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Starting from a reformulation of the Thirring model as a gauge theory, we consider the 

bosonization of the D-dimensional multiftavor massive Thirring model (D:Z2) with four-fermion 

interaction of the current-current type. Our method leads to a novel interpolating Lagrangian 

written in terms of two gauge fields. In particular we pay attention to the case of a very massive 

fermion m:?> i in (2 + i) and (i + i) dimensions. Up to the next-to-leading order of 1/m, we show that 

the (2 +i)-dimensional massive Thirring model is mapped to the Maxweii-Chern-Simons theory and 

that the (i +i)-dimensional massive Thirring model is equivalent to the massive free scalar field 

theory. In the process of the bosonization of the Thirring model, we point out the importance of the 

gauge-invariant formulation. Finally we discuss a possibility of extending this method to the 

non-Abelian case. 

§ 1. Introduction and main results 

Recently the Thirring modeJI> was reformulated as a gauge theory2> and identified 

with a gauge-fixed version of the corresponding gauge theory by introducing the 

Sti.ickelberg field 8 in addition to the auxiliary vector field Ap. In this formulation, 

the auxiliary field AP is identified with the gauge field. In a previous paper,3> we have 

given another reformulation of the Thirring model as a gauge theory based on the 

general formalism for the constrained system, the so-called Batalin-Fradkin­

Vilkovisky (BFV) formalism. 4> In particular, the Batalin-Fradkin (BF) method5> 

gives the general procedure by which the system with the second class constraint is 

converted to that with the first class one. The new field which is necessary to 

complete this procedure is called the Batalin-Fradkin field. 5> In the massive gauge 

theory, the Batalin-Fradkin field is nothing but the well-known Sti.ickelberg field, as 

shown in Ref. 6). 

We consider the mapping from quantum field theory of interacting fermions onto 

an equivalent theory of interacting bosons. In this paper such an equivalent bosonic 

theory to the original massive Thirring model is obtained starting from the formula­

tion of the D-dimensional Thirring model (D = d + 1:::?: 2) as a gauge theory. This is 

a kind of bosonization. The bosonization of the (1 + 1) dimensional Thirring model 

has been studied by many authors and is well known (see, for example, Refs. 7) ~ 16)). 

In this paper we consider the bosonization of the multifiavor massive Thirring model 

in D=d+1:::?:2 dimensions. In particular, we study the large fermion mass limit m 

~ 1, in (2 + 1) and (1 + 1) dimensional cases explicitly. A motivation of studying the 

multifiavor case stems from the renormalizability of the Thirring model in 1/N 

expansion at least for D=3,!7) although it is perturbatively non-renormalizable for 

D>2. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

4
/5

/8
9
9
/1

9
0
0
2
4
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



900 K.-1. Kondo 

In the case of (2+ !)-dimensions, we show that, up to the next-to-leading order in 

the inverse fermion mass, 1/m, the (2+ i)-dimensional massive Thirring model is 

equivalent to the Maxwell-Chern-Simons theory, the topologically massive U(l) gauge 

theory. This equivalence in three dimensions has been shown, to the lowest order in 

1/m for a massive Thirring model, by Fradkin and Schaposnik.18
J The fermi-bose 

equivalence was discussed earlier also in Refs. 19) and 20). In the multifiavor case we 

consider in this paper, there are many possibilities of taking the massive limits. 

Indeed we point out that there is the possibility that the leading order term, i.e., 

Chern-Simons term vanishes and hence only the non-local Maxwell-like term remains 

in the next-to-leading order, depending on the configuration of fermion masses. In 

such a case we are forced to consider the next-to-leading order of 1/m. As discussed 

in the previous paper,3
l the existence of the kinetic term for the gauge field A~' is 

essential in formulating the Thirring model as a gauge theory based on the BFV 

formalism. Such a configuration of fermion masses has important implications from 

the viewpoint of chiral symmetry breaking for 4-component fermions.3
l This is in 

sharp contrast to the case treated in Ref. 18), where a non-vanishing Chern-Simons 

term is assumed from the beginning and hence only the leading order term is taken 

into account for bosonization. In our bosonization scenario the gauge invariance 

should be preserved in the step of calculations. In this connection we mention the 

choice of appropriate regularization. 

The method of Fradkin and Schaposnik is more elegant than ours. However we 

can raise the following questions on their treatment of bosonization. 

1. The interpolating Lagrangian .£ f's of Deser and J ackiw21
J was introduced as a 

device for showing this equivalence in Ref. 18): 

However the origin of the interpolating Lagrangian was never shown. How 

can we derive this type of interpolating Lagrangian from the Thirring model or 

the Maxwell-Chern-Simons theory? 

2. The original Thirring model has no gauge symmetry. Nevertheless the equiv­

alent bosonic theory, the Maxwell-Chern-Simons theory, has U(l) gauge sym­

metry. Where does this gauge symmetry come from? 

3. The interpolating Lagrangian is invariant under gauge transformations for the 

gauge field Hp, while the auxiliary vector field VP does not have the gauge 

symmetry: ..ff's is invariant under oHp=op). and oVp=O. In integrating out 

the gauge field HP in the interpolating Lagrangian, they had to introduce the 

gauge-fixing term ad hoc. 

In contrast to Ref. 18), we start from the gauge-invariant or more precisely the BRS 

invariant formulation of the Thirring model and discuss the bosonization of the 

massive Thirring model. The bosonization of the massless Thirring model was 

already discussed, based on this strategy in Ref. 2). However the bosonization in the 

usual or exact sense is possible only in the massive case except for D=2, as shown in 

this paper. Our approach is more direct than the method of Ref. 18) and is able to 
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Bosonization and Duality of Massive Thirring Model 90I 

derive a novel interpolating Lagrangian as a natural consequence (in an intermediate 

step) of bosonization. Our interpolating Lagrangian is written in terms of two gauge 

fields which have independent gauge symmetries. Thanks to the gauge invariant 

formulation, we can fix definitely the gauge invariance appearing in the interpolating 

Lagrangian.21
> It is interesting to extend our method to the non-Abelian case.21

>'
22

> 

This issue will be discussed in the final section. 

The (I+ I)-dimensional case is also discussed, although the gauge symmetry 

disappears in this case. The Thirring model in (I+ I)-dimensions is rewritten into 

the equivalent scalar field theory.7l-9
> It is well known that the (I+ I)-dimensional 

massless Thirring model is exactly solvable in the sense that the model is equivalent 

to the massless free scalar theory. 1
> In this paper we show, as a special case of the 

above formalism, the massive Thirring model in (1 +i)-dimensions is equivalent to the 

massive free scalar field theory in (1 +i)-dimensions, up to the next-to-lowest order in 

1/m. This is consistent with the well-known result. 

In the previous paper3
> we studied the spontaneous breakdown of the chiral 

symmetry in the massless Thirring model, m---> 0. In this paper we consider another 

extreme limit m -Hn. According to the universality hypothesis, the critical behavior 

of the model will be characterized by a small number of parameters appearing in the 

original Lagrangian of the model such as symmetry, range of interaction and dimen­

sionality. Therefore, in the large fermion mass limit, the critical behavior of the 

Thirring model will be characterized by studying the equivalent bosonic theory 

according to the above bosonization. 

§ 2. Bosonization 

The Lagrangian of the D-dimensional multifl.avor Thirring model (D= d + 1 ~ 2) 

is given by 

..LTh= ¢)iir~'op.rftj-mj1P¢j-
2

Cfv (1Prp.¢i)(¢JkrP.¢k), (2 ·I) 

where ¢i is a Dirac spinor and the indices j, k are summed over from I toN, and the 

gamma matrices yp.(J.t=O, ···, D-1) are defined so as to satisfy the Clifford algebra, 

{yp., rv}=2gwl=2diag(l, -I, ... , -1). 

By introducing an auxiliary vector field Ap., this Lagrangian is equivalently 

rewritten as 

(2·2) 

where we have introduced a parameter M(=l) with the dimension of mass, dim[m] 

=dim[M]=l and put G=g2/M 2
• Thanks to the parameter M, all the fields have the 

corresponding canonical dimensions: dim[¢]= dim[¢]= (D -1) I 2, dim[AP.] = (D- 2) /2 

and then the coupling constant has the dimension:dim[g)=(4-D)/2, dim[G]=2-D. 

The theory with this Lagrangian is identical to that of the massive vector field 

with which the fermion couples minimally, since a kinetic term for Ap. is generated 

through the radiative correction although it is absent originally. As is known from 
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902 K.-1. Kondo 

the study of massive vector boson theory,6
> the Thirring model with the Lagrangian 

(2·2) is cast into the form which is invariant under the Becchi-Rouet-Stora (BRS) 

transformation by introducing an additional field e. The field e is called the Sttickel­

berg field and identified with the Batalin-Fradkin (BF) field5
> in the general formalism 

for the constrained system.4
> Then we start from the Lagrangian with covariant 

gauge-fixing: 2>.3> 

_[Th',= fiirp.( op.- i }NAP. )¢j-mj¢j¢j+ ~
2 

(Ap.-/NM- 1op.e)2 

-Ap.op.B+ f B 2 +iJP.CJP.C. 

Actually this Lagrangian is invariant under the BRS transformation: 

oBAP.(x)=op.C(x), 

oBB(x)=O, 

oBC(x)=O, 

oBE(x)= iB(x), 

M 
oBe(x)= /NC(x), 

oB¢i(x)= Jh C(x)¢i(x), 

(2·3) 

(2·4) 

where C(x) and E(x) are ghost fields, and B(x) is the Nakanishi-Lautrap Lagrange 

multiplier field. 

First we consider the case D23. The two-dimensional case is discussed sepa­

rately in § 4. By introducing an auxiliary vector field fp., the "mass term" of the 

gauge field is linearized: For Kp.=/N M- 1ap.e, 

f fiJ Oexp{zfdvx ~ M2(Ap.- Kp.)
2

} 

= jme jmtp.exp{ijdvx[- ~fp.fP+MfP(Ap.-Kp.)]} 

= jmtp.o(JP.fp.)exp{ijdvx[- ~fp.fP+MfPAp.]}, 

where in the last step we have integrated out the scalar mode e. 

(2·5) 

Applying the Hodge decomposition23 >·*> to the 1-form fp., we see that fp. is written 

*> Let w be a P-form. Then there are a (p+ 1)-form a, a (p-1)-form /3 and a harmonic P·form h(i.e., 

obeying 8h=O=dh) such that 

w=8a+d/3+h. 

We can restrict ourselves to the topologically trivial space Q for which there are no harmonic forms. This 

is equivalent to saying that each p-form w obeying dw=O is of the form w=d/3 (Poincare's lemma) and we 

say that Q has trivial (co)homology. From now on we assume that the harmonic form is absent: h=O. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

4
/5

/8
9
9
/1

9
0
0
2
4
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Bosonization and Duality of Massive Thirring Model 903 

as 

(2·6) 

where we have introduced the antisymmetric tensor field H!',···I'D-2 of rank D-2, which 

satisfies the Bianchi identity. Since /~' is divergence free, J~'f~<=O, we can put fp, 

= €p,···Poa~' 2 H~'•···I'D. The we have 

(2·7) 

where we have defined 

(2·8) 

This result is a generalization of Ref. 20) for D=3 and coincides with the result of 

Refs. 24) and 2). 

Then we obtain the equivalent Lagrangian with the mixed term between A~' and 

H!',.··!'o-2: 

r> - Xi. ~'D [A] ,J,i ,T.U.i + ( -1)n H- H-!'!···I'D-! 
..l..Th"'-'f" zy !' 'f" -mi'f" 'f" 2(D-1) 1'1···1'D-l 

(2·9) 

where D~'[A] is the covariant derivative: 

D~'[A]=a~'-i }NAI'. (2·10) 

Integrating out the fermion field ¢, ¢,we thus obtain the bosonized action of the 

Thirring model: 

(2·11) 

To see the origin of the field HP,···!'o-2, we integrate out the gauge field. Then, we 

obtain the partition function: 

z = f fJ) B f fJ) iff g)¢ f g) HI'!•··!'D-2a( IN ifjrp¢j- M€1'!'
2
···1'Dai'2HI'o···I'D- a!' B) 

{ 
. rdn [ ,T,j. ~'(a )"·j ,T,j,,,j + < -1)D H- H-!'!···I'D-! +_g_B2]} 

Xexp Z p X 'f" zy !' 'f" -mi'f" 'f" 2(D-1) !'!···I'D-! 2 · 

(2 ·12) 
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904 K.-I. Kondo 

This implies that the dual field H,_., ... P.D-2 is a composite of the fermion and antifermion. 

The correspondence between the original Thirring model and the bosonized 

theory is generalized to the correlation function. We introduce the source b" for the 

current 

Adding the source term g "b" to the original Lagrangian Eq. (2 ·1): 

..['Th[bp.]=:_[Th+ g ,_.b~-', 

we obtain 

After introducing the BF field () and shifting A"-> A"-(/N fg)bp., we obtain 

Repeating the same steps as before, we arrive at 

(2 ·13) 

(2·14) 

(2 ·15) 

(2 ·16) 

(2 ·17) 

This leads to the equivalence of the partition function in the presence of the source b": 

(2 ·18) 

Therefore the connected correlation function has the following correspondence 

between the Thirring model and the bosonized theory with the action SB: 

(2 ·19) 

where 

1 P.t···I-'D:l H 
j G/N € Up2 I-'3"""1'D • 

(2·20) 

In the following, we discuss how to integrate out the auxiliary field A" to obtain a 

bosonic theory which is written in terms of the field Hp., ... ,_.D-2 only. 

§ 3. (2 +I)-dimensional case 

In the three-dimensional case, D=3, 

N 

SB= ~In det[ir~-'D"[A] + mj] 
i=! 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

4
/5

/8
9
9
/1

9
0
0
2
4
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Bosonization and Duality of Massive Thirring Model 905 

(3·1) 

where 

(3·2) 

The Matthews-Salam determinant in Eq. (3·1) is calculated with the aid of appropri­

ate regularizations. There are various gauge-invariant regularization methods: 1) 

Pauli-Villars,25
H

8
l 2) lattice,29

l'
30

l 3) analytic,3ll 4) dimensional,32
)'

33
l 5) Zavialov,34

l 6) 

parity-invariant Pauli-Villars (a variant of the chiral gauge invariant Pauli-Villars by 

Frolov and Slavnov),35
l 7) high covariant derivative,36

l 8) zeta-function.37
l However it 

should be remarked that the methods 1) and 2) give regulator dependent results for the 

Chern-Simons part. An appropriate choice of the regularization leads to a regulator 

independent result (see, for example, Ref. 35) ). In the massless limit, m--+ 0, it is 

shown26
l up to one-loop that 

In det[ ir~'( aP- i }NAP)+ m J--+ sgn;.,.m) 1 ~;rg
2 jd 3 xE~'wFPvAp+ fpc(AP], (3·3) 

where sgn(m) denotes the signature of m, and the parity-conserving term is given by 

1 ( 3 ) r ( g )3/2 /pc(Ap] =;rzs 2 J d 3 
x 

2
/N F~" . (3·4) 

Therefore the bosonization of the massless Thirring model in (2 + 1) dimensions would 

lead to highly complicated bosonic theory. 

In what follows we consider the large fermion mass limit, m--+=. For the 2X2 

gamma matrices corresponding to the two-component fermion ¢, t/J, 

Nln det[ir~'DP[A]+mj]- Nln det[z'yl'ap+ mj] 

=NTr In[ 1 +(ir~'ap+mi)- 1 }& r~'Ap J 

=sgn(mi) ;~: fd 3 xE~'"PFpvAp- Z4%!
2

mil jd 3 XFp 11 F~'"+ 0( ~~:~ 2 ), (3·5) 

where sgn(m) denotes signature of the fermion mass m, sgn(m)=m/lml. This is 

understood as follows. Note that 

For D=3, the vacuum polarization tensor is given by 

IIpv(a; m)=( gpv- aa~" )rrT( -a2
; m)+ iEpvpapiTo( -a2; m)' (3·7) 

where 

(3·8) 
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906 K.-1. Kondo 

and 

z. - gzm1I 1 
ITo(k, m)- -~ 

0 
da [mz-a(l-a)kzptz. (3·9) 

In the large fermion mass limit, we obtain Eq. (3·5). 

Thus the Thirring model in the large fermion mass limit is equivalent to the 

bosonized theory with the interpolating Lagrangian: 

_[[A H ] - 1 H- H-""+ M ~'"PH- A + i8cs ~'"PF A I p, P - - 4 pv zt Pll p -
4
-E pv p 

(3·10) 

where 

(3·11) 

Integrating out the fLv field via HP*:=(1/2)Epvpfiw=Epvpa"Hv in the interpolating 

Lagrangian, we obtain the self-dual Lagrangian in the same sense as used in Deser and 

Jackiw:21
l 

_[ [A ] _ M
2 

A"A + i8cs pvpp A 
SD p --2- p -4-E pv p , (3 ·12) 

up to the lowest order of 1/m. This implies that the Thirring model is equivalent to 

the self-dual model with the Lagrangian _[so to the lowest order in 1/m. 

We notice that the interpolating Lagrangian we have just obtained is essentially 

equivalent to the master Lagrangian of Deser and Jackiw. 2
1J The master Lagrangian 

for A" and H: is given by 

_[ -
1 

A"A A H"*+ 
1 

-H"*H 
DJ -z- "- " z-m " . (3·13) 

Note that the roles of the auxiliary field A~< and the new field H" are interchanged in 

our interpolating Lagrangian compared with that in Ref. 18) based on the master 

Lagrangian of Deser and J ackiw. Hence the integration over the auxiliary field is 

non-trivial in our interpolating Lagrangian. 

If mj=m for all j=1, ···, N, then the original Lagrangian (2·1) has O(N) symme­

try. If we adopt the fermion mass term such that 

1
m, (j=1,···,N-k) 

mj= -m, (j=N-k+1,···,N) 
(3·14) 

the Lagrangian has O(N- k) X O(k) symmetry. For this mass term, we obtain 

( 
k) GM

2 

Ocs= 1-2 N ~· (3 ·15) 

Hence, if we take k=N/2 in the fermion mass term, the theory has O(N/2) X O(N/2) 
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Bosonization and Duality of Massive Thirring Model 907 

symmetry and Bcs=O follows, although the kinetic term for the field A, in the 

next-to-leading order is unchanged. See the Vafa-Witten argument.38> A similar 

situation occurs in the formulation which uses the four-component fermion with 4 X 

4 gamma matrices where the Chern-Simons term in the determinant disappear, since 

tr(r,r~rp)=O. In this case, the Thirring model is equivalent to the bosonised theory 

with the Lagrangian 

r - 1 H- H-"v+M pupA a H g
2 

F F"v 
..LJ•- -4 "v € " v P- 247Z'Im1 ,~.~ 

(3 ·16) 

Such a case is discussed in the final section. 

Now we proceed to the step of integrating out the gauge field A,, assuming Bcs*O 

and the fermion mass pattern (3·14), i.e., lmjl=m for all j. By defining 

and 

the interpolating action is written in the form 

S1= jd3x[- ~ H,~.~H"v+A,(x)]"(x)] 

+ jd3x jd3y ~ A,(x)K""(x, y)Av(y)+ o( ~ 2 ). 

The A, integration in the interpolating action is performed by using 

J fDAI'exp{ i jd3x jd3y ~ Al'(x)K~'v(x, y)A~.~(y)+ i jd3xAI'(x)J"(x)} 

=exp{ i jd3x jd 3y ~ ]"(x)K;~ 1 (x, y)J"(y)}, 

(3·17) 

(3·18) 

(3·19) 

(3·20) 

up to a constant which is independent of the field variable. Here the inverse is 

obtained as 

+ 6Jr~:lml (gpv-apaviJ<O(X, y))+ o( ~~~2)' (3. 21) 

where 4J<1>=1/a2 and 4J<2>=1/a4 in the sense a24J<l)(x, y)=8(x- y) and (a2
)

24J<2>(x, y) 

= 8(x- y ). By using this formula, AI' integration is performed: 

(3. 22) 
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908 K.-I. Kondo 

which is independent of the gauge-fixing parameter ~in the original theory. 

Thus we arrive at an effective bosonized Lagrangian for the dual field H"' alone: 

_[ Mcs = - ~ ( 1 + 6 ;;~~~ )B"'~Fr~ + ~~: E"'~p n"'a~Hp + e; ( 
1 
!

1
2 ) . (3·23) 

Note that the gauge-parameter dependence has dropped out in the bosonized theory. 

In the interpolating Lagrangian _[I the gauge degree of freedom for the A"' field is 

fixed by the gauge-fixing term (1/2~)(8"' Ap)2
• However there is an additional gauge 

symmetry for the new field H"': the Lagrangian _[I is invariant under the gauge 

transformation oHp=dpW independently of Ap, which leads to o/"'=0 in the master 

Lagrangian. Therefore we must add a gauge-fixing term for the H"' field to the 

bosonized Lagrangian _[ Mcs. 

Thus, to leading order in the 1/m expansion, the Thirring model partition func­

tion coincides with that of the Maxwell-Chern-Simons theory. This result agrees 

with that in Ref. 18) obtained up to the leading in 1/m, where a less direct procedure 

is adopted to show this equivalence using the self-dual action by way of the interpolat­

ing action. Up to the next-to-leading order in 1/m, we have shown that the equiva­

lence between the low energy sector of a theory of three-dimensional fermions inter­

acting via a current-current term and gauge bosons with Maxwell-Chern-Simons term 

is preserved. The Thirring spin-1/2 fermion with the Thirring coupling g2 /N is equal 

to a spin-1 massive excitation with mass 

; ( 1- 6;;fs1~1 )+ e;( ~2)' (3. 24) 

in 2+ 1 dimensions. In 2+ 1 dimensions there is the following correspondence 

between the original Thirring model and the bosonized theory: 

(3·25) 

Especially, for D=3, the relation (2·7) shows that the London action (without the 

kinetic term F~~) for superconductivity, 

(3·26) 

is equivalent to the Chern-Simons term: 

(3·27) 

This fact was already pointed out in Ref. 20). The missing kinetic term for A"' is 

generated through the radiative correction as shown above. The Meissner effect in 

superconductivity is nothing but the Higgs phenomenon: the photon (massless gauge 

field) becomes a massive gauge boson by absorbing the massless N ambu-Goldstone 

boson (scalar mode). The mixed Chern-Simons action does not break the parity in 

sharp contrast to the ordinary Chern-Simons term. Therefore this model may be a 

candidate for the high- Tc superconductivity without parity violation, as suggested in 
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Bosonization and Duality of Massive Thirring Model 909 

Ref. 20). 

Finally we wish to point out that, in the large m limit, the Thirring model is also 

equivalent to the Chern-Simons-Higgs model up to leading order in 1/m and to the 

Maxwell-Chern-Simons-Higgs model up to the next-to-leading order in 1/m, since 

_[csH=(D,.,q;)t(D~'q;)+ i~cs jd 3 x€~'"PF,.,,AP-
24

;lml jd 3 xF,.,.,F~'"+ o( ~~~2), 
(3·28) 

apart from the gauge-fixing term. This result is consistent with the assertion of 

Deser and Yang. 39
> 

§ 4. (1 +I)-dimensional case 

The bosonization of the (1 +I)-dimensional Thirring model has a long history and 

is well known. Therefore there are a lot of references on bosonization which cannot 

be exhausted, see, for example, Refs. 7) ~ 10) based on the canonical formalism and 

Refs. 11) ~ 16) based on the path integral formalism. In this section we reproduce the 

well-known result based on our method. 

For D=2, it is easy to show that the bosonized action is given by 

Ss=Nlndet[ir~'D,.,[A]+m]+ jd2x[ ~ (a,.,H) 2 +M€,., 11 A,.,a~~H-A,.,a~'B+ g B 2
]. 

(4·1) 

The determinant is calculated as 

where 

Nl det[ir~'D,.,[A]+m] 
n det[ir~'a,.,+m] 

g2 £1 a(l-a) 
Ilr(k

2
; m)= --k

2 
da 2 (l )k2 · 

11: o m -a -a 

In the massless case, m=O, 

2 

II (k 2
• m=O)=jJ_ 

T ' 7r ' 

and hence 

whose inverse is given by 

Putting 

(4·3) 

(4·4) 

(4·5) 

(4 ·6) 

(4 ·7) 
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9IO K.-I. Kondo 

and integrating out the AP field, we obtain the bosonized theory: 

(4 ·8) 

The massless Thirring model in two dimensions is equivalent to the massless scalar 

field theory, as long as the action is bounded from below, i.e., G: = g2 /M 2 >O or G < - n. 

For more details on the massless case, see Ref. 2). 

On the other hand, in the large m limit, we find 

(4 ·9) 

and hence 

(4 ·IO) 

The inverse is obtained as 

(4 ·11) 

Hence we obtain the bosonized theory after integrating out the AP field: 

(4 ·I2) 

Thus in two dimensions, the massive Thirring model with large mass m'2> I is equiva­

lent to the scalar field theory with large mass: 

(4·I3) 

In the massive limit, the Thirring model is physically sensible for G >0. 

In two dimensions there is a correspondence between the Thirring model and the 

bosonized theory: 

(4 ·I4) 

The above results are reasonable as shown in the following. The massive 

Thirring model is not exactly soluble even in (I+ I)-dimensions. However the 

(1 +I)-dimensional massive Thirring model is equivalent to the sine-Gordn model,8
l 

(4 ·I5) 

if the following identifications are made between the two theories: 

(4 ·I6) 

(4 ·I7) 
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Bosonization and Duality of Massive Thirring Model 911 

- a 
m,Pr/1=- 7J2 cos(/3rp), (4·18) 

where a constant in the Lagrangian ..£ sc is adjusted so that the minimum of the energy 

density is zero. 

The massless limit m--+0 of the massive Thirring model corresponds to the limit 

a--+0 in the sine-Gordon model, i.e., a massless scalar field theory in agreement with 

the above result. On the other hand, the massive limit m--+oo corresponds to the limit 

{3--+0 (or a--+oo) which inevitably leads to the limit G--+oo as /3/27r~ 1/ /G. Hence in 

this limit the Lagrangian reduces to 

(4 ·19) 

Moreover Eq. (4 ·17) recovers the above correspondence relation (4 ·14) for N = 1. 

Therefore the very massive limit m;p 1 of the two-dimensional Thirring model is 

equivalent to the massive free scalar field theory with mass ra which is identified with 

mH given above. 

§ 5. Conclusion and discussion 

In this paper we have investigated the bosonization of the multiftavor massive 

Thirring model in D = d + 12 2 dimensions, starting from a reformulation of the 

Thirring model as a gauge theory. 

In (1 + 1) dimensions, we have reproduced the well-known result.7l-9
> In (2 + 1) 

dimensions we have found a novel interpolating Lagrangian: 

..£ I[A,u, H,u] =- ~ fi.uJj.uv + A[ €""P H,uvAp + ..£ c[A,u] , (5·1) 

where ..£ c[A ... ] is the Lