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Abstract. A type Il matrixis a square matri¥V with non-zero complex entries such that the entrywise quotient

of any two distinct rows of¥ sums to zero. Hadamard matrices and character tables of abelian groups are easy
examples, and other examples cakgih modelsand satisfying an additional condition can be used as basic data
to construct invariants of links in 3-space. Our main result is the construction, for every type Il Watoka
Bose-Mesner algebra (W), which is a commutative algebra of matrices containing the idehtithe all-one

matrix J, closed under transposition and under Hadamard (i.e., entrywise) product. Moredteis & spin

model, it belongs tdN (W). The transposition of matricé4' corresponds to a classical notionchfality for the
corresponding Bose-Mesner algebN@V). Every Bose-Mesner algebra encodes a highly regular combinatorial
structure called aassociation schemand we give an explicit construction of this structure. This allows us to
computeN (W) for a number of examples.
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1. Introduction

The main motivation for the present work comes from the studgpii models for link
invariants Such a spin model can be viewed as a square matrix with complex entries which
satisfies two equations, titgpe 1l andtype Ill equations. Any solution to these equations
yields an invariant of knots and links in 3-space via a construction due to V. Jones [21]
for symmetric matrices and generalized in [26] to arbitrary matrices. The problem of the
classification of solutions to the type Il and type Il equations seems to be very difficult,
and it was soon realized (see [17]) that it is deeply related with a classical topic in algebraic
combinatorics, namely the study asociation schemes

Roughly speaking, an association scheme on a (finiteXsist a partition of X x X
into relations which exhibits nice regularity properties. A standard example is given by
distance-regular graphésee [7]): X is the vertex-set and the relations correspond to the
possible values of the distance function. Another standard example is given by transitive
actions of finite groups oiX (see [5]): the relations are the orbits of the corresponding
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action onX x X. The regularity properties of the relations are conveniently described in
terms of their adjacency matrices: they span an algebra of matrices withalogted under
transposition. This algebra is called Bese-Mesner algebraf the association scheme. It

is also an algebra with unit (the all-one matrix) for the Hadamard (i.e., entrywise) product

of matrices. We always assume here that the ordinary matrix product is commutative. In
this case, Bose-Mesner algebras and association schemes are equivalent concepts.

In October 1994 the first author proved, using the topological interpretation of the type I
and type Ill equations, that every symmetric solutigrio these equations belongs to some
Bose-Mesner algebra [20]. Moreover, this algebra hdisadity, i.e., a linear automorphism
which, up to multiplication by a scalar, exchanges the ordinary and Hadamard product,
and whose square is a scalar multiple of the transposition map. This duality has a nice
expression in terms o, or equivalentiyWV is given by a solution to the so-calletbdular
invariance equatiorcorresponding to this duality (see [4]).

Immediately afterwards, the third author gave a purely algebraic proof that any symmetric
matrix W satisfying the type Il equation defines some Bose-Mesner alg¢dAd), which
will containW if the type Il equation is also satisfied [31]. This approach is obviously more
general than that of [20], and this is particularly significant since solutions to the type Il
equation (which we catlype Il matrice} are of great interest in the theory of Von Neumann
algebras and of some natural generalizations (see [1, 23]). Another advantage of this ap-
proach is that it can be generalized to non-symmetric matrices, and such a generalization
is the main content of the present paper.

To sum up, we shall generalize both the results of [20, 31] by associating with every
type Il matrixW a Bose-Mesner algebid (W), which containdV when this matrix also
satisfies the type lll equation. The Bose-Mesner alg@bfaV), where!W denotes the
transpose ofV, is dual to N(W), which means that there is a linear isomorphism from
N (W) to N(*W) which converts the ordinary (respectively: Hadamard) produdt (W)
into the Hadamard (respectively: ordinary) productNdfW). In particular, ifW can be
transformed into a symmetric matrix by multiplying row and columns by non-zero scalars
(this occurs for instance if the type Il equation holds,W) = N(*W) has a duality.

We give also a direct and explicit construction of the association scheme corresponding
to N(W), and of its symmetrization, in terms of certain graphs associatedWitihis
allows us to study effectively the tensor product construction for type Il matrices, and a
number of examples: character tables of abelian groups, Hadamard matrices of size 16,
type Il matrices of size 4, spin models for the Kauffman polynomial of links (see [17]), and
the spin models defined on Hadamard graphs by the third author (see [29]).

2. Preliminaries
2.1. Association schemes and Bose-Mesner algebras

For more details concerning this section, the reader is referred to [5, 6, 8-10, 32].
Let X be a non-empty finite set. A-class association schero@ X is a partition of
X x Xintod + 1 non-empty relation&,i =0, ..., d, such that the following properties

hold.
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(1) Ro={(X,x) | x € X}.
(2) Foreveny €{0,...,d}thereexists’' €{0,...,d}suchthaf(y,x)| (X,y) e R}=Ry.
(3) There exisintersection numbersi"jp(i, i, ke {0,...,d}) suchthat, for everyx, y) €

Rol{ize X|(x,2 e R, (z.y) € Rj}| = p.
(4) pfy = pl foreveryi, j, ke {0,....d}.

Remark Since all association schemes which appear in the present work satisfy property
(4), we have incorporated this property in our definition. Thus, we agree with the termi-
nology of [10], and our association schemes are commutative in the terminology of [5].

We denote byMy the set of square matrices with rows and columns indexeX bynd
entries inC. The(x, y)-entry of A € My is denoted byA(x, y). We denote by the identity
matrix, by J the matrix with all entries equal to 1, b the transpose o\, and byAB the
(ordinary) matrix product oA and B. The Hadamard product ¢k and B is denoted by
Ao B and defined byA o B)(X, y) = A(X, Y)B(X, y).

For everyi in {0,...,d}, let Ay € Mx be defined by:Ai(x,y)=1if (X,y) € R,
A (X, y) = 0 otherwise.

The facts that thé; have entries 0 or 1 and that tiRe form a partition ofX x X into
non-empty relations are translated as follows.

(5) A #0,A o Aj =40, j)A (wheres is the Kronecker symbol).

(6) TiloA =1

Properties (1), (2), (3) and (4) now become
(7) Ao=1.

8) ‘A = A

(9) AA; = AA =Y, Pk A

Let A4 be theC-linear span of A; |i =0, ..., d}. By (5) and (6),4 is a (commutative)
algebra under Hadamard product, with unity eleménand{A; | i = 0,...,d} is a
basis of orthogonal idempotents for this algebra. By (7) and49} also a commutative
algebra under matrix product, with unity element Finally, (8) means thatl is closed
under transposition. The vector subspatef My is called theBose-Mesner algebraf
the association schenf& |i =0, ...,d} on X.

Conversely, it is not difficult to show that every vector subspadd gfcontainingl and
J, closed under transposition, which is a commutative algebra under Hadamard product
and also under matrix product, is the Bose-Mesner algebra of some association scheme or
X. The only non-trivial step is the existence of a basis of orthogonal idempotents for the
Hadamard product, for which the reader is referred to [7], Theorem 2.6.1 (i) (the proof
given there obviously works for non-symmetric matrices as well).

A Bose-Mesner algeberd (or the corresponding association schemeyimmetridf
every matrix inA is symmetric. For every Bose-Mesner algebaits symmetrizationd
is the set of symmetric matrices it Clearly,.4 is a symmetric Bose-Mesner algebra. Its
Hadamard idempotents are tAefor all i withi = i” and theA; + A, for all i withi #£i’.
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Let A be a Bose-Mesner algebra ohwith basis of Hadamard idempoter{td; |i =
0,...,d}.

Since theA; are real matricesd is closed under complex conjugation, and hence also
under conjugate transposition. Then the commutativity of the matrix produdtiomplies
the existence of a unitary mattixsuch thatl ~1 AU consists of diagonal matrices. Note that
on this algebra the ordinary matrix product and the Hadamard product coincide. It follows

that A has a basi§E; | i = 0,...,d} such that the diagonal matrices = U 1E;U
satisfy the identityAj o Aj = 3(i, j)Ai (see again [7] Theorem 2.6.1 (i), or equivalently
AjAj = 8(i, A;. Thus{E; |i =0,...,d}is a basis of orthogonal idempotents for the

matrix product:
(10) EiEj =43, DE.

Sincel belongs ta4,

(11) Y E=1.

Since JA= AJ is a scalar multiple of] for all A in A, one easily shows that/|X])
Je{E|i =0,...,d}, and the notation is chosen so that

(12) Eg = |_>1<|‘J'

Since theA; have entries 0 or 1, thE; are Hermitian matrices, and the uniqueness of
the basis of orthogonal idempotents shows that

(13) Foreveny in{0,...,d}there exists in {0, ..., d} such thatE; = E; = E;.

Finally the fact thatd is closed under Hadamard product implies the existence of numbers
qikj (,j,ke{0,...,d}) called theKrein parametersuch that

(14) Ei o Ej = 5 Yhoodf Ex.

We now introduce several notions of isomorphism for association schemes and Bose-
Mesner algebras.

Two associationscheméR; |i =0,...,d}and{S |i =0, ..., d}onXareisomorphic
if there exist permutationg : X — X ando : {0,...,d} — {0O,...,d} such that
(p(x), p(y)) belongs taS,;, if and only if (X, y) belongs toR;.

Two Bose-Mesner algebrad and B in Mx are combinatorially isomorphidf there
exists a permutation matri® in My such that3 = P~ AP. Itis easy to see that and
B are combinatorially isomorphic if and only if the corresponding association schemes are
isomorphic.

