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We investigate the possibility to produce a Bose-Einstein condensate made of positronium atoms in a porous

silica material containing isolated nanometric cavities. The evolution equation of a weakly interacting positronium

system is presented. The model includes the interactions among the atoms in the condensate, the surrounding

gas of noncondensed atoms, and the pore surface. The final system is expressed by the Boltzmann evolution

equation for noncondensed particles coupled with the Gross-Pitaevskii equation for the condensate. In particular,

we focus on the estimation of the time necessary to form a condensate containing a macroscopic fraction of

the positronium atoms initially injected in the material. The numerical simulations reveal that the condensation

process is compatible with the lifetime of ortho-positronium.
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I. INTRODUCTION

At low density and temperature, positrons and electrons can

form a bound state known as “positronium,” which behaves

effectively as a light neutral atom with physical properties

similar to those of hydrogen. However, being composed of

matter and antimatter, positronium is an unstable atom with a

finite lifetime, as the electron and the positron have a certain

probability to annihilate. In its ground state, positronium

consists of triplet states (ortho-positronium, with a lifetime

equal to 142 ns) and a singlet state (para-positronium, with

lifetime 125 ps). One of the simplest processes devised for the

production of a gas of positronium relies on the implantation of

highly energetic positrons in a solid. Using modern techniques,

it is possible to generate collimated beams of positrons and

to direct them on very small spots, with a diameter of the

order of 100 μm [1]. At a certain distance (typically around

100 nm) from the surface of the solid target, the positrons

are likely to capture an electron from the solid and form

a positronium atom. When the positrons are injected into

a porous material, the positronium atoms are easily trapped

inside the cavities. Thus, it has been suggested that a Bose-

Einstein condensate (BEC) made of positronium could be

created by trapping a sufficiently dense positronium gas inside

such small cavities [2].

Using state-of-the-art positron-production technology, one

can obtain positronium gases with a density that is around

two orders of magnitude too low to achieve condensation [3].

The creation of a positronium gas with density of 10−3 nm−3 is

under experimental investigation and may soon be reached [4].

Due to the low mass of the positronium atom, at a density

of 10−3 nm−3 (10−2 nm−3) the critical temperature for BEC

formation is Tc = 14 K (Tc = 66 K).

Films of porous silica have been successfully employed

for the detection of the quenched lifetime of positronium,

as well as for the creation of excited atomic states and

the dipositronium molecule Ps2. [5–7]. The main challenge

towards the creation of a BEC of positronium in a porous

material concerns the time needed to cool down the gas trapped

in the cavities. Indeed, the lifetime of positronium atoms is not

sufficiently long to ensure that the condensation process can be

completed before the annihilation of all the atoms of the gas.

Several authors have studied the evolution of the temper-

ature of positronium gases in aggregates of silica aerogel

and silica powder [8–10]. Measurements performed by the

group of Takada indicate that the time necessary for the full

positronium thermalization is around 10 ns for pores with a

radius of 5 nm [8]. However, quantum confinement effects

could affect the thermalization time in the case of very small

pores. In particular, for samples containing pores with a radius

of 2.7 nm, no thermalization was observed [11]. The reason

was ascribed by the authors to the quantization of the energy

levels in the cavity. In small volumes, the number of available

energy levels for the positronium atoms is reduced and the

gas cannot reach the temperature of the silica sample [12]. In

the present contribution, we shall focus on pores larger than

100 nm, for which the quantization effect on the temperature

evolution is negligible. Moreover, the geometrical arrangement

of the pores affects the efficiency of the material to trap

and cool the positronium atoms. Nowadays, it is possible to

produce well-defined pore structures of controlled size. For

instance, in [13] it was shown that inside a material containing

cylindrical nanochannels of diameter in the range of 5–8 nm,

the positronium atoms thermalize at the temperature of 150 K,

in a time shorter than 15–20 ns.

Due to the high implantation energy of the positron, the

positronium gas is created in the pores with an initial energy

around 0.4–3 eV, which is far above the critical value of

the condensation process. The time necessary to reach the

critical temperature may be quite long (especially in materials

containing large pores) and the condensation process becomes

unfeasible. In this contribution, we present a mathematical

model that reproduces the condensation process of a gas of

positronium in porous silica. It is convenient to divide the

condensation dynamics into two parts, according to t ≶ tc,

where tc denotes the critical time for the BEC phase transition.

The first part (t < tc) includes the cooling of the gas trapped

inside the pore in the absence of the condensate. The second

part of the process (t > tc) starts when the condensate is

beginning to form.

We assume that the gas is constituted by a single population

of ortho-positronium. This can be obtained by using a

spin-polarized gas of positron in the process of positronium

formation. Some radioactive materials (typically 22Na) are a
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natural source of spin-polarized positrons. These materials

emit highly energetic positrons with a certain spin polarization.

The polarization of the positrons can be maintained during

all the process of the formation of the positronium atom.

However, also in this case, the initial spin polarization of the

positronium gas cannot exceed the 30%. Several reactions

arise and modify the total lifetime of a positronium gas made

of a statistical mixture of spin-up and spin-down atoms. The

most important process is the suppression of the minority spin

atoms by annihilation with the same amount of atoms with

opposite spin. As a result, only a fully spin-polarized ortho-

positronium population remains in the gas. The preparation of

a highly spin-polarized (96%) ortho-positronium gas trapped

in a porous material has been achieved by the group of Cassidy

et al. [3].

II. POSITRONIUM THERMALIZATION

Let us first examine the gas dynamics for t < tc. Various

experiments indicate that the emission energy is in the range of

0.4–3 eV [14,15]. These values seem to be quite independent

from the initial kinetic energy of the positron beam. The

thermal energy of the positronium is transferred to the pore

surface. The dominant relaxation mechanism during the first

part of the dynamics is the excitation of phonon modes at

the pore surface. Since the positronium is a neutral atom, it

interacts with the solid via the acoustic phonon modes. So far,

an exhaustive study of the positronium-surface interaction is

still lacking. The experiments described in [16,17] showed that

the interaction of the positronium in silica with the polar optical

phonons is very weak (practically negligible). We simulate the

evolution of the temperature of the positronium gas by taking

into account the production of acoustic phonons at the pore

surface.

We denote by f the positronium distribution function. The

evolution of the atomic density inside the cavity is described

by the following Boltzmann equation:

∂f

∂t
−

p

2m
· ∇rf

= c

∫
{[1 + f (p)][1 + f (p1)]f (p2)f (p3)

− f (p)f (p1)[1 + f (p2)][1 + f (p3)]}

×δ(E(p) + E(p1) − E(p2) − E(p3))

× δ(p + p1 − p2 − p3)dp1dp2dp3 −
f

τp

. (1)

Here τp is the ortho-positronium lifetime (see [18] for the

measurement of the ortho-positronium lifetime in a cavity), m

denotes the mass of the electron, c =
2g2

(2π)5�4 , and E(p) =
p2

4m
.

Equation (1) describes the biatomic scattering processes where

two atoms undergo to a short-range, hard-sphere, collision.

The collision strength is g = 4π�
2a/m, where a = 0.16 nm

is the scattering length [19,20]. The factors 1 + f in the for-

mula take into account the bosonic nature of the positronium.

Finally, the presence in the integral of the two Dirac’s δ

distributions ensures the conservation of the total energy and

momentum during each scattering event.

