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Abstract Using the dynamical mean field theory and

the Gutzwiller method, we study the Mott transition in

bose-fermi mixtures confined in a three-dimensional op-

tical lattice and analyze the effect of fermions on the co-

herence of bosons. We conclude that increasing fermion

composition reduces bosonic coherence in the presence

of strong bose-fermi interactions and under the condi-

tion of the integer filling factors for composite fermions,

which consist of one fermion and one or more bosonic

holes. Various phases of the mixtures have been demon-

strated including phase separation of two species, coex-

isting regions of superfluid bosons and fermionic liquids,

and Mott regions in the phase space spanned by the

chemical potentials of the bosons and the fermions.
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1 Introduction

Quantum statistics plays a very important role in de-

termining various physical properties of quantum fluids

at low temperatures. For a purely bosonic system, the

Bose-Einstein condensation can be found in the ground

state, while for a pure fermionic system, usually a fermi

surface in the momentum space appears, within which

the states are fully occupied. On the other hand, more

and more novel quantum many-body phenomena in con-

densed matter physics, such as the Mott-transition in

bosonic systems and BCS-like superfluid transitions in

fermionic systems, have been predicted and observed [1–

4] by trapping ultracold atoms in optical lattices. More-

over, a new type of quantum fluids with both bosonic

and fermionic atoms can now be constructed. Since one

can tuned experimentally the ratio of the two types of

atoms, the effective interactions among those atoms as
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well as the total filling factor of the lattice, the phase di-

agram of the bose-fermi mixture can be made very rich.

And it has become a good testing ground to study the

role of the quantum statistics in various quantum phases.

Quite a few novel quantum phases, such as the com-

posite fermions, charge-density waves, spin glass and su-

persolid [5,6], have been predicted for bose-fermi mix-

tures in an optical lattice. Very recently, important progress

has been made experimentally on understanding the ef-

fect of fermionic species on the phase coherence of bosonic

atoms in optical lattices [7,8]. It was observed that adding

fermions can result in the loss of phase coherence of bose

gases. In order to explain this experimental finding, one

obvious argument is that higher order effects such as

induced effective interactions between the bosons can

lead to an increase in the bosonic visibility in a one-

dimensional model independent of the sign of bose-fermi

interactions [9]. Another viewpoint attributes the possi-

ble cause to the temperature effects [10]. E.g., increased

temperature is proposed to reduce the coherence of the

bose gas when ramping-up the optical lattice in an ex-

perimental procedure. At present, much contention still

surrounds the issue [11,12]. Among many factors affect-

ing the role of the fermionic atoms, we will focus on

the filling factors of the bosons and the fermions. If

the filling factor of bosonic atoms is an integer number

per lattice site and the repulsion between two species

of atoms is strong enough, adding fermionic atoms will

push some bosonic atoms away from their original po-

sitions, facilitating the formation of superfluid states.

While all fermions are bound with one or more bosons or

bosonic holes, the presence of fermionic atoms has two

consequences. First, replacing some bosonic atoms with

fermionic ones will introduce bosonic holes to the system

analogous to doping the Mott insulator with holes, and

thus enhance the superfluid phase. Second, the fermionic

atoms in the system can be also viewed as scattering cen-

ters of the bosons, which tend to destroy superfluidity.

Therefore, if the repulsive interaction between the two

species is weak, the former effect is dominant and super-

fluidity will be enhanced by replacing some bosons with

fermions; if the interaction is strong enough, the latter

effect will dominate and superfluidity will be suppressed.

In this work, we will discuss extensively the effects of

fermions on the bose gases, and explore possible novel

quantum phases for many-body systems with mixed statis-

tics by applying the dynamical mean field theory (DMFT)

[13] and the Gutzwiller approximation [14]. The DMFT

method is a newly developed many-body technique, which

maps lattice models to corresponding quantum impu-

rity models subject to self-consistency conditions. Be-

yond the static mean field approaches, DMFT keeps

the full local dynamics induced by local interactions.

DMFT is also capable to interpolate between band-like

and atomic-like behavior of electrons. Therefore it is a

powerful numerical technique to study the Mott tran-

sition in strongly correlated electronic systems. On the

other hand, the Gutzwiller approximation is an effec-
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tive variational scheme for the ground state studies of

many important phenomena, such as the Mott transi-

tion, ferromagnetism and superconductivity. It was first

proposed by Gutzwiller to study itinerant ferromagnetism

in systems with partially filled d bands (described by the

Hubbard Model [15]). In this approach, a many-body

trial wave function was constructed so that the weight

of atomic configurations can be adjusted by varying the

variational parameters. Both itinerant and atomic fea-

tures can be described by this type of Gutzwiller wave

functions. Thus, a unified description for correlated sys-

tems can be built by the Gutzwiller method. There have

also been various techniques, e.g., combining with DMFT

and the local density approximation(LDA), to extend

the application of the Gutzwiller approach [19]. The zero-

order approximation of the Gutzwiller method is equiv-

alent to the widely-used slave-boson approach, but our

implementation of the Gutzwiller approximation includes

a full set of variational parameters, which is computa-

tionally more demanding and yields more accurate re-

sults. Other approaches used for Bose-Fermi mixtures,

Bose-Hubbard and Fermi-Hubbard systems include ex-

act diagonalization[16], Bethe ansatz [17], and quantum

Monte Carlo [18], which are often applied to one-dimensional

systems.

The paper is organized as follows. In Sec. II we intro-

duce the DMFT approach and related numerical tech-

niques. In Sec. III, we first consider a homogeneous case

for the bose-fermi mixtures in a three-dimensional pe-

riodical optical lattice. We discuss the quantum phase

transition of the two species for a limiting case of in-

finitely large repulsive bose-bose interactions and the

general case of finite bose-bose interactions. Further-

more, we analyze the effect of the fermion concentration

and interspecies interactions on the occurrence of the

superfluid-Mott transition of bosons, and make compar-

ison with the experimental results. In the presence of

a slowly external potential, we give the general phase

diagram of the mixture and display the particle distri-

bution. Conclusions are drawn in Sec. IV.

2 Methodology

2.1 DMFT

In order to describe an interacting bose-fermi mixture in

an optical lattice, we adopt the tight-binding Hubbard

model from Ref. [20]. It is assumed that the temperature

is low enough to achieve degeneracy and the optical po-

tential wells are sufficiently deep so that the atoms only

occupy the lowest band. The fermions are supposed to

be polarized in this model. In this section we confine

ourselves to discussions of the homogeneous case in the

absence of an external trapping potential. The Hamilto-

nian reads:

Ĥ = Ĥb + Ĥf + Ĥbf

Ĥb = −tb
∑

i,j

b†i bj +
Ubb

2

∑

i

nbi(nbi − 1)− �b

∑

i

nbi

Ĥf = −tf
∑

i,j

f†i fj − �f

∑

i

nfi
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Ĥbf = Ubf

∑

i

nbinfi (1)

where subscripts f and b denote fermionic and bosonic

species, respectively, f†i (b†i ) is the fermionic (bosonic)

creation operator at site i, and nbi = b†i bi (nfi = f†i fi)

is the occupation number operator for bosons (fermions)

on site i.Hb (Hf) represents the purely bosonic (fermionic)

Hamiltonian. Hbf gives the boson-fermion on-site inter-

actions. Ubb and Ubf represent the boson-boson on-site

interactions and the boson-fermion interactions, respec-

tively. They can be tuned by controlling the laser inten-

sity of the optical lattice in the experiments. According

to the results of the mean field theory, the repulsive Ubf

can lead to the phase separation between the fermions

and the bosons, while the attractive Ubf triggers a sys-

tem collapse above a critical boson number. Here we

concentrate on the case of repulsive bose-fermi inter-

actions with an equal hopping strength for bosons and

fermions (tb = tf). However, results obtained in this pa-

per can also be applied to a similar fermion-boson system

with attractive interactions [21] thanks to the existence

of a mapping using particle-hole transformation on the

fermions.

We treat the bosons by the mean-field approximation

(MFA) and the fermions by DMFT, which was first de-

veloped and applied to the same system by Titvinidze,

Snoek and Hofstetter [22]. For bosons, in the framework

of the static MFA, the dynamics of the superfluid or-

der parameter is not accounted for, and the investiga-

tion on the dynamics of boson degrees of freedoms by

DMFT can be referred to Ref. [23]. Following Ref. [24],

⟨b†i ⟩ = ⟨bi⟩ = � is defined as the superfluid order parame-

ter. After decoupling the hopping term, the Hamiltonian

Hb is simplified as

Ĥb =
∑

i

[
−ztb(�b†i + �bi − ∣�∣2)

]

+
∑

i

[
Ubb

2
nbi(nbi − 1)− �bnbi

]
(2)

It is noted that the mean-field decoupling approximation

underestimates the superfluid order parameter �.

The momentum-space representation of Ĥf reads

Ĥf =
∑

k

("k − �f)c
†
kck

"k − �f = −2tf [cos kxa+ cos kya+ cos kza] (3)

where the lattice spacing a is set to 1, and "k denotes

the dispersion of non-interacting fermions in the three-

dimensional cubic lattice. Under DMFT, the lattice model

can be mapped onto a single impurity Anderson model

(SIAM). With all energy terms rescaled by ztb, the re-

duced impurity Hamiltonian reads:

Ĥsimp = −�fnf +
∑

l

�lc
†
l cl +

∑

l

vl(c
†
l f + f†cl)

−(b†�+ �b− ∣�∣2) + Ubb

2
nb(nb − 1)

−�bnb + Ubfnbnf (4)

where vl describes the couplings between the local im-

purity states and the associated bath, �l represents the

dispersion of the electrons in the bath, and f (b) denotes

the local fermi (bose) operator.
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Now we can define the impurity Green’s function

Gimp as

Gimp(!) =
1

! − Ĥsimp
(5)

When the set of coupling parameters {�l, vl} is initially

chosen, the impurity Green’s function Gimp and the self-

energy function �loc are numerically evaluated by the

exact diagonalization method. By substituting �loc into

the Dyson eqnarray, the local Green’s function Glattice

can be obtained by

Glattice(!) =
1

N

∑

k

1

! + �f − "k −�loc(!)
(6)

Consequently, one can get an updated Weiss function G0

G−1
0 (!) = G−1

lattice(!) +�loc(!) (7)

In the numerical implementation, we approximate

the Weiss function G0 by a function Gsimp
0 with a finite

number Nc of sites. Then the standard conjugate gradi-

ent method is used to locate the functional minimum d

with respect to {�l, vl}[13]:

d =
1

Nmax + 1

Nmax∑

n=1

∣G0(i!)
−1 −Gsimp

0 (i!)−1∣2

Gsimp
0 (i!)−1 = i! + �f −

l=Nc∑

l=1

v2l
i! − �l

(8)

For a theoretical investigation of the Anderson model,

it is efficient to map the Hamiltonian onto a linear chain.

The fermions in this case can be identified as conduct-

ing electrons. The mapping results in a representation

of the SIAM as a semi-infinite tight-binding chain with

nearest-neighbor hopping only and the impurity at one

end of the chain [25]. In Eq. (4), the creation operators

c†l of the conduction electrons are directly coupled to

the impurity via the hybridization vl. Now the creation

operators c†l are superposed to form a new operator c†1,

c†1 =
1

V

∑

l

vlc
†
l

V 2 =
∑

l

∣vl∣2 (9)

where c†1 creates a localized one-electron state on the first

site of the conduction electron chain ∣1⟩ = c†1∣0⟩, when

∣0⟩ is a Fock vacuum state. V describes the coupling

strength between the local state and the first site along

the transformed semi-infinite chain. With c†1 and c1, the

hybridization term in the Eq. (4) can be written as

∑

l

vl(c
†
l f + f†cl) = V (f†c1 + c†1f). (10)

The contribution from the electron bath (Ĥc =
∑

l �lc
†
l cl)

to the total Hamiltonian [cf. Eq. (4)] is transformed us-

ing a Lanczos tridiagnalization procedure. A new single-

particle basis for the electron bath starting from the

state ∣1⟩ is constructed. Then a sequence of new basis

states can be constructed by applying a Schmidt orthog-

onalization to ∣1⟩, Ĥc∣1⟩, Ĥ2
c ∣1⟩, ⋅ ⋅ ⋅. Thus, the Hamilto-

nian Ĥc is tridiagonal in the new Schmidt basis. In the

second quantized form it becomes a tight-binding linear

chain with nearest-neighbor hopping only [25].

In the DMFT simulation, the initial Weiss function

G0 is obtained by calculating the lowest energy band of

non-interacting spinless fermions in a cubic lattice, and

the width of the energy band is chosen as 2tf . The exact

diagonalization method is used as the impurity solver to
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obtain the finite temperature Green’s function, wherein

a low effective temperature 1/T = 200 is introduced.

2.2 The Gutzwiller method

In this subsection, we employ the Gutzwiller variational

approach to investigate the bose-fermi mixtures. The

Gutzwiller approach is one of the simplest ways to study

electronic correlations in many-body systems. Compared

with DMFT, the Gutzwiller method is a relatively un-

complicated approach, but one nonetheless effective to

capture the low-energy physics of the strongly correlated

systems. With the bosonic hopping term treated by the

mean-field approximation, the Hamiltonian (1) can be

written in two terms

Ĥ = Ĥhop + Ĥloc

Ĥloc =
∑

i

(Ubfnbinfi − �fnfi − �bnbi) +

∑

i

[−ztb(b†i�+ �bi − ∣�∣2)

+
Ubb

2
nbi(nbi − 1)]

Ĥhop = −tf
∑

i,j

f†i fj (11)

Due to the pure density correlation in the local interac-

tions Ĥloc, we can always diagonalize Ĥloc in the atomic

configuration representation [14]:

Ĥloc =
∑

i

∑

�

E� m̂i� (12)

where m̂� is the projection operator onto configuration

∣� ⟩, and all configurations {∣� ⟩} form a locally complete

basis set.

In Eq. (11), if the interactions are absent, the ground

state can be solved exactly by the uncorrelated Hartree

wave function ∣'0⟩, which is a single determinant of

single-particle wave functions. However, in the presence

of interaction terms, ∣'0⟩ is no-longer a good approxima-

tion due to its many energetically unfavorable configura-

tions. The Gutzwiller wave function ∣ G⟩ is constructed

by applying a many-particle projection operator on ∣'0⟩

∣ G⟩ = P∣'0⟩ =
∏

i

∑

�

�� m̂i� ∣'0⟩ (13)

where �� denotes variational parameters modifying pro-

jection weights on the local configurations. The projec-

tion operator P adjusts the weight of each configura-

tion through the variational parameters �� . According

to above definition, the expectation value of the Hamil-

tonian (11) is written as

E = ⟨H⟩ = ⟨	G∣Ĥ∣	G⟩
⟨	G∣	G⟩

=
⟨'0∣P̂ĤP̂∣'0⟩
⟨'0∣P̂2∣'0⟩

(14)

Then the variational energy can be explicitly evaluated

as

E = Zf ⋅ �̃0 +
∑

�

E�m� + �2

√
Zf =

1√
nf(1− nf)

∑

��

√
m�m� ⋅ �nf,�,nf,�+1

� =
∑

��

√
m�m� ⋅ �nb,�,nb,�+1 ⋅

√
nb,� (15)

�̃0 = ⟨f†i fj⟩0 (16)

Here m� denotes the atomic configuration weight, and

the quasi-particle weight Zf is a characteristic quan-

tity describing the strength of the correlation between

fermions, The quantity �̃0 can be interpreted as the ki-

netic energy of the non-interacting fermions.
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It has been shown that the zeroth order approxima-

tion of the Gutzwiller method is equivalent to the well-

known slave boson approach [26,27]. For the aforemen-

tioned Hamiltonian, we can introduce a set of slave bo-

son operators l†�(� = 0, 1), which denotes, respectively,

projection operators onto the empty and singly occupied

state for each site [26]. Then the electron operators can

be expressed in terms of the pseudo fermion a†i and slave

bosons:

f†i = z†i a
†
i

z†i =
1√

nf(1− nf)

∑

��

[D�� ]
∗l†�l� (17)

where D�� = ⟨�∣ f ∣�⟩ is the matrix element of the elec-

tron operator represented in terms of the local atomic

states, and z†i describes the change in the slave-boson oc-

cupation number[28]. Consequently, the original Hamil-

tonian can be written in terms of the slave particles as

Ĥslave = −tf
∑

i,j

a†iajz
†
i zj +

∑

i,�

E�l
†
�l� (18)

Within the mean-field approach, all the slave boson

operators are treated as c-numbers, following which the

ground state energy can be determined iteratively under

the local constraints [27]

∑

�

l†�l� = 1

∑

�

��l
†
�l� = a†iai

�� =
∑

�

D∗
��D�� (19)

where �� is the average particle number for the configu-

ration �.

