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While universal quantum computers ideally solve problems such as factoring

integers exponentially more efficiently than classical machines, the formidable

challenges in building such devices motivate the demonstration of simpler,

problem-specific algorithms that still promise a quantum speedup. We con-

struct a quantum boson sampling machine (QBSM) to sample the output dis-

tribution resulting from the nonclassical interference of photons in an inte-

grated photonic circuit, a problem thought to be exponentially hard to solve

classically. Unlike universal quantum computation, boson sampling merely

requires indistinguishable photons, linear state evolution, and detectors. We

benchmark our QBSM with three and four photons and analyze sources of

sampling inaccuracy. Scaling up to larger devices could offer the first defini-

tive quantum-enhanced computation.
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Universal quantum computers require physical systems that are well-isolated from the deco-

hering effects of their environment, while at the same time allowing precise manipulation during

computation. They also require qubit-specific state initialization, measurement, and the gener-

ation of quantum correlations across the system (1–4). Although there has been substantial

progress in proof-of-principle demonstrations of quantum computation (5–8), simultaneously

meeting these demands has proven difficult. This motivates the search for schemes that can

demonstrate quantum-enhanced computation under more favorable experimental conditions.

Investigating the space between classical and universal quantum computers has attracted broad

interest (9–11).

Boson sampling has recently been proposed as a specific quantum computation that is more

efficient than its classical counterpart but only requires indistinguishable bosons, low decoher-

ence linear evolution, and measurement (12). The distribution of bosons that have undergone

a unitary transformation U is thought to be exponentially hard to sample from classically (12).

The probability amplitude of obtaining a certain output is directly proportional to the permanent

of a corresponding submatrix of U (13). The permanent expresses the wavefunction of iden-

tical bosons, which are symmetric under exchange (14, 15); in contrast, the Slater determinant

expresses the wavefunction of identical fermions, which are antisymmetric under exchange.

While determinants can be evaluated efficiently, permanents have long been believed to be hard

to compute (16); the best known algorithm scales exponentially with the size of the matrix.

One can envision a race between a classical and a quantum machine to sample the boson

distribution given an input state and U . The classical machine would evaluate at least part of the

probability distribution, which requires the computation of matrix permanents. An ideal QBSM

instead creates indistinguishable bosons, physically implements U , and records the outputs.

While the QBSM is not believed to efficiently estimate any individual matrix permanent, for a

sufficiently large system it is expected to beat the classical computer in sampling over the entire
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distribution (12).

Photonics is a natural platform to implement boson sampling since sources of indistinguish-

able photons are well-developed (17), and integrated optics offers a scalable route to low deco-

herence linear transformations over many modes (18). Such circuits can be rapidly reconfigured

to sample from a user-defined operation (19, 20). Importantly, boson sampling requires neither

nonlinearities nor on-demand entanglement, unlike photonic approaches to universal quantum

computation (21). This clears the way for experimental boson sampling with existing photonic

technology, building on the extensively studied two-photon Hong-Ou-Mandel (HOM) interfer-

ence effect (22).

A QBSM (Fig. 1) samples the output distribution of a multi-particle bosonic quantum state

|Ψout〉, prepared from a specified initial state |T〉 and linear transformation Λ. Unavoidable

losses in the system imply Λ will not be unitary, though lossy QBSMs can still surpass classical

computation (12,23). A trial begins with the input state |T〉=|T1...TM〉 ∝
∏M

i=1(â
†
i )

Ti |0〉, which

describes N=
∑M

i=1 Ti particles distributed in M input modes in the occupation-number repre-

sentation. The output state |Ψout〉 is generated according to the linear map between input and

output mode creation operators â
†
i=

∑M
j=1 Λij b̂

†
j , where Λ is an M×M matrix. Finally, the par-

ticles in each of the M output modes are counted. The probability of a particular measurement

outcome |S〉=|S1...SM〉 is given by

P (S|T) = |〈S|Ψout〉|
2 =

∣

∣

∣Per(Λ(S,T))
∣

∣

∣

2

∏M
j=1 Sj!

∏M
i=1 Ti!

(1)

where the N×N submatrix Λ
(S,T) is obtained by keeping Sj (Ti) copies of the jth column (ith

row) of Λ (13).

Our QBSM consists of sources of indistinguishable single photons, a multiport linear optical

circuit, and single-photon counting detectors. Two parametric down-conversion (PDC) pair

sources (24) are used to inject up to four photons into a silica-on-silicon integrated photonic
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circuit, fabricated by UV writing (19,25). The circuit is shown in Fig. 2A and consists of M=6

input and output spatial modes coupled by a network of ten beam splitters (18). The output

state is measured with single-photon avalanche photodiodes on each mode. We only consider

outcomes in which the number of detections equals the intended number of input photons (13).