In proximity of the pore surface, of the positronium atoms

interact with the acoustic phonons of the silica. We model the

acoustic phonon branch by the linear dispersion relationship

�ω = vsq, where �ω is the phonon energy, vs is the sound

velocity in silica (around 4900 m/s [21]), and q is the phonon

momentum. At the boundary, the interaction of the gas with

the cavity surface is described by the equation

∂f

∂t

∣∣∣∣
ph-Ps

=
∂f

∂t

∣∣∣∣
Ab

+
∂f

∂t

∣∣∣∣
Em

,

where the first (second) term describes the phonon absorbtion

(emission) process. Explicitly,

∂f

∂t

∣∣∣∣
Ab

=
1

4π2�4

∫
S �ω δ(E(p1) − E(p) + �ω)

×{[g(p − p1) + 1][1 + f (p)]f (p1)

− g(p − p1)[1 + f (p1)]f (p)}dp1, (2)

∂f

∂t

∣∣∣∣
Em

=
1

4π2�4

∫
S �ω δ(E(p1) − E(p) − �ω)

×{g(p − p1)[1 + f (p)]f (p1)

− [g(p − p1) + 1][1 + f (p1)]f (p)}dp1, (3)

where we defined the transition probability

S =
D2

v2
s M

. (4)

The details of the derivation of Eqs. (2) and (3) can be

found in Refs. [22,23]. We defined M as the effective mass

of the silica atoms at the interface (around 25 a.m.u. [24])

and D as the deformation potential. In particular, the value

D = 3.6 ± 0.7 eV was estimated by Nagai et al. by measuring

the temperature broadening of the positronium in silica [17].

They found a good agreement between the experimental data

and the prediction of a theoretical model in a large range

of temperatures (from 88 K to 701 K). In the experiments

described in [17], the wave function of the positronium was

a Bloch state of the crystal. As a result, the value of the

deformation potential is related to the interaction of the

positronium with the bulk silica. We expect that the bulk

phonon branches could be modified at the pore surface. By

using Eq. (4) we obtain S = 2.1 eV. The scattering rate S

describes the strength of the atom-wall interaction. This is an

important parameter for the estimation of the cooling process

of the positronium and consequently the formation of the

condensate. In order to obtain a better estimation of S, we

deduced the value of S by fitting the experimental data of the

positronium thermalization presented in [8,9,25]. We obtain S

in the interval [S0,S1], where S0 = 2.6 eV and S1 = 9.1 eV.

In Fig. 1 we plot the evolution of the temperature of the

positronium gas contained in a spherical pore of radius 100 nm

(left panel) and 300 nm (right panel). The two curves have been

obtained using the two extreme values of S. The simulations

indicate that the time necessary to reach the temperature of

100 K lies in the interval 7–13 ns for R = 100 nm and 20–70 ns

for R = 300 nm. For large pores, the choice of S becomes

critical for deciding if the BEC may be attained. The time

necessary to reach the critical temperature may be comparable
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FIG. 1. (Color online) Time evolution of the mean temperature of the positronium gas (the vertical axes are in logarithmic scale) for t < tc,

R = 100 nm (left panel) and R = 300 nm (right panel). Continuous blue curve, S = S0; dashed green curve, S = S1. As a guide for eye, the

horizontal dotted black (red) line represents the temperature of 100 (200) K.

with the lifetime of the ortho-positronium. In our simulations

of the condensation dynamics we use the value S = 4.5 eV.

According to [8], in our simulations we assumed that the

positronium atoms are emitted by the pore surface into the

cavity with an initial energy of 0.56 eV. In the case of higher

injection energies (2 eV) the results are only slightly modified.

Indeed, we have observed that during the first stage of the

thermalization process (t < 1 ns), the temperature of the Ps

decreases very fast and the value of 0.5 eV is reached in less

than 2.5 ns (pore size 100 nm).

III. CONDENSATION DYNAMICS: EVOLUTION OF THE

NONCONDENSED ATOMS

The second stage of the dynamics (t > tc) is characterized

by the production of the condensate. Special care is required for

modeling the interaction among the low-energy positronium

atoms in this supercritical regime. While the thermalization dy-

namics is essentially a classical mechanism of energy transfer

among particles and surfaces, the production of a condensate

is intrinsically a quantum-mechanical phenomenon.

We simulate the evolution of the condensed phase and the

noncondensed particles by the quantum-kinetic formalism.

The quantum-kinetic formalism constitutes a fully quantum

framework that displays strong analogies with the classical

phase-space description of a statistical system based on the

Boltzmann evolution equation. We describe the condensation

dynamic of the positronium by combining the quantum-

kinetic formalism with the Bogoliubov-Popov description of

the pseudoparticles. The collision processes are obtained by

applying the Baliev many-particle theory [26].

