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1 Introduction

Higher spin gravities are extensions of ordinary gravity by Fronsdal fields governed by

nonabelian higher spin gauge symmetries. The resulting higher spin geometries consist

of noncommutative symplectic manifolds given by (symplectic) twistor spaces fibered over

phase-spacetimes, as described by Cartan integrable systems found by Vasiliev, first in four

and lower spacetime dimensions [1–3] using spinorial twistors, and later in any spacetime

dimension [4] using vectorial twistors and sp(2) gauge symmetries; for reviews, see [5–8].

In this paper, we shall be mainly concerned with the vectorial models in any dimension.

These consist perturbatively of one real Fronsdal field for every integer spin, including a

parity even scalar field. The fields with odd spin can be consistently set to zero, leading to a

vectorial version in any dimension of the four-dimensional minimal bosonic spinorial Type
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A model [9].1 In what follows, we shall first provide an alternative vectorial Type A model

by modifying the sp(2) gauging without affecting the higher spin gauge algebra nor the

perturbative spectrum. We then extend its field content by a dynamical two-form and an

extra dynamical one-form so as to obtain a vectorial generalization of the four-dimensional

spinorial Frobenius-Chern-Simons model (FCS) proposed in [10]. The FCS model contains

the alternative Type A model as a consistent truncation. At the linearized level, the FCS

model contains additional degrees of freedom arising from non-trivial cohomology elements

in the dynamical two-form. In this paper, we shall restrict, however, the perturbative

analysis to the alternative Type A model.

The FCS model is more predictive than its Type A model truncations, as it possesses

an enlarged bi-fundamental gauge group that drastically reduces the number of higher

spin gauge invariants, and facilitates an off-shell formulation using topological field theory

methods leading to an on-shell action with only a finite number of free parameters. More-

over, the FCS model, which is formulated in terms of a Quillen superconnection [38] valued

in a Frobenius algebra, is akin to a topological open string field theory [11–13]. Topo-

logical strings provide a natural framework for coupling massless higher spin particles to

ordinary tensionless strings in anti-de Sitter backgrounds [14–17] in accordance with holog-

raphy [14, 18–20]. Further developments of the FCS model may thus open up new windows

to holography, permitting access to a wide range of physically relevant quantum field the-

ories in four and higher dimensions, including four-dimensional pure Yang-Mills theories.

The resulting framework provides a path-integral quantization of higher spin gravity

using the language of topological quantum field theories on noncommutative Poisson man-

ifolds [25, 26] (see also [10, 27]) which can be used to introduce the notion of star-product

locality of equations of motion, covariant Hamiltonian Lagrangians and other densities

used for constructing observables [25, 26, 30, 31]. Indeed, as stressed by [22], there is a

tension between the quasi-Riemannian notion of spacetime locality and (nonabelian) higher

spin gauge symmetry that obstructs the Fronsdal program [24], i.e. the application of the

Noether procedure so as to obtain a classical action for deformed Fronsdal fields; for related

work on Vasiliev’s formulation to the deformed Fronsdal program, see [21, 23]. Thus, it

makes more sense to think of the deformed Fronsdal theory, viewed as a stand-alone quan-

tum field theory without any reference to higher dimensional noncommutative geometry, as

a quantum effective theory governed by higher spin gauge symmetry and unitarity without

any classical limit directly on spacetime.

In the topological field theory realization of higher spin gravity, the physical states arise

as boundary states of a topological bulk theory created by generalized Chern classes [10]. A

subset of these do not receive any quantum corrections, mainly due to the conservation of

form degrees at bulk vertices. On-shell, they are related to zero-form charges [29, 31] which

indeed serve as generating functionals for holographic correlation functions [30, 32, 33];

for more recent progress, see [34]. Accordingly, the FCS model subjected to appropriate

boundary conditions should contain a Vasiliev branch that is equivalent on-shell to the

quantum effective deformed Fronsdal theory. Of key importance in this approach is the

1Strictly speaking, the equivalence between the spinorial and vectorial Type A models in four dimensions

remains to be established beyond the linearized level.
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fact that the original Vasiliev system contains closed and central elements in form degree

two, which combine with the Weyl zero-form into deformations of the noncommutative

higher spin geometry. In the FCS model, these elements arise as particular background

values of a dynamical two-form master field, which one may thus think of as points in

a larger moduli space of noncommutative geometries [10]. The resulting FCS landscape

may thus contain new bridges between holographically dual field theories and first- and

second-quantized topological field theories; indeed, similar correspondences exist in string

and M-theory [35, 36].

In the vectorial FCS model, the presence of the dynamical two-form implies that the

equations of motion cannot be rewritten as a Wigner deformed oscillator algebra on a

general background.2 In Vasiliev’s original model, these oscillators are used to define an

sp(2) algebra factored out from the twistor space on-shell. In order to introduce the two-

form consistently, we instead factor out an alternative sp(2) algebra, that does not refer to

any underlying Wigner deformed oscillator algebra. We emphasize that the existence of two

possible sp(2) gaugings stems from the fact that both meet the basic criteria for choosing

the sp(2) gauge algebra, namely Cartan integrability of the full nonlinear system, and

Vasiliev’s Central On Mass Shell Theorem [5], i.e. consistency of the linearized system, as

we shall spell out in detail in section 3. Thus, starting at the linearized level, where the two

theories are clearly equivalent, the old gauging is possible only on special noncommutative

manifolds while the new gauging, which is thus more akin to topological open string theory,

is distinguished by its potential extension to general noncommutative manifolds.

The paper is organized as follows: in section 2, we review Vasiliev’s original Type A

model. In section 3, we proceed with the formulation of the new Type A model based on a

modified sp(2) gauging. We compare the new model with the original model at the (full)

perturbative level as well as at the level of higher spin invariants. In section 4, we couple

the new model to a dynamical two-form and further extend the system to a flat Quillen

superconnection. Introducing sp(2) ghosts, we construct a BRST operator and construct

an action that makes the Quillen flatness condition and sp(2) gauge conditions variational;

the formalism also provides a fully non-linear extension of the sp(2) gauge symmetries

compatible with Cartan integrability. We conclude in section 5 pointing to a number of

future directions.

2 Vasiliev’s Type A model

In this section, we outline Vasiliev’s original formulation of self-interacting totally symmet-

ric higher spin gauge fields in arbitrary spacetime dimensions.

2.1 Master field equations

Vasiliev’s higher spin gravity is formulated in terms of horizontal differential forms on

noncommutative fibered spaces, which we refer to as correspondence spaces. These forms

2In the four-dimensional spinorial FCS theory with spinorial twistor space, this implies that the Lorentz

covariance can only be made manifest on its Vasiliev branch, as here the deformed oscillator algebra

is restored.

– 3 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
1

belong to a differential graded associative algebra with compatible differential d(·) and bi-

nary product (·) ? (·). Locally, the correspondence space is a direct product of a base with

coordinates (XM , ZAi ) and a fiber with coordinates Y A
i , where XM coordinatize a com-

mutative manifold containing spacetime, and ZAi and Y A
i are noncommutative coordinates

with non-trivial commutation relations

[Y A
i , Y

B
j ]? = 2i εij η

AB , [ZAi , Z
B
j ]? = −2i εij η

AB , (2.1)

introducing the so(2, D−1) invariant tensor ηAB and the sp(2) invariant tensor εij . Lorentz

tensors are defined by a constant frame field (VA, V
a
A) obeying ηABVAVB=−1, ηABV a

AVB=0

and ηABV a
AV

b
B = ηab; one also defines Yi := VAY

A
i and Y a

i = V a
AY

A
i idem Zi and Zai .

Locally, the horizontal projection of the differential on the correspondence spaces is given by

d = dXM∂M + dZAi
∂

∂ZAi
, (2.2)

where (dXM , dZAi ) are anti-commuting line elements (that star commute with the

coordinates).

The dynamical fields, all of which are horizontal, are a twisted-adjoint zero-form

Φ(X,Z;Y ) and an adjoint one-form W = dXM WM (X,Z;Y ) + dZAiWAi(X,Z;Y ), which

we shall refer to as master fields as they comprise infinite towers of tensor fields on the

commuting manifold. The system is put on-shell by i) imposing the constraints

F + Φ ? J = 0 , DΦ = 0 , (2.3)

DKij = 0 , [Kij ,Φ]π = 0 , (2.4)

where Kij generate an sp(2) algebra, viz.

[Kij ,Kkl]? = 4iε(j|(kKl)|i) , (2.5)

which together form a quasi-free differential algebra; and ii) factoring out the orbits gen-

erated by the shift transformations

δW = Kij ? α
ij , δΦ = Kij ? β

ij , δKij = 0 , (2.6)

where αij and βij are triplets under the adjoint and twisted-adjoint action of sp(2), respec-

tively, viz.

[Kij , α
kl]? = 4i δ

(k
(i α

l)
j) , [Kij , β

kl]π = 4i δ
(k
(i β

l)
j) . (2.7)

In the above, the following definitions have been used: the curvature and covariant

derivatives

F := dW +W ?W , (2.8)

DΦ := dΦ + [W,Φ]π , (2.9)

DKij := dKij + [W,Kij ]? , (2.10)
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where the π-twisted commutator

[f, g]π := f ? g − (−1)deg(f)deg(g)g ? π(f) , (2.11)

using the automorphism π of the star product algebra defined by

π(XM , Zai , Zi;Y
a
i , Yi) := (XM , Zai ,−Zi;Y a

i ,−Yi) , πd = dπ . (2.12)

The element J is the closed two-form

J = − i
4
dZidZi κ , (2.13)

where κ is an inner Klein operator obeying

dZidZi(κ ? f − π(f) ? κ) = 0 , κ ? κ = 1 , (2.14)

for general horizontal forms f . It follows that

κ = κY ? κZ , (2.15)

where

dZidZi(κZ ? f − πZ(f) ? κZ) = 0 , κY ? f − πY (f) ? κY = 0 (2.16)

for general horizontal forms, and

πZ(XM , Zai , Zi;Y
a
i , Yi) := (XM , Zai ,−Zi;Y a

i , Yi) , πZd = dπZ ,

πY (XM , Zai , Zi;Y
a
i , Yi) := (XM , Zai , Zi;Y

a
i ,−Yi) .

(2.17)

Finally, the master fields obey the reality conditions

W † = −W , Φ† = π(Φ) , J† = −J , (2.18)

where the hermitian conjugation operation is defined by

(df)† = d(f †) , (f ? g)† = (−1)deg(f)deg(g)g† ? f † , (2.19)

(XM , Y A
i , Z

A
i )† = (XM , Y A

i ,−ZAi ) . (2.20)

The equations of motion define a Cartan integrable system with Cartan gauge transfor-

mations

δεW = Dε , δεΦ = −[ε,Φ]π , δεKij = −[ε,Kij ]? . (2.21)

The shift transformations (2.6), which transform the field equations proportionally to Kij ,

can be turned into Cartan gauge symmetries of an extended system, as will be spelled out

in section 4.
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2.2 Diagonal sp(2) generators

In Vasiliev’s model, the sp(2) gauge algebra is generated by

K
(diag)
ij := K

(0)
ij −K

(S)
ij , K

(0)
ij := K

(Y )
ij +K

(Z)
ij , (2.22)

where the two first generators are field independent, viz.

K
(Y )
ij :=

1

2
Y A

(i ? Yj)A ≡ Kij , K
(Z)
ij := −1

2
ZA(i ? Zj)A , (2.23)

and K
(S)
ij is the field dependent generator

K
(S)
ij := −1

2
SA(i ? Sj)A , (2.24)

built from the generalized Wigner deformed oscillator

SAi := ZAi − 2iWAi , (SAi)
† = −SAi , (2.25)

which is an adjoint element in the sense that

δεSAi = −[ε, SAi]? . (2.26)

The sp(2) generators defined above form three copies of sp(2), viz.

[K
(Y )
ij ,K

(Y )
kl ]? = 4iε(j|(kK

(Y )
l)|i) , [K

(Z)
ij ,K

(Z)
kl ]? = 4iε(j|(kK

(Z)
l)|i) ,

[K
(S)
ij ,K

(S)
kl ]? = 4iε(j|(kK

(S)
l)|i) .

(2.27)

The last relation follows from

[SAi, SBj ]? = −2iεij(ηAB − VAVBΦ ? κ) ,

Sai ? Φ− Φ ? π(Sai) = 0 , Si ? Φ + Φ ? π(Si) = 0 ,
(2.28)

which is an equivalent way of writing FAi,Bj = − i
2εijVAVBΦ ? κ and DAiΦ = 0 using an

undeformed oscillator Sai and a deformed oscillator Si := V A SAi, with Φ playing the role

of Wigner deformation parameter.

As for the sp(2) invariance conditions, it follows from DMSAi=0 and [SAi,Φ]π=0 that

DMK
(diag)
ij = 0⇔ [K

(0)
ij ,WM ]? = 0 , (2.29)

[K
(diag)
ij ,Φ]π = 0⇔ [K

(0)
ij ,Φ]? = 0 , (2.30)

while

DAiK
(diag)
jk = 0 ⇔ [SAi,K

(0)
jk −K

(S)
jk ]? = 0 ⇔ [K

(0)
ij , SAk]? = 2iSA(iεj)k , (2.31)

from which it follows that

[K
(diag)
ij ,K

(diag)
kl ]? = 4iε(j|(k

(
K

(0)
l)|i) +K

(S)
l)|i)

)
− [K

(0)
ij ,K

(S)
kl ]? − [K

(S)
ij ,K

(0)
kl ]?

= 4iε(j|(k

(
K

(0)
l)|i) −K

(S)
l)|i)

)
= 4iε(j|(kK

(diag)
l)|i) , (2.32)
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i.e. the desired sp(2) commutation rules (2.5). Under a Cartan gauge transformation,

one has

δεK
(diag)
ij = −δεK(S)

ij = −[ε,K
(S)
ij ] , (2.33)

and hence δεK
(diag)
ij = −[ε,K

(diag)
ij ]? holds true provided that

[K
(0)
ij , ε]? = 0 , (2.34)

which is indeed compatible with (2.29).

2.3 Star product, boundary conditions and sp(2) symmetry

Although there does not exist any canonical realization of the star product algebra in

terms of symbols, there are two choices of operator ordering that are particularly conve-

nient for imposing boundary conditions on correspondence space and constructing classical

solution spaces.

We recall that a given operator ordering amounts to a Wigner map that realizes the star

product as a non-local composition rule for symbols given by a twisted convolution formula,

and that different ordering schemes are connected by formal Kontsevich gauge transfor-

mations which can be thought of as changes of bases for the operator algebra generated

by symmetric poly-vector fields acting on the space of symbols, including the ordinary

correspondence space bundle maps, i.e. higher spin gauge transformations and symplecto-

morphisms of the base manifold. The boundary conditions thus serve two dual purposes:

i) the selection of a class of horizontal forms with finite globally defined integrals over

cycles in correspondence space; and

ii) the identification of a basis for deformed Fronsdal fields in weakly coupled regions of

spacetime.

The finite cycles, which play the role of observables, are left invariant by a subgroup of

the bundle maps, usually referred to as the small gauge transformations. The remaining

coset consisting of gauge functions, or large gauge transformations, act on the space of

zero-form integration constants (and other fluxes in higher form degree when present) to

produce orbits making up a classical moduli space. The higher spin amplitudes can then

be computed by relating the classical moduli to polarization data for deformed Fronsdal

fields in asymptotically anti-de Sitter regions and identifying the on-shell action.

In order to implement (i), it is convenient to use the Weyl order defined by

[f ? g]w(Y,Z) =

∫
dµ dµ̃ ei(V

i
AU

A
i +Ṽ i

AŨ
A
i )[f ]w(Y + U,Z + Ũ) [g]w(Y + V,Z − Ṽ ) , (2.35)

where [·]w denotes the corresponding Wigner map and dµ = (2π)−2(D+1)d2(D+1)Ud2(D+1)V

idem dµ̃. This order exhibits the fibration of the correspondence space in the sense that

expanding horizontal forms over complete sets of fiber functions Tλ(Y ) multiplied by mode

forms fλ(X,Z; dX, dZ) on the base manifold, viz.

f =
∑
λ

Tλ ? f
λ , (2.36)

– 7 –
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one has

[f ]w =
∑
λ

[Tλ]w[f
λ]w . (2.37)

Thus, the star product algebras in the fiber and on the base are separated from each other,

which facilitates the construction of higher spin invariants as well as classical moduli spaces.

In particular, letting [·]w denote the inverse Wigner map in Weyl order, the inner Klein

operators in (2.15) are given by

κY =
[
2πδ2(Yi)

]w
, κZ =

[
2πδ2(Zi)

]w
, κ =

[
(2π)2δ2(Yi)δ

2(Zi)
]w
, (2.38)

enabling obtaining (Tλ, f
λ) perturbatively as distributions.

The implementation of (ii), on the other hand, requires an ordering scheme in which

the master fields are real analytic in Y at Y = Z = 0, as the corresponding Taylor

coefficients define the unfolded deformed Fronsdal fields and their Weyl curvatures. This

can be achieved by going to normal order in which

[f ? g]n(Y,Z) =

∫
dµ eiV

i
AU

A
i [f ]n(Y + U,Z + U)[g]n(Y + V,Z − V ) , (2.39)

where [·]n denotes the corresponding Wigner map. Consequently, the expansion (2.36) is

equivalent to

[f ]n(Y,Z) =
∑
λ

∫
dµ eiV

i
AU

A
i [Tλ]w(Y + U)[fλ]w(Z − V ) , (2.40)

as [Tλ]n = [Tλ]w and [fλ]n = [fλ]w, which makes the symbols in normal order less singular

than those in Weyl order. In particular,

κY =
[
2πδ2(Yi)

]n
, κZ =

[
2πδ2(Zi)

]n
, κ =

[
exp(iY iZi)

]n
, (2.41)

where [·]n denotes the inverse Wigner map in normal order.

The unfolded description of free Fronsdal fields, as spelled out by the Central On Mass

Shell Theorem [5], is contained in the linearization of [4]

[FMN ]n|Z=0 = 0 , [DMΦ]n|Z=0 = 0 (2.42)

around the anti-de Sitter background for W , provided that

a) all linearized master fields have symbols in normal order that are real analytic in Y

at Y = Z = 0; and

b) the gauge condition

Wai = 0 , Zi [Wi]n = 0 , (2.43)

which we shall refer to as the Vasiliev gauge, holds in the linearized approximation.

– 8 –
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Thus, asymptotically anti-de Sitter regions containing deformed Fronsdal fields arise by

imposing (a) and (b) in the leading order of the generalized Fefferman-Graham expansion

in the radial coordinate to all orders in classical perturbation theory, and simultaneously

imposing (i), which provides a “dual” boundary condition on the gauge functions at infinity

of Z.

Finally, turning to the rationale behind the choice of the sp(2)(diag) generators made

in (2.22), it consists of the facts that:

I) it amounts to gauging the simultaneous transformation of the doublets (Y A
i , ZAi , dZAi ,

W i
A) which is a manifest symmetry in normal order (where κn is given by (2.41)); and

II) in the leading order of the perturbative expansion around the anti-de Sitter vacuum,

the sp(2)(diag) generators reduce to those of sp(2)(Y ), whose factoring out from the

linearized fluctuations in WM and Φ yields unfolded free Fronsdal tensors and corre-

sponding Weyl tensors on-shell, respectively.

However, as we shall exploit next, property (II), which refers explicitly to the Wigner

deformed oscillator algebra, is not necessary for consistency, and can hence be relaxed so

as to couple the system to a dynamical two-form master field.

3 New Type A model

In this section, we define the new Type A model and demonstrate its perturbative consis-

tency including its abiding by the requirements of the Central On Mass Shell Theorem at

the linearized level.

3.1 Alternative sp(2) gauging

The consistency of the sp(2) gauging of Vasiliev’s original Type A model relies on the facts

that the sp(2) generators

i) form a star product Lie algebra which ensures consistency of the classical perturbation

theory without any additional algebraic constraints on the master fields; and

ii) are given by sp(2)(Y ) in the leading order of the perturbative expansion around the

anti-de Sitter vacuum which ensures a linearized description in terms of free Fronsdal

fields.

As we shall demonstrate in what follows, both conditions hold true if one instead of

K
(diag)
ij uses

K
(L)
ij := L−1 ? K

(Y )
ij ? L , (3.1)

where L is the gauge function on the commuting factor of the base manifold of the corre-

spondence space. More precisely, taking the fibration of the correspondence space to be

Y ↪→ C → X ×Z , (3.2)

– 9 –
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where C is the total space, Y the fiber, and X and Z, respectively, the commuting and sym-

plectic components of its base, the gauge function is given by the path ordered exponential

L = P exp?

∫
Cp;p0

W , (3.3)

where p, p0 ∈ C; Cp;p0 is a path in C from p0 to p that is transverse to T ∗Z; and p0 sit over

a given point x0 ∈ X .

As we shall see, the Vasiliev gauge condition (2.43) is reached in the two Type A

models using two different methods for homotopy contracting the de Rham differential

d′ := dZAi
∂

∂ZA
i

on Z:

– In the original Type A model, one uses a homotopy contractor on Z defined in normal

order and that commutes to sp(2)(diag);

– In the new Type A model, one instead starts by using a homotopy contractor on

Z defined in Weyl order and that commutes to sp(2)(Y ) in an “integrable” gauge

where L = 1, after which one implements eq. (2.43) by first switching on an anti-de

Sitter gauge function L(0) that commutes to sp(2)(Y ) followed by a linearized gauge

function L(1) that does not commute to sp(2)(Y ) hence switching on the linearized

piece of sp(2)(L).

It follows that the two models coincide at the free level, which essentially amounts to the

existence of a linearized gauge function, as will be shown below. To compare the models

beyond the free level, we shall propose to use a set of higher spin gauge invariants, referred

to as zero-form charges [32], given by traces of adjoint zero-forms on X including a quasi-

projector that annihilates the two-sided ideals generated by the sp(2)-generators. Whether

these observables can be used to map the two models into each other, remains, however,

an open problem.3

3.2 Perturbative solution in integrable gauge

The gauge function can be used to solve the differential equations in X , viz.

W = L−1 ? (W ′ + d) ? L , Φ = L−1 ? Φ′ ? π(L) , W ′M = 0 , (3.4)

where the primed fields, which are thus X-independent, obey the reduced equations

d′W ′ +W ′ ? W ′ + Φ′ ? J = 0 , d′Φ′ +W ′ ? Φ′ − Φ′ ? π(W ′) = 0 . (3.5)

Going to Weyl order, imposing the gauge condition

Zi
[
W ′i
]
w

= 0 , W ′ai = 0 , (3.6)

defining zero-form initial data [
C ′
]
w

:=
[
Φ′
]
w

∣∣
Z=0

, (3.7)

3In the four-dimensional spinorial formulation, the corresponding observables have non-trivial per-

turbative expansions in terms of boundary data defined in weakly coupled asymptotically anti-de Sitter

solutions [10].
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and assuming that

W ′i |C′=0 = 0 , (3.8)

i.e. that the vacuum configuration in the vectorial twistor space is trivial, the resulting

solution space can be written as

Φ′ = C ′ , W ′ =
∑
n>1

wn ? (C ′ ? κY )?n , (3.9)

with perturbative corrections grouped into a generating element

w′ :=
∑
n>1

wnν
n , wn = dZiwn,i(Z

j) , ν ∈ C , (3.10)

obeying the deformed oscillator problem [3]

d′w′ + w′ ? w′ + νj′ = 0 , j′ := − i
4
dZidZi κZ , (3.11)

subject to the gauge and boundary conditions

πZ(w′) = 0 , ı
Zi~∂i

w′ = 0 . (3.12)

The deformed oscillator problem can be solved by adapting the method for the four-

dimensional spinorial Type A model spelled out in [39].4

3.3 Gauge function for asymptotically anti-de Sitter solutions

Let us proceed, still in parallel between the old and new models, by finding the gauge

function L mapping the integrable gauge to the Vasiliev gauge (2.43), that we shall assume

holds to all orders for the sake of simplicity.

To this end, we expand C ′ and L in terms of the linearized zero-form initial data, that

we denote by C ′(1), viz.

C ′ =
∑
n>1

C ′(n) , L =
∑
n>0

L(n) = L(0) ? H , H = 1 +
∑
n>1

H(n) , (3.13)

where L(0) is an anti-de Sitter background gauge function, and likewise

Φ =
∑
n>1

Φ(n) , W =
∑
n>0

W (n) , (3.14)

where the superscripts refer to the order in classical perturbative expansion in C ′(1). We

assume that upon going to normal order, the symbols [Φ]n, [W ]n and [H]n are bounded at

Z = 0, and that

[ω]n := [W ]n|Z=0 ≡ [dxµWµ]n|Z=0 , [C]n := [Φ]n|Z=0 , (3.15)

4As a result, w′i = Ziw(Z+Z−) where Z± = U±i Z
i are creation and annihilation operators defined using

an auxiliary sp(2) frame U±i on Z, and w(Z+Z−) =
∫
dτexp(τZ+Z−)w̃(τ) where w̃(τ) is built from a

confluent hypergeometric function; for further details, including the decomposition of the moduli space into

cells separated by critical Wigner deformation parameters and the incorporation of flat connections on Z,

see [29, 39, 40].
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are real analytic at Y = 0, serving as generating functions for unfolded deformed Fronsdal

fields and their Weyl curvatures. Moreover, we assume that [dZiWi]n and [H]n belong to

the space of forms on Z that are real analytic at Z = 0. An element f ′ in this space admits

the decomposition

f ′ = ρ′ d′f ′ + d′g′ + δ0,deg(f ′)

[
[f ′]n|Z=0

]n
, (3.16)

locally at Z = 0, where the homotopy contractor

ρ′(f ′) :=
[
ı~v′(L~v′)−1[f ′]n

]n
, ~v′ = ZAi~∂

(Z)
Ai , (3.17)

and the inverse Lie derivative admits the integral representation

L−1
~v′ =

∫ 1

0

dt

t
tL~v′ . (3.18)

Thus, iterating (2.43) yields [30]

H(n) = H
(n)
0 −

∑
n1+n2+n3=n

ρ′
(

(L−1)(n1) ? W ′(n2) ? L(n3)
)

−
∑

n1+n2=n

ρ′
(

(L−1 − (L(0))−1)(n1) ? d′L(n2)
)
,

(3.19)

for n > 1, where

H
(n)
0 := [[H(n)]n|Z=0]n . (3.20)

The quantities H
(n)
0 and C ′(n), which are integration constants on Z that were omitted

in [30], are determined, respectively, by the regularity requirements on ω and C at Y = 0

up to a pure gauge term in H
(n)
0 , i.e. a piece that is real analytic at Y = 0, and trivial

re-definitions of C ′(1).

Eq. (3.19) can be obtained starting from

0 = ρ′W = ρ′
(
L−1 ? (W ′ + d′) ? L

)
, (3.21)

which follows from (2.43), and rewriting the second term using

L−1 ? d′L = d′
(
(L(0))−1 ? L

)
+
(
L−1 − (L(0))−1

)
? d′L , (3.22)

and

ρ′d′((L(0))−1 ? L) = H − [[H]n|Z=0]n . (3.23)

Thus

H = [[H]n|Z=0]n − ρ′
[
L−1 ? W ′ ? L+

(
L−1 − (L(0))−1

)
? d′L

]
, (3.24)

which yields (3.19) upon perturbative expansion.

We recall that (2.43), and hence (3.19), holds only as a boundary condition in X
for asymptotically anti-de Sitter solutions (so as to ensure the existence of asymptotically

defined unfolded deformed Fronsdal fields). Inside X and Z, the equivalence class of gauge

functions represented by L is determined by the requirement of finite higher spin invariants.

We would also like to remark that H may be non-regular at Y = 0 = Z, which means

that the regularity conditions on Φ at Y = 0 = Z triggers higher order corrections C ′(n)

(n > 2) to C ′.
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3.4 Linearized gauge function and Central On Mass Shell Theorem

At the linearized level, we have

W (1) = W (L,1) + (D(0) + d′)H(1) , H(1) = H
(1)
0 − ρ′W (L,1) , (3.25)

where

W (L,1) := (L(0))−1 ? W ′(1) ? L(0) , (3.26)

which is thus assumed to be bounded at Z = 0; the components W
(L,1)
i are in addition

assumed to be real analytic at Z = 0. It follows that

ω(1) ≡ [[W (1)]n|Z=0]n = D(0)H
(1)
0 + P (1) , (3.27)

where

[P (1)]n := −[D(0)ρ′W (L,1)]n|Z=0 = − i
2
e(0)a∂(Y )i

a [W
(L,1)
i ]n|Z=0 , (3.28)

obeys [37]

D(0)ω(1) + e(0)a ∧ e(0)b[∂(Y )i
a ∂

(Y )
bi [[Φ(1)]n|Yi=0]n = 0 , (3.29)

where [Φ(1)]n|Yi=0 is the generating function of higher spin generalized Weyl tensors.

Eq. (3.29) consists of a piece that is real analytic at Y = 0, comprising the central on-

shell theorem, and a piece that is singular at Y = 0, that serves to determine H
(1)
0 . More

precisely, decomposing

P (1) = P (1)
reg + P

(1)
sing , (3.30)

where [P
(1)
reg ]n and [P

(1)
sing]n belong to classes of functions on Y that are real analytic and

non-real analytic at Y = 0, respectively, for generic spacetime points. Moreover, assuming

that D(0) does not mix these classes,5 it follows that

D(0)P
(1)
sing = 0 , (3.31)

and hence

P
(1)
sing = D(0)Q

(1)
sing . (3.32)

Thus, taking

H
(1)
0 = −Q(1)

sing , (3.33)

yields an [ω(1)]n that is real analytic at Y = 0, that is, a generating function for unfolded

Fronsdal fields on-shell. As a by-product, one has the following explicit formula for the

expansion in terms of mode functions corresponding to the higher spin representations used

in (C ′ ? κy):

[ω(1)]n =
(
e(0)a∂(Y )i

a [W
(L,1)
i ]n|Z=0

)
reg

. (3.34)

A few remarks are in order:

5For example, this is the case if Y Ai∂
(Y )
Ai can be diagonalized in the space of functions on Y.
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The analogous construction of H(1) and ω(1) in the four-dimensional spinorial Type A

model has been studied in more detail for zero-form initial data Φ′ corresponding to gener-

alized Petrov Type D modes [39, 49], particle modes [51], and solutions with six unbroken

anti-de Sitter Killing symmetries [37].

The gauge function method requires working with a class of distributions on Z×Y con-

taining elements on which commutators of partial derivatives in Y and Z do not commute

but rather give rise to delta functions at Z = 0 and Y = 0. This class consists of ele-

ments given by auxiliary integrals of Gaussian kernels, referred to as regular presentations.

This presentation, which was first introduced in [39], not only facilitates computations

but also ensures associativity as well as the aforementioned property under differentiation

with respect to Y and Z. In particular, in deriving eq. (3.29), the regular presentation

ensures that in calculating D(0)P (1), all partial derivatives in Y × Z actually commute;

for a more detailed analysis of this subtlety in the case of the four-dimensional spinorial

Type A model, see [52]. Thus, the quantity D(0)P (1) is free from delta functions on Z ×Y ,

that is, it can in effect be computed by taking partial derivatives in Y and Z to commute,

leading to the appropriate two-form co-cycle in (3.29).

As for the key features of the co-cycle in (3.29), they have been spelled out in the

original work of [1, 4]. Clearly, the co-coycle is real-analytic in Y provided that [Φ(1)]n is

real-analytic in Y. Moreover, the co-cycle is D(0) closed without being locally D(0) trivial

in the space of polynomials of finite degree in Y. Thus, (3.29) can be decomposed into an

infinite set of equations, one for each Lorentz spin, describing an infinite tower of Fronsdal

fields on-shell.

Working, however, with real-analytic powers series in Y, it is possible to Cartan inte-

grate (3.29), i.e. to write the co-cycle as

e(0)a ∧ e(0)b[∂(Y )i
a ∂

(Y )
bi [[Φ(1)]n|Yi=0]n = −D(0)ω

(1)

L(0);Φ′
, (3.35)

where ω
(1)

L(0);Φ′
is an on-shell construct built from the vacuum gauge function and the

(linearized) zero-form integration constant. Thus, on-shell, one has

ω(1) = ωL(0);Φ′ +D(0)λ(1) , (3.36)

where λ(1) is a linearized gauge function that is real-analytic at Y = 0; as for an explicit

form of ω
(1)

L(0);Φ′
in the four-dimensional Type A model, see [52].

In the above sense, on a specific solution space it is indeed possible to write the

linearized co-cycle, which is defined globally at the free level, i.e. it is invariant under

abelian gauge transformations, as D(0) of a locally defined potential, viz. ω
(1)

L(0);Φ′
. This

does not, however, imply that it is possible to remove the co-cycle in eq. (3.29) by a regular

field redefinition, as ω
(1)

L(0);Φ′
is a highly non-local construct from the point-of-view of the

linearized master fields Φ(1) and W
(1)
µ . In this sense, the gauge function method escapes

the difficulties pointed out in [53].

Finally, we would like to stress the fact that even if the linearized Weyl zero-form [Φ(1)]n
is real-analytic on Y×Z (for generic spacetime points), as is the case for the solution spaces

referred to above, the corresponding linearized gauge function H(1) is not real-analytic on
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Y ×Z (for any spacetime point). In other words, the analyticity properties in Y ×Z of the

gauge functions and zero-form integration constants, are quite distinct from those of the

linearized master fields [Φ(1)]n and ω(1); for a more detailed study of boundary conditions

in the case of asymptotically locally anti-de Sitter solution spaces to the four-dimensional

spinorial Type A model, see [52].

3.5 sp(2) gauging

In what follows, we first impose the sp(2) invariance conditions and then factor out the

sp(2) ideals at the level of higher spin invariants.

3.5.1 Imposing sp(2) invariance

Vasiliev’s Type A model. The sp(2)(diag) invariance conditions read

DMK
(diag)
ij = 0⇔ [K

(Y )
ij +K

(Z)
ij ,WM ]? = 0 , (3.37)

DAkK
(diag)
ij = 0⇔ [K

(Y )
ij +K

(Z)
ij , SAk]? = 4i SA(iεj)k , (3.38)

[Φ,K
(diag)
ij ]? = 0⇔ [K

(Y )
ij +K

(Z)
ij ,Φ]? = 0 . (3.39)

In the integrable gauge, these conditions are equivalent to

[K
(Y )
ij , C ′]? = 0 . (3.40)

In the Vasiliev gauge, the sp(2)(diag) invariance holds provided that

[K
(Y )
ij +K

(Z)
ij , L(0)]? = [K

(Y )
ij , L(0)]? = 0 , (3.41)

as this condition implies that [K
(Y )
ij +K

(Z)
ij , L]? = 0 by virtue of the fact that ρ′ is sp(2)(diag)

invariant.

New Type A model. In the integrable gauge, the sp(2)(L) generators are given by those

of sp(2)(Y ); hence the sp(2)(L) invariance conditions read

[K
(Y )
ij ,W ′]? = 0 = [K

(Y )
ij ,Φ′]? , (3.42)

which are equivalent to

[K
(Y )
ij , C ′]? = 0 . (3.43)

We note that, in Weyl order, the basic contraction rules, viz.

Y A
i ? Y B

j :=
[
Y A
i Y

B
j

]
w

+ iηABεij , Y A
i ? ZBj :=

[
Y A
i Z

B
j

]
w
, (3.44)

ZAi ? Y
B
j :=

[
ZAi Y

B
j

]
w
, ZAi ? Z

B
j :=

[
ZAi Z

B
j

]
w
− iηABεij , (3.45)

as well as the inner Kleinian

κ = κY ? κZ , κY =
[
2πδ2(Y i)

]w
, κZ =

[
2πδ2(Zi)

]w
, (3.46)

exhibit manifest sp(2)(Y ) × sp(2)(Z) symmetry. Thus, in Weyl order, both the ? product

and the central element J are invariant under sp(2)(Y ) × sp(2)(Z). Hence, the sp(2)(L)

gauging is based on a manifest symmetry of the Cartan integrable system.
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Going to the Vasiliev gauge, the master fields obey the following similarity transformed

sp(2)(L) invariance conditions:

[Φ,K
(L)
ij ]? = 0 , DK

(L)
ij ≡ dK

(L)
ij + [W,K

(L)
ij ]? = 0 , (3.47)

where

K
(L)
ij := L−1 ? K

(Y )
ij ? L = H−1 ? K

(Y )
ij ? H , (3.48)

are field dependent generators such that

(K
(L)
ij )(0) = K

(Y )
ij . (3.49)

Comparison of old and new Type A models. In the Vasiliev gauge, and prior to

factoring out the sp(2) ideal, both models have perturbatively defined solution spaces

obeying the same differential equations, gauge conditions, viz.

Wai = 0 , Zi[Wi]n = 0 , , (3.50)

and sp(2) invariance conditions, viz.

DiKjk = 0 , [Kij ,Φ]π = 0 , [Kij ,Kkl]? = 4iεjkKil , (3.51)

with sp(2) generators subject to the same functional initial condition, viz.

Kij |Φ=0 = K
(Y )
ij . (3.52)

This suggests that the two models are perturbatively equivalent, modulo redefinitions of

zero-form initial data and modifications of the Vasiliev gauge condition away from the

asymptotic region. This can be examined by comparing the first sub-leading corrections

K
(L)
ij and K

(diag)
ij , which we leave for a separate work.

3.5.2 Factoring out the sp(2) ideal

Thus, so far we have obtained perturbatively defined configurations (3.9) of both mod-

els, which obey the same differential constraints with sp(2)(Y ) invariant zero-form initial

data ensuring the full sp(2) invariance condition. In order to go fully on-shell it remains

to factor out the sp(2) orbits from these solution spaces. As we shall see next, this op-

eration combines naturally with the problem of constructing higher spin gauge invariant

functionals.

Quasi-projector. Letting E0 denote the space of sp(2) invariant horizontal forms on C,
its (two-sided) ideal I generated by Kij can be factored out by using the modified trace

operation

Tr∆ f :=

∫
Y×Z

[V ?∆ ? f ]b , [f ] ∈ E0/I , (3.53)

where [·]b is the Wigner map in a given operator order b; V is the volume form on Y; and

∆ is a horizontal zero-form obeying

Kij ?∆ = 0 = ∆ ? Kij , (3.54)
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the covariant constancy condition

DM∆ = 0 , [∆,Φ]π = 0 ; (3.55)

and the quasi-projector property, namely that

∆ ? E0
∼= E0/I , (3.56)

as a vector space, while ∆ ? ∆ ? E0 need not exist. Provided that the trace operation is

well-defined it is independent of the details going into [·]b; in particular, it can be performed

in Weyl as well as normal order.

It follows that

DM (∆ ? Φ ? κ) = 0 , DM (∆ ? SAi) = 0 , (3.57)

of which the first equation indeed contains the correct linearized mass-shell conditions for

generalized Weyl tensors (including the dynamical scalar field).

In the new model, we have [41]

∆(Y ) = F (Kij (Y )K
(Y )
ij ) , F (z) = z−ν/2 Iν(

√
2z) , ν =

D

2
− 1 , (3.58)

in the integrable gauge, where Iν(x) is the modified Bessel function such that F is real

analytic and non-vanishing at the origin, and

∆(L) = L−1 ?∆(Y ) ? L , (3.59)

in the Vasiliev gauge.

In the old model, ∆(diag) can instead be found by solving K
(diag)
ij ? ∆(diag) = 0

perturbatively [41].

Zero-form charges. The simplest observables are the zero-form charges [29, 31]

OC := Tr∆ J ? J
′ ?WC , (3.60)

where J ′ is a volume form on the 2D-dimensional subspace of Z coordinatized by Zai, and

WC are twisted (open) Wilson lines in Z from Z = 0 to Z = M which can be straightened

out into star products of vertex-like operators [34, 42], viz.

WC = fC(Φ ? κ) ? VΛ , VΛ := exp?(iM
AiSAi) , (3.61)

where fC is given by an expansion in terms of (Φ ? κ)?n (n = 0, 1, 2, . . . ) depending on the

shape of C. The zero-form charges are de Rham closed on X , and hence higher spin gauge

invariant on-shell by virtue of

∂MO=

∫
Y×Z

[∂M (∆?V ?J?J ′?WC)]b =

∫
Y×Z

[DM (∆?V ?J?J ′?WC)]b = 0 , (3.62)

using DMWC = 0.
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p-form charges. More general invariants [5, 31], that can be evaluated on non-trivial

elements [Σ] in the singular homology of X , can be constructed by choosing a structure

group G with connection ΩM and splitting

WM = ΩM + EM , (3.63)

where EM is a soldering one-form, that is, a generalized frame field, whose gauge parameters

belong to sections that can be converted to globally defined vector fields on X (modulo

a G gauge transformation with composite parameter). This facilitates the definition of G

invariant tensors on X , which induce top forms on representatives Σ′ ∈ [Σ] whose integrals

over Σ′ define generalized volumes whose extrema (as one varies Σ′) are diffeomorphism

invariants, and hence higher spin gauge invariant by the soldering mechanism. These

geometries also support closed abelian even forms

H[2p] = Tr∆ (E ? E)?p , (3.64)

on X , whose charges
∮

ΣH[2p] are higher spin gauge invariant.

As first suggested in [14], the zero-form charges have perturbative expansions over

asymptotically anti-de Sitter solutions in terms of boundary correlation function, as has

been verified and developed further in the context of four-dimensional spinor oscillator

models [30, 32, 33], where it has also been proposed [39] that they can be interpreted

as extensive charges for families of localizable black-hole like solutions. Thus, zero-form

charges together with other invariants could serve as tools for establishing the perturbative

equivalence between the old and new Type A models.6

4 Frobenius-Chern-Simons extension

In this section, we first couple the new Type A model to a dynamical two-form leading

to a model formulated in terms of a superconnection, suitable for making contact with

topological open strings. We then introduce sp(2) ghosts to the oscillator algebra and

related additional auxiliary fields so as to incorporate the sp(2) gauging into the extended

Cartan gauge structure. The resulting equations of motion are variational with a Frobenius-

Chern-Simons action.

4.1 Dynamical two-form

It is natural to seek an extension of the Vasiliev system such that the rigid two-form J

arises as a vacuum expectation value of a dynamical two-form.

To this end, we first introduce a pair (A, Ã) of one-forms in E , with curvatures

F := dA+A ? A , F̃ := dÃ+ Ã ? Ã , (4.1)

and a pair (Φ, Φ̃) of forms in E of degrees (0, 2) in opposite twisted bi-fundamental repre-

sentations, as dictated by the covariant derivatives

DΦ := dΦ +A ? Φ− Φ ? π(Ã) , D̃Φ̃ := dΦ̃ + π(Ã) ? Φ̃− Φ̃ ? A , (4.2)

6They could also be useful in establishing the equivalence between the vector and spinor oscillator

formulations of the Type A model in four dimensions.
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such that Φ?Φ̃ and π(Φ̃?Φ) can be used to source F and F̃ , respectively. We also introduce

two separate sets of sp(2) generators (Kij , K̃ij) in form degree zero, viz.

[Kij ,Kkl]? = 4iε(i|(kKl)|j) , [K̃ij , K̃kl]? = 4iε(i|(kK̃l)|j) , (4.3)

with covariant derivatives

DKij := dKij +A ? Kij −Kij ? A , D̃K̃ij := dK̃ij + Ã ? K̃ij − K̃ij ? Ã . (4.4)

The Cartan integrable equations of motion of the extended system read as follows:

F + Φ ? Φ̃ = 0 , 0 = F̃ + π(Φ̃ ? Φ) , (4.5)

DΦ = 0 , 0 = D̃Φ̃ , (4.6)

DKij = 0 , 0 = D̃K̃ij , (4.7)

Kij ? Φ− Φ ? π(K̃ij) = 0 , 0 = π(K̃ij) ? Φ̃− Φ̃ ? Kij . (4.8)

The field configurations are considered to be equivalent if they belong to the same orbit

generated by the shift transformations

δIA = Kij ? α
ij , δIÃ = K̃ij ? α̃

ij , (4.9)

δIΦ = Kij ? ϕ
ij , δIΦ̃ = π(K̃ij) ? ϕ̃

ij (4.10)

δIKij = 0 , δIK̃ij = 0 , (4.11)

where the parameters (αij , α̃ij ;ϕij , ϕ̃ij) are forms in degrees (1, 1; 0, 2) obeying

[Kij , αkl]? = 4iε(i|(kαl)|j) , [K̃ij , α̃kl]? = 4iε(i|(kα̃l)|j) , (4.12)

Kij ? ϕkl − ϕkl ? π(K̃ij) = 4iε(i|(kϕl)|j) , π(K̃ij) ? ϕ̃kl − ϕ̃kl ? Kij = 4iε(i|(kϕ̃l)|j) . (4.13)

Finally, the reality conditions read

A† = −Ã , Φ† = π(Φ) , Φ̃† = −π(Φ̃) , (Kij)
† = K̃ij . (4.14)

Outer Klein operator. The equations can be re-written by introducing an outer Klein

operator k that obeys k2 = 1 along with

[k, Y a
i ] = 0 , {k, Yi} = 0 , [k, Zai ] = 0 , {k, Zi} = 0 , dk = kd , (4.15)

and defining

B = Φ k , B̃ = k Φ̃ , (4.16)

after which the equations of motion read

F +B ? B̃ = 0 , 0 = F̃ + B̃ ? B , (4.17)

DB = 0 , 0 = D̃B̃ , (4.18)

DKij = 0 , 0 = D̃K̃ij , (4.19)

Kij ? B −B ? K̃ij = 0 , 0 = K̃ij ? B̃ − B̃ ? Kij , (4.20)
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where now

DB := dB +A ? B −B ? Ã , D̃B̃ := dB̃ + Ã ? B̃ − B̃ ? A . (4.21)

The modified shift transformations read

δIB = Kij ? β
ij , δIB̃ = K̃ij ? β̃

ij (4.22)

where βij = ϕij k , β̃ij = k ϕ̃ij and

Kij ? βkl − βkl ? K̃ij = 4iε(i|(kβl)|j) , K̃ij ? β̃kl − β̃kl ? Kij = 4iε(i|(kβ̃l)|j) . (4.23)

The reality conditions are

A† = −Ã , B† = B , B̃† = −B̃ . (4.24)

Finally, the system can be extended further by allowing (A, Ã;B, B̃) to have a general

dependence on k, after which the previous system is recovered by defining Φ := Bk and

Φ̃ := kB̃ and taking (A, Ã,Φ, Φ̃) to be k-independent.

Obstruction of sp(2) gauging from dynamical two-form. Prior to eliminating k,

the one-form S := dZAiSAi with SAi := ZAi − 2iAAi obeys

[Sai, Sbj ]? = 2 ıbjıai(S ? S) , (4.25)

πk(SAi) ? Sj − Sj ? SAi = 2 ıjıAi(S ? S) , (4.26)

where

S ? S = i dZAidZAi + 4B ? B̃ , (4.27)

and the inner derivatives ıAi ≡ ı∂Ai
act from the left, using the rule [k, ıai] = 0 and

{k, ıi} = 0. In deriving (4.25) we have used {dZAiZAi, A} = −2idZAi∂AiA and F = −B?B̃.

Thus, after eliminating k, we have7

[SAi, SBj ]? = 2 ıBjıAi(S ? S) , S ? S = i dZAidZAi + 4Φ ? Φ̃ , (4.28)

that is, the introduction of the dynamical two-form obstructs the Wigner deformed oscil-

lator algebra, and hence the diagonal sp(2) algebra on-shell.

Instead, one may set

Kij = K̃ij = K
(Y )
ij , (4.29)

for general two-form backgrounds. For this choice, and assuming that Z contains an S2 on

which B̃ can be wrapped as to produce J as a vacuum expectation value, the consistent

truncation8

Φ̃ = J , Ã = A = W , (4.30)

yields the new Type A model in its integrable gauge. There remains, however, an implicit

obstruction of the sp(2) gauging, as the map to the Vasiliev gauge refers to the gauge

function L which requires W to be flat on X .

7The one-form S̃ := dZAiS̃Ai with S̃Ai := ZAi − 2iÃAi obeys similar constraints, and there is no

constraint on mutual star products between SAi and S̃Ai master fields.
8The non-trivial two-cycle in Z implies that the dynamical two-form contains additional degrees of

freedom; for a related feature in the case of the spinorial formulation of higher spin gravity in four spacetime

dimensions, see [10, 27].
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4.2 Superconnection

As topological two-dimensional sigma models provide a first-quantized description of non-

commutative differential form algebras on Poisson manifolds [15–17, 43–47], it is desirable

to cast the equations of motion into a format more akin to that of a topological open string

field theory, namely a flatness condition on a graded odd superconnection in the direct

product of E and a suitably graded internal Frobenius algebra F [13].

Duality extension. We first extend the field content by taking (A, Ã,B, B̃) to be hor-

izontal forms of degrees (1, 1, 0, 2) mod 2, respectively. We can reduce the k-dependence

by defining Φ = Bk and Φ̃ = kB̃ and taking (A, Ã,Φ, Φ̃) to be k-independent forms of

degrees (1, 1, 0, 2) mod 2, respectively, which yields the duality extension of the system

with twisted bi-fundamental zero-form and two-form.

Frobenius algebra. We take F ≡ Mat2(C) to be spanned by (I, J = 1, 2) [10, 27]

eIJ =

[
e f

f̃ ẽ

]
, eIJeKL = δJKeIL , (4.31)

introduce the 3-grading

degF (f̃ , e, ẽ,f) = (−1, 0, 0, 1, ) , (4.32)

and use Koszul signs governed by the total degree

deg := degE + degF . (4.33)

We can then define the superconnection, nilpotent differential and supercovariant

derivative, respectively, by

X := eA+ ẽÃ+ fB + f̃B̃ , q := (e+ ẽ)d , D := q + ad?X , (4.34)

with degrees

deg(X) ∈ {1, 3, . . . } , deg(q) = deg(D) = 1 . (4.35)

We also define sp(2) generators by

Kij := eKij + ẽK̃ij , with deg(Kij) = 0 . (4.36)

In terms of these requisites, the equations of motion and sp(2) gauge conditions take the

desired form,

qX + X ?X = 0 , (4.37)

DKij = 0 , [Kij ,Kkl]? = 4iε(i|(kKl)|j) , (4.38)

whose local symmetries are thus given by the Cartan gauge transformations

δεX = Dε , δεKij = [Kij , ε]? , (4.39)

and the ideal shift symmetries

δIX = Kij ? ξ
ij , δIKij = 0 , (4.40)

where

ξij = αije+ α̃ij ẽ+ βijf + β̃ij f̃ , deg(ξij) ∈ {1, 3, . . . } , (4.41)

obeying [Kij , ξkl] = 4iε(i|(kξl)|j).
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4.3 Action with dynamical two-form

In what follows, we use first-quantized sp(2) ghosts to extend the equations of motion (4.37)

and (4.38) as to reach a set that is variational under the assumption that the sp(2) gener-

ators Kij are given by the undeformed K
(Y )
ij off-shell.

First-quantized ghosts. We thus extend the fiber algebra by the Clifford algebra G
generated by (B̂ij , Ĉ

ij) obeying9

[B̂ij , Ĉkl]? = 2δi(kδ
j
l) , degG(B̂ij , Ĉij) = (−1, 1) , (4.42)

and let the Koszul signs of E ⊗ F ⊗ G be governed by the total degree

| · | = degE + degF + degG . (4.43)

The BRST operator

Q(Y ) := ĈijK
(Y )
ij − 2i(e+ ẽ)B̂i

jĈj
kĈk

i , (4.44)

obeys

Q(Y ) ?Q(Y ) = 0 , qQ(Y ) = 0 , (4.45)

and hence the differential

q(Y ) := q + ad?
Q(Y ) , (4.46)

is nilpotent, viz.

(q(Y ))2 = 0 . (4.47)

Extended master fields and boundary conditions. We introduce two horizontal

forms (X̂, P̂) of total degrees

|X̂| ∈ 2Z + 1 , (4.48)

|P̂| ∈

{
2Z + 1 if dim(X ) odd

2Z if dim(X ) even .
(4.49)

We furthermore assume that

dim(X ) = D + 1 , (4.50)

and impose boundary conditions on the elements of E such that [10, 27]

– ∂Z = ∅;

– ∂X , which is a D-dimensional compact manifold, has marked submanifolds where

sections blow up with tubular neighborhoods identifiable as asymptotically anti-de

Sitter regions;

– A is a non-polynomial completion of the extended Weyl algebra generated by poly-

nomials in Y , κy and k, with trace operation TrA.

9We use conventions in which all star brackets are graded, and we let hats denote quantities with generic

dependence on ghost variables.
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We furthermore impose

P̂|∂(X×Z) = 0 , (4.51)

as to ensure a smooth BV-BRST differential [26, 48], and restrict

deg(X̂) ∈ {1, 2, 3, . . . , 3(D + 1)− 1} , (4.52)

deg(P̂) ∈ {0, 1, 2, . . . , 3(D + 1)− 2} . (4.53)

Action. Applying the variational principle to the functional

dim(X ) odd : S =

∫
X×Z

TrATrFTrG

(
P̂ ? (q(Y )X̂ + X̂ ? X̂) +

1

3
P̂ ? P̂ ? P̂

)
, (4.54)

dim(X ) even : S =

∫
X×Z

TrATrFTrG

(
P̂ ? (q(Y )X̂ + X̂ ? X̂) +

1

2
P̂ ? P̂

)
, (4.55)

where TrF and TrG , respectively, denote the (cyclic) trace operations on F and G generated

by the ghosts, yields the Cartan integrable equations of motion

q(Y )X̂ + X̂ ? X̂ + P̂ ? P̂ ≈ 0 , q(Y )P̂ + [X̂, P̂]? ≈ 0 , (4.56)

and the Cartan gauge transformations leave the action invariant provided that the gauge

parameter of P̂ vanishes at ∂X × Z.

Ghost number truncation and sp(2) auxiliary fields. The boundary equations of

motion

q(Y )X̂ + X̂ ? X̂ ≈ 0 , at ∂X × Z , (4.57)

can be truncated by taking

X̂ =

4∑
n=1

X̂n , (deg, degG)(X̂n) = (n, 1− n) , (4.58)

where thus X̂m ? X̂n ≡ 0 if m+ n > 6, which yields the quasi-free differential algebra with

algebraic constraint

[Q(Y ), X̂1]? = 0 , (4.59)

and differential constraints10

qX̂1 + X̂1 ? X̂1 + [Q(Y ), X̂2]? = 0 , (4.60)

D̂X̂n + [Q(Y ), X̂n+1]? +
∑

n1 + n2 = n + 1

n1,2 > 2

X̂n1 ? X̂n2 = 0 , n = 2, 3, 4 , (4.61)

10The Cartan gauge transformations

δX̂n = D̂ε̂n−1 + [Q(Y ), ε̂n] +
∑

n1+n2=n
n1>1

[X̂n1 , ε̂n2 ]? , n = 1, 2, . . . , 4 ,

where deg(ε̂n) = n.
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where

D̂ := q + ad?
X̂1
, (4.62)

which provides an extension of the system in eqs. (4.37) and (4.38) via the identifications

Kij = K
(Y )
ij , X = X̂1

∣∣∣
B̂=0=Ĉ

. (4.63)

We shall notice that all the field equations presented so far where meant to hold up to

terms proportional to ideal elements of the form Oij ? K(Y )
ij . By extending the field

content via the first-quantized ghosts, we have both shift symmetries and ideal source terms

automatically incorporated in the Cartan integrable system (4.59)–(4.61) via the Q(Y )-

exact commutators. The remaining component fields in the ghost expansions of X̂n, n =

1, . . . , 4, provide a complete set of sp(2) auxiliary fields ensuring Cartan integrability, that

include now the sp(2) shifts as gauge transformations. The system admits the consistent

truncation

X̂1 = X , X̂n = 0 , n = 2, 3, 4 , (4.64)

which yields

Q(Y ) ?Q(Y ) = 0 , [Q(Y ),X]? = 0 , qX + X ?X = 0 , (4.65)

with gauge transformations δX = Dε0 , where the gauge parameter is constrained to

[Q(Y ),X]? = 0 .

Treating X as a zeroth order background, switching on hij := ∂

∂B̂ij
X̂2|B̂=0=Ĉ

, treated

as a first-order perturbation, induces perturbative corrections X̂
(p)
n , p = 1, . . . . At first

order, we thus have the perturbation X̂
(1)
2 = 1

2B̂ijh
ij inducing X̂

(1)
1 = X(1), a deformation

of X, but not any onset of any further sp(2) auxiliary fields. At second order, however,

X̂
(2)
3 contains new auxiliary fields, inducing X̂

(2)
2 and X̂

(2)
1 , containing further deformations

h
(2)
ij and X(2) as well as new auxiliary fields. In general, the full perturbative expansion

will activate the full master fields (subject to the ghost number truncation).

Classical observables and first-quantized physical state quasi-projector. As for

classical observables, we use the fact that starting from a Lie algebra with generators Tα
and ghosts (Bα, C

β)

[Tα, Tβ ]? = ifαβ
γ Tγ , [Bα, C

β ]? = 2δβα , (4.66)

where fαβ
β = 0, the BRST operator

Q = Cα ?

(
Tα +

1

2
T (gh)
α

)
, T (gh)

α :=
i

2
fαβ

γBγC
β , (4.67)

using Weyl ordered symbols. Thus, given an operator O in the BRST cohomology, that is,

[Q,O]? = 0 , δXO = [Q,X ]? , (4.68)

we can define its expectation value by

〈O〉 = Tr(∆(tot) ?O) , Q ?∆(tot) = 0 = ∆(tot) ? Q , (4.69)

where the trace is over the total space.
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In the case of sp(2)(Y ), the quasi-projector ∆(tot) can be factorized as

∆(tot) = ∆(Y ) ?∆(gh) , K
(Y )
ij ?∆(Y ) = 0 , K

(gh)
ij ?∆(gh) = 0 , (4.70)

where

∆(Y ) = z−ν/2Iν(
√

2z) , z = K(Y )ijK
(Y )
ij , ν =

D − 2

2
, (4.71)

as can be seen using K
(Y )
ij ? f(z) = K

(Y )
ij (1−D∂z − 2z∂2

z )f and

∆(gh) = µ1

(
1− 1

8
z

)
+ µ2

(
w +

1

6
w3

)
, z := K(gh)ijK

(gh)
ij , w = BijCij , (4.72)

where µ1, µ2 ∈ R, as can be seen using the fact that there are four singlets in ghost number

zero, given by 1, w, z, w3, and that

K
(gh)
ij ? z = 8K

(gh)
ij , K

(gh)
ij ? w = K

(gh)
ij w , K

(gh)
ij ? w3 = −6K

(gh)
ij w , (4.73)

where K
(gh)
ij = 2iB(i

kCj)k. Taking O = O(Y ) to be independent of the ghosts, we have

[K
(Y )
ij ,O(Y )]? = 0 , δXO(Y ) = K

(Y )
ij ? ξ(Y )ij , (4.74)

where X = 1
2Bij ? ξ

(Y )ij = 1
2Bijξ

(Y )ij with ξ(Y )ij being independent of the ghosts, and

〈O〉 = µ2TrA∆(Y ) ?O(Y ) , (4.75)

using Tr = TrATrG .

Further remarks. As for boundary conditions, we assume that X × Z is a compact

manifold that contain subregions X ′×Z, with X ′ corresponding to conformal boundaries,

where a subset of the master field components are allowed to blow up; in particular, treat-

ing Z as a compact manifold with non-trivial cycles affects the degrees of freedom that are

local on ∂X , as already commented on above. The homogenous Dirichlet boundary con-

dition on P̂ does not follow from the classical variational principle; instead it follows from

the requirement that the field theory BRST operator is a smooth functional differential of

a topological field theory [26, 48]. The latter property is preserved under the addition of

topological invariants to ∂X × Z. If these contain components of X̂ in sufficiently high

form degree, then they may receive quantum corrections from the P̂?2 and P̂?3 vertices.

The topological invariants may thus be non-trivial on-shell, thereby providing boundary

micro-state observables appearing in the boundary partition function (as X̂ is left free to

fluctuate at ∂X × Z); in addition, if the expectation values in X̂ at ∂X × Z (due to non-

trivial cycles and including the zero-form initial data) source forms in X̂ in higher degrees,

then the resulting boundary partition function may contain non-trivial bulk quantum cor-

rections. This suggests that the standard (duality unextended) Chern classes, which only

contain one-forms from A and Ã, correspond to free conformal theories, while their duality

extensions, which contain higher forms from A and Ã, correspond to non-trivial conformal

field theories.
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5 Conclusions

In this work, we have first presented an alternative to Vasiliev’s on-shell formulation of

the Type A model in general spacetime dimensions, using the same field content but a

different sp(2) gauge symmetry with field independent generators. We have argued that

this model propagates the same degrees of freedom as Vasiliev’s original equations, and we

have provided evidence that the two models are perturbatively equivalent.

Drawing on the field independence of the sp(2) generators of the new model, we have

then extended its equations of motion by a dynamical two-form. This extension requires two

connection one-forms, gauging the separate left- and right-actions of a complexified higher

spin algebra, and a zero- and two-form in opposite (real) bi-fundamental representations.

The extended system contains the alternative Type A model as a consistent truncation;

at the linerized level, it contains additional degrees of freedom arising in the dynamical

two-form, whose analysis we leave for a future work.

Finally, we have proposed that the latter set of equations describes the BRST coho-

mology of a system that descends from a variational principle, that is obtained by further

extension by first-quantized ghosts and an internal graded Frobenius algebra. If this pro-

posal holds true, then these extensions permit the packaging of the equations of motion

and the sp(2) gauge conditions, respectively, into a flatness condition and a set of gauge

transformations for a single odd superconnetion X̂. The action also requires the intro-

duction of a supermomentum P̂ that may quantum deform certain observables, that may

be of importance in taking the correspondence between topological open strings and con-

formal fields beyond the current agreement at the level of conformal particles and free

fields [14, 30, 32–34].

Although the extension with dynamical two-form does not retain manifest Lorentz

covariance, it is nevertheless suitable for potential extensions of higher spin gravity to

more general noncommutative manifolds. Indeed, the extension by the two-form provides

a link to topological open string field theory, which is the natural framework for deforming

noncommutative geometries.

We have deferred a number of technical aspects for future work: First of all, it remains

to map linearized states in lowest weight spaces (particle-like solutions) in Φ to Fronsdal

fields in Wµ by finding a suitable gauge function; for related supporting results for the

four-dimensional spinorial formulation, see [49–52]. Furthermore, in order to establish

whether the old and the new Type A models are perturbatively equivalent, the first step

is to examine whether K
(diag)
ij and K

(L)
ij agree in Vasiliev gauge at first sub-leading order.

As for the formulation in terms of the superconnection X, the topology and the bound-

ary conditions of X×Z need to be examined. In particular, Z needs to contain a non-trivial

two-cycle in order for the dynamical two-form to contain the original closed and central

element as a non-trivial vacuum expectation value. In this case the alternative Type A

master fields arise as a consistent truncation of X; if so, however, the dynamical two-form

leads to new local degrees of freedom in spacetime, whose holographic interpretation re-

mains to be given; for related issues in the case of the four-dimensional spinorial theory,

see [10, 27].
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Our proposal for an action, producing the sp(2) condition as well from a variational

principle, relies on the claim made in section 4.3 concerning the BRST cohomology con-

tained in the flat superconnection X̂ (obtained by extension by first-quantized sp(2) ghosts).

In the aforementioned action principle, the sp(2) generators are fixed given operators. In

this context, it would be interesting to treat them as new fluctuating degrees of free-

dom [54–57] of an enlarged string field.

Concerning the basic physical motivation behind our work, namely that from the re-

cent gathering of results concerning the nature of the Noether procedure, it appears that

the formulation of higher spin gravity in terms of Fronsdal fields leads to a perturbatively

defined quantum effective action making sense in asymptotically maximally symmetric

spacetimes, whereas the topological open string field theory formulation provides pertur-

bative expansions around more general backgrounds. In addition, the latter formulation

leads to the notion of star product locality, whereby the classical action is built from

data obtained from disc amplitudes, thus replacing the more subtle notion of spacetime

quasi-(non)locality that needs to be adopted following the standard Noether approach.

Finally, we remark that the alternative sp(2) gauging for the Type A model presented

in this work has a direct generalization to the Type B model based on osp(1|2) gauging,

whose conformal field theory dual expanded around the anti-de Sitter vacuum consists of

free fermions; we hope to present this model in more detail in a forthcoming work.
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A Ghost algebra

Rank one system. Let us consider the four-dimensional graded associative star product

algebra G generated by two Grassmann odd hermitiian operators (B,C) obeying

[B,C]? = 2 , (A.1)

and with degree map degG , referred to as ghost number, defined by

degG(B,C) = (−1, 1) . (A.2)

The star product algebra can be represented using graded symmetric symbols f(B,C)

obeying

B ? f =

(
B +

∂

∂C

)
f , C ? f =

(
C +

∂

∂B

)
f . (A.3)
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In this representation, the trace and supertrace operations are given by

TrGf = 2f |B=0=C , STrGf = −2

∫
dBdCf , (A.4)

using standard integration over Grassmann odd variables. Introducing the ghost number

operator

w :=
1

2
CB = −w† , [w,B]? = −B , [w,C]? = C , (A.5)

we define generalized state projectors by

(w −m) ? Pm|n := 0 =: Pm|n ? (w − n) , (Pm|n)† = P−n̄|−m̄ , (A.6)

where m,n are complex numbers; it follows that the left- and right-star multiplication by

the ghost number operator has

Spec(l?w) = Spec(r?w) =

{
±1

2

}
, (A.7)

and that

P−1/2|−1/2 =
1

2
(1 +BC) , P−1/2|+1/2 =

1√
2
B , (A.8)

P+1/2|−1/2 =
1√
2
C , P+1/2|+1/2 =

1

2
(1−BC) , (A.9)

that we have normalized such that

Pm|n ? Pm′|n′ = δn,m′Pm|n′ . (A.10)

Thus,

IdG =
∑

n=±1/2

Pn|n , w =
1

2
(−P−1/2|−1/2 + P+1/2|+1/2) , (A.11)

and

TrGPm|n = δm,n , STrGPm|n = (−1)
1
2

(m+1)δm,n ; (A.12)

and hence

TrGf = STrG exp?

(
iπ

2
(w + 1)

)
? f . (A.13)

The operators can be represented in a complex vector space V spanned by

| − 1/2〉 = B ? |+ 1/2〉 , |+ 1/2〉 = C ? | − 1/2〉 , (A.14)

using labels such that (w −m) ? |m〉 = 0, with dual space V∗ spanned by

〈−1/2| = 〈+1/2| ? C , 〈+1/2| = 〈−1/2| ? B (A.15)

defined by

〈m|n〉 = δm,n , m, n = ±1/2 , (A.16)
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using labels such that 〈m| ? (w −m) = 0; a sesqui-linear form compatible with the reality

condition on the star product algebra is defined by the map † : V → V∗ given by

(|m〉)† = 〈−m| . (A.17)

It follows that the norm of a state |ψ〉 =
∑

m=±1/2 ψm|m〉 is given by

||ψ||2 =
∑

m=±1/2

(ψm)∗ψ−m . (A.18)

sp(2) ghosts. The sp(2) ghosts obeying

[Bij , C
kl]? = 2δk(iδ

l
j) , (A.19)

generate a 64-dimensional graded associative algebra G with

degG(B,C) := (−1, 1) , (A.20)

and representation in terms of graded symmetric symbols f obeying

Bij ? f =

(
Bij +

∂

∂Cij

)
f , Cij ? f =

(
Cij +

∂

∂Bij

)
f . (A.21)

In this representation, we have

TrGf = 8f |B=0=C , STrGf = 8

∫
d3Bd3Cf . (A.22)

Introducing the degree operator

w :=
1

2
CijBij = −w† , [w,Bij ]? = −Bij , [w,Cij ]? = Cij , (A.23)

we define generalized state projectors by

(w −m) ? Pm|n := 0 =: Pm|n ? (w − n) , (Pm|n)† = P−n̄|−m̄ , (A.24)

where m,n are complex numbers; it follows that

Spec(w) =
{

(−3/2)1, (−1/2)3, (+1/2)3, (+3/2)1
}
, (A.25)

where the indices indicate the degeneracy of the eigenvalues. Introducing the sp(2) gener-

ators

Kij := 2iB(i
kCj)k , [Kij ,Kkl]? = 4iε(i|(kKl)|j) , (A.26)

and letting f (n;p) denote a symbol obeying

(ad?w − n)f (n;p) = o , (A.27)
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and transforming in the p-plet under ad?Kij
, we can decompose G as follows:

P
(0;1)
−3/2|−3/2 P

(−1;3)
−3/2|−1/2 P

(−2;3)
−3/2|+1/2 P

(−3;1)
−3/2|+3/2

P
(1;1)
−1/2|−3/2 P

(0;5⊕3⊕1)
−1/2|−1/2 P

(−1;5⊕3⊕1)
−1/2|+1/2 P

(−2;3)
−1/2|+3/2

P
(2;1)
+1/2|−3/2 P

(1;5⊕3⊕1)
+1/2|−1/2 P

(0;5⊕3⊕1)
+1/2|+1/2 P

(−1;3)
+1/2|+3/2

P
(3;1)
+3/2|−3/2 P

(2;3)
+3/2|−1/2 P

(1;3)
+3/2|+1/2 P

(0;1)
+3/2|+3/2 .

(A.28)

In ghost number zero, there is a four-dimensional space of sp(2) singlets spanned by wn,

n = 0, 1, 2, 3, obeying

Kij ? f(w) = Kij

(
1− 1

4
∂2
w

)
f(w) , Kijw

2 = Kijw
3 = 0 , (A.29)

w ? f(w) =

(
w +

3

4
∂w −

1

4
w∂2

w

)
f(w) . (A.30)

It follows that the solution to

Kij ?∆ = 0, (A.31)

is given by

∆ =µ+∆++iµ−∆−= ∆† , µ± ∈R , (A.32)

∆+ =
1

4
(1+2w2) , ∆−=

1

2

(
w+

2

3
w3

)
, (A.33)

∆+?∆+ = ∆+ , ∆+?∆−= ∆− , ∆−?∆−= ∆+ . (A.34)

B Trace operations on graded associative algebras

Given a graded associative algebra A over C with product ? and degree map | · |, a (θA;nA)-

trace operation Tr
(θA;nA)
A : A→ C obeys

Tr
(θA;nA)
A (a) = δ|a|,nATr

(θA;nA)
A (a) , (B.1)

Tr
(θA;nA)
A (a ? a′) = (−1)θA|a||a

′|Tr
(θA;nA)
A (a′ ? a) , (B.2)

where the parameter θ is active (= 1) only if nA ∈ 2Z and the degree map has odd images;

we shall refer to a(1;nA)-trace on A as a supertrace on A, and note that it is cyclic if

nA ∈ 2Z + 1 or the degree map is even. Given two such algebras, A and B, their tensor

product can be equipped with product and degree maps

(a⊗ b) ? (a′ ⊗ b′) := (−1)|b||a
′|(a ? a′)⊗ (b ? b′) , |a⊗ b| := |a|+ |b| . (B.3)

The composite map

I ≡ Tr
(θA;nA)
A ⊗ Tr

(θB;nB)
B : A⊗ B → C , (B.4)

defined by

I(a⊗ b) := (−1)nB|a|Tr
(θA;nA)
A (a)Tr

(θB;nB)
B (b) , (B.5)

– 30 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
1

has nA⊗B = nA + nB, and the following cyclicity property:

I((a⊗ b)? (a′⊗ b′)) = (−1)nB(|a|+|a′|)+θA|a||a′|+θB|b||b′|+|b||a′|+|a||b′|I((a′⊗ b′)? (a⊗ b)) , (B.6)

where thus

|a|+ |a′| = nA , |b|+ |b′| = nB . (B.7)

It follows that

∀nA , nB : Tr
(1;nA)
A ⊗ Tr

(1;nB)
B = Tr

(1;nA+nB)
A⊗B , (B.8)

nA , nB ∈ 2Z + 1 : Tr
(0;nA)
A ⊗ Tr

(0;nB)
B = Tr

(1;nA+nB)
A⊗B , (B.9)

nA , nB ∈ 2Z : Tr
(0;nA)
A ⊗ Tr

(0;nB)
B = Tr

(0;nA+nB)
A⊗B . (B.10)

In particular, the higher spin gravity models use the operations11

Tr
(1;3(D+1))
E(C)⊗F⊗G(·) =

∫
X×Z

TrWSTrFSTrG(·) , (B.11)

in the bulk action, and

Tr
(1;3(D+1)−1)
E(∂C)⊗F⊗G (·) =

∫
∂X×Z

TrWSTrFSTrG(·) , (B.12)

in boundary observables, where

E(C) = Ωhor(C) ∼= Ω(X × Z)⊗A⊗K , (B.13)

E(∂C) = Ωhor(∂C) ∼= Ω(∂X × Z)⊗A⊗K , (B.14)

with degree maps given by the form degree on the base manifold (X ×Z); the F = mat2(C)

with degree map defined as in (4.32); and G is the Clifford algebra generated by the sp(2)

ghosts with degree map given by the ghost number.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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