap frequencies are ω̄/2π = 17.8 Hz,
ωr/2π = 30.9 Hz. The corresponding radial condensate size is Rr = 4.82 µm, thus we
expect for a perfectly non-interacting gas an average kinetic energy of &1

2kB · 195 pK.
We see that we have within our measurement uncertainty perfectly turned off the mean
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Figure 8.11: Expansion of the optimized “frozen” condensate. The solid line shows a fit to the
data giving an average kinetic expansion energy of 1

2 kB · 220 pK.
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8 Bose-Einstein condensation

field in this case. The ensemble corresponds quite well to what we call a “frozen”
condensate, a system almost without internal energy.

To further reduce the condensate energy, we could load a larger condensate of
around 50000 atoms back into the almost isotropic CO2-laser trap at 14.5 Hz trap fre-
quency at a scattering length of around 500 a0. These values can all be easily reached
in our setup, the Thomas-Fermi condensate radius would then be 14 µm. Turning off
the interaction in this system would leave a residual kinetic energy of only ∼ 1

2kB ·5 pK.
By changing the optical setup with the available lasers, we could realize a sufficiently
deep potential at trap frequencies of the order of 1 Hz, further reducing the energy.
This could be an ideal system for precision measurements at ultralow energies.
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Chapter 9

Outlook

In the frame of this thesis, an experimental setup was built that has enabled for the
first time the creation of a Bose-Einstein condensate of 133Cs. The setup allows great
flexibility in the experiments conducted with the condensate, which at the time of this
writing has already been used to explore new areas of physics.

After the initial creation of the BEC and the measurements presented in this thesis
and published in [Web03a], the experimental setup was improved in terms of stability.
The Raman cooling lattice laser was changed to a new system with better beam quality
in order to allow for better spatial localization of the output cloud. By careful readjust-
ment of the whole system around the improved cooling laser and in-depth optimization
of the evaporation ramp, the number of atoms in the condensate could be increased to
up to 80000 (cf. [Web03c]).

The first experiment utilizing the condensate was to explore the molecule creation
on a Feshbach resonance. By sweeping the magnetic field over the narrow resonance

Figure 9.1: New experiments in the levitated trap. From left to right: (1) a pure condensate of
60000 atoms, (2) 5000 possibly quantum degenerate Cs2 molecules falling out of the atomic
BEC, (3) levitated molecules.
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9 Outlook

at 20 G, we have created an ultracold sample of Cs2 molecules [Her03]. Through
their different magnetic moment, the molecules are removed from the atomic BEC and
can be separately imaged. Adjusting the levitation gradient for the molecules allows
for a precise measurement of their magnetic moment, which is found to be in excel-
lent agreement with theory. We measure extremely low expansion energies, consistent
with the presence of a molecular BEC. Currently, we are exploring the possibility to
measure coherence effects in the molecular cloud to find evidence for quantum degen-
eracy.

The molecules formed can in principle be trapped in our setup. A previous ex-
periment shows evidence of trapping of the Cs2 dimer in a CO2-laser trap [Tak98],
and our first experiments show that the magnetic levitation concept also works for
the molecules. To reliably trap the molecules, the timing and field switching in the
molecule creation procedure needs to be optimized in order to reduce the initial mo-
mentum kick induced by the mismatched levitation condition between atomic and
molecular sample. This is currently in progress.

Besides the studies in the molecular sample, the unique tunability offered by ce-
sium is of great interest in various respects. In the field of quantum gases, it may serve
as the experimental key to explore new regimes beyond standard mean-field theory.
When the scattering length is raised to a value of the order of the inter-particle spac-
ing, which is possible close to Feshbach resonances, the system is no longer in the
weakly interacting regime, and the usual theoretical descriptions fail.

It is possible to realize a system with reduced dimensionality via the tunable scat-
tering length: In a strongly anisotropic trap, the scattering length can be raised to very
large values of the order of the sample extension along the strongly confined axes. The
contrary case, a “frozen” BEC at zero scattering length without internal energy, would
represent an ideal source of cold atoms for applications in metrology. This is a perfect
system for precision measurements, e.g. of the photon recoil [Gup02].

In the Mott insulator phase [Jak98, Gre02], the phase transition depends on the
relation between the atom-atom interaction and the tunnel coupling. The tunable scat-
tering length allows to reach the transition via changing the scattering length instead of
the potential depth. This allows great flexibility in the control of the phase transition,
offering intriguing possibilities in the realm of molecular quantum matter [Jak02].

Shortly before the completion of this thesis, a second Bose-Einstein condensate of
cesium has been achieved in our group [Ryc03]. In this experiment in a gravito-optical
surface trap (GOST), the geometry is effectively two-dimensional. As we have in the
past, we expect to continue to benefit much from synergy effects between experiments
in these complementary setups.
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