For A andB as above, 8ose-Mesner isomorphism frato 5 is a linear isomorphism
¢ . A — Bsuchthatp(AA) = p(A)p(A) andp(Ao A) = ¢o(A) o p(A) for every A,
A'in A. In particular, for every permutation matrR, settingp(A) = P~LAP defines
acombinatorial Bose-Mesner isomorphigram A to P~1AP. However, a Bose-Mesner
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isomorphism need not be combinatorial. For instance, a 2-class symmetric association
schemeg Ry, R, Ry) is determined by the strongly regular graph corresponding to the rela-
tion Ry, and the Bose-Mesner algebras of two non-isomorphic strongly regular graphs with
the same parameters (i.e., intersection numbers) such as the Shrikhande graph and the lattic
graphL2(4) (see [7]) will be related by a non-combinatorial Bose-Mesner isomorphism.

A duality from A to B is a linear isomorphism : A — B such thatv(AA) =
Y(A) o W(A) andW (Ao A) = (1/|XDY (AW (A) for every A, A in A. If there exists
a dualityw from A to B, B is called adual to.A. Then one easily shows that|¥ 1 is a
duality fromB to A, and consequently is a dual to3. We shall say thatA4, B) is adual
pair.

Remarks

(i) Forthe sake of simplicity, we have adopted a non-standard terminology: if there exists
a duality & from A to B, one usually says thd} is “formally dual” to A. This is
to distinguish the following situation corresponding to an “actual dualit{’is an
abelian group, andl is contained in the Bose-Mesner algebta of X (the set of
matricesA in My such that, writingX additively, A(i + X, j + x) = A, j) for all
i, j, xin X). Itis well known (see Section 5.1) that there exist dualitesAx — Ax,
and, for any such duality, (A, ¥(A)) is a dual pair.

(il) Not every Bose-Mesner algebrd admits a dual Bose-Mesner algelffa Indeed a
duality from A to B sends the basis of ordinary idempotents/to the basis of
Hadamard idempotents @&. By comparing (9) and (14) one sees that the Krein
parameters of4 must correspond to the intersection numberd3pfand hence be
integers, which is not true in general.

(iii) Itis clear from (5), (7), (8) and (9) thapﬂ # 0 iff j =i’. It easily follows that every
Bose-Mesner isomorphism commutes with the transposition map. Similarly, since the
trace of E; E; equals the sum of entries & o 'E;, and the sum of entries &; is
3(i, 0)| X]| by (12), we obtain from (13) and (14) thq? # 0iff j =i. This implies
that every duality commutes with the transposition map.

Finally, letw : A — A be a duality. To conform to the standard terminology, we shall
call it aduality of A only if W2 = | X|t4, Wwherer 4 is the transposition map o4. We shalll
say thatA is self-dualif it has a duality in this sense.

Remark We do not know any example of a Bose-Mesner algebvéhich is not self-dual
but has a duality : A — A. The question of the existence of such examples is raised by
A. Munemasa in [16].

2.2.  Spin models for link invariants

In [21], Vaughan Jones has introduced a construction of invariants of links in 3-space based
on the statistical mechanical conceptspin model The main idea is to represent every
link by a connected plane diagram whose regions are colored black or white in such a
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way that adjacent regions receive different colors. Then one defines states of the diagram
as mappings from the set of black regions to some fixed finit&Xseft spins. There are
two types of crossings, positive and negative, and each one is assigned a weight matrix
W+ or W~ in M. For every stater and crossing incident with the black regions, r’,
let (o | v) = W*(o(r), o(r')) be the local weight o atv. Let (o) =[], (o | v) be
the weight ofo, where the product is over all crossings. Then the partition funciosn
>, (o), where the sum is over all states.

Itis shown in [21] that if the matriced/™, W™ satisfy certairinvariance equationghen,
after suitable normalizatiorz, defines a link invariant. The constructionin [21] assumes that
W™, W~ are symmetric. This restriction was removed in [26], which gives the following
invariance equations:

(15) (Y)W* ol =al, IWH =W+J = Da1J.
(iiyW-ol =atl,JW- =W~J = DalJ.

(16) WHW~ = |X]|I, W+ o'W~ = J.

(17) Forevery, 8, y in X,

D WX, )W (X, HIW (y, X) = DW* (@, )W (B, Y)W (y, @),

xeX

wherea € C* andD? = | X]|.

Remarks

(i) WhenW*, W~ are symmetric, this reduces to the invariance equations in [21].
(i) Assuming (16), Eq. (17) is equivalent to other similar equations usually chosen to
define spin models (see [26], Proposition 2.1).
(iii) (16) and (17) imply that (15) holds for sonzee C*.

We shall also refer to (15), (16) and (17) as the type I, type Il and type Il conditions
respectively, since they correspond to Reidemeister moves of these types (see [21, 26]).
The types also correspond to the degrees of the equations in terms of the enWiés of
W~ It will be convenient to reformulate the above equations in term&/ e W alone.

In particular, we shall say that a mati¥ in My with non-zero entries is type Il matrix
if it satisfies one of the following conditions, each of which is equivalent with (16) for
W+ =W:

(18) () Lxex wieg = 1XI8(b,¢)  forall (b, c)in X,

(i) Yxex woeg = IX18(b,¢)  forall (b, c)in X.
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2.3. Spin models and commuting squares

Let Dx consist of all diagonal matrices My and letW be an invertible matrix iMy. We
consider the followingquare

Dx C Mx
U U
C c W1lDyw

which is a diagram of inclusions of algebras under the matrix product (érédentified
with the algebra of scalar matrice®) x is endowed with the normalized trace Wty — C,
with tr(A) = (1/|X|)TracgA). Then the above square éemmuting(we describe here
a particular case of a very general object—see [12, 1]\ AB) = tr(A)tr(B) for every
A € Dy, B e W~1DxW. This situation can also be described in terms of orthogonal pairs
of algebras (see [14], Section 1.5 of [27, 28]). An easy computation shows that the square
is commuting if and only itV =1(i, j)W(j, i) = (1/|X]) foralli, j in X, that is if and only
if W is atype Il matrix.

The case whelV is unitary is of special importance for the study of subfactors in the
theory of Von Neumann algebras (see [1, 12, 23]). This occurs exactly when all entries of
W have absolute value/1/n, wheren = | X|.

3. Adual pair of Bose-Mesner algebras
3.1. Construction of the dual pair

Let W be a type Il matrix inMx. We introduce for each paib, c) € X x X two column
vectorsYye andY, indexed byX and defined as follows:

(19) Yoc(X) = (o2

W(x,c)’
’ W(b,
(20) Y{.(X) = WEC,;(;'
Let

N(W) = {A € Mx | Ypc is an eigenvector of for all b, c € X},
and
N'(W) = {A € Mx | Y. is an eigenvector oA forall b,c € X }.

Note thatN’(W) = N(*W). In the sequel we writé\ for N(W), N’ for N’ (W).
For everyAin N, let W (A) € My be defined by

(21) AYye = (W(A))(b, o) Yy forall (b,c) € X x X.
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Similarly, for everyA’ in N’, we defined’(A’) € Mx by
(22) AY], = (¥'(A))(b, oY) forall (b,c) € X x X.

We denote by (respectivelyzy) the restriction of the transposition mapNo(respec-
tively, N’).

Theorem1l N and N are Bose-Mesner algebras. Moreoy&@r(N) = N’, W' (N') = N,
and¥ : N — N/, ¥ : N — N are dualities such that'¥ = |X|zn, YV’ = | XN
Hence(N, N’) is a dual pair of Bose-Mesner algebras. Moreover when=NN’ and
v =¥’ N is a self-dual Bose-Mesner algebra.

Proof: Itis clear from (21) thalN is a vector subspace My and that¥ : N — My is
a linear map. We observe that

(23) Foreverycin X, {Ypc | b € X} is a basis of column vectors.

Indeed, the matrix with(x, b)-entry equal toYpc(X) is AW, where A = Diag[l/W
(X, €)]xex, and bothA andW are invertible.

It follows that W is injective.

Note thatl belongs toN, with W (1) = J.

Moreover, the type Il property (18(ii)) can be writtdnv,e = | X|8(b, ¢)1, wherelis the
all-one column vector. Sincé,, = 1 for everyb in X, this means thaf belongs toN,
with W (J) = | X|I.

Let now A, B be two matrices irN. It is immediate from (21) that, for ever, c) in
X x X,

ABYoc = BAYe = (W(A) (b, ©)(¥(B))(b, ©)Ypc.

This, together with (23), shows that is a commutative algebra under matrix product,
and thatl (AB) = W(A) o W(B).

We now show thatv (N) € N’.

For Ain N anda, b, cin X thea-entry of W (A)Y, is

W (b, x)

(Y (AY)@ =) (¥ (A)@, W x

XeX

By (21), (W (A))(a, X)Yax = AYax, and by considering-entries we obtain

W(c, a) _ ZA(C’ )W(y, a)

(W (A)(a, x) W, %) Wy, %)

yeX

and hence

W(b, x) _ ZA(C’ )W(y, a)W(b, x)

(WA @ X W(c, aW(y, x)’

yeX
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It follows that

Wy, W(b,
WA @ = 3 A, y) L) (Z ( X)>

= W(c,a) \ & W(y. %)
3 W(y, a) .
= nyj A(c, y) Wea IX|5(b,y) (by (18)())
. W(b,a) ,
= | X]A(c, b)W(c, 2 = | X|A(c, b)YbC(a).

ThusW (A)Y;, = | X|A(C, b)Y,

This shows thatr (A) € N’ with &/ (W (A)) = | X|A.

ReplacingV by'W, we see that all results obtained so far are also valid if we interchange
N andN’. Let us sum up these results.

(i) N, N’ are vector subspaces bfyx containingl, J.
(i) ¥:N — N and¥’: N’ — N are linear injective maps.
(i) N, N’ are commutative algebras under matrix proddatAB) = W(A) o ¥(B) (A,
Bin N), and¥’'(A'B') = W/(A) o ¥/(B') (A, B'in N’).
(iv) W' (W (A) = |X|Afor Ain N, U (W'(A)) = | X| W for A in N'.

