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Boson peak, elasticity, and glass 
transition temperature in polymer 
glasses: Effects of the rigidity of 
chain bending
Naoya Tomoshige1, Hideyuki Mizuno  2*, Tatsuya Mori  3, Kang Kim  1* &  

Nobuyuki Matubayasi  1,4*

The excess low-frequency vibrational spectrum, called boson peak, and non-affine elastic response are 
the most important particularities of glasses. Herein, the vibrational and mechanical properties of 
polymeric glasses are examined by using coarse-grained molecular dynamics simulations, with 
particular attention to the effects of the bending rigidity of the polymer chains. As the rigidity increases, 
the system undergoes a glass transition at a higher temperature (under a constant pressure), which 
decreases the density of the glass phase. The elastic moduli, which are controlled by the decrease of the 
density and the increase of the rigidity, show a non-monotonic dependence on the rigidity of the 
polymer chain that arises from the non-affine component. Moreover, a clear boson peak is observed in 
the vibrational density of states, which depends on the macroscopic shear modulus G. In particular, the 
boson peak frequency ωBP is proportional to G . These results provide a positive correlation between 
the boson peak, shear elasticity, and the glass transition temperature.

Glasses show vibrational and mechanical properties that are markedly di�erent from other crystalline materials1,2. 
�ermal measurements and scattering experiments have been performed to study the properties of various glassy 
systems, such as covalent-bonding3–8, molecular9–13, metallic14–17, and polymeric18–23 glasses. For instance, the 
excess vibrational modes at low frequencies and the excess heat capacity at low temperatures exceeding the Debye 
predictions, which describe the corresponding crystalline values, have been observed universally in various glassy 
materials. �is phenomenon, which is referred to as the boson peak (BP), has been widely studied.

�e ideas of elastic heterogeneities24–26 and criticality near isostatic state and marginally stable state27–30 have 
been introduced, following the recent theoretical advances for understanding the origin of anomalies in glasses. 
Based on these theories, the mean-�eld formulations have been developed by using the e�ective medium tech-
nique24–26,29,30. In addition, more recent studies31,32 have focused on the local inversion-symmetry breaking, which 
can explain the microscopic origin of the BP. �e anomalous vibrational properties in both crystals and glasses 
have also been investigated within the framework of the phonon Green's function33.

Molecular dynamics (MD) simulations play an essential role for studying the vibrational and mechanical 
properties of glasses. Firstly, MD simulations enable to assess the theoretical predictions. In fact, various MD 
simulations have been performed on simple atomic glasses, e.g., Lennard-Jones (LJ) systems34–40. Concerning the 
isostaticity and marginal stability27–30, the systems with a �nite-ranged, purely repulsive potential have also been 
studied41–44, and are considered as the simplest model of glasses. In particular, it is crucial for MD simulations to 
solve �nite-dimensional e�ects that are not captured by the mean-�eld treatments45–47. Secondly, MD simulations 
perform quasi-experiments on well-de�ned systems and access data that cannot be examined experimentally. 
Relevant systems to experiments and applications have been simulated, including covalent-bonding48–53, metal-
lic54–57, polymeric58–62 glasses. �ese simulation studies complete theoretical understandings based on simple 
systems and experimental observations of more complex systems.
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�e vibrational properties and the BP of polymeric glasses have been studied by both of experiments18–23 
and MD simulations58–62. �e e�ects caused by non-covalent bonds including bending forces and chain length 
represent an important feature of polymer glasses. Previous experiments18,19 have investigated the e�ects of the 
pressure or densi�cation on the frequency and intensity of the BP in polymeric glasses. It was demonstrated that 
the evolution of the BP with pressure cannot be scaled by the Debye values (i.e., the Debye frequency and the 
Debye level). �erefore, the pressure e�ects cannot be explained only by the variation of macroscopic elasticity. 
In contrast, another experiment20 has shown that the polymerization e�ects on the BP is explained by the change 
in macroscopic elasticity as the frequency and intensity variations of the BP are both scaled by the Debye values.