The many-body Hamiltonian describing interacting bosons

is given by (see, for example, [27,28])

K =

∫
ψ†(r)

[
−

�

2m
− μ

]
ψ(r)dr

+
g

2

∫
ψ†(r)ψ†(r)ψ(r)ψ(r)dr,

where ψ (ψ†) denotes the creation (annihilation) operator

of the bosons and μ the chemical potential. The elementary

particle-particle scattering event is modeled by the hard-sphere

interaction with collision strength g = 4π�
2a/m.

In order to develop the convenient mathematical formula-

tion of the problem, it is customary to distinguish between

the particles that form the condensate and the surrounding

gas (the noncondensed cloud). This is technically achieved by

defining the field ψ̃ = ψ − 〈ψ〉 (similar definition for ψ̃†),

where ψ is the positronium annihilation operator, 〈ψ〉 = 	

is the macroscopic wave function of the condensate (usually

referred to as the order parameter), and the brackets 〈·〉 denote

the expectation value. In particular, the squared modulus of

the order parameter gives the density of condensed particles

nc = |	|2.

The presence of a condensed phase induces strong cor-

relations among particles with small momenta. In contrast

to a normal system, in the presence of a condensed phase,

the expectation values of operators that do not conserve

the total number of particles—such as, for example, 〈ψ̃ψ̃〉

and 〈ψ̃†ψ̃†〉—are no longer zero. This leads to new type

of atomic interaction, generally denoted as “anomalous”

scattering processes. They describe the exchange of particles

between the condensate and the surrounding noncondensed

gas. The many-particle system is described by the Green’s

function [29,30]

Ĝ(r,r′; t,t ′) = −iT {
(r,t)[
†(r′,t ′)]t }, (5)

where T denotes the temporal ordering operator and 
 =(
ψ̃

ψ̃†

)
. A convenient description of the noncondensed particles

is obtained by the so-called Wigner-transformed Green’s

function

G(r,p; t,ω) ≡
1

(2π )4

∫
Ĝ

(
r +

�η

2
,t +

�τ

2
; r −

�η

2
,t −

�τ

2

)

× e−i(pη−τω)dηdτ. (6)

The function G(r,p; t,ω) is a 2 × 2 matrix whose variables

are the mean position r, the momentum p, the mean time t ,

and the energy variable ω. By analogy with the description

of a classical gas, the noncondensed cloud is described by a

distribution density function f (r,p,t) (Wigner function). The
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positronium distribution function f (r,p,t) is obtained by the

classical limit

f (r,p,t) = i lim
�→0

tr〈Ĝ<〉, (7)

where tr denotes the trace and < the less-than function. The

function f provides the number of atoms of positronium at

the position r with momentum p. The evolution equation for

the positronium distribution has a Boltzmann-like form,

∂f

∂t
− ∇rE · ∇pf + ∇pE · ∇pf

= −
f

τp

+
1

�

∫
tr{�>〈Ĝ<〉 − �<〈Ĝ>〉}dω, (8)

where E denotes the Bogoliubov spectrum E =
√

e2 − g2n2
c ,

e =
p2

4m
− μ + 2gnc, and nc is the condensate density. Fur-

thermore, � denotes the positronium self-energy operator. It

describes the collisions among noncondensed particles and the

collisions involving condensed and noncondensed particles.

The derivation of Eq. (8) is given in detail in Ref. [31].

The physics of the interaction of a many-particle boson gas

has been thoroughly investigated (see, for example, [29,32]).

A sophisticated instrument for the analysis of the many-body

boson scattering process is provided by the Baliev theory [26]

(see, for example, [33,34] for a clear review of the main

results of the theory). We apply the Baliev-Popov theory and

we include in our model the main Hartree-Fock-Bogoliubov

scattering processes in the gapless approximation. The related

Feynman diagrams can be found, for example, in Ref. [29].