By (ii), both W and W’ are bijective.

Let A, B belong toN. There existd\', B’ in N’ such thatA = W/(A’), B = W/(B’). By
(iv) we havew (A) = |X|W, w(B) = |X|'B". Now, by (i), Ao B = W/ (A)o W' (B) =
Y’ (A'B’) belongs toN. ThusN (and similarlyN’) is closed under Hadamard product.

Also note that by (iv)A = | X|~2W’'(¥(A)) belongs toN. ThusN (and similarlyN’) is
closed under transposition.

It follows that N and N’ are Bose-Mesner algebras. By (iW,¥ = |X|zn, YV =
|X|‘L’Nr.

Finally,

W(Ao B) = W(¥'(A'B)) = |X[(AB) = |X['(B'A)

= XIRYXIB) = — W (AW(B)
IX] IX]|
shows, together with (iii), tha® (and similarly®’) is a duality. ThugN, N’) is a dual
pair. If N = N’ and¥ = ¥/, W? = |X|zy andN is self-dual. O
Remarks

(i) We do not know ifN = N’ is a sufficient condition for the self-duality & (see the
remark at the end of Section 2.1).

(i) The idea of the construction of Theorem 1 comes from [31]. Actually, Theorem 1
generalizes the main result of [31] which states that (for symm&#jahe set of
symmetric matrices itN (W) is a symmetric Bose-Mesner algebra.



48 JAEGER, MATSUMOTO AND NOMURA

(iii) The algebraN’ has an interesting interpretation in the context of commuting squares.
A commuting square associated with a type Il matrix has a cevtaitkovian property
which allows the application of tHeasic constructioto this square. This construction
produces an infinite grid of commuting squares, with the initial square situated in the
left and lowest corner. Our algebh can be described in terms of this initial square
and the adjacent one on its right:

Dx = A0 C Mx = A1 C Az
U U U
C=As0 C WIDxW=Ag; C Aoy

Thesecond relative commutaassociated with the initial square is the algebra
AloN Az ={ae Ay |ab=baforallbe Ao}

(note thatab andba are well defined elements @¥; ,). It is shown in [1] that this second
relative commutant can be identified with the subalgeWta= N’(W) of My via some
appropriate isomorphism. As a consequence, some of the results and examples to follow
may have some interest in the study of towers of algebras and subfactors (see [23]).

3.2. Equivalences and the symmetric case

If Wis atype Il matrix and\, A’ are invertible diagonal matrices My, clearlyAWA' is
also a type Il matrix, and we shall say that this matrix is obtained Wétoy scaling
In the sequelW; andW, are type Il matrices.

Proposition 2 If W, is obtained from Wby scaling N(W,) = N(W;) and N(W,) =
N’(Wy).

Proof: The effect of scaling on each vect¥: or Y. defined by (19) and (20) is a
multiplication by a non-zero scalar. O

Now if P, P" are permutation matrices iy, PW P is also a type Il matrix, and we
shall say that it is obtained froWV by permutation

Proposition 3 If W, is obtained from W by permutation N(W,) is combinatorially
isomorphic to NW;) and N'(W,) is combinatorially isomorphic to NW).

Proof: There exist permutations, 8 of X such thatWa(x,y) = Wi(a(x), B(Y)).
For allx, b, cin X, let

Wi (X, b)
Wi (x,¢)’

Yoc(X) = (i=12.
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ThusYg.(x) = Yﬁl(b)ﬁ(c) (x(x)). Hence there exists a permutation mafisuch that
[Y2|(b,0) e X x X} ={PYL|(b,c) e X x X].

It follows that N(W,) = P N(W;)P~1, so thatN(W,) is combinatorially isomorphic
to N(Wy). Working with 'Wy; and'W, we also obtain thalN’(W,) is combinatorially
isomorphic toN’(W;). O

Remarks

(i) The equivalence of type Il matrices generated by scaling and transposition corresponds
to a natural notion of isomorphism of commuting squares [12]. Propositions 2 and 3
give only a special case of the result that higher relative commutants are invariants of
commuting squares [12].

(i) If W has entriest1, it is a Hadamard matrix. It is easy to see that in this case the
equivalence generated by scaling and permutation corresponds to the usual notion
of Hadamard equivalence. Hence the combinatorial typdd @¥) and N’'(W) are
invariants of Hadamard matric&¥ under Hadamard equivalence.

Assume now thaWV is a symmetric type |l matrix. Thu¥y.= Y| for everyb, cin
X. HenceN = N’ and¥ = ¥’. As a consequence of Theorem 1 and of the proof of
Proposition 2, we obtain:

Proposition 4  If a type Il matrix W is obtained from some symmetric matrix by scaling
N(W) = N’(W) is a self-dual Bose-Mesner algebra.

A matrix W is symmetrizablé it can be obtained from some symmetric matrix by scaling
(this definition is clearly equivalent to the one given in Section 2.1 of [24]). It is easy to
see that a matrix is symmetrizable iff it can be obtained from its transpose by some scaling
(which must be conjugation by a diagonal matrix).

3.3. Graph descriptions of the dual pair

Let W be atype Il matrix irfMy. The following idea was first introduced by Vaughan Jones
[22]. We shall associate with/ two undirected graph& andH on the vertex seK x X
and use them to describe the dual g, N'). These graphs will have no multiple edges
(but possibly loops) and two vertices (possibly equal) will be said to be adjacent if they are
joined by an edge.

Given two column vector$, T’ indexed byX, we write (T, T’) for their usual scalar
product) ", T(X)T'(x), and (T, T') for their Hermitian producd_, 4 T(X)T'(x) =
(T, T).

Two vertices(b, ¢), (d, e) will be adjacent inG (respectively,H) iff (Ypc, Yge) # O
(respectively{Ypce, Yge) # 0). ThusH has a loop incident with every vertex, a@dmay
have loops incident with some vertices. We denot&Byhe (proper) squared graph Gt
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two vertices are adjacent &? if there is a vertex to which they are both adjaceri(this
implies the existence i of a loop incident with every non-isolated vertex®y.

LetCy, ..., Cp (respectivelyKy, ..., Kqg; L1, ..., L;) be the connected components of
G (respectivelyG?; H).

Let A(C) (respectivelyA(Kj); A(L;)) be the matrix inMx with (b, ¢)-entry equal to 1
if (b, c) € C; (respectivelyK;; Li) and to 0 otherwise.

Let V(Ci) (respectivelyV (Kj); V(L;)) be theC -linear span of the set of vecto¥g.
such thatb, c) belongs taC; (respectivelyK;; L;i). We denote by the space of column
vectors indexed by.

Theorem 5

V= eBip=1V(Ci). Let E(C)) (i = 1,..., p) be the matrices in M, which represent
the projections V— V (C;) in the canonical basisof V. Thé&(C;) |i =1,..., p}
is the basis of ordinary idempotents Nf and {AC) |i =1, ..., p} is the basis of
Hadamard idempotents &¥’.

(i) V= @?:lV(Ki). Let E(Kj) (i = 1,...,Qq) be the matrices in M which represent
the projections V— V (Kj) in the canonical basisof V. Thé&(K;) |i =1,...,q}
is the basis of ordinary idempotents of Bnd{A(K;) | i = 1, ..., q} is the basis of
Hadamard idempotents of’N

(i) V =@_;V(L). Let E(L;) (i = 1,...,r) be the matrices in M which represent
the projections V— V (L;) in the canonical basis of V. Thdi(L;) |i =1,...,r}
is the basis of ordinary idempotents of Bnd{A(L;) | i = 1,...,r} is the basis of
Hadamard idempotents of’N

As a consequenceg = r > p with full equality if and only if N is symmetric.

Proof: By (23),{Ypc | (b,c) € X x X} spansV, and hence

p q r
V=) V(€)=Y V(K)=) V(L.
i=1 i=1 i=1

Let us show that these sums are direct. Note that by definitioW ti) are mutually
orthogonal with respect to the usual scalar product, an¥lig) are mutually orthogonal
with respect to the Hermitian product. Since these products are non-degenerate,

V(C)N ZV(C,-) ={0} and V(LN ZV(L,-) = {0}
i i

foralli, and henc& = ®"_V(Ci) = &[_,V(L)).

Let us now relate the connected component§divith those ofG.

If a connected component & is non-bipartite (this occurs for instance if some vertex
is incident with a loop), any two of its vertices can be joine@iby a path of even length
(possibly with repeated vertices and edges) and hence it also defines a connected componet
of G2.

On the other hand, a bipartite connected componer® afplits into two connected
components of52, each one corresponding to an independent s&.irLet K;, K; be
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two connected components 8f corresponding in this way to a bipartition of a connected
componentCy of G. SinceK; is independent irG, V (K;) is orthogonal to itself with
respect to the usual scalar product, and similarlyM@K;). Hence,V(K;) N V(K;) is
orthogonal toV (Cy), and also tab,.«V (C). It follows thatV (K;) NV (K;) = {0} and
V(Ck) = V(Ki) @ V(Kj). We conclude thaV = & ,V (Kj).

It is clear from their definition that thee(C;) (respectively, E(K;); E(L;)) are
orthogonal idempotents iMx. These idempotents belong b, sinceE(Ci)Yye = Yic
if (b,c) € Ci, E(Ci)Ypc = 0 otherwise, and similarly foE(K;) and E(L;). This also
shows thatV(E(C;)) = AC), Y(E(K))) = AK)), W(E(Lj)) = A(L;). Then, in
view of Theorem 1, the proof of Theorem 5 will be completed if we show that each of
{E(Ki)|i=1,...,q}and{E(L;)|i=1,...,r}spansN, and thafE(Cj)|i=1,..., p}
spansN (the equality® (N) = N’ comes from the equalityry = ¥ which follows
immediately from Theorem 1—see also Remark (iii) in Section 2.1).