3 Results and Discussions

3.1 The Mott transition

Since the transition from superfluid to the Mott insulator

in a purely bosonic system was experimentally observed,

quantum phase transitions in cold-atom systems have

become a paradigm for studying many-body phenom-

ena in strongly correlated systems. Here, we first derive

a general condition for the occurrence of the Mott phase

transition for the bose-fermi mixture. In the case of van-

ishing bose and fermi hopping integrals, tf = tb = 0, the

ground state of the mixture system is highly degenerate.

This means that there are many possible configurations

for bosons and fermions in the ground state. Further-

more, if these degenerate states remain stable when the

hopping terms are taken into account as a first order

perturbation, then it is favored to form a Mott state.

It follows that the average occupation numbers of boson

and fermion satisfyM×nf+N×(1−nf) = nb, whereM

and N are both arbitrary integer numbers. This identity

is a general condition for the Mott phase transition of

the bose-fermi mixture in a periodical optical lattice.

After obtaining the general condition of the Mott

phase transition, we then focus on a special case with

nb + nf = 1. First of all, we discuss the quantum phase

transition of a limiting case in which Ubb → +∞, and

the bosonic occupation number is only allowed to be zero

or one (the so-called hard-core or Tonks bosons [29]).

Neglecting the constant terms, the Hamiltonian has the
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following form:

Hsimp =
∑

l

�lc
†
l cl +

∑

l

vl(c
†
l f + f†cl)− �(b† + b)

+Ubf(nb − 1/2)(nf − 1/2) (20)

It is obviously from Eq. (20) that the bosons and fermions

have particle-hole symmetry when � = 0, and the ground

state has a two-fold degeneracy. In fact, even for nonzero

�, the result indicates that the mixture still has well-

defined particle-hole symmetry. When Ubb → +∞, it is

impossible for two or more bosons occupying the same

lattice site, which is analogous to the Pauli exclusion

principle for fermions, causing the bosons to exhibit fermion-

like properties. Therefore the Tonks bosons are also called

fermionized Bose gases. There have been efforts to pre-

pare the Tonks-Girardeau gases in one-dimensional op-

tical lattices [30]. For the mixed system, only one boson

is allowed on one site together with one fermion or a

fermionic hole. Fig. 1 shows the superfluid order param-

eter as a function of Ubf calculated with the method of

exact diagonalization. It can be seen that with increas-

ing Ubf the superfluid state is converted into the Mott

insulator state. The critical value of Ubf is about 2.9,

comparable to that in the Mott-insulator transition of a

fermionic system with spins. After the superfluid-Mott

transition, the fermions also form a Mott state at the

same critical value U c
bf , as shown in Fig. 2.

Next, a more realistic case with finite Ubb is dis-

cussed. In order to demonstrate the effect of the fermion

composition in the mixture, we adopt equal values for

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

 

 

Ubf

infinite  Ubb

Fig. 1 The superfluid order parameter � as a function of

boson-fermion interaction Ubf calculated for Ubb → +∞ and

via exact diagonalization.
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Fig. 2 Fermion density of states at the fermi energy level

calculated by DMFT for Ubb → +∞ and four values of Ubf :

1.0, 2.0, 3.0 and 3.5.
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Fig. 3 The superfluid order parameter � as a function

of the boson-boson interaction strength Ubb for various

boson-fermion compositions. The boson-fermion interaction

strength Ubf is fixed to the same value as Ubb: Ubf = Ubb.
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U
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Fig. 4 The critical point of the superfluid-insulator transi-

tion as a function of the fermion composition with Ubf = Ubb

and Ubf = 2Ubb. The results are qualitatively consistent with

Ref. [8].

Ubf and Ubb. The total filling factor for bosons and

fermions is set to be 1 such that there is one fermion

for each bosonic hole in the Mott-insulator state. In

the absence of fermions, the Mott transition is known

to occur at a critical value of the bose-bose coupling

U c
bb = 5.8 for an average number of one atom per site in

three dimensions [31]. Note that here the U c
bb has been

scaled by ztb when deriving the impurity Hamiltonian

in Eq. (4). When a few bosons are replaced by fermions,

the critical value U c
bb for the superfluid-Mott transition

decreases. As clearly shown in Fig. 3, the critical value

decreases monotonically upon increasing the composi-

tion of fermions in the mixture. From Fig. 3, it can also

be seen that with half of bosons replaced by fermions,

the quantum critical value is reduced to U c
bb = 4.2.

Due to adequate bose-fermi interactions, added fermions

can bind with bosonic holes and suppress the motion of

bosons, resulting in a loss of bosonic phase coherence. To

clearly demonstrate the shift of the critical value of the

Mott transition, we plot U c
bb as a function of the fermion

composition for the case of Ubf = Ubb and Ubf = 2Ubb in

Fig. 4. These results agree qualitatively with Ref. [8], in

which it was found that addition of fermions significantly

decreases bosonic coherence.

In addition, with the disappearance of superfluid state

of the bosons, the fermions in the mixture also undergo a

quantum phase transition. In the absence of the bosons,

the spinless fermions only have hopping terms, and the

metallic state is easily distinguished from the Mott state
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Fig. 5 Fermion density of states calculated by DMFT for

nf = nb = 0.5 and Ubb = Ubf . Four values of Ubf : 1.0, 4.0,

4.25 and 4.75, are shown.

with at most one fermion occupying each lattice site.

For the bose-fermi mixtures, the metal-insulator phase

transition for fermions closely depends on the tunnel-

ing strength, the total filling factor and the interspecies

interactions. In Figs. 5, 6 and 7, we show the density

of states for fermions for nf = 0.5, 0.1, 0.9 (or nb =

0.5, 0.9, 0.1), respectively, under the condition of Ubf =

Ubb. From Fig. 5, it can be seen that there is finite quasi-

particle density of states near the fermi energy level for

relatively small values of Ubf , and when Ubf is increased

to 4.25 and above, the fermionic atoms in the optical
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Fig. 6 Fermion density of states for fermions calculated by

DMFT for nf = 0.1, nb = 0.9 and Ubb = Ubf . Four values of

Ubf , 1.0, 4.0, 5.5 and 6.0, are shown.

lattice are shown in the Mott insulator state. Moreover,

from Figs. 6 and 7, it is found that the Mott phase tran-

sitions for the two species (bosons and fermions) occur

simultaneously at a certain critical point, regardless of

the fermion composition.

Results on the ground-state properties of the bose-

femi mixture calculated from the DMFT approach can

also be reproduced by the Gutzwiller method, while dy-

namical quantities, such as those shown in Figs. 6 and

7, are not accessible by the Gutzwiller method. We note

that the Gutzwiller approximation with the full set of
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Fig. 7 Fermion density of states calculated by DMFT for

nf = 0.9, nb = 0.1 and Ubb = Ubf . Four values of Ubf , 1.0,

2.0, 3.0 and 3.5, are shown.

variational parameters is used here instead of its zero-

order approximation which is equivalent to the slave-

boson approach. Similar variational calculations with full

sets of parameters have been applied to Holstein po-

larons with off-diagonal coupling [32]. We can make com-

parisons for the superfluid order parameter and the ground

state energy for the case of Ubf = Ubb and nb = nf = 0.5

by the two methods. Results are plotted in Fig. 8, in

which it is found that the Gutzwiller approximation is

almost as accurate as the DMFT method for determin-

ing the ground state properties of the bose-femi mixture.

This point would be very important to investigations on

0.0
0.2
0.4
0.6
0.8

 

 

 

 Gutzwiller
 DMFT

0 1 2 3 4 5 6 7
-0.6

-0.4

-0.2

0.0

 

E 0

Ubb

Ubf=Ubb,nf=nb=0.5

Fig. 8 The superfluid order parameter � (upper panel) and

the ground state energy E0 (lower panel) as a function of Ubb

calculated from the DMFT (red) and the Gutzwiller (black)

methods for the case of Ubf = Ubb and nb = nf = 0.5.

the cold-atom issues. Furthermore, in addition to the

case of nb + nf = 1, there are other interesting situa-

tions to investigate the effects of adding fermions into

the cold atomic mixtures, which are elaborated in the

following subsection.

3.2 Effects of adding fermions

Whne the effect of adding fermions on the bosonic coher-

ence is considered, the bose-fermi interaction Ubf turns

out to be an important factor. In Fig. 9, we show that

the quantum critical point of the bosonic Mott tran-

sition, U c
bb, as a function of the ratio 
 = Ubf/Ubb),

where the occupation numbers for bosons and fermions

are fixed (double half-filling). It is demonstrated in Fig. 9

that different 
 can lead to different U c
bb in the forma-

tion of the superfluidity in comparison with the case of



12 Qing-Mei Liu et al.

pure bosons. When 
 is less (greater) than 0.6, the criti-

cal value U c
bb goes above (below) that of the pure-boson

case, 5.8. We conclude that when a weak bose-fermi in-

teraction is considered, addition of fermions results in

disturbing the uniform distribution of bosons. It is equiv-

alent to introduce some effective bosonic holes to the

bosonic system. These bosonic holes favor the motion of

bosons in the optical lattice. For strong bose-fermi in-

teractions, the superfluid bosonic wave function can be

severely scattered by the presence of fermions, impeding

bosonic transport. Therefore, these two different fermion

effects are observed in the formation of the bosonic su-

perfluidity.

Next, we consider the case of nb = 1 and Ubb =

8, which shows adding fermions can induce the super-

fluidity of bosons, a fact that is corroborated by the

Gutzwiller method. As shown in Fig. 10, once Ubf ex-

ceeds a critical value, the superfluid order parameter

becomes non-zero, and the quasi-particle weight Zf for

fermions begins to decrease. What is different in the

lower panel of Fig. 10 is that bosons and fermions simul-

taneously enter the Mott phase at Ubf = 12 due to for-

mation of composite fermions consisting of one fermion

and two bosonic holes [5], satisfying the Mott-transition

condition as 1× nf + 1× (1− nf) = nb.
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 =1.50
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 pure bose

Fig. 9 The quantum critical point of the bosonic Mott tran-

sition Uc

bb as a function of the ratio 
 (
 = Ubf/Ubb), and

the occupation numbers for bosons and fermions is fixed as

double half-filling.

0 2 4 6 8 10 12 14 16
0.0
0.2
0.4
0.6
0.8
1.0

Ubf

 Zf

 

B: nf=0.5

0 2 4 6 8 10 12 14 16
0.0
0.2
0.4
0.6
0.8
1.0

A: nf=0.2

Fig. 10 The superfluid order parameter for bosons (red) and

the quasi-particle weight for fermions (black) as a function of

Ubf for Ubb = 8, nb = 1, and two values of nf : (A) nf = 0.2

(upper panel); (B) nf = 0.5 (lower panel).

3.3 Particle distributions for inhomogeneous cases

under local density approximation

In the previous subsection, we have demonstrated the

effect of fermions on the bosonic superfluidity. A rich
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phase diagram is expected after adding the fermions to

the bosonic system. Here we present a phase diagram

spanned by the chemical potentials �b and �f for the

case of Ubb = Ubf = 6 in Fig. 11. Four regions labeled

by I, II, III and IV represent the superfluid phase for

pure bosons, the coexisting regions of superfluid bosons

and fermion liquid, the Mott region, and the superfluid

bosons with integer filling fermions, respectively. Along

the diagonal line of Fig. 11, much less coexisting re-

gions (type II) for the two species are found. The strong

repulsive interaction Ubf leads to the phase separation

of the mixture. As pointed out in Ref. [33] for a two-

dimensional boson-fermion mixture, the main mecha-

nism of the phase separation is a weak perturbation of

the boson density inducing a modulation of the fermionic

density. The fermionic distortion among the bosons in-

duces an attractive interaction. Phase separation occurs

when the induced attraction reaches the same order of

magnitude as the intrinsic repulsion Ubb between bosons.

For ultracold atoms confined in an optical lattice, it

is necessary to superimpose an extra external potential

onto the optical lattice in order to generate an assemble

of quantum degenerate atoms [12]. This external poten-

tial is a combination of a magnetic potential in which the

condensate is initially formed and an optical one due to

the Gaussian shape of the lattice beam [34]. The external

potential can be approximated by one that is harmonic

and isotropic, such as V (r) = (m/2)!2
t r

2, where m is

the atomic mass, !t is trapping frequency, and r denotes

Fig. 11 The phase diagram of the bose-fermi mixture

spanned by the chemical potentials �b and �f for the case

of Ubb = 6 and Ubf = 6. Four regions labeled by I, II,

III and IV , represent the superfluid phase for pure bosons,

the coexisting regions of superfluid bosons and fermion liq-

uid, Mott region, and superfluid bosons with integer filling

fermions, respectively.

the lattice site distance from the trap center. An exact

criterion for solving the inhomogenous bose-fermi mix-

ture will involve calculating the Helmholtz free energy

as a function of all eigenstates of the trapping poten-

tial. When the external potential varies slowly across the

lattice, we can utilize the local-density approximation

(LDA), and regard the globally inhomogenous system

as being locally homogeneous [34,35]. After the func-

tional relation nhomo(�) between the chemical potential

� and the particle distribution n is calculated from the

aforementioned DMFT or Gutzwiller method for the ho-

mogeneous system, the density distribution for the inho-

mogeneous system can be evaluated by n(r) = nhomo(�−

V (r)). The chemical potential �b(f) is related to the total
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fermion (boson) number. It is noted that the LDA will

break down at the edge of the ultracold-atom colony. In

the following discussion, (m/2)!2
t takes a constant value

of 0.09 along the radical direction.

In the upper four panels of Fig. 12, we display den-

sity profiles of the two species along the radial direc-

tion with Ubb = Ubf = 6 under the condition that

the bosons are in the superfluid state completely prior

to adding the fermions. The chemical potentials of the

four cases are chosen as (a) �b = 0.6, �f = 0.0, (b)

�b = 0.7, �f = 0.77, (c) �b = 0.95, �f = 1.08, and (d)

�b = 1.2, �f = 1.349. From these density distributions,

it can be seen that, when the bosons are in the super-

fluid state, the added fermions firstly fall into the center

region, pushing bosons away from the trap center, and

a further increase in the fermion composition drives the

bosons around the central area into the Mott region.

As shown in Panel (c) of Fig. 12, the fermions enter-

ing the coexisting region expels the bosons to the outer

shell, and the central fermions are found at a composi-

tion plateau of 0.87, leaving the boson composition at

0.13. The coexistence of two species can result in new

quantum phases such as charge density wave and su-

persolid [36,22]. The composition plateaux indicate that

the bosons and the fermions are both in the Mott state.

This is analogous to a shell-type structure of the bosonic

density, in which the Mott-insulator phases are visible as

integer plateau regions for purely boson systems [3,37].

Fig. 12 Density profiles of bosons (black) and fermions (red)

for Ubb = Ubf = 6. Panels (a)-(d): The bosons are in the su-

perfluid state completely prior to adding the fermions; Panels

(e)-(h): The bosons are partially in the Mott state prior to

adding the fermions.
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Fig. 13 The phase diagram of the bose-fermi mixture

spanned by the chemical potentials �b and �f for the case

of Ubb = 6 and Ubf = 12.

The lower four panels of Fig. 12 display density pro-

files of the two species along the radial direction un-

der the initial condition that the bosons are partially

in the Mott state prior to adding the fermions. Interac-

tion strengths remain unchanged at Ubb = Ubf = 6.

The chemical potential of the two species are set as

(e) �b = 6.055, �f = 0.0, (f) �b = 7.0, �f = 6.99, (g)

�b = 8.0, �f = 8.083, and (ℎ) �b = 10.0, �f = 10.2825. It

is found that the added fermions aggregate in the Mott

region driving bosons towards two sides of the Mott re-

gion, and as a result, the bosonic superfluid density in-

creases in the central region. As shown in Panel (f) of

Fig. 12, there is a common plateau shared by the two

species in the Mott region with a boson (fermion) com-

position of 0.52 (0.48). Panel (h) of Fig. 12 reveals the

occurrence of phase separation in the bose-fermion mix-

ture for a sufficiently fermion composition.
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n f
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Ubb=6, Ubf=12

Fig. 14 The Mott phase transition point for Ubb = 6, Ubf =

12 . The occurrence of the Mott phase transition satisfies

nb + nf = 1 or 0.5nb + nf = 1.
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Fig. 15 The quasi-particle spectral weight Zf (black) and

the superfluid order parameter � (red) as a function of the av-

erage number nf for the case of nb = 0.5 and Ubb = 6, Ubf =

12. The bosons and the fermions simultaneously enter the

Mott phase at nf = 0.5 and nf = 0.75.

In order to gain a deeper understanding and com-

pare with experiment [8], we plot the phase diagram for

the case of Ubb = 6 and Ubf = 12 in Fig. 13. Due to

the presence of stronger boson-fermion repulsive inter-

actions, Fig. 13 differs substantially from Fig. 11. First,
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almost no coexistence of boson superfluid and fermion

liquid is found, and Region II in Fig. 13 denotes the

pure fermion liquid. Second, Region IV is still a Mott

phase, where composite fermions made of one fermion

and two bosonic holes are found with a non-integer total

filling factor. This is to say, for the case of Ubf = 2Ubb,

the prerequisite for the Mott phase transition is to sat-

isfy nb + nf = 1 or 0.5nb + nf = 1, as shown in Fig. 14.

Furthermore, to further look into the Mott phase tran-

sition with a non-integer filling factor, we also calculate

the quasi-particle spectral weight Zf (for the fermions)

and the superfluid order parameter � (for the bosons)

for the case of nb = 0.5, Ubb = 6 and Ubf = 12. The

results are plotted in Fig. 15, wherein it is obvious that

the bosons and fermions simultaneously enter the Mott

phase at nf = 0.5 and nf = 0.75.

Lastly, we look into the real space distributions of

bosons and fermions that correspond to the phase di-

agram in Fig. 13 for the case of Ubb = 6, Ubf = 12.

The upper four panels of Fig. 16 display the effect of

adding fermions into a superfluid bosonic system. The

chemical potentials correspond the four panels are (a)

�b = 0.5, �f = 0.0, (b) �b = 0.6, �f = 0.695, (c) �b =

0.7, �f = 0.826 and (d) �b = 1.2, �f = 1.362. When

fermions enter the bosonic system, they prefer to stay in

the center region. Further increasing the fermion com-

position leads to the formation of the Mott region such

as that in Panel(d) of Fig. 16, where the fermion (bo-

son) composition is 0.96 (0.04). The lower four panels of

Fig. 16 Density profiles of bosons (black) and fermions (red)

for Ubb = 6 and Ubf = 12. Panels (a)-(d): The bosons are in

the superfluid state completely prior to adding the fermions;

Panels (e)-(h): The bosons are partially in the Mott state

prior to adding the fermions.
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Fig. 16 display the density profiles of the two species un-

der the condition that the bosons are initially in a Mott

insulator state. It is found that the added fermions en-

ter the Mott region, driving the bosons in the center

region toward two sides of the Mott plateau. The corre-

sponding chemical potentials for the four panels are set

as (e) �b = 6.06, �f = 0.0, (f) �b = 6.5, �f = 6.4325,

(g) �b = 8.0, �f = 8.091 and (ℎ) �b = 10.0, �f = 10.6.

As compared with Fig. 12 (Ubf = 6), much less over-

lap of boson superfluid and fermion liquid can be found

in Fig. 16 (Ubf = 12). Complete separation between

the bosons and the fermions in real space is found for

�b = 10.0, �f = 10.6 as clearly demonstrated in Panel

(h) of Fig. 16.

Thermal effects in the cold-atom systems are of ex-

treme importance. Although the numerical approaches

employed in the present paper are only valid for prob-

ing the ground state properties, we can still use them to

gain some insight into the thermal effects. For example,

temperature can modify the density profile discussed in

the previous section. This is because in the region where

bosons are mixed with fermions, there are more low en-

ergy excitations due to the presence of the Fermi sur-

face than in the boson-only region. The boson-fermion

mixing will generate additional configurational entropy

at finite temperatures and thus lower the free energy.

Therefore, compared to the boson-only region, the area

where bosons mingle with fermions will be more stable at

elevated temperatures due to the entropic effect, and is

expected to expand in size with increasing temperature.

4 Conclusion

In summary, we have investigated a strongly correlated

bose-fermi mixture in a three-dimensional optical lattice

at zero temperature by the DMFT and the Gutzwiller

approximation. By examining the effect of added fermions

on the bosonic coherence, we conclude that, in a bosonic

insulator with integer filling factors, fermions will de-

stroy the MI state of bosons only if the bose-fermi cou-

pling interaction is sufficiently strong. However, if the

added fermions are bound with one or more bosonic

holes uniformly distributed throughout the optical lat-

tice, the impact of the fermions relies on the bose-fermi

interaction; e.g., for the case of one fermion combined

with one bosonic hole, the critical value of the bose-

fermi interaction is 0.6Ubb. For the experimental case

with Ubf = 2Ubb [8], our study shows fermion addition

will destroy the superfluidity of the bosons. Our work

provides a theoretical basis for future experimental ver-

fication of the role of fermions on the bosonic coherence

in the bose-fermi mixtures.

In addition, we have shown several possible phases

and density profiles for the bose-fermi mixture with re-

pulsive interactions Ubf . It is concluded that, when the

bosons are in the superfluid state, the added fermions

tend to bind with the bosonic holes, resulting in the for-

mation of a Mott phase in the center region. While as the
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bosons have a plateau distribution, the added fermions

preferentially fall into the Mott regions, and stay with

bosonic holes. A further increase in the fermion number

leads to a higher value of superfluid fraction for bosons

at the center region, simultaneously pushing bosons to

further extend. Once some fermions are bound with two

or three bosonic holes, another Mott plateau will appear.

Although our study in this paper is focused on fermion-

boson mixtures with repulsive interactions, it is not hard

to map our problem to a similar one with attractive in-

teractions by applying the particle-hole transformation

to the fermions. Therefore, the results obtained in this

paper can be readily applied to the fermion-boson sys-

tem with attractive interactions as well [21]. Analysis of

the phase separation and the coexistence for the bose-

fermi mixtures in this work will add to our fundamental

understanding of the atomic gases in future studies of

novel quantum phases.
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T. Esslinger, Phys. Rev. Lett. 94, 080403(2005).

2. C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl,

S. Jochim, J. H. Denschlag, and R. Grimm, Science 305,

1128(2004).

3. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and

P. Zoller, Phys. Rev. Lett. 81, 3108(1998).

4. M. Greiner, O. Mandel, T. Esslinger, T. Hansch, and

I. Bloch, Nature 415, 39(2002).

5. M. Lewenstein, L. Santos, M. A. Baranov and

H. Fehmann, Phys. Rev. Lett. 92, 050401(2004).

6. K. Sengupta, N. Dupuis, and P. Majumdar,

Phys. Rev. A 75, 063625(2007)

7. S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst,

K. Sengstock, and K. Bongs, Phys. Rev. Lett. 96,

180403(2006).
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Phys. Rev. A 77, 023608 (2008).

10. M. Cramer, S. Ospelkaus, C. Ospelkaus, K. Bongs, K.

Sengstock and J. Eisert, Phys. Rev. Lett. 100, 140409

(2008).

11. C. Ospelkaus, Fermi-bose mixtures: from mean-field in-

teractions to ultracold chemistry, Ph.D. thesis.

12. S. Ospelkaus, Quantum Degenerate Fermi-Bose Mixtures

of 40K and 87Rb in 3D optical lattice, Ph.D. thesis.

13. A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13(1996).



Bose-fermi mixtures in a three-dimensional optical lattice 19

14. J. Bünemann, and W. Weber, Phys. Rev. B

57,6896(1998)

15. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963);

M. C. Gutzwiller, Phys. Rev. 134, A923 (1964);

M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).

16. R. Roth and K. Burnett, Phys. Rev. A 67, 031602 (2003).

17. S.J. Gu et al., Phys. Rev. B 102, 224508 (2009).

18. , L. Pollet et al., Phys. Rev. Lett. 96, 190402 (2006).

19. X. Y. Deng, L. Wang, X. Dai and Z. Fang,

Phys. Rev. B 79, 075114(2009).

20. A. Albus, F. Illuminati, and J. Eisert, Phys. Rev. A 68,

023606 (2003).

21. Th. Best, S. Will, U. Schneider et al.,

Phys. Rev. Lett. 102, 030408 (2009).

22. I. Titvinidze, M. Snoek, and W. Hofstetter,

Phys. Rev. Lett. 100, 100401 (2008).

23. L. Amico,and V. Penna, Phys. Rev. Lett. 80, 2189(1998).

24. K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and

T. V. Ramakrishnan, Europhys. Lett. 22, 257(1993).

25. C. Raas, G. S. Uhrig, and F. B. Anders, Phys. Rev. B

69(4), 041102(R)(2004); C. Raas and G. S. Uhrig,

Eur. Phys. J. B 45(3), 293-303 (2005).

26. G. Kotliar and A. E. Ruchenstein, Phys. Rev. Lett. 57,

1362(1986)

27. X. Dai, G. Kotliar, Z. Fang, arXiv:cond-mat/0611075

28. R. Fresard and G. Kotliar, Phys. Rev. B 56, 12909 (1997);

H. Hasegawa, Phys. Rev. B 56, 1196, (1997).

29. L. Pollet, S. M. A. Rombouts, and P. J. H. Denteneer,

Phys. Rev. Lett. 93, 210401(2004).

30. B. Paredes, A. Widera, V. Murg, and et al, Nature 429,

277(2004).

31. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and

D. S. Fisher, Phys. Rev. B 40, 546(1989).

32. Q.M. Liu, Y Zhao, W.H. Wang, T. Kato, Phys. Rev. B

79, 165105 (2009).
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and I. Bloch, Phys. Rev. A 72, 053606(2005)

35. X. X. Yi, and C. P. Sun, Phys. Rev. A 64, 043608(2001).

36. F. Hert, G. G. Batrouni, X. Roy, and V. G. Rousseau,

Phys. Rev. B 78, 184505 (2008).

37. M. Greiner, Ultracold quantum gases in three-

dimensional optical lattice potentials, Ph.D. thesis, 2003.