The calculations are discussed in Ref [31]. As a final result,

we obtain

1

�

∫
tr{�>〈Ĝ<〉 − �<〈Ĝ>〉}dω = WHF + Wcn, (9)

where

WHF =
2g2

(2π )5�7

∫
δ(E + E1 − E2 − E3)

× δ (p + p1 − p2 − p3) [(f + 1)(f1 + 1)

× f2f3 − ff1(f2 + 1)(f3 + 1)]THFdp1dp2dp3,

(10)

Wcn =
2g2

(2π )2�4

∫
Tnc [(1 + f1) f2f3 − f1 (1 + f2) (1 + f3)]

× [δ (p − p1) − δ (p − p2) − δ (p − p3)]

×δ (p1 − p2 − p3) δ (E1 − E2 − E3) dp1dp2dp3 .

(11)

The scattering kernels are given by the following expressions:

Tcn = (u1u2u3 + v1v2v3 + u1v2v3

+ v1u2v3 − u1v2u3 − v1u2u3)2, (12)

THF = (upu1u2u3 + vpu1v2u3 + vpu1u2v3

+ vpv1v2u3 + upv1v2v3)2.

In order to simplify the notations, we defined Ei ≡ E(pi),

E ≡ E(p), fi ≡ f (pi), f ≡ f (p), c =
g2

2(2π)2 , and u =

√
e+E

2E
,

v =

√
e−E

2E
. This model has been successfully used for

the simulation of the condensation dynamics of a gas of

sodium [31]. The collision kernels WHF and Wcn are derived

in the framework of the boson interaction theory of Baliev [26]

(see, for example, [33,34] for a clear review of the main

results of the theory). The term WHF describes the binary

collisions between noncondensed particles and Wcn takes

into account all the scattering processes where only one

condensed particle is involved. As an example, Wcn describes

transitions where one particle is injected in the condensate

after a collision with another noncondensed particle or where

one atom is expelled from the condensate by a collision with

the surrounding noncondensed cloud. The particle interactions

are described by the scattering rates THF and Tcn. They have

a complex form and depend nonlinearly on the density of the

condensed particles nc. Similar expressions of the collision

rates between condensed and noncondensed particles were

obtained in [30,35]. It is easy to verify that Eq. (8) coincides

with Eq. (1) when nc = 0. In fact, in this case e = E = E =
p2

4m
, THF = 1, and Wcn = 0. A kinetic model similar to Eq. (9)

was considered for the study of the dynamics and the relaxation

time of the condensate excitations [36]. In their approach, the

authors considered only the bare hard-sphere interaction and

discarded the modification of the scattering rate induced by the

presence of the condensate (in our model this is obtained by

setting THF = Tcn = 1). This is justified only for a hot cloud

of noncondensed particles and is no longer accurate when the

gas reaches the critical temperature.

IV. CONDENSATE EVOLUTION

The Bose-Einstein condensation process corresponds to a

spontaneous breaking of a U(1) symmetry where the excitation

spectra displays a Goldstone branch without energy gap in the

long-wavelength limit. The condensate atoms are described

by the order parameter 	 = 〈ψ〉. The evolution equation of 	

is given by the so-called Gross-Pitaevskii (GP) equation. The

GP equation describes the evolution of the condensate in the

presence of the Hartree mean field produced by the atoms.

Zaremba and co-workers showed that the Boltzmann-like

approach (8) is compatible with the GP equation, provided that

a non-Hermitian term is inserted in the equation for the order

parameter [37]. As a result, the GP equation that describes the

evolution of the BEC interacting with a noncondensed cloud

is given by [29]

i�
∂	(r,t)

∂t
=

[
−

�
2�r

2m
+ g |	(r,t)|2 + 2gn(r,t)

−
i�

2τp

−
i

nc

∫
Wcn(p)dp

]
	(r,t), (13)

where n is the density of the noncondensed positronium

defined as

n =
1

(2π )3

∫
f (p)dp. (14)

The stationary solution is obtained by the standard substitution

i� ∂	(r,t)
∂t

→ μ	. Several methods have been proposed for the

numerical implementation of the GP equation [38]. Numerical

schemes for the solution of the GP equation in spherically
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FIG. 2. (Color online) Time evolution of the ratio between condensed Nc and total number of particles Nt . (Left panel) Particle density

10−2 nm−3 (Tc = 66 K). Pore sizes: R = 100 nm (continuous blue curve), R = 200 nm (dashed red curve), R = 300 nm (dot-dashed green

curve). Total condensation time: t1 = 11 ns, t2 = 24 ns, t3 = 38 ns. (Right panel) Particle density 2 × 10−2 nm−3 (Tc = 105 K). Pore sizes:

R = 100 nm (continuous blue curve) and R = 200 nm (dashed red curve). Critical condensation times: t1 = 5 ns, t2 = 19 ns. (Right panel,

inset) Condensate density for a uniform system (continuous curve) and final values obtained with the numerical simulations (dots).

symmetric systems are described in [39]. The link between

the condensed and noncondensed atoms is expressed by the

term Wcn. It can be easily understood in terms of a balance

of particles. Since the total number of particles is conserved,

the last term of Eq. (13) takes into account the transitions

of the atoms between the condensed and the noncondensed

systems [40]. In particular, the integral of the scattering rate

Wcn over the momentum provides the rate at which the

particles enter or leave the condensate [40]. We have

dNc

dt
=

d

dt

∫
|	(r)|2 dr =

∫
Wcndpdr −

Nc

τp

, (15)

where Nc is the total number of atoms in the condensate.

Equations (9) and (13) describe the interaction between

condensed and noncondensed particles. Dynamical models

based on the Boltzmann formalism have been applied to

the study of the evolution and thermalization processes of

a gas in the supercritical regime by Gardinier et al. [41]

and Zaremba et al. [42]. Numerical approaches where the

Boltzmann dynamics is coupled with the GP equation also

exist (see, for example, [40] and citations therein).

In our formulation, the condensate is treated in a fully

quantum-mechanical context and its correlation with the sur-

rounding thermal cloud is addressed explicitly. The presence

of the condensate alters considerably the simple hard-sphere

scattering process that characterizes the bare positronium. In

particular, the use of the correct Bogoliubov representation

for atoms with a small mass (like the atom of positronium)

leads to a significant modification of the condensate evolution.

Furthermore, the use of the quasiparticle spectrum has the

advantage that the modification of the energy levels induced

by the presence of the condensate is automatically taken into

account. The main difficulty for the numerical resolution of

the coupled Boltzmann-GP system arises from the presence of

a nonlinearity in the collision kernel and the divergence of the

distribution function at p = 0. The latter is intrinsically related

to the Bose-Einstein condensation mechanism. These points

were addressed in Ref. [31].

We solved numerically Eq. (9) together with Eq. (13). The

process of condensation is summarized in Figs. 2–5. In Fig. 2

we plot the evolution of the ratio between the condensed atoms

Nc =
∫

|	|2 dr and the total number of positronium inside the

pore, for different pore sizes. In the plots of Fig. 2, we set the

origin of the time axis at the time when the gas temperature

has reached 100 K (left panel) or 200 K (right panel). The total

time elapsed from the particle injection until the beginning of

the condensation (critical time tc) is indicated in the caption

of the figure. The temperature of the pore surface is set to 30 K.

The simulations show that the condensation process requires

around 10–20 ns. This time is typically shorter than the time

necessary for cooling the gas to the critical temperature tc. Our

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

r (nm)

D
e
n
s
it
y
 (

n
m

−
3
)

FIG. 3. (Color online) (Left panel) Density profile of the BEC for

different times after the beginning of the condensation process: 0.2 ns

(light blue continuous line), 0.8 ns (black dotted line), 2 ns (green

continuous line), 3 ns (red dotted line), and 5 ns (blue continuous

line). Here R = 100 nm and the arrow indicates the time direction.
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FIG. 4. (Color online) Comparison of the condensate density

profile for different cavity radii: R = 100 nm (blue continuous line),

R = 300 nm (red dotted line). The horizontal axis is in units of the

cavity radius R.

results show that the condensation dynamics of positronium is

qualitatively similar to the analogous process for excitons [43]

and polaritons [44]. One interesting difference is encountered

in the first part of the dynamics. The initial growth of the

exciton condensate proceeds smoothly, whereas similarly to

what is presented in [44,45] for polaritons, our simulations

show a fast initial increase of the condensate density. The

process responsible for the cooling of the particles and

the subsequent condensation is, however, quite different. In the

case of excitons or polaritons, the role of the pore surface is

played by a thermal phonon bath, which constitutes a uniform

reservoir of particles maintained at a temperature below the

critical value.

The evolution of the condensate density profile is depicted

in Fig. 3. The shape of the condensate density differs from

the typical Gaussian profile obtained in a harmonic trap.

The inhomogeneity of the condensed density profile has an

interesting consequence: The simulations show the presence

of a flux of particles entering the condensate near the boundary

and a corresponding flux of particles leaving the condensate

at the center. Close to the surface, the temperature of the gas

and the condensate density are small. This condition makes

the condensate production rather efficient. The condensate

particles accumulate around the center of the cavity, where the

noncondensed gas is hotter. In this region, the balance between

condensate and noncondensate particles is unfavorable to the

condensation process and some particles leave the condensate.

This in-out flux of particles limits the condensate production

in the early stages of the condensation process. Figure 3 shows

clearly that the quantum confinement of the condensate affects

the final shape of the density up to a distance of nearly 30 nm

from the pore surface.

When the condensate density increases, the particles are

more uniformly distributed and occupy the whole cavity.

In Fig. 4 we compare the final density distribution of the

condensed particles inside the cavity for two different values

of the pore radius (100 and 300 nm). The simulations show

that the final condensate distribution in large cavities is nearly

uniform and the value of the density of the condensate is not

very sensitive to the radius of the cavity.

For the sake of comparison, in Fig. 2 (inset of the right

panel) we depict the theoretical value of the ratio of the

condensed and total density of a uniform gas given by Nc

Nt
=

1 − (Tb/Tc)3/2, where Tb is the bulk temperature, Tc =
πN

2/3
t

2mkB

is the critical temperature of the gas, and kB is the Boltzmann

constant [27]. The final values of the condensed density

obtained with our simulations are indicated with a dot. They

show a good agreement with the theoretical values.

In Fig. 5 (left panel) we represent the total time (starting

from the injection of the hot Ps gas in the pore) necessary to

reach 90% of condensed particles for different cavity sizes.

The total number of particles in the condensate is shown in

the right panel. The results demonstrate that the condensation

time is compatible with the lifetime of ortho-positronium

and suggest that a pore size of around 200 nm could be

a good compromise between short condensation time and a

large number of particles in the condensate. At the density of

10−2 nm−3, the number of atoms in the condensate is limited

to around 106. When the volume of the pore increases, an
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FIG. 5. (Color online) (Left panel) Total time necessary to reach 90% of the condensed particles for different pore sizes. (Right panel)

Maximum number of condensed particles. Particle density: 10−2 nm−3.
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increasing number of particles annihilate before entering the

condensate. For pores with size below 100 nm the number

of atoms in the condensate could be too small. Moreover, as

indicated in Fig. 1, the uncertainty on the knowledge of the

particle-wall interaction potential compromises the accuracy

of the results of our model for very large pores (R > 300 nm).

V. CONCLUSION

In summary, within the framework of a multiscale modeling

and a quantum-kinetic approach, our numerical simulations re-

veal that, under realistic conditions, the Bose-Einstein conden-

sation process of a positronium gas could be observed within

the lifetime of ortho-positronium, even without resorting to

extremely low temperatures (the silica substrate is maintained

at 30 K). Thus, depending on the initial particle density, it is

possible to reach the condensation of a significative fraction

of the total number of positronium atoms initially injected into

the cavity.
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