In addition, Zaccone et al. have recently performed MD simulations to calculate the vibrational density of 
states (vDOS) in polymeric glasses by changing the chain length and the rigidity of the chain bending61. �is work 
studied the vibrational eigenstates in a wide range of frequencies and the e�ects of the chain length and bending 
rigidity on the high-frequency spectra. Furthermore, Giuntoli and Leporini studied the BP of polymeric glasses 
having chains with highly rigid bonds62. It was demonstrated that the BP decouples with macroscopic elasticity 
and arises from non-bonding interactions only. Although these studies61,62 have helped understand polymeric 
glass properties, the e�ects of bending rigidity and chain length on the low-frequency spectra and BP need to be 
further studied.

Herein, the vDOS and the elastic moduli of polymeric glasses are analyzed through coarse-grained MD sim-
ulations (see Methods). In particular, the connection between the BP and elasticity as well as the glass transi-
tion temperature is explored by systematically changing the bending sti�ness of short and long polymer chains. 
�e contributions of the present study are given as follows. We demonstrate that polymeric glasses can exhibit 
extremely-large non-a�ne elastic response (compared to atomic glasses), whereas the BP is simply scaled by the 
behavior of macroscopic shear modulus. �is behavior of the BP can be explained by the theory of elastic heter-
ogeneities24–26. Our results indicate that e�ects of the bending rigidity on the BP are encompassed in change of 
macroscopic elasticity, which is in contrast to e�ects of pressure18,19, but instead is similar to e�ects of polymeri-
zation20. Furthermore, we show the positive correlation among the BP, elasticity, and the glass transition tempera-
ture. Finally, we will discuss the relaxation dynamics in the liquid state, in relation to our results of low-frequency 
vibrational spectra.

Results
Glass transition temperature. When the polymeric system is cooled down from the liquid state under a 
constant pressure, the volume of the system monotonically decreases with decreasing the temperature. Figure 1a 
shows the speci�c volume v as a function of the temperature T  for several di�erent bending rigidities εbend and the 
chain length =L 50. For each value of εbend, the slope of the v-T  curve clearly presents a discontinuous change at 
a certain temperature, which is de�ned as the glass transition temperature Tg . Figure 1b (triangles) presents the 
value of Tg  as a function of εbend. As the rigidity increases from ε = 1bend  to 103, Tg  progressively increases from 

.T 0 45g  to 0.75. Below ε = 1 and above ε = 103, the variation of Tg  is low or even negligible. In addition, Fig. 1b 
(circles) plots the density ρ = v( 1/ ) of the system that is quenched down to =T 0. �e density decreases from 

ρ . 1 09 to 0.97 as the rigidity increases from ε = 1bend  to 103. As the chain bending becomes rigid, the glass 
transition occurs at a higher temperature, and as a result, the density in the glass state becomes lower. �e similar 
observation was obtained by Milkus et al.61.

�ese behaviors of Tg  and ρ can be understood by studying the microscopic conformation of the polymeric 
chains. Figure 2a presents the probability distribution of the angle formed by three consecutive beads along the 
chain, θP( ), when changing the rigidity εbend. Two peaks are observed at approximately θ ≃ �70  and θ ≃ �120  for 
a low rigidity (ε ≤ 1bend ). A similar distribution θP( ) was also reported in ref. 61. As the rigidity increases, the peak 
position in θP( ) shi�s towards θ = . 109 50 . It is noted that the bending potential θU ( )bend  in Eq. 5 tends to stabilize 
the angle θ at θ = . 109 50 . In addition, Fig. 2b presents the radius of gyration Rg  as a function of εbend. It can be 
observed that Rg  increases from .R 11 5g  to 16.5 with an increasing εbend. Importantly, these variations of con-
formation are induced intensively when the rigidity increases from ε = 1bend  to 103, which exactly matches the 
region where variations of Tg  and ρ are observed in Fig. 1b. �erefore, it can be concluded that the conformation 
changes of the polymeric chains control the glass transition temperature and the density. In fact, as the rigidity of 
the chain bending increases, the angle θ of the polymer chains tends to be stabilized at θ = . 109 50  and the radius 
of inertia increases. As a result, the glass transition occurs at a higher temperature and the lower density (larger 
volume). At ε 1bend , the e�ect of the bending interaction of Eq. 5 is weak compared to those of the LJ and �nitely 
extensible nonlinear elastic (FENE) components of Eqs. 3 and 4 (see Methods). However, at ε 10bend

3, the 
opposite phenomenon occurs.

It is noted that the glass transition occurs at a lower temperature for =L 3 than for =L 50, which is consistent 
with a previous report64. Correspondingly, the values of ρ for =L 3 becomes larger than that of =L 50. However, 
common results were observed between =L 3 and 50 with respect to the dependences on the rigidity εbend. 
Speci�cally, Tg  and ρ, as well as the conformation of the polymeric chains progressively change when the rigidity 
increases from ε = 1bend  to 103, which also occurs for =L 50.

Elastic properties. �e elastic properties of polymer glasses are studied by changing the strength of bending 
rigidity. An external strain is applied to the system at =T 0, which enables to measure the corresponding elastic 
moduli. Speci�cally, the volume-changing bulk deformation and the volume-conserving shear deformation are 
applied, which provide the bulk modulus K  and the shear modulus G, respectively63. Figure 3 presents the values 
of K  and G as functions of εbend. Disordered systems exhibit large non-a�ne elastic responses2. �e elastic moduli, 
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=M K  and G, are decomposed into a�ne moduli MA and non-a�ne moduli MNA, i.e., = −M M MA NA
65–67. In 

Fig. 3, these a�ne and non-a�ne components are also presented.
First, the bulk modulus K  is analyzed for =L 50 and presented Fig. 3a. �e a�ne component KA decreases 

from K 155A  to 130 as εbend changes from 1 to 103. �e reduction of KA is caused by the decrease of the density 

ρ with the increasing εbend (see Fig. 1b). In contrast, the non-a�ne component KNA shows a non-monotonic 
dependence on the εbend. In particular, KNA slightly increases from ε = 1bend  to 30, which is induced by the 
decrease of the density ρ. As εbend is further increased above ε = 30bend , KNA decreases. This is because the 
non-a�ne relaxation process is constrained due to the large rigidity of εbend. As a result, the total modulus of 

= −K K KA NA also presents a non-monotonic behavior, which is demonstrated in Fig. 3a. From ε = 1bend  to 102, 
K  decreases from K 80 to 60, which is caused by the reduction of KA. Moreover, K  increases from K 60 to 65 
above ε = 100bend , which is caused by the reduction of KNA. �erefore, the εbend dependence of the bulk modulus 
K  is determined by the competition between the density reduction and the increase in the bending rigidity.

Further, the shear modulus G is analyzed for =L 50 and presented Fig. 3c. We note that a non-monotonic 
behavior of the shear modulus as a function of bending sti�ness is observed in the previous study60. Figure 3c 
demonstrates that the bending rigidity strongly affects the shear modulus compared to the bulk modulus. 
Particularly, above ε = 10bend

2, both of the a�ne GA and non-a�ne GNA components considerably increase. As 
the shear deformation is anisotropic and causes deformations of the angles θ of polymeric chains, its response is 
expected to be highly a�ected by the bending rigidity. Interestingly, contrary to the important increases of GA and 

GNA, the total shear modulus = −G G GA NA shows a low variation (by comparing  G G 900A NA  with G 24 
at ε = 10bend

4). �e bending rigidity increases the a�ne shear modulus but, at the same time, the non-a�ne 
component also increases to cancel the increase in GA, and as a result, the total shear modulus presents a low 

Figure 1. Glass transition temperature and density in the glass state. (a) �e speci�c volume v versus the 
temperature T  during the process that the system is cooled down from the liquid state to the glass state. �e 
color of line indicates the value of bending rigidity εbend according to the color bar. (b) Glass transition 
temperature Tg  (triangles) and density ρ at zero temperature a�er the glass transition (circles) are plotted against 
εbend. �e chain length is =L 50.
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increase. �e elasticity of the shear deformation is therefore di�erent from that of the bulk deformation, which is 
obvious when the elastic moduli are decomposed into a�ne and non-a�ne components.

Figure 3 also shows K  in (b) and G in (d) for =L 3. �e values of K  and G of =L 3 are smaller than those of 
=L 50, due to the bonding energy, εFENE, connecting the monomers along the polymeric chains. �e responses 

of K  and G to the variation of εbend are also weaker for =L 3. However, K  and G, as well as a�ne KA and GA and 
non-a�ne KNA and GNA, exhibit overall common dependences on εbend between =L 3 and 50. �erefore, the 
decrease in ρ and increase in εbend engenders similar e�ects on the elasticity for =L 3 and 50.

Finally, it is remarked that the polymer glasses present larger non-a�ne elastic components than the atomic 
(LJ) glasses63,68. Even under an isotropic bulk deformation, the non-a�ne KNA (80 for =L 50 and 50 for 
=L 3, at ε ≤ 1bend ) is approximately half of the magnitude of the a�ne KA (155 for =L 50 and 120 for =L 3, 

at ε ≤ 1bend ). �is result is di�erent from that of the LJ glasses, where a negligible value of .K 0 5NA  (whereas 

.K 60 2A ) was obtained63. Larger non-a�ne moduli re�ect various elastic responses due to the multiple degrees 
of conformations in polymeric chains. �erefore, the non-a�ne deformation process must be considered to char-
acterize the elastic property of polymeric systems. Interestingly, ref. 69 has reported that non-a�ne displacements 
also play an important role on melting of amorphous polymers.

Low-frequency vibrational spectra. Reduced vDOS. Finally, the spectra of vibrational eigenmodes in 
polymer glasses are studied. �e vibrational mode analysis is performed on the con�guration of the polymeric 
system at =T 0, which corresponds to the inherent structure71,72. �e Hessian matrix is diagonalized to obtain the 

eigenfrequencies ωk that corresponds to the square root of the eigenvalues λk, i.e., ω λ=k k  ( = . . .k N1, 2, , 3 p). 
�e speci�c expression of the Hessian matrix is given in Supplementary Material.

�e statistics of the eigenfrequency provide the vDOS, ωg( ). Figure 4 presents the reduced version of the 
vDOS, ω ωg( )/ 2, when changing the rigidity εbend and for =L 50 in (a) and =L 3 in (b). �e reduced vDOS, 

Figure 2. Conformation of polymeric chains. (a) Probability distribution of angle formed by three consecutive 
beads along the chain, θP( ), is presented for several di�erent rigidities εbend. �e color of line indicates the value 
of bending rigidity εbend according to the color bar. (b) Radius of inertia Rg  is plotted as a function of εbend. �e 
chain length is =L 50.
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ω ωg( )/ 2, of the Debye theory is the so-called Debye level AD
71,72. AD is calculated from the elastic moduli, K  and 

G, as follows: ω=A 3/D D
3, where ωD is the Debye frequency de�ned as ω π ρ= +− −c c[18 /(2 )]D

2
T

3
L

3 1/3
, and 

ρ= +c K G( 4 /3)/L  and ρ=c G/T  are the longitudinal and transverse sound speeds, respectively. Figure 5 
presents the values of ωD and AD as functions of εbend. As the bulk modulus is approximately four times larger 
than the shear modulus, ωD and AD are mostly determined with the shear modulus, i.e, ω π ρ≈ c(9 )D

2 1/3
T and 

π ρ≈A c1/(3 )D
2

T
3 .

As shown in Fig. 4, the polymer glasses present clear excess peaks over the Debye level, i.e., the BP. �e BP 
frequency, ωBP, is de�ned as the frequency at which ω ωg( )/ 2 is maximal. As εbend increases, ωBP shi�s to a higher 
frequency. In addition, the height of the reduced vDOS, ω ωg( )/BP BP

2 , becomes lower. �ese behaviors of BP are 
consistent with the previous observation61. �ese shi�s are observed in the region from ε = 10bend  to 103 for 
=L 50 and 3. Importantly, this region corresponds to the shear modulus G variations, as shown in Fig. 3c,d. As 

the bulk modulus is much larger than the shear modulus, the bulk modulus should only have minor e�ects on the 
low-frequency spectra. Therefore, the BP of the proposed system should only be controlled by the shear 
elasticity.

To con�rm this hypothesis, the scaled vDOS ω ωg A( )/( )2
D  is plotted as a function of the scaled frequency ω ω/ D 

and presented in Fig. 6. As discussed above, AD and ωD are determined mostly by the shear modulus G. Although 
deviations are observed, the scaled vDOSs collapse for di�erent values of εbend. �is result indicates that the e�ects 
engendered by the bending rigidity on the low-frequency spectra are comprised of the the shear modulus 
changes. A same collapse was observed in e�ects of pressure on the BP in the covalent-bonding network glass 
(Na2FeSi3O8)6. In addition, a previous experiment20 demonstrated that the e�ects of the polymerization are also 
comprised by the macroscopic elasticity changes. �e collapsed results for (a) =L 50 and (b) =L 3 are consistent 
with the experimental observation.

�e collapses observed in Fig. 6 indicates that ω ω/BP D does not depend on εbend. As stated previously, when 

εbend varies, ω ρ ρ∝ ∝ −c GD
1/3

T
1/6 . As ρ varies in a range of 15%, as shown in Fig. 1, the e�ect of ρ on ωD is 

weak. �us, ωD is approximately proportional to G , which leads to ω ∝ GBP  in the variation of εbend. �e εbend 
dependence of the BP frequency is determined by the shear modulus, which is a macroscopic quantity describing 
the entire system in an averaged manner. According to the heterogeneous elasticity theory24–26, the spatial 

Figure 3. Elastic properties of polymeric glasses. Plots of the bulk modulus K  [(a,b) upper panels] and the 
shear modulus G [(c,d) bottom panels] as functions of the strength of bending rigidity εbend. �e chain length is 
=L 50 [(a),(c) le� panels] and =L 3 [(b,d) right panels]. In the �gures, we also plot the a�ne moduli, KA and 

GA, and the non-a�ne moduli, KNA and GNA. �e horizontal arrows indicate the values, = .K 59 7 and = .G 14 9, 
of atomic LJ glasses that are extracted from ref. 63.
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�uctuations of the local shear modulus δG control nature of the BP. �e value of δG is quanti�ed by the standard 
deviation of probability distribution function of the local shear modulus63. �e collapse of ω ωg A( )/( )2

D  as a func-
tion of ω ω/ D indicates that the shear modulus �uctuations relative to the macroscopic value, δG G/ , are constant 
for all the cases of di�erent bending rigidities. �erefore, the results of this study can be explained as follows. �e 
increase in bending rigidity does not a�ect the shear modulus �uctuations (relative to the macroscopic moduli) 
but only a�ects the macroscopic shear modulus, which leads to the collapse of the scaled vDOS. Furthermore, it 
is also noted that the recent theoretical study explains the origin of BP in both crystals and glasses in terms of the 
competition between elastic phonon propagation and di�usive damping33. �e model based on the phonon 
Green's function leads to the result ω ∝ GBP . �is necessitates further investigations regarding the e�ects of 

εbend on phonon transport and the phonon's Green function.

Participation ratio. To further study the vibrational eigenstates, the participation ratio Pk that measures the 
extent of localization of the eigenmodes k is calculated as follows34,35: 

∑=








⋅






=

−

e eP
N

1
( ) ,

(1)

k

i

N

i
k

i
k

p 1

2

1
p

where ei
k = ( )i N1, 2, , p  are the eigenvectors associated with the eigenfrequencies ωk (i is the index of the mon-

omer particle and Np is the number of monomer particles). �e ei
k represents the displacements of each monomer 

bead i in the eigenmode k. It is noted that ei
k is obtained from the diagonalization of the Hessian matrix and is 

orthonormalized as δ∑ ⋅ == e e
i
N

i
k

i
l

kl1
p  (δkl  is the Kronecker delta). The following extreme cases can occur: 

=P 2/3k  for an ideal sinusoidal plane wave, =P 1k  for an ideal mode in which all constituent particles vibrate 

Figure 4. Low-frequency vibrational spectra. We plot the vDOS ωg( ) divided by ω2, i.e., the reduced vDOS 
ω ωg( )/ 2, with changing the strength of bending rigidity εbend. �e chain length is (a) =L 50 and (b) =L 3. �e 

horizontal lines indicate the Debye level AD. �e color of line indicates the value of bending rigidity εbend 
according to the color bar. Black lines present value of the LJ glass which is taken from ref. 70.
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equally, and = P N1/ 1k
p  for a perfect localization, which indicates that each vibrational state is associated 

only with a single atom and that ⋅ =e e 1i
k

i
k  for a single i, otherwise ⋅ =e e 0i

k
i
k .

Figure 7 presents the value of Pk as a function of the scaled frequency ω ω/ D, for di�erent εbend. It is noted that 

the presented data are the binned average values. Below the BP frequency ωBP, Pk progressively decreases when ω 
decreases due to the spatially localized vibrations. The low-frequency localization below ωBP has also been 

observed in multiple glasses34,35,48,49. Importantly, Pk below ωBP collapses between di�erent values of εbend. �is 
result indicates that the variations of not only the vDOS and the vibrational states due to εbend can be character-

ized by the macroscopic shear modulus changes. However, Pk does not collapse above ωBP, as also shown in Fig. 7. 
�is result is attributed to the fact that the high-frequency modes above ωBP re�ect microscopic vibrations that 
cannot be captured by the macroscopic elasticity.

Comparison with LJ glasses. �e low-frequency spectra are comparable to that of atomic LJ glasses reported in 
ref. 70. As observed in Fig. 4, the height of ω ωg( )/BP BP

2  of LJ glasses is higher than that of polymer glasses, and ωBP 
is lower than that of polymer glasses. �ese observations are di�erent from the study reported in ref. 62, which 
demonstrated that the low-frequency spectra of polymer glasses correspond to those atomic LJ glasses. In ref. 62, 
the bonded monomers interact via a harmonic potential with a large bonding energy scale of =k 2500. �is value 
is two orders of magnitude larger than ε = 30FENE , investigated in this study. With respect to the large bonding 
energy, the rigidity of the polymeric chains has a smaller e�ect on the low-frequency spectra. �erefore, the 
low-frequency spectra are mainly determined by the non-bonding LJ interactions, whereas the elasticity is mainly 
determined mainly by the bonding rigidity. As a results, the BP decouples with the macroscopic elasticity, as 
demonstrated in the previous study62.

In contrast to the the results presented in ref. 62, the rigidity of the polymeric chains is necessary to determine 
the elasticity and the low-frequency spectra with respect to the bonding energy scale of ε = 30FENE . In fact, the 

Figure 5. Debye frequency and Debye level. Plots of the Debye frequency ωD (circles) and the Debye level 
ω=A 3/D D

3 (triangles) as functions of the strength of bending rigidity εbend. �e chain length is (a) =L 50 and 
(b) =L 3. �e values of ωD and AD are calculated from the elastic moduli of K  and G that are presented in Fig. 3. 
�e arrows indicate values of atomic LJ glasses that are taken from ref. 70.
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εbend reduces the height of ω ωg( )/BP BP
2 , as shown in Fig 4. In this case, the BP couples with the macroscopic elas-

ticity. However, the plot of the scaled ω ωg A( )/( )2
D  as a function of ω ω/ D does not collapse between the polymer 

glasses and LJ glass, as shown in Fig. 6. �e height of ω ωg A( )/( )2
D  is consistent between the polymer glasses and 

LJ glass, but ω ω/ D of the LJ glass is lower than that of the polymer glasses. �is result indicates that vibrational 
states di�erences between polymer glasses and LJ glasses cannot be described only by changes in macroscopic 
elasticity, changes in the local elastic properties should be considered as well6,18,19,38.

Here we make a note on the �nite system size e�ects. We consider that the present system size of N 5000p  is 

not enough large to sample the low frequency modes below the BP. �e previous work on the LJ glass70 employed 
the very large system size up to =N 1000000 to study the low frequency regime without any system size e�ect. In 
contrast, our results of polymer glass for the region below the BP are a�ected by �nite system size e�ects. However, 
the system size of N 5000p  is enough large to study the vibrational modes in the BP. Indeed, we con�rm that our 
results in the BP regime are not contaminated by the size e�ects. �us, as long as we discuss on the BP, we do not 
need to care for the system size e�ects.

In addition, the length scale of collective vibrational modes in the BP region is discussed. For atomic LJ 
glasses, the length scale was evaluated as ξ π ω= c2 /

BP T BP, which corresponds to the size of approximately 23 
particle68. �is length scale diverges near the isostatic point or the marginally stable point, theoretically27–30 as well 
as numerically41,46,47,73,74. �e present study evaluates the length scale of collective vibrational modes in polymeric 
glasses as ξ π ω= ≈c2 / 12

BP T BP , which corresponds to half of that for LJ glasses. �e vibrational modes in the BP 
region are more localized nature due to the polymerization. Moreover, the value of ξ

BP
 is independent of the 

bending rigidity εbend because of ω ω∝ ∝ cBP D T. In other words, the bending rigidity does not a�ect the length 
scale of the collective vibrational motions in the BP region.

Figure 6. Scaled vibrational spectra. We present the data presented in Fig. 4, in the scaled form: we scale the 
reduced vDOS ω ωg( )/ 2 and the frequency ω by the Debye level AD and the Debye frequency ωD. Here the values 
of AD and ωD are presented in Fig. 5. �e chain length is (a) =L 50 and (b) =L 3. �e color of line indicates the 
value of bending rigidity εbend according to the color bar. Black lines present value of the LJ glass which is taken 
from ref. 70.
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Discussion
�e glass transition temperature, elastic properties, and the low-frequency vibrational spectra were studied in 
polymeric glasses. In particular, the bending energy scale was highly varied for long chains ( =L 50) and short 
chains ( =L 3). As the system becomes rigid by increasing the bending rigidity, the glass transition occurs at a 
higher temperature, leading to a lower density in the glass phase. �e lowering density directly a�ects the isotropic 
bulk deformation, but does not a�ect the shear elasticity. �e shear elasticity is mainly controlled by the bending 
rigidity. �e non-a�nity of polymeric glasses is much larger than that of atomic LJ glasses. �is is due to the more 
complex conformational relaxations of the polymeric chains during non-a�ne deformation. Even under an iso-
tropic elastic deformation, the non-a�ne relaxation process should be considered to describe the elastic response.

In addition, it is demonstrated that the BP frequency ωBP and its intensity are simply scaled by the Debye fre-
quency ωD and the Debye level AD which are mainly determined by the macroscopic shear modulus G. �is result 
indicates that the BP is controlled by macroscopic shear modulus and that the bending rigidity has a small impact 
on heterogeneities of local elasticity properties. �e e�ects of the bending rigidity on the BP is similar to that of 
the polymerization, which has also been explained by macroscopic elasticity changes20.

�e presented results provide a simple relationship between the BP and the elasticity as well as the glass transi-
tion temperature. As the system becomes more rigid by increasing the bending rigidity, the glass transition tem-
perature Tg and the shear modulus G are increased. On the contrary, the bulk modulus K  decreases due to the 
decrease in the density ρ caused by the increase in the glass transition temperature Tg . However, the BP is mainly 
determined by the shear modulus G: ω ω∝ ∝ GBP D . �erefore, the glass transition temperature, the shear elas-
ticity, and the BP frequency are positively correlated. A similar relationship between Tg  and ωBP was observed 
experimentally in ionic liquids systems75 and also numerically in LJ glasses76. It is noted that the studies of refs. 75,76  

Figure 7. Localization nature of vibrational states. Plots of participation ratio Pk as a function of the scaled 
frequency ω ω/ D, for several di�erent bending rigidities of εbend. �e chain length is (a) =L 50 and (b) =L 3. 
�e color of line indicates the value of bending rigidity εbend according to the color bar. Data are shown as the 
average values over bins in the frequency domain of ω ω ω ω− ∆ + ∆[ /2, /2] with ω∆ . 0 06. �e vertical line 
indicates the position of ω ω/BP D averaged over the examined systems with varied εbend.
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provided the relationship of ω∝Tg BP
2 , but a clear power-law like relationship between Tg  and ωBP was not 

observed in polymeric glasses.
Finally, it is worthwhile to discuss the relationship between structural relaxation above the glass transition 

temperature and the elastic properties. In fact, there have been proposed the shoving model, which characterizes 
the activation energy of the structural relaxation time τα in terms of the shear modulus G77,78. In the literature, a 
recent study79 has demonstrated the scaling relationship between the structural relaxation time τα and the 

Debye-Waller factor u2  as τ ∝ +α

− −
a u b uexp( )2 1 2 2

 (where a b,  are constants) for multiple glass-forming 
liquids including polymeric glasses. Here, the Debye-Waller factor in the harmonic approximation80 is estimated 

as ∫ ω ω ω ω= ∝ ∝
∞ − −u T g d T TG3 ( )/2

0

2
BP

2 1. It is naturally expected that the relaxation dynamics become 

drastically slow by increasing the bending rigidity because of the following relationship: 

τ α
ω

β
ω

α β∝





+




∝





′ +




α

′

T T

G

T

G

T
exp exp ,

(2)

BP
2

BP
4

2
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where α β α β′ ′, , ,  are constants. �is simple relationship demonstrates that the BP below Tg  and the structural 
relaxation above Tg  are well correlated in the polymeric glasses with varying the bending rigidity. Further work is 
necessary to evaluate its validity by calculating τα, despite the equation analogous to Eq. (2) has empirically been 
proposed from MD simulations of polymeric glasses81.

Methods
Coarse-grained MD simulations are performed by using the Kremer–Grest model82, which treats polymer chains 
as linear series of monomer beads (particles) of mass m. Each polymer chain is composed of L monomer beads, 
and two cases are considered in this study: long chain length with =L 50 and short chain length with =L 3. In a 
three-dimensional cubic simulation box under periodic boundary conditions, =N 5000p  and 4998 is de�ned as 
the total number of monomers for =L 50 and =L 3 respectively, which means that the number of polymeric 
chains is =N L/ 100p  for =L 50 and 1666 for =L 3.

�e polymer chain is modeled by three types of inter-particle potentials as follows. Firstly, all the monomer 
particles interact via the LJ potential: 

ε
σ σ

=











 −













U r
r r

( ) 4 ,
(3)

LJ LJ

12 6

where r is the distance between two monomers, σ is the diameter of monomer, and εLJ is the energy scale of the LJ 
potential. �e LJ potential is truncated at the cut-o� distance of σ= .r 2 5c , where the potential and the force (�rst 
derivative of the potential) are shi�ed to zero continuously70. �roughout this study, the mass, length, and energy 
scales are measured in units of m, σ, εLJ, respectively. �e temperature is measured by ε k/LJ B (kB is the Boltzmann 
constant). Secondly, sequential monomer-beads along the polymeric chain are connected by the FENE 
potential: 

ε

=
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R
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where εFENE is the energy scale of the FENE potential, and R0 is the maximum length of the FENE bond. �eir 
values are de�ned as ε = 30FENE  and = .R 1 50 , according to ref. 61. Finally, three consecutive monomer beads 
along the chain interact via the bending potential de�ned as follows: 

θ ε θ θ= − −U ( ) [1 cos( )], (5)bend bend 0

where θ is the angle formed by three consecutive beads, and εbend is the associated energy scale. �is potential 
intends to stabilize the angle θ at θ0 that we set as θ = . 109 50 . Here, the value of εbend in a wide range from 

ε = −10bend
3 to 104, and the e�ects of the bending rigidity on the vibrational and mechanical properties of the 

polymeric system are studied.
MD simulations are performed by using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS)83. �e polymeric system is �rst equilibrated in the melted, liquid state at a temperature = .T 1 0. 
Further, the system is cooled down under a fixed pressure condition of =p 0 and with a cooling rate of 

= −dT dt/ 10 4. During the cooling process, the glass transition occurs at a particular temperature, i.e., the glass 
transition temperature. A�er the glass transition, the system is quenched down towards the zero temperature, i.e., 
=T 0 state.

Data availability
�e data supporting the �ndings of this study are available from the corresponding authors upon reasonable 
request.
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