Our central result of three- and four-boson sampling is shown in Fig. 3. In the first case,

we repeatedly inject three photons in the input state |T〉 = |011010〉, monitor all outputs,

and collect all three-fold coincident events. In the four-photon experiment, we use the input

|T〉 = |202000〉 and record all four-fold events (26). For each experiment, the measured relative

frequencies P
exp
S for every allowed outcome |S〉 are shown along with their observed statistical

variation. The corresponding theoretical P th
S , calculated using the right-hand side of Eq. 1, are

shown along with their uncertainties arising from the characterization of Λ, described below.

We reconstruct Λ with a series of one- and two-photon transmission measurements to de-

termine its complex-valued elements Λij = τije
iφij (27). The characterization results for

the circuit used in the three-photon experiment are shown in Fig. 2, B and C. To obtain

the magnitude τij , single photons are injected in mode i. The probability of a subsequent

detection in mode j is given by P1(j, i) = |Λij|
2 = τ 2ij . The phases φij are determined

from two-photon quantum interference measurements. The probability that a photon is de-

tected in each of modes j1 and j2 when they are injected in modes i1 and i2 is given by

P2(j1, j2, i1, i2) = |Λi1j1Λi2j2 + Λi2j1Λi1j2 |
2
. This expression is used to find the relevant phases

φij given the previously determined magnitudes τij (13).

To analyze the performance of our QBSM we compare our results to an ideal machine.

We quantify the match of two sets of relative frequencies P
(1) and P

(2) by calculating the

L1 distance d(N)(P(1),P(2))=1
2

∑

S |P
(1)
S −P

(2)
S |, where N denotes the number of photons in

a sample (28). Identical and maximally dissimilar distributions correspond to d=0 and d=1,

respectively. For our experiments we calculate d(N)(Pexp,Pth) to give d(3)=0.094 ± 0.014
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and d(4)=0.097 ± 0.004 (Fig. 3). Even in an ideal QBSM with perfect state preparation and

detection, the statistical variations result in nonzero d. If we substitute for our experimental

data a Monte Carlo sampling of Pth with sample size equivalent to our experiments, we instead

calculate d(3)=0.043 ± 0.012 and d(4)=0.059 ± 0.022. This suggests there are appreciable

contributions to d(Pexp,Pth) beyond statistical deviation.

Due to experimental limitations, our QBSM occasionally samples distributions other than

P
th. The dominant sources of this sampling inaccuracy in our experiment are multi-photon

emission and partial distinguishability amongst the photons. In practice, all single-photon

sources produce multiple photons with a finite probability (17). For our PDC sources, the out-

put state is approximately |00〉+ λ|11〉+ λ2|22〉, with λ≪1. Both single-photon and undesired

multiphoton terms increase with λ. In our three-photon experiments, for example, multiphoton

emission from the two PDC sources can lead to input states |T〉 = |021010〉 or |012020〉, which

contribute to three-fold coincident events if photons are lost or emerge in the same output mode.

In addition, partial distinguishability of the photons contaminates the distribution sampled by

the QBSM by mixing in one- and two-photon interference effects (29).

We form a new distribution P
mod that accounts for the effects of multiphoton emission and

photon distinguishability (13). The distance d(Pexp,Pmod) shown by the green point (insets of

Fig. 4, A and B), is found to be consistent with the statistical variation due to a finite sample

size, for both the three- and four-photon experiments. This suggests we have correctly identified

and modeled the sources of inaccuracy. To investigate how the performance of our QBSM

depends on λ and photon distinguishability, we calculate d(Pmod,Pth) for a range of operating

parameters (Fig. 4, C and D). In terms of λ, a clear tradeoff is presented between data rate

and inaccuracy due to multiphoton emission, which is an intrinsic consequence of using PDC

sources. Improvement in photon indistinguishability increases the fidelity to the ideal machine,

and additionally is thought to enhance the computational power of a QBSM (29).
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Our results demonstrate that boson sampling is related to the computation of matrix per-

manents, a problem believed to be classically hard. Our successful diagnosis of the source

and magnitude of the principal sampling errors, as validated by a reduction in d(Pexp,Pmod)

to within the statistical variation of a perfect QBSM, will inform the design of next-generation

devices. While investigations into quantum-enhanced computation in the presence of errors is

ongoing, it already appears that the boson sampling model makes less stringent demands on

device performance than universal photonic quantum computers (12, 23, 29). There is thus rea-

son for optimism that ongoing advances in integrated photonics such as reduced transmission

loss, efficient number-resolving detectors (30), and multiplexed (31, 32) or single-emitter (17)

photon sources, will enable larger QBSMs that outperform classical computers. Beyond the

specific boson sampling problem, such a device would provide clear evidence for the computa-

tional power of quantum mechanics.
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Figure 1: Model of quantum boson sampling. Given a specified initial number state

|T〉=|T1...TM〉 and linear transformation Λ, a quantum boson sampling machine efficiently

samples from the distribution P (S|T) of possible outcomes |S〉=|S1...SM〉.
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Figure 2: Schematic and characterization of the photonic circuit. (A) The silica-on-silicon

waveguide circuits consist of M=6 accessible spatial modes (labeled 1−6). For the three-

photon experiment, we launch photons into inputs i=2, 3 and 5 from two parametric down-

conversion sources which produce near-single photons and postselect outcomes in which three

detections are registered amongst the output modes j. For the four-photon experiment, which

is implemented on a different chip of identical geometry, we inject a double photon pair from

a single source into the modes i=1, 3 and postselect on four detection events. (B-C) Measured

elements of the linear transformation Λij=τije
iφij linking the input mode i to the output mode

j of our three-photon apparatus. The circuit geometry dictates that several τij are zero, and our

phase-insensitive input states and detection methods imply only six non-zero φij . Since only

relative values are needed due to post-selection, we rescale each row of τ so that its maximum

value is unity.

10



Figure 3: Boson sampling results. The measured relative frequencies Pexp of outcomes in which

the photons are detected in distinct modes are shown in red for (A) three- and (B) four-photon

experiments. Each data set is collected over 160 hours, and statistical variations in counts are

shown by the red shaded bars. The theoretical distributions P
th (blue) are obtained from the

permanents of submatrices constructed from the full transformation Λ, as depicted in the inset.

The blue error bars arise from uncertainties in the characterization of Λ.
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Figure 4: Sampling accuracy. We consider several boson distributions: the experimental sam-

ples P
exp, the ideal predictions of the matrix permanent Pth, and the predictions of the full

model Pmod that includes higher-order emission and photon distinguishability. (A) The L1 dis-

tance d between P
th and a Monte Carlo simulation of an ideal machine that samples Pth a finite

number of times for our three- and (B) four-photon cases. The errors in this case are solely

a result of the finite number of samples collected by the ideal machine. The inset histograms

show the variation in d expected for a sample size corresponding to the 1421 and 405 counts

collected in our three- and four-photon experiments. The distance d(Pexp,Pth) (red) suggests

an underlying systematic inaccuracy as it falls outside the range of outputs of an ideal machine

indicated in the histogram. Our full model is validated by the distance d(Pexp,Pmod) (green)

which is consistent with statistical variation. The red and green dot positions correspond to the

L1 axis only. (C) The predicted variation in d(Pth,Pmod) is shown as a function of λ and the

photon distinguishabilites, represented by the reduction in two-photon interference visibility V ,

for the three- and (D) four-photon cases. Our experimental conditions are marked (red dot).
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1 Materials and Methods

Multiphoton states generation. An 80 MHz Ti-Sapphire oscillator outputs 100 fs pulses at 830

nm, which undergo type-I second harmonic generation in a 700 µm β-BaB2O4 (BBO) crystal.

This 415 nm light is then used used to pump type-II collinear parametric downconversion (PDC)

in 8 mm-long AR-coated Potassium Dihydrogen Phosphate (KDP) crystals (23). Both modes

of the resulting squeezed state are passed through spectral filters (Semrock, ∆λ=3 nm), to max-

imize photon indistinguishability. In the three-photon experiment, two such PDC sources are

coupled to four polarization-maintaining (PM) fibers (17). One of the photons is sent directly

to a heralding detector, while the other three are coupled into the photonic circuit via a PM v-

groove array (VGA) on a 6-axis alignment stage at the chip input. Programmable optical delay

is provided by motor-controlled translation stages on each single-photon mode preceding the

circuit, allowing the photons to arrive temporally coincident at the interferometric network in

Fig 2A. Another PM VGA at the chip output couples the output modes into avalanche photodi-

ode (APD) single photon counting modules (PerkinElmer SPCM-AQ4C), which are monitored

by a home-built coincidence counting program loaded onto a commercially available FPGA de-

velopment board (Xilinx SP605) operating with a 5 ns coincidence window. In the four-photon

experiment, the higher order emission (|22〉) from a single PDC crystal was launched into two

1



spatial modes of a different chip, though of identical geometry, which had VGAs glued to input

and output. This reduced the coupling efficiency uncertainty for the four-photon QBSM, which

reduced the size of the error bars in Fig. 3B. In both cases, to minimize undesired PDC emission

terms the sources were pumped as lightly as possible while maintaining reasonable count rates,

yielding λ2=0.011 and 0.023 in the three- and four-photon sampling experiments respectively.

Photonic circuit fabrication. The boson sampling is performed on a UV-written silica-on-

silicon integrated chip (17). The chip was fabricated by focusing a continuous wave UV laser

(244 nm) onto a photosensitive layer to create a local increase in the index of refraction. The

chip is then moved, via computer-controlled precision translation stages, transversely to the

incident UV beam to trace out the desired waveguide network geometry. One can fabricate

cross-coupling beamsplitters of a certain reflectivity by crossing waveguides at a specific angle.

Such beamsplitters take up less space than traditional evanescent couplers in such circuits, al-

lowing reduced chip size and lower loss (32). While there are eight spatial modes in the middle

of the circuit (Fig. 2A), the outer modes are not fabricated to the edge of the chip and are thus

not accessible to the experimenter. They can then be accurately treated as losses on the neigh-

boring modes, leaving a six (accessible) mode interferometric network.

Boson sampling data collection. For the four-photon QBSM, the FPGA simultaneously counts

all possible combinations of coincidence detection events (one detection event, two coincident

detections etc) amongst the six APDs monitoring the output modes of the integrated circuit. For

the three-photon QBSM, a similar set of coincidences is taken, but conditioned on detection of

the herald photon by a separate APD. There is a nonzero background count rate on each de-

tector which contributes to erroneous N -fold detection events when N−1 APDs detect photons

and another APD erroneously fires. The N−1 coincidence rate is included in the above set of

statistics collected by the FPGA and, by temporarily blocking all input modes to the circuit,

one can estimate the background rate on each detector. The resulting background contribution

to N -fold coincidences, comprising approximately 5% of the total counts, are then subtracted

from the raw data, with the results plotted in Fig. 3.

Circuit characterization. Our photonic chip performs a non-unitary, complex-valued linear

mapping of input to output modes Λij=τije
iφij . We follow the method outlined in (25) to use a

set of one- and two-photon data to reconstruct Λ.

We can find τi1,j1 by coupling light (single photons) into mode i1 and monitoring the prob-

ability of output in j1 yielding

∣∣∣〈0|b̂j1 â†i1 |0〉
∣∣∣
2

=

∣∣∣∣∣〈0|b̂j1
M∑

j=1

Λi1j b̂
†
j|0〉
∣∣∣∣∣

2

= |Λi1j1 |2

= |τi1j1 |2 (1)
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It is sufficient to measure the ratio of values between output ports, (τi1,j1/τi1,j2)
2
, as this de-

scribes the transformation induced by our circuit up to a constant factor for each input, xi. If Λ is

the true transformation, then this procedure gives us XΛ where X is a diagonal matrix with en-

tries Xii=xi. However, the properties of the matrix permanent give Per(XΛ)=(
∏

i xi)Per(Λ).
Therefore, Eq. 1 of the main text shows, since we always launch the same input state, every

portion of our boson distribution is multiplied by a constant factor that cancels in the normal-

ization. This data is collected by periodically pausing boson sampling data collection, blocking

two of the three photon inputs, and measuring the relative power in each output mode. We thus

obtain accurate values for τ as well as a variance that is important for calculating the error bars

in Fig. 3.

One can then use two photon interference to find φi,j (25). If one inputs two photons into

modes i1, i2 and detect in modes j1, j2, then we have |S〉=â†j1 â
†
j2
|0〉 and |T 〉=â†i1 â

†
i2
|0〉. If single,

indistinguishable photons are used, then the probability of post-selecting this output is

Pindist =
∣∣Per(Λ(S,T))

∣∣2

=
∣∣∣Λ(S,T)

11 Λ
(S,T)
22 + Λ

(S,T)
12 Λ

(S,T)
21

∣∣∣
2

= (τi1,j1τi2,j2)
2 + (τi1,j2τi2,j1)

2

+ 2τi1,j1τi1,j2τi2,j1τi2,j2
× cos(φi1,j1 − φi1,j2 − φi2,j1 + φi2,j2) (2)

If the photons launched into the individual modes are distinguishable, then we get the incoherent

sum of their individual statistics. We again take a matrix permanent, but as this is an incoherent

process one finds

Pdist = (τi1,j1τi2,j2)
2 + (τi1,j2τi2,j1)

2 (3)

One can then perform a Hong-Ou-Mandel experiment and find that the resulting interference

visibility is

V =
Pdist − Pindist

Pdist

=
2τi1,j1τi1,j2τi2,j1τi2,j2

(τi1,j1τi2,j2)
2 + (τi1,j2τi2,j1)

2

× cos(φi1,j1 + φi2,j2 − φi1,j2 − φi2,j1) (4)

We perform this two-photon interference experiment and fit a Gaussian to the resulting data to

determine the visibility. Using the known τi,j , one can then find |φi1,j1 + φi2,j2 − φi1,j2 − φi2,j1 |.
Repeating this procedure for all accessible two photon dips, and applying additional constraints

one can determine φi,j (25).

For our circuit geometry, we encounter an overconstrained problem as we measure more

interference visibilities than unknown φ. Therefore, we run a least squares minimization to find

3



the set of φ that best fits our two photon interference data. To find the error bars in Fig. 3, we use

a Monte Carlo method where the elements of Λ are selected from a normal distribution with an

appropriate variance for each element. The one photon measurement was repeated periodically

during the 160 hour long boson sampling data collection, thus yielding the variance in the

τij characterization, which was determined to dominate the uncertainty in the predicted boson

distribution in Fig. 3. This explains why the four-photon QBSM, which had VGAs glued to the

ends and thus was much less susceptible to changes in the coupling, has significantly smaller

error bars in the predicted distribution shown in Fig. 3B. The uncertainty in the Gaussian fit to

the two-photon interference patterns and in τij was then used to determine the variance in φij .

This characterization process is efficient, as a general linear transformation over M modes

can be described by O(M2) parameters, requiring O(M2) measurements with this technique.

While photons from the PDC sources were used for the circuit characterization here, one can

also use classical coherent states (25,33). However, the single-photon based technique outlined

here benefits from not requiring phase-stable path length matching and, because we use the same

sources for boson sampling and characterization, the photonic degrees of freedom (polarization,

spectrum etc) for the characterization match that used in the experiment.

With Λi,j experimentally determined over the accessible modes, one can predict the post-

selected boson distribution for any input/output |S〉, |T 〉 by constructing Λ
(S,T) from Λ and

taking the permanent according to Eq. (1) in the main text. Thus, we effectively use the one and

two photon boson distributions to characterize our non-unitary operation over the accessible

modes. One can then take various matrix permanents of this non-unitary matrix to predict the

boson distribution for any N .

2 Supplementary Text

In this section we first outline how the boson distribution is given by a set of matrix perma-

nents. We then show how the boson distribution can be accurately predicted by the permanents

associated with a non-unitary matrix describing a lossy channel, Λ, if one post-selects on trials

where no photons are lost. Finally, the principal sources of error in this experiment, namely the

photon distinguishability and higher order terms from our PDC photon sources, are discussed.

2.1 The boson distribution is given by a set of matrix permanents

We assume N bosons are injected into a network that performs a unitary transformation over

M modes. We consider the special case, appropriate to our experiment, where the input (and

output) states contain no more than one boson per mode, though the general case is treated

elsewhere (34). Without loss of generality, let modes 1 to N contain an input boson, while
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modes N+1 to M have vacuum inputs. The input state can then be described by

|Ψin〉 = |T 〉 =
N∏

i=1

â†i |0〉 (5)

The unitary transformation allows one to evolve the operators according to

â†i =
M∑

j=1

Uij b̂
†
j (6)

where â†i and b̂†j are creation operators on the i-th input and j-th output mode respectively. We

then obtain the output state

|Ψout〉 =
N∏

i=1

(
M∑

j=1

Uij b̂
†
j

)
|0〉 (7)

To find the boson distribution, we project our output onto a state |S〉 which, in the number

state basis, we describe by an N element vector S, where Sj gives the mode of the j-th boson.

The probability of measuring this state is then

PS = |〈S|ψout〉|2 (8)

=

∣∣∣∣∣〈0|
N∏

i=1

b̂Si

[
N∏

j=1

(
M∑

k=1

Ujkb̂
†
k

)]
|0〉
∣∣∣∣∣

2

The term in square brackets can be expanded and includes MN terms, as one is selecting N
bosons from M modes where repetitions are allowed (> 1 boson in a mode). One can rewrite

this term in square brackets to give

PS =

∣∣∣∣∣∣
〈0|

N∏

i=1

b̂Si




MN∑

j=1

(
N∏

k=1

U
k,Ṽ

j

k
b̂†
Ṽ

j

k

)
 |0〉

∣∣∣∣∣∣

2

(9)

where Ṽ is the set of MN permutations of N photons amongst M modes, repetitions allowed.

The tilde notation will be used throughout this paper for a set of permutations. Then, Ṽ j
k indi-

cates the mode of the k-th boson in the j-th permutation. As an example, consider the case with

M = 3 modes and N = 2 input bosons, then

Ṽ 1 = [1, 1] Ṽ 2 = [1, 2] Ṽ 3 = [1, 3]

Ṽ 4 = [2, 1] Ṽ 5 = [2, 2] Ṽ 6 = [2, 3]

Ṽ 7 = [3, 1] Ṽ 8 = [3, 2] Ṽ 9 = [3, 3]

(10)
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Let us denote all N ! permutations of S by S̃ where S̃j
k indicates the mode of the k-th boson in

the j-th permutation. For example, if we project onto the state |S〉=|011〉 then S=[2, 3] and

S̃1 = [2, 3] S̃2 = [3, 2] (11)

It is clear we only retain terms from the summation in Eq. 9 where Ṽ j ∈ S̃, otherwise at least

one annihilation operator will act on vacuum and give PS=0. This then leaves us with

PS =

∣∣∣∣∣

N !∑

j=1

N∏

k=1

U
k,S̃

j

k

∣∣∣∣∣

2

(12)

The formula for the permanent of an n× n matrix A with elements aij is

Per(A) =
n!∑

i=1

n∏

j=1

aj,σ̃i
j

(13)

where σ̃i
j gives the j-th element of the i-th permutation of the numbers 1, 2, ...., n. The term

inside the modulus of Eq. 12 has the same form as the matrix permanent in Eq. 13. Our original

unitary, U , can be described by an M ×M matrix. However, it is obvious from Eq. 12 that, in

general, we take the permanent of a subsection of U . Specifically, we only keep rows 1 → N ,

those rows corresponding to modes with input photons. In addition, we only keep columns

corresponding to the elements of S. Let us call this modified subsection of our original unitary

U (S,T). Then, using the definition of the permanent we can rewrite Eq. 12

P (S|T) =
∣∣Per(U (S,T))

∣∣2 (14)

If one allows the possibility of more than one photon per input and output mode, then a similar

analysis yields Eq. 1 in the main text (34).

We also note that the above treatment assumes the bosonic commutation relation [b̂†i , b̂
†
j] =

0 ∀ i, j. If the system consisted of indistinguishable fermions, then the corresponding anticom-

mutation relation {b̂†i , b̂†j} = 0 ∀ i, j would be used, leading to alternating plus and minus signs

introduced in the summation in Eq. 12, yielding the easily classically computable determinant.

2.2 Effects of loss

In any experimental implementation of boson sampling there will be losses. These losses,

regardless of where they occur, can be modeled as beam splitters that link accessible to inac-

cessible modes (35). When these losses are considered, it is important to ask whether the boson

distribution is still given by a set of matrix permanents and, if so, what linear transformation

does that matrix describe.

Let us adopt the convention that modes 1 to M are accessible modes while inaccessible loss

modes are given the labels M + 1 to L. There is an L × L unitary operation describing the
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evolution of our pure input state, though we must trace over these loss modes at the output,

yielding a mixed state over the accessible modes. Let us assume that photons are input into

modes 1 to N where N ≤ M and we post-select on cases where N photons are detected, by

definition, in the accessible modes 1 to M . Then Eq. 9 becomes

PS =

∣∣∣∣∣∣
〈0|

N∏

i=1

b̂Si




LN∑

j=1

(
N∏

k=1

U
k,Ṽ

j

k
b̂†
Ṽ

j

k

)
 |0〉

∣∣∣∣∣∣

2

(15)

but Si ≤M as we can only project on accessible modes. Therefore, even though U is an L×L
matrix and the elements of Ṽ range from 1 → L, when we project onto S̃ (all the permutations

of S) we are left with

PS =

∣∣∣∣∣

N !∑

j=1

N∏

k=1

U
k,S̃

j

k

∣∣∣∣∣

2

=
∣∣Per(U(S,T))

∣∣2 =
∣∣Per(Λ(S,T))

∣∣2 (16)

where U (S,T) is again a modified version of the original unitary but only keeping rows 1 → N
and columns in S ′

i ≤ M . Since these elements always describe the accessible modes, then

we can equivalently work in terms of Λ, where Λi,j=Ui,j but i, j ≤ M . In summary, when

post-selecting on no bosons being lost, one can work in terms of Λ, a non-unitary linear trans-

formation that is simply the subsection of U over the accessible modes. The matrix permanents

of such a non-unitary linear transformation lead to the theoretical predictions in Fig. 3 of the

main text.

Equivalently, we can describe our system as a noisy (lossy) quantum channel in the operator

sum representation (36). This formalism will be useful later when we discuss sources of error

from higher order PDC terms. In this picture, the accessible modes are in the system Q, while

all inaccessible loss modes form the environment systemE. We can describe the transformation

induced by our circuit over the full space Q ⊗ E by a unitary operation U . Let ρ and σ be the

inputs to Q and E respectively, then the output in Q after a projective measurement Pm and

tracing over the environment is described by

ρout = trE(PmU(ρ⊗ σ)U †Pm) (17)

Let the basis for E be described by |ek〉 and the initial state of the environment be σ =∑
j qj|j〉〈j|, then we can express Eq. 17 as

ρout =
∑

jk

EjkρE
†
jk (18)

where Ejk =
√
qj〈ek|PmU |j〉 are the Kraus operators. We do not directly characterize U , as it

extends over the environment which is inaccessible to the experimenter. However, with photons
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we can assume σ = |0〉〈0|, and all of our boson sampling results post-select on the case where

no photons are lost to the environment. Therefore, the summation in Eq. 18 reduces to only one

term with postselection

ρout = E00ρE
†
00 (19)

Experimental boson sampling efforts will sample a non-unitary transformation that is equiva-

lent, when post-selecting on no bosons being lost, to the E00 Kraus operator.

2.3 Sources of error

The computational difficulty for a classical machine to sample a boson distribution increases as

the maximum error threshold is lowered. Therefore, while a QBSM need not sample the true

boson distribution perfectly (12), it will be easier to beat a classical machine if future QBSMs

designs minimize their sampling errors. In this paper, we have benchmarked the accuracy of our

QBSMs by inferring the probability distribution from our data, labeled P
exp, and comparing it to

the distribution obtained from Eq. 1, labeled P
th. Throughout the text, we quantify the distance

between two probability distributions via the L1 distance, d(P(1),P(2))=1
2

∑
i |P

(1)
i − P

(2)
i |.

Our method of benchmarking QBSM accuracy will always yield a nonzero d due to the finite

number of collected samples. We perform a Monte Carlo simulation of Pexp from a QBSM that

perfectly samples P
th as a function of the number of counts collected (Fig. 4, A and B), to

show the rate at which d asymptotically approaches zero as the number of samples collected

increases. In the inset histograms, we show the range of outputs for this ideal QBSM for the

actual number of experimental counts collected in the three and four photon cases, while the red

dots indicate d(Pth,Pexp). These two probability distributions show close agreement in Fig. 3,

however a comparison of the histogram and red dots in Fig. 4, A and B indicates there is an

additional source of error beyond the finite number of samples.

Due to experimental limitations, occasionally we sample distributions other than P
th. We

model the effect of two such imperfections, photon distinguishability and higher order terms

from our PDC sources, and form a new distribution P
mod that accounts for these effects. We

ignore the effects of photon impurity, as our post-selected data collection and use of nearly-

spectrally factorable photon sources (23), minimizes this contribution. We find that the new

d(Pexp,Pmod), indicated with the green dot in Fig. 4, A and B, comes well within the output

variance of an ideal machine. This indicates we have correctly diagnosed and modeled the

principal sources of experimental error, which will be important in guiding designs of future,

larger N , QBSMs.
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2.3.1 Effect of using heralded single photon sources

The parametric downconversion sources we use to generate our photons actually generate a

two-mode squeezed state that is given by

|ΨPDC〉 =
√
1− λ2

∞∑

n=0

λn|nn〉 (20)

where 0 ≤ λ < 1 is the squeezing parameter whose magnitude is determined, in part, by the

type of crystal and pump power used. For our experiment we wish to minimize higher order

terms (|22〉 and |33〉 for the three- and four-photon QBSMs respectively) and so we deliberately

lower our pump power as much as possible while maintaining a feasible count rate. For the

three-photon experiment, λ=
√
0.011 and for the four-photon experiment λ=

√
0.023. However,

even in this case we will sometimes inject more than N photons into our circuit which, due to

losses, could be observed as an N -fold detection at the output.

Due to the circuit characterization method employed, we have no information about what

such terms will be. In the operator sum representation, our characterization only determines the

E00 Kraus operator, which describes the transformation of our input state when the environment,

which includes all loss modes, starts and ends with zero photons. For example, if we instead

inject five photons and lose two, then this process is described by the E20 operator, about which

we have no information.

To model the effect of using such squeezed sources, we start with a circuit with the same ge-

ometry used in the experiment. Non-uniform losses throughout the circuit can then be modeled

by adding beam splitters that link the depicted accessible modes shown in Fig. 2A to inaccessi-

ble loss modes, where the beam splitter reflectivity indicates the loss in that channel (35). Such

‘loss beamsplitters’ are added throughout the circuit. We cannot directly characterize these

losses in our current circuit, however we can estimate them numerically. The characterized lin-

ear transformation Λ is a function of these losses as well as the fabricated interferometers shown

in Fig. 2A. We have performed a loss-independent characterization of the interferometers (17),

and then input this data into a genetic algorithm to find the relative losses between modes that

best reproduces the characterized Λ. We then apply three independent scaling factors to the

relative losses at the sources, circuit and detectors. The source scaling factor is chosen to match

the known source heralding efficiency, which is a measure of the loss in each source arm. The

detector losses are scaled such that no detector has an efficiency greater than 50%, which is

appropriate for APDs detecting photons at 830 nm. Finally, we scale the relative losses in the

circuit to reproduce the known overall system transmission observed experimentally.

With knowledge of these losses, we reproduce an actual unitary linear transformation U that

extends over both theN=6 modes as well as all loss modes and can be used to accurately predict

the effect of higher order PDC terms. Taking the three-photon QBSM as an example, we use Eq.

1 of the main text to find the probability distributions when the input is |T〉=|011010〉 (desired

single-photon input), as well as |011020〉 or |022010〉 (the first higher-order terms from our two

sources), which we label P111, P112 and P
221 respectively. The boson distributions are then
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found by summing the terms where three photons appear in the desired accessible modes and

zero, one, or two (respectively) photons appear in any combination of loss modes. For example,

the probability of obtaining |S〉=|111000〉 given input |T〉 = |022010〉 is the summation of all

terms where three photons appear in the first three accessible modes and two photons appear

in any combination of loss modes. The higher order probability distributions, P221 and P
112,

are weighted by λ2 which is obtained via a conditional second order correlation measurement,

g(2)(0) (37). As λ2 is small, we only consider the first higher order terms from each source.

2.3.2 Photon Distinguishability

Boson sampling assumes indistinguishable bosons, while experimental implementations will

always have some distinguishability. Assuming pure inputs we follow the notation of (28) to

write our input state as

|ψin〉 =
N∏

i

(
αA†

ξ0,i
+
√
1− α2A†

ξi,i

)
|0〉 (21)

where N is again the number of photons, α is a distinguishability parameter, and A†
ξj ,i

is the

creation operator for photon i in mode ξj . Each photon is in a superposition of a desired mode

ξ0 and another mode ξi. By analyzing the reduction in HOM dip visibility at a beamsplitter

inside our circuit we find α = 0.974 on average in our experiment.

If one photon is distinguishable from the others, then the new probability distribution is

given by the permanents of N−1 matrices which are incoherently summed. For example, as-

sume an input state |T〉=|1〉τ |11000〉 where τ labels a distinguishable photon, then for a unitary

transformation U the probability of obtaining an output |S〉 is

P (S|T) =
∣∣∣U (S,T)

11

∣∣∣
2

|U (S,T)
22 U

(S,T)
33 + U

(S,T)
23 U

(S,T)
32 |2

+
∣∣∣U (S,T)

12

∣∣∣
2 ∣∣∣U (S,T)

21 U
(S,T)
33 + U

(S,T)
23 U

(S,T)
31

∣∣∣
2

+
∣∣∣U (S,T)

13

∣∣∣
2 ∣∣∣U (S,T)

21 U
(S,T)
32 + U

(S,T)
22 U

(S,T)
31

∣∣∣
2

(22)

where the terms in parentheses are permanents of 2 × 2 matrices. We calculate these proba-

bility distributions when one photon is distinguishable and weight them by |α2
√
1− α2|2 and

|α3
√
1− α2|2, the probability that one photon is distinguishable from the others for the three-

and four-photon cases respectively. As α is large, we ignore the case when two photons are

distinguishable.
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