Note that

W(x,b) W(x,c)
W(x,c) W(x,b)

(ch» ch> = Z

xeX

IX]#0

for every(b, ¢) in X x X and hence eacA(C;) is symmetric. It follows thaE(C;) € N
fori =1,..., p(using again the equality ry = T\ ).
If (b, c) and(d, e) are adjacent vertices &, for every matrixAin N,

"IJ(A)(b» C)<YbC’ Yde) = (Ach, Yde) = (ch’ 56\Yde>
= (W(A)(, & (Yoe, Yae)

implies that¥ (A) (b, ¢) = ¥ (A)(d, e).

In particular, ifA € N, U(A)(b, c) = W(A)(d, e) wheneverb, c) and(d, e) belong to
the same connected componen@oflt follows thatw (A) belongs to the linear span of the
AC),i=1,..., p, and henceA belongs to the linear span of thgC;),i =1, ..., p.

In general, ¥ (A)(b, c) = Y(A)(d, e) whenever(b, c) and (d, e) belong to the same
connected component @2. Then the same argument shows that every mairin N
belongs to the linear span of tlgK;),i =1,...,q.

Finally, if (b, ¢) and(d, e) are adjacent vertices i, for every matrixAin N,

W(A) (b, ©)(Yoc, Yae) = (AYoc, Yae) = (Yoc, AYae)
= (W(A)(d, ©(Ybc, Ye)

implies thatw (A)(b, c) = w(A)(d, e). Now W(A) = W(A) for everyAin N, as can be
easily checked by expressirgin the basis of ordinary idempotents and using (13) and the
fact that Hadamard idempotents are real.
It follows that W (A)(b, c) = ¥(A)(d, e) wheneverb, c) and(d, e) belong to the same
connected component &f. HenceA belongs to the linear span of thgL;),i =1,...,r.
O
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Itis clear from the above proof thatis non-symmetric if and only if some component of
G splits into two components @2, or equivalently into two components bf. Moreover
in such a splitting there exist cin X such thaib, c) is in one of the new components and
(c, b) is in the other. Hence we obtain the following result.

Proposition 6 N is non-symmetric if and only if G has a bipartite connected component.
Moreovet if N is non-symmetricthere exist bc in X such that the following properties
hold:

WX, b2 W(x,0? _
O 2 Woeor = L woxpr

(i) Z W(x, b)W(x, ) ~0
W(x, c)W(x, b)
Consequentlyif W is a real matrix N is symmetric.

xeX

Proof:

() is equivalent to{Ype, Yoe) = (Yeb, Yeb) = 0, i.e., to the fact that there is no loop @
incident to(b, ¢) or (c, b). This must hold if(b, c) and(c, b) are not adjacent B2,
since they are adjacent (.

(i) is equivalent to(Yye, Yep) =0, i.e., to the fact thatb, c) and(c, b) are not adjacent in
H. O

Remark When all entries ofV have the same absolute values (\W.is unitary up to a
factor) (i) and (ii) are equivalent.

Remark As suggested by one of the referees, we might have defined type Il matrices with
different sets of rows and columns. However, the type Il condition can be defined only if
we identify these sets. For the sake of simplicity, we choose the sanXefeseboth rows

and columns. Here we state briefly what occurs if we distinguish th& se#trows and

the setX’ of columns with the same cardinality. We reg&tas a linear map fron®[ X]

to C[X'], whereC[ X] denotes the vector space with baXis Then, the type Il condition
becomes the existence W~ € Hom(C[ X'], C[X]) such that

W o'W~ = J € Hom(C[X], C[X'])
WW- =n-1 e Hom(C[X'], C[X]).

Now N(W) is a subalgebra of HoniC[X'], C[X']) and N’(W) is a subalgebra of
Hom(C[ X], C[X]), which are dual to each other. Every result in Sections 3 and 4 that
uses only the type Il condition faW is still valid. On the contrary, any statement con-
cerning the type I, Il conditions or symmetricity ¥¥, like Propositions 4, 8-10, 12, and
Theorem 11, requires an identificationXfand X'.
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4. Some applications
4.1. Tensor products

Given two finite setsX;, X», we consider the bilinear map froMy, x Mx, to Mx,xx,
which associates witlh; € Mx,, A, € My, their Kronecker produch; ® A, defined by:

Ar ® Aa((X1, X2), (Y1, ¥2)) = A1(Xq, Y1) Ao(Xa, ¥o)  forall xq, y1 € Xyq, X2, Yo € Xo.

This establishes an isomorphism of vector spaces betigen, and the tensor product
Mx, ® My, and legitimates the use in what follows of the symigofor the Kronecker
product of matrices as well as for the tensor product of vector spaces of matrices.

We note thatif4,, A, are Bose-Mesner algebrasMy,, Mx, respectively, them; ® A,
(which is the linear span of the matricdg ® Ay, A1 € A;, A; € Ay) is a Bose-Mesner
algebrainMy, , x, Since(A1 ® A2) (B1® Bz) = (A1B1) ® (A2Bp), (A1® Ap) o (B1® Bp) =
(A10B) ® (Ao By) andt(Al R A)) =tA1 X tAg for everyAq, By in A; andA,, By in A,.

Let nowW; € My,, W € My, be two type Il matrices. It is easy to check that
W =W; ® W, is also a type Il matrix.

Using formula (19), we associate With', Wi, W; the VectorsY(p, p,)c,.c)» Yoo, Yiac,
respectively, for alby, ¢; in X; andby, ¢, in Xo.

Proposition 7
(i) NOW) = N(Wi) © N(Wy).
(i) N(W) £ N(Wp) ® N(W,) if and only if both NW;) and N(W,) are non-symmetric.

Proof: It follows immediately from (19) that

Yoy bos) (c1.00) (X1, X2)) = Vi, (X1) Yire, (X2).

Hence, for everyA; € N(Wp), Az € N(Wa), Y, ba)(€1,2) is an elgenvector o1 ® As.
This implies thatN (W;) ® N(W,) € N(W) and N(Wl) ® N(Wz) C N(W) Let G,
H be the graphs associated wiiti as in Section 3.3 and l&B;, H; (i = 1, 2) be the

corresponding graphs fak,;, W,. Clearly

(Yorbcren: Yndenen) = (Yoo YaelYac: Yae)

and similarly for the Hermitian produdt, ).

Hence((by, by), (c1, ¢2)), ((d1, d2), (€1, &)) are adjacent ir5 (respectivelyH) if and
only if (by, ¢1), (dy, e1) are adjacent irG; (respectively,H;) and (b, ¢2), (d2, &) are
adjacent inG; (respectivelyH,).

If we identify each vertex(by, by), (c1, ¢)) of G with the pair((bs, ¢;), (by, ¢y)) formed
with one vertex of5; and one vertex 0B, we see tha6 is thecategorical product G- G,
of G; andG; (see [34]). SimilarlyH = Hj - Ho.

We shall need the following graph-theoretical result (see [34]): the categorical product of
two connected graphs is disconnected if and only if each of these graphs is bipartite. From
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this it easily follows that the number of connected components of the categorical product of
two graphs is different from the product of the number of connected components of these
graphs if and only if each of these graphs has a bipartite component.

Letr,rq, ro be the numbers of connected componentkipH;, H,. Each vertex irH;
or H; is incident with a loop, henckl; and H, have no bipartite components. It follows
thatr = ryro. By Theorem 5, this means that diiW) = (dimN(Wp))(dimN(W5)) =
dimN(W;) ® N(W,) and henceN (W) = N(Wp) @ N(W,).

Now let p, p1, p2 be the numbers of connected component&pfs;, G,. The same
argument shows thadl(W) * N(Wl) ® N(Wg) iff p#£ p1p2, thatis iff bothG,, G, have
some bipartite component. By Proposition 6, this occurs if and only if boft;) and
N(W,) are non-symmetric. O

4.2. The type | property and expressions for duality

Let W+ be a type Il matrix inMx. We defineW~ so that the equations
(16) WHW~ = |X|I, WTo W~ =]

hold.

Proposition 8

(i) If1 o W = al for some ac C*, W(A) = a W+ o (*W+ o A) W) for every A in
N(W+).

(i) IfW~J = DaJ for some a and D i€*, W¥(A) = D la"1('W+ o (W~ A))'W~ for
every Ain NW™).

Proof:

(i) Consideringb-entries in the equation
(21) AYoc = (W (A))(b, €)Yy,
we obtain

> Ab. )WHX, D)W (c, X) = (¥(A) (b, )W* (b, )W (c, b)

xXeX

and hence

(¥(A)(b,c) =awt(b,c) Z A(b, X)W (x, byW~(c, X).

xeX

It is easy to see that the right-hand side ishec)-entry ofa=* W+ o (tW* o A) 'W™).
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(i) Consideringb-entries in the equation
W™ AYse = (W (A)(b, €) W™ Ype,
we obtain

Y Wiby) Y AW OWHX, W (e, 0)

yeX xeX

= (W(A)(b,c) Y W (b, y)W*(y, )W (c, y)

yeX

= (W(A)(b,c) Y "W (c,y) = Da(¥(A)(b,c).

yeX
It is easy to see that the left-hand side is thec)-entry of (W o (W~ A)) tW—. O
Remarks

(i) Many other similar expressions faror W’ can be obtained under each of the hypotheses
of Proposition 8.
(i) Each of these hypotheses can be realized by using scaling.

4.3. Spin models for link invariants
We keep the notations of the preceding section.

Proposition 9 The following properties are equivalent:
(i) Wt e N(Wt)
(i) Wt satisfies the type Ill conditio(l7) for some De C*.

Proof. (17) can be written
'WtYg, = DW (B, %)Ys, (forall g,y in X).
Thus (17) is equivalent to the property thaft € N(W™) with ¥ (*W+) = DW—, or,
by Theorem 1, to the property that™ ¢ N(W™) with W (W*) = D'W~.

Conversely, iftW+ € N(WT), or equivalently W+ € N(W™), let F = ¢(*W+). Then
the equalityW*Yg, = F(B, ¥)Y;, can be written

ZW*(X, )WH (X, AW (v, X) = F(B, y)WH(a, AW (v, @) (foralla € X).

xeX

Whena = y this becomes

D WHX, B) = F(B, e)W* (@, W™ (o, @).

xeX
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SinceN (W) is a Bose-Mesner algebra, there exist constanisin C* such thatl W =
Da1J,1 o W~ = a1l (note thatW~ has non-zero entries, so that a diagonal element is
of the forma~* for somea e C*, andW is invertible, so thatl W+ is non-zero).

Thus we obtainDa™! = F(B8, )W (a, B)a %, i.e., F(8,«) = DW~ (B, o). Hence
V(W) = F = DW™ as required. O

Remark If (17) holds for some arbitraryp in C*, we may multiplyW™ by a suitable
constant to obtain the same property with= | X|. This normalization is needed to realize
the topological invariance of the partition function.

Proposition 10 If the type 1l condition(17) holds then W is symmetrizable.

Proof: The exchange af, 8 in (17) leaves the left-hand side invariant. Consideration of
the right-hand side leads to the identity

W*(a, W™ (B, ¥ )W (v, @) = WH (B, )W (o, ¥ )W~ (¥, B),
which for any fixedy in X is equivalent to the equation
AWTA = A"'WHA

whereA = Diag[W~ (¥, X)]xex, A" = Diag[W~ (X, y)]xex- SinceA andA’ are invertible
andAWT A’ is symmetric W™ is symmetrizable. O

We may now state the following result.

Theorem 11 Let W be a type Il matrix. Then W& N(W) if and only if some scalar
multiple Wt of W gives a solution to the invariance equatigts), (16), (17) and hence

defines alink invariant. Inthis cas®l (W) = N(W™) is a self-dual Bose-Mesner algebra
with duality & given by

W(A) =a Wt o (‘W (‘W' o A)
=D ta t'W (‘W o (W™A)) (forall A e N(WT)).

Proof: This is an immediate consequence of Propositions 9, 10, 4 and 8 using the com-
mutativity of the matrix product oN (W), and the remark thaty— and'W~ belong to
N (W) since!W~ is the inverse ofW+ under Hadamard product. O

Remark Theorem 11 generalizes the main result of [20], which states that symmetric
matricesW, W~ satisfying (15), (16) and (17) belong to some symmetric self-dual Bose-
Mesner algebra with duality expressed in a similar way as in Theorem 11. The Bose-
Mesner algebra in [20] is the image of a certain algebra of tangles under a matrix-valued
partition function map. It can be shown that this algebra is contain®{¥'*) (see [20],
Proposition 6). The proofrelies on a diagrammatic descriptid@¥+) givenin[1] for the
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second relative commutant of a commuting square associated with a spin model. The two
algebras need not be equal, evenifthey are both symmetric, as shown by the following exam-
ple. If a symmetric Hadamard mati¥* satisfies the type Il property (17), one can show
that the algebra from [20] has dimension 3 (whXih> 4). This is becaus&/* = W~ and

hence the partition function map “forgets” the spatial structure of tangles. Onthe other hand,
we shall give in Section 5.2 examples of Hadamard matWgaa My, where| X| is any

even power of 2, which yield an algebiyW) of dimension| X| containingW.

We now point out that the expression of the dualitygiven in Theorem 11 means that
W is given by a solution of thenodular invariance equatiofor the Bose-Mesner algebra
N(W™) (see [4] where slightly different notations are used).

Let P be the matrix of¥ in the basis of ordinary idempotentg; | i = O, ..., d} of
N(WT). Thus the indices of the Hadamard idempotehtsj = 0, ..., d can be chosen
so thatA; = Zi":o PG, j)Ei = W(Ej) fori =0,...,d (andP is afirst eigenmatrixof
N(W*)). We write'W~ in the formD Zid:oti E; and reformulate the identity

V(A =a*Wo ("W ("Wt o A) (Ae NWH)

in terms of the;. Let T = Diaglti]io,....d;-

Proposition 12 The identity
V(A =a WHo (W ("W o A) (Ae N(WT))
is equivalent to the equatiafP T)® = aDqI.

Proof: Recall from the proof of Proposition 9 th&t(*'W+) = DW~ and henca&/ (W~) =
DWT (this also follows easily from the above identity appliedAo= W~). Hence
twt = Y% tA. Clearly T is the matrix of the mapA— 'W* o A in the basis of
Hadamard idempotents. Similarly, the matrix of the mdap- "W~ Ainthe basis of ordinary
idempotents iDT. Hence, the matrix of this map in the basis of Hadamard idempotents
isDPITP.

Since!(‘W* o 'A) = W+ o A, the matrix of the mapA — W™ o A in the basis of
Hadamard idempotents BT RwhereR is the matrix of the transposition map in this basis.

Finally, the matrix of¥ in the basis of Hadamard idempotent$is'P P = P.

Thus the identity of Theorem 11 translates into

P=aRTR(DPTPT.
SinceP? = DZ?R, this become® = a'D'RTPTPTor (PT)% = aD®l. O
This is the modular invariance equation considered in [4], whose origin is to be found in
[2].

We conclude that spin models for link invariants in the sense of [26] can be classified in
terms of solutions of the modular invariance equations for self-dual Bose-Mesner algebras.
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Note, however, that there exist solutions of the modular invariance equations which do not
satisfy the type Il condition (see [4]).

5. Examples
5.1. Abelian group schemes

Let X be a finite abelian group written additively.

For alli in X we defineA; in My by the identityA; (X, y) = §(y — X, i). Then properties
(5)—(7) trivially hold, and properties (8), (9) also hold with= —i, pikj = 8Kk, i + ).
Thus theA; are the Hadamard idempotents of a Bose-Mesner algéb(the corresponding
association scheme is tgmup schemef X) of dimensior X|. For convenience we replace
the index seto0, ..., d} (whered = | X| — 1) by X.

Let {E; |i € X} be the basis of ordinary idempotents .df, and write Aj = >, _«
P, j)E; for all j in X: this defines thdirst eigenmatrix Pof Ax (for some choice
of indexes of the idempotents).

The equalityAj Ax = Ajik translates into the identitP @, j) P, k) = P, j + k).
Thus each row oP represents a character ¥f It is well known that there exists exactly
| X| such characters, and sinBds invertible each one appears as a rovPofin the sequel
we write P(i, j) = xi(j) (i,j € X), and{x | i € X} is the set of characters of.
Property (18(ii)) forW = P reduces to the classical identi}y; y xi (b — ¢) =[X|8(b, ¢),
or equivalently property (18(i)) reduces to the orthogonality relations of characters. Thus
P is a type Il matrix.

By (19), Ypc(i) = xi(b—c) foralli, b, cin X. Hence the set of vectol$ ¢ (b, cin X)
is identical to the set of columns &f. It follows thatN (P) is the set of matrices in My
such thatAP = P A for some diagonal matria and hence has dimensipX|. Moreover,
for Ain N(P), the Eq. (21)AYye = (W (A))(b, ©) Yy shows thatV (A) € Ax since Yy
only depends ob — c. It then follows from Theorem 1 that’(P) = Ax.

N (P) itself is not in general equal tdx. However it is possible to choose the indexing
of the characters of so thaty; (j) = x;(i) foralli, j in X (see for instance [7] Proposition
2.10.7). TherP is symmetric andN(P) = N'(P), ¥ = W',

Remark One can show that dualities gfx correspond exactly to the indexings of the
idempotents for whichP is symmetric. These dualities are classified in [6].

Assume now thaP is symmetric.

In [4] it is shown that the modular invariance equatid@T)® = Al, wherex # 0
andT = Diaglti]iex, is equivalent to the identity; (j)tit; = ti;; (for some appropriate
normalization). LettheW =) _, ti A € Ax.

One easily checks that

W(x, b) _ ty
W(x, 0) = EXX(C_ b)

and it follows thatw is a type Il matrix. Moreover, one shows as above tatV) = Ax.
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Now it follows from Theorem 11 that (after suitable normalizatidhdlefines a link invariant
(see also [4, 18] for other proofs of this fact).

Remarks

(i) If forinstanceX is a cyclic group of odd order, w is a primitiventh root of unity and
xi(j) = 0?1, settingti = »'* we obtain a symmetric matri/ = Y, _, ti A; such
thatN (W) is the non-symmetric Bose-Mesner algelta.

(i) We leave it to the reader to reprove the above results using the graph descriptions of
Theorem 5.

Conversely, suppose now thidiW) has dimensionX| = n for a type Il matrixW in
Myx. We shall show thatV is obtained by scaling from a character table for some additive
group structure oix.

By Theorem 1N’(W) has also dimension.

Let Ay, ..., A,_; be the Hadamard idempotents Nf(W). These matrices commute
with J (by (6) and (9)) and hence have constant (non-zero) row sum. @ﬁgé A=
by (6), eachA{ is a permutation matrix. It then easily follows from (9), (7) and (8) that
thesen permutation matrices form an abelian group with identity elerdgnrom now on
we identify{0, ..., n — 1} with X, so that the basis of Hadamard idempotentsl @) is
{A | x € X}. We equipX with the additive group structure such tig§i(y, z) = §(z—y, X)
for everyx, y, zin X, and we denote bg € X the zero element of this group.

Using appropriate scaling we may assume Wax, €) = W(e, x) = 1 for everyx € X.

For any two elementg, z of X, consider the vertice§y, y + z) and(e, z) of the graph
H defined in Section 3.3. Clearly these vertices belong to the connected compohtnt of
corresponding to the Hadamard idempotéfias stated in Theorem 5 (jii). Hence each of
Yy,y+z andYe ; is orthogonal (with respect to the Hermitian product) to all vectors of the
form Yz e, wherez' = —z, and, by (23)Yy, v+, andYe ; are collinear. Comparing-entries
we obtain thatvy v, = Ye,. By (19) this givesW(x, y)W(X, y + 2)~1 = W(x, 2)* for
everyx € X. Thus, for evenk, y, zin X, W(X, y + 2) = W(X, Y)W(X, ). This means
that for everyx in X, the mappingy — W(x, y) from X to C* is a character of the additive
group X. There aren such characters amdrows of W. SinceW is invertible, each char-
acter of X appears exactly once as a ronMf andW is a character table for the additive
group X.

5.2. Hadamard matrices

Keeping the notations of the preceding sectionXifs an elementary abelian 2-group
its characters take their values {1, —1} and henceP is a Hadamard matrix (called a
Sylvester matrix). Thus there exists Hadamard matides My such that dinN (W) =
| X| whenevel X| is a power of 2.

Moreover, if| X| is an even power of 2, let us identiky with G F(2)?™ for somem > 1,
and letQ be a quadratic form oX associated with some symplectic foBn That is,B is
a non-degenerate bilinear form &nwith B(x, x) = Oforallx € X,andQ : X — GF(2)
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satisfies the identity

QX))+ Q(Y) + Qix +y) = B(X, y).

The characters of can be labeled such that(j) = (—1)B% foralli, j in X, and then
xi(j) = x; (). Moreover, if we set; = (—1)Q® for everyi in X, the modular invariance
equationy; (j)tit; = ti,j is satisfied. Henc&/ = ;4 t; A/ is a Hadamard matrix with
W e N(W) = Ax.

When|X| = 16 andX is identified withG F(2)*, our computations show that for every
Hadamard matrixV in My, N(W) is contained indx (up to combinatorial isomorphism)
and thus we have dual pairs of Bose-Mesner algebras coming from an “actual duality” as
described in Remark (i) at the end of Section 2.1. More precisely, it is well known that
there exist exactly 5 Hadamard equivalence classes, ddidis Classes I-\see [33],

p. 420), of Hadamard matrices of order 16. Using Theorem 5 we have comiutéd
for one representative matri%/ in each class. The resulting Bose-Mesner algebras can be
described as follows (up to combinatorial isomorphism).

(i) As shown above, there is a symmetric Hadamard mawiwith W € N(W) =
N’(W) = Ax. This matrixW belongs to Hall's Class I.

(i) Write X = X3 x Xp, whereX; ~ X, ~ GF(2)?, and identify. Ax with Ax, ® Ax,

(see Section 4.1). A second symmetric Hadamard ms¢rixvhich belongs to Hall's
Class Il) yields the Bose-Mesner algetNgW) = Ax, ® | + I ® Ax,. If ¥ andW;
are dualities ofdx, and.Ax, respectively(¥; ® ¥,)(N'(W)) = Ax, ® J + | @ Ax,.
Itis now easy to show, using appropriate combinatorial isomorphismsfron® Ax,
to Ax, ® Ax,, and betweemdx, and.Ax,, thatN’(W) is self-dual.

(iii) For athird symmetric Hadamard matri%¢ (which belongs to Hall's Class 1IN’ (W)
is the linear span of the matricksJd, A;, E; in Ax, whereA; is a Hadamard idempotent
distinct from1, E; is an ordinary idempotent distinct frody andA E; = E;j. Itis
easy to show that this Bose-Mesner algebra is self-dual.

(iv) Finally, we have a Hadamard matri%¢ (which belongs to Hall's Class 1V) which is
not equivalent to its transpose (which belongs to Hall’'s Class V). The Bose-Mesner
algebraN’(W) is the linear span of, J, A;, whereA; is a Hadamard idempotent of
Ax distinct from| (or equivalently, the Bose-Mesner algebra of the graph formed by
8 disjoint edges), anbl’ (‘W) is the linear span of, J, ¥ (A;) for some dualityr of
Ax (or equivalently, the Bose-Mesner algebra of the complete bipartite dfagh
This example is used in [23] to construct a subfactor which is not self-dual.

In contrast with the above ca$¥| =16, one can show that when= 4 (mod 8,
n > 12, andw is a Hadamard matrix of orde; N(W) = N’(W) is always the linear span
of | andJ (see [1]). Indeed this follows easily from Theorem 5 and from the fact that

o WX, b) W(x, d)
(Yoe, Yde) = ); W(X, c) W(X, €

is non-zero whenevd, ¢, d, eare all distinct. To check this last statement, we may assume
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withoutloss of generality tha/(x, b) = 1forallx. LetA, B, C, D be the sets of rowindices
x such thatW(x, ¢), W(x, d)) equalg1, 1), (1, —1), (-1, 1), (=1, —1) respectively. Itis
well known and easy to prove thagk| = |B| = |C| = |D| = n/4. Now letA™, B*,C™,
D™ be the sets of row indicesin A, B, C, D respectively such that/(x, e) = +1. The
orthogonality of the colume with the columns, ¢, d gives|AT|+ |BT|+ |CT|+|DT| =
n/2,|A*|+|B*|+|C—C*|+|D - D*| =n/2,|AT|+|C*|+|B—B*|+|D—D*| =
n/2, and hencdA*| + |B*| = |C*| + |D*| = |Af|+|C*| = |B*| + |D*| =
n/4. On the other hand,Ype, Yae) = 2|AT| — |A| +2|D*| — |D| — (21BT| — |B)) —
(2IC*T| —|C|) = 2(|A*| +|D*| — |B*| — |C™|). This is non-zero since otherwisA™| +
|ID*| = |BT|+|C*| = n/4 and the three numbel&™ |+ |B*|, |BT|+|C*|, |Ct|+|AT]
are odd, a contradiction.

5.3. Type Il matrices of size four

Let X = {1, 2,3,4}. Consider the following symmetric matrid (1) in My for each
complex numbek # 0:

11 1 1
1 1 -1 -1

U@ = ;
1 -1 x» -x
1 -1 —x A

As easily shownU (1) satisfies the type Il condition (18).

Proposition 13
(i) Every type Il matrix We My is obtained by scaling and permutation fron{AJ for
some.
(i) U(n) is obtained from Wu) by scaling and permutation if and onlyyif = +1*.
(i) SetN= NU (2)). We havelimN = 4ifand only ifA* = 1 (ptherwisedim N = 3),
and we havelimN = 4if and only ifA? = 1 (otherwisedimN = 3).

Proof:

(i) We may assum&V(1, x) = W(x,1) = 1 for all x € X by scaling. Then the type I
condition implies

(24) erx W(b, x) = erx m = erx W(x, b) = erx m =0
forallb € {2, 3, 4}.
Claim Forb e {2, 3,4}, W(b,d) = W(e, b) = —1 holds for somel, e € X.

This can be shown as follows. By (24) we have

1 1 1

1+W(b,2)+W(b,3)= —W(b,4 and 1+ Wb.2) + Wb, 3) = — Wb
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Multiplying these two equations, we obtain

1 1
1+ W(b, 2) + W(b, 3))(1 * Wo s T W 3)) =1,

and this is equivalent to

1 1
(W(b, 2) + W(b, 3)) (1 + W, 2)) <1 + Wb, 3)) =0.

SoifW(b, 2) £ —1 andW(b, 3) # —1, then we must hawd/(b, 2) + W(b, 3) = 0, and
henceW (b, 4) = —1. The proof thatW(e, b) = —1 for somee € {2, 3, 4} is similar.

By the above claim, we may assum&2, 2) = —1. We distinguish the following three
cases foW(2, 3).

First let us consider the ca¥¥(2, 3) = 1. In this case we hawd/(2, 4) = —1 by (24)
and alsaw (3, 3) = W(4, 3) = —1 by the above claim and (24). Let us $¥t3,2) = A.
Then we haveV (4, 2) = W(3,4) = —x andW(4, 4) = X by (24). ThenW is obtained
from U (1) by exchanging the second column and the third column.

The casaN (2, 3) = —1 (in this case we havé/(2, 4) = 1 by (24)) can be reduced to
the above case by exchanging the third column and the fourth column.

Nextletus considerthe ca¥é&(2, 3) = +1. LetusseW (2, 3) = A. ThenW(2,4) = —x
by (24). By the above claim, one &% (3, 3) and W(4, 3) must be equal to-1. We
may assuméV (3, 3) = —1 (exchange the third and the fourth row if necessary). Then
W(4,3) = —x by (24). Let us consider the fourth column. Sind&2, 4) # —1, one
of W(3, 4) andW(4, 4) must be—1 by the claim. IfW(4, 4) = —1, thenW(3,4) = A
by (24), and the type Il condition applied to the third column and the fourth column im-
pliesA? = 1, contradictingW(2, 3) # +1. Therefore we must haw/(3, 4) = —1 and
W(4,4) = 1. ThenW(3,2) = 1 andW(4, 2) = —1 by (24). NowW is obtained from
U (1) by exchanging the second row and the third row. This completes the proof of (i).

(i) Assumep = £1*1. Whenu = —2, U (1) can be obtained frord (1) by exchanging
the third row and the fourth row. Whem = A%, U (1) can be obtained fror (1) by
the following steps: multiply the third row by and the fourth row by-1, exchange the
first column with the third column, exchange the second column with the fourth column,
and then multiply the second row byl. The casg. = —A ! is reduced to the above two
cases.

To show the converse, we introduce the following £€W) for each type Il matrixV:

W(b, d)W(c, e)

AW) = { W(b, e W(c, d)

b, c d, ec X}.

Clearly A(W;) = A(W>) holds if Wy is obtained from\W, by permutation and scaling.

As easily shown, we hava (U (1)) = {+1, £1*1}. Hence, ifU (1) is obtained from
U(u) by permutation and scaling, we haye1, £1%1) = {+1, £4*). This implies
w = A%
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Table 1
(b, ) Entries ofYye

1,1) (2,2) 3,3) (4,4) 1 1 1 1
1,2) (2,1) (3,4) (4,3) 1 1 -1 -1

(1,3) (24) 1 -1 At 3t
(3.1) (4.2) 1 -1 A A

(1,4) (2.3) 1 -1 -t At

(4.1) (3.2) 1 -1 —A A

(iii) By Theorem 5, the dimension dfl (respectivelyN) is given by the number of con-
nected components of the gragh(respectively,H) on the vertex seK x X. The
vectorsYy (see (19)) are given in Table 1.

Let us determine the connected components of the geapBlearly
Ci={11), (22, (33, 44} and C2={(1,2), (21, 34, (43)}
are components db. Since(Y13, Yz1) = (Y14, Y41) = 4 # 0,
C:3=1{(123), (B, (24, 42} and Ci={(14, 41), (23, (32}

induce connected subgraphsGn Moreover, we havéYys, Yis) = 2(1 — 272). So when

A # x1, (1, 3) is adjacent td1, 4), and henceéC; U C4 forms a connected component of
G. Wheni = £1, it is easy to show that there is no edge betwégandC,, and soC;
andC, are connected components®f Therefore we have difd = 4 whenx = +1, and
dimN = 3 otherwise.

Next let us determine the connected components of the gflapblearly,C; andC, are
connected components Bif. The values of some Hermitian produgt4,., Yqe) are given
in Table 2.

Therefore, we havéYis, Ya1) = (Yas, Ya1) = 0 if and only if A./—1 is real, we have
(Y13, Ya1) = (Ya1, Y1) = O if and only if A is real, and we havgYis, Yi4) =
(Y31, Y41) = O if and only if |A\] = 1. Then it can be easily shown that the 3etx

Table 2

Y31 Y14 Ya1

Yis 20 +A"1) 21— 7h 2(1— 21

Ya1 21-337h 2(1— 33

Y14 21+ A~
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X — (CL U Cy) is not connected (and splits into two connected components) if and only if
A% = 1. Thus we have difl = 4 if A* = 1, and dimN = 3 otherwise. O

Remarks

() Itis not difficult to see that there is a unique type Il matrix of size= 2 or 3 up to
permutation and scaling.

(i) Whenx = £1, N is the Bose-Mesner algebra of the groi@y22)?, and whem =
+./—1, N is the Bose-Mesner algebra of the grai#Z. OtherwiseN is the Bose-
Mesner algebra of the square (i.e., the cycle on 4 vertices, which is a strongly regular

graph).

5.4. Spin models for the Kauffman polynomial

The Kauffman polynomial is an invariant of links which can be characterized by a certain
exchange equatiofsee [25]). It is shown in [13, 17] that one can obtain symmetric spin
models whose associated link invariant is an evaluation of the Kauffman polynomial by
adding to the invariance equations (15)—(17) the following matrix version of the exchange
equation:

(25) W+ — W~ = z(DI — J).

Herez is some parameter which is related to the parametebsappearing in (15)—(17)
by the equation

(26)a—at=zD-1
((26) is obtained by considering the diagonal entries in (25)).

Remark There is another version of (25) where the minus signs are replaced by plus
signs, but it is essentially equivalent to the previous one. To simplify the exposition we
shall consider only (25).

We now studyN (W) whenW, W~ are symmetric and satisfy (15)—(17) and (25). Let
A be the linear span dfl, J, WT}. Itis easy to show (see [17]) that is a (symmetric)
self-dual Bose-Mesner algebra.

If A has dimension 2W is a linear combination of and J: we have a Potts model,
and the associated link invariant is the Jones polynomial. The al¢epa) for this case
is studied in [1].

From now on we assume thdthas dimension 3 and henpé| > 4.

If z= 0, Wt = W~ is a Hadamard matrix (by (25) and (16)). Some examples of
such matrices satisfying (15)—(17) with= 1 andD = +2™ for some integem have
already been described in Section 5.2 in terms of a quadratic for@Fe@)2™ (the proof
that one can tak® = +2™ in (15) and (17) is easy and left to the reader).Wf is
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such a matrixN (W) is the Bose-Mesner algebra of (the group schemésdt)2)?™ and
hence has dimensior2 We do not know if other types of symmetric Hadamard matrices
W™ = W~ satisfying (15)—(17) can exist.

From now on we assume that# 0.

Let us write W™ = al + t1A; + t2A,, where Ag = |, A;, A, are the Hadamard
idempotents ofd. Then, by (16)W~ = a~*l 4 t;*A; + t,;*A,. Considering the non-
diagonal entries in (25) yields = tl‘1 -1t = t{l — tp. SinceA is three-dimensional,
t1 # t; and hencd, = —tl‘l. If | X| = 4, let us assume without loss of generality thatis
the adjacency matrix of the square. Then it is shown in [17] that we have a spin model for
the Kauffman polynomial as soonas= t{l. In this case one easily shows thEt can be
obtained fron (t; %) (see Section 5.3) by scaling and permutation. By Proposition 13 (iii),
dimN(W*) = 4ifand only ift{® = 1 (otherwise dinN(W+) = 3), and dim{N (W+)) = 4
if and only ift® = 1 (otherwise dinN(W+) = 3).

From now on we assum&| > 4.

Let us compute

W (x, b)W+(x, b)
W+ (x, c)WT(x, d)

(Yoe, Yoa) =)

xeX

for everyb, c,d € X.
By (25), (15) and (16) we have

WT oWt =W"o (W™ 4+2zDIl —2J)=J +zDal —zW"
and hence

WT(x, b)? = 1+ zDas(x, b) — zZW*(x, b).

This gives
1 zDa
Yoo, Yod) =
(Yoo, Yoa) ; W X.OW' (x.d) T W' (b.OW* (b, d)
W+
= WHX, O WH(X, d)

Using (16) this becomes

(27) (Yoe, Yod) = D yex W™ (X, QW™ (X, d) + zDaW (b, )W~ (b, d)
—ZY ex WHX, D)W (X, OOW~ (X, d).

The first term of (27) is théc, d)-entry of (W~)2. By (25), (15) and (16),

(W2 =W~ (W —zDIl +2zJ) = |X|| —zDW" +zDal
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and hence the first term of (27) jX|§(c,d) — zDW (c,d) + zDa. It is easy to show
that if (16) and (17) hold for the matrice#/™, W~, they also hold if we exchange
WT andW~. Hence the third term of (27) is equal tz DW~(c, )W (b, )W (b, d).
Thus finally

{Yoe, Yod) = |X|8(c,d) —zDW~(c,d) + zDa+ zDaW (b, c)W~ (b, d)
—zDW(c, )W (b, )W+ (b, d).

Assume now tha#\ (b, ¢) = Ai(b,d) = Aj(c,d) = 1forsomd, j € {1, 2}. Then

(Yoo, Yoa) =zD(—t;'+a+at > —t?7)
=zD(1+t)(at? — ;).

We may now distinguish the following cases.
() (1+t)(at?—t;!) #0foralli, j € {1,2}.

Let G be the graph defined on the vertex ¥ek X as in Section 3.3(b, ¢) and(d, e)
are adjacent iff{Ypc, Yge) # 0. LetG; (i = 0,1, 2) be the subgraph d& induced by
{(b,c) e X x X | Ai(b,c) = 1}. ClearlyGq is connected (actuallg is a clique and
forms a connected component®j.

SincezD # 0, our hypothesis implies that (b, ¢), (b, d) are distinct vertices o6;

(i = 1, 2) they are adjacent. Singb, ¢) and(c, b) are also adjacent, it easily follows that
G; andG; are connected.

Hence by Theorem 5 (ilN(W+) has dimension at most 3. By Proposition 9, and since
W is symmetric W+ ¢ N(VW) and henced C N(\TVﬂ. It follows thatN(\TVﬂ = A

Note that if bothA; and A, have row sum at least &; andG, have triangles induced
by sets of vertices of the foriib, c), (b, d), (b, )}. Since|X]|> 4, Gy, G1, G are non
bipartite and, by Proposition & (W*) = N(W+) = A.

Otherwise, since itis shown in [17] thAf, A, are adjacency matrices of complementary
strongly regular graphs which are connected ¥gr> 5, we must haveX| = 5 (thenAy, A,
correspond to complementary pentagons). This case is settled using Section 3.6.3 of [17]
and Remark (i) of Section 5. 1N (W) is the Bose-Mesner algebra of the group scheme of
Z/5Z.

(i) t2=—1ort? = -1.
Sincet, = —t{l, we havet; = tp, and this is ruled out sincd has dimension 3.
(iiy at;?=t;torat,? =t,"

In this casea = t; ora = tp, andz = a~! — a. By (26) we getD = 0, which is
excluded.
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(v) at?=t,torat, 2 =t/ %

Up to the exchange of; and A, we may assume thait; 2 = t;*. Thena = —t3,
zZ= tl‘l —t;. We are in the situation described in Section 3.6.4 of [17] (whgiredenoted
by —t): A; is the adjacency matrix of a lattice graph witf + t{z + 2)? vertices. Then
one can show that/* is a tensor product of a Potts model with itself. HetNe@V ™) can
be determined from Proposition 7 (i) and the results in [1].

5.5. Spin models on Hadamard graphs

Let H be a Hadamard matrix of sizard Then one can construct frotd a distance-
regular grapi™ with 16m vertices, called éladamard graphwith intersection array (see
[7] Theorem 1.8.1)

{dm, 4m—1, 2m, 1; 1, 2m, 4m — 1, 4m}.

ThusT is a (simple and undirected) connected graph of diameter 4, and the relations
R (i=0,...,4)onthe vertex seX of I', defined byR, = {(X,y) | 3(X, y) =i} (where
d(x, y) denotes the usual distancexodndy in the graph’™), form a symmetric association
scheme whose non-zero intersection numbers of the fifirare

p(1)1 = 4m, p%l =4m-1, p§1 =2m, pf{l =1,

pél =1 pil = 2m, pgl =4m-1, pgl =4m.

Let Ai(i =0,...,4) be the Hadamard idempotents of the Bose-Mesner algélufathis
association scheme.
Forq, w € C* such that

'+ g *+2=4m, o* =1,
let us define a matridV by W = Y t; A/, where
to = _q*3’ h=w, th = q, t3 =—t, 4= tO‘

It is shown in [29] (see also [30] for an alternative proof) tNét = W satisfies (with
appropriateV—, a and D) the invariance Egs. (15)—(17), and the corresponding invariant
of links is determined in [18, 19]. ~

The purpose of this section is to show tiNgW) = N(W) = A.

Remark thaiw? and g? are real. Remark also that the graphis bipartite, so that
we have a bipartitionrX = X; U Xp, [X3] = [X3] = 8m, with Ry U R, U Ry =
(X1 x X)) U (Xo x Xp)andRy U Rz = (X1 x Xp) U (XU Xp).

Lemma 14 W is obtained by scaling from a real matrix, and hencé\y = NM).
Moreover when m= 1, W is obtained by scaling from a Hadamard matrix.
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Proof: For(x,y) € (X1 x X1) U (X2 x X2) we haveW(x, y) € {to, t, ta} = {—q72, q},
and for(x, y) € (X1 x X2) U (X2 x X1) we haveW(x, y) € {ty, t3} = {o, —w}. Multiply
thex th row of W by wq for all x € X3, multiply theyth column byw 1 for all y € Xy, and
multiply they th column byq for all y € X,. Then the resulting matri¥v’ has its entries
in{—q72, g2 +1, +w?g?}, so thaW’ is a real matrix. Thut (W) = N(W') is symmetric
by Propositions 2 and 6, and hensgW) = N(W). Whenm = 1, we havey* = 1, so
thatW’ has entriest1, and hence is a Hadamard matrix. O

Whenm = 1, W is obtained by scaling from a Hadamard matrix of size 16 by Lemma
14, and sd\ (W) can be determined using Section 5.2.
From now on we assunma > 1. Remark that we hawg® # 1 in this case.

Lemmal5 A c N(W).

Proof: We havew € N(W) by Proposition 9 sinceV satisfies the type Ill condition (17).
Consider thefth power of W with respect to the Hadamard produdt, = Zf‘:o tA
¢ =1,...,4). Sincety, ..., t, are easily seen to be distindt, Wy, ..., W, are linearly
independent (this is shown by a non-zero Vandermonde determinant). 4éngenerated
by I andW with respect to Hadamard product. Clearly, this impliess N(W). O

LetG be the graph oiX x X defined in Section 3.3 with respect to the usual scalar product.
In the following we shall show thaR; is a connected subgraph@f(i =0, ..., 4). This
will imply dim N(W) < 5 by Theorem 5, and hencé= N(W) = N(W) by Lemmas 14
and 15.

Clearly Ry is connected, so we start witky. In the sequel we use implicitly the fact that
(Ype, Yep) # Oforallb, cin X.

Lemma 16 For (b, c) and(b, d) in Ry with ¢ # d, (Yye, Ypa) # O.

Proof: We have

W(X, byW(x, b)

(Yoe, Yod) = Z W(X, ©)W(x, d)

xeX
W(X, byW(x, b)
W(x, c)W(x, d)

i,j,ke{0,...,4} xel (b)nr'j(c)Nrk(d)

tit;
= Z Pik —,
tjtk

i,j,ke(0,....4)

where as usudl',(y) denotes the set of vertices at distaddeom y and Pjx denotes the
size ofl'; (b) N T'j () NI'k(d). The non-zero values &t are the following constants (see
[29]):

Po11 = Pio2 = P12o = P34 = P3so = Pszz =1,
Pioo=Pao=4m—2, Po;1=Pozz=2m—1,  Poiz= Poz1 =2m.
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From these values and the relatidps= —t, t4 = tp, we obtain

24dm—2)— —2—
tity  toty  toto + )

Voo, Yoa) = 2 @ @ tity tits bt
bc, Thd) = tt tltl.

Sincety = —q7 3,y = w, th = ¢, 4m — 2 = g* + g~* andw? = w~?, we obtain

(Yo, Yoa) = £497°(q® — 1) # 0. O

From Lemma 16, any two directed edgbsc), (b, d) in I', which have a common initial
vertexb, are adjacent iG. This implies thatR; is connected irs sincerl is connected.
Next let us consideRs.

Lemma 17 For (b, c) and(b, d) in Ry withda(c, d) = 2, (Yue, Yog) # 0.
Proof: The non-zero values d&jx = |I'i (b) N T'j(c) N T'k(d)| are

Po22 = Poo2 = Pa2o = Pooa = Pogo = Pyoo =1,
P111 = P113 = P131 = P13z = P311 = P313 = P331 = P33z =m,
Py = 8m — 6.

Then, as in the proof of Lemma 16, we obté¥a, Yoq) = 29 8(1+q*(1—q®) #0. O

Lemmal8 For (b, c)and(d, e)in Rywitha(b,d) = 9(c,e) = 1andd(b,e) = d(c,d) =
3, <Yva Yde) 3’é 0.

Proof: We have

W(x, b)W(x,d) Z P ﬁ

(Yoc, Yae) = Z W(x, OW(x, &

xeX

whereP,j, denotes the size df; (b) N T'j(c) N T'(d) N I"¢(e). The values oRj,, can be
determined in a similar way as in [29]. The non-zero values are given as

Po213= P2g31 = P1302 = P1324 = P3120 = P3142 = Pog13 = P31 =1,
P1322 = P3120 = Poo13 = P31 =2m— 2,
P1122 = P2211 = Poo3z = P332 = 2m.

Then we obtaif{Ype, Yae) = 4974(q* + 1)2 #£ 0. O

Now we consider the gragh® = (X, Ry). Clearly,I'® has two connected components
X1, Xo.

We claim thatR, N (X; x X) is connected irG (i = 1,2). SinceX; and X, are
connected i@, it is enough to show that, c) and (b, d) are in the same connected
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component ofG for all (b, ¢), (b, d) in R, N (X; x X;j) with ¢ # d. Whena(c,d) = 2,
(b, ¢) and (b, d) are adjacent irG by Lemma 17. Wherd(c, d) = 4, there is a vertex
e € X such thatb, e) € R, anda(c,e) = d(e, d) = 2, since|l"2(c) N T'x(d)| = 8m — 2
and hencd z(c) N I'>2(d) contains(8m — 2) — 2 verticese with d(b, e) # 0, 4. Then, by
Lemma 17(b, e) is adjacent to botlib, c) and(b, d) in G.

It is clear that there exist four verticesc, d, e which satisfy the conditions of Lemma
18. Hence, by Lemma 18b, ¢) and (d, e) are adjacent irG, so that there is an edge
connectingR, N (X1 x X1) andR; N (X, x Xz). Therefore R, is connected irG.

It is not difficult to show that the grapR® = (X, Rs) is also a Hadamard graph, and
that the reIationsRi(s) ={(x,y) | 3®(x,y) = i} defined by its distance functiai® are
R® = R if i iseven,R? = Rs, R = R;. Thus the connectednessf is implied by
the connectedness & by exchangind; andts.

Finally, the connectedness Bf, is implied by the following lemma.

Lemma 19 For (b, c) and(d, e) in Ry with b, ¢, d, e distinct,(Yyc, Yqe) # O.

Proof: Remark thab(b, d) = d(c, e). We proceed as in Lemma 18.
Whena(b, d) = 1, the non-zero values &, are

Pos1z = P13oa = P3140= Pagz1 =1,
P1322 = P3120 = Po213= Pooz1 =4m—1,

and we obtainYpe, Yge) = —16m # 0.
Whend (b, d) = 2, the non-zero values &, are

Pos22 = Pagzo = Pooosa = Paoao =1,
P1313= Pi331 = P3113 = P3131=2m,
P2220 = 8m — 4,

and we obtainYpe, Yge) = 16m # 0.
Wheno (b, d) = 3, the non-zero values &y, are

Po4z1 = Pr3so = P3104 = Pao13=1,
P1322 = P3120 = Po213= Pooz1 =4m—1,

and we obtainYpe, Yge) = —16m # 0. O

This completes the proof of the equality= N(NVV) = N(W).

6. Conclusion

We have given a construction which associates a dual pair of Bose-Mesner algebras with
every type Il matrix, and we have worked out some examples. But we are very far from
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understanding the power and applicability of this construction. Could we use it to obtain
new association schemes, and possibly solve some open questions on the existence of suc
objects or related ones? Are there natural necessary conditions for a dual pair to come
from a type Il matrix? The general question is thus: what dual pairs are of the form
(N(W), N('W)) for some type Il matrixV? It leads to more specific questions, such as:
what self-dual Bose-Mesner algebras are of the fbriV) with W symmetric?

Some progress on the above question could shed new light on the classification problems
for type Il matrices and for spin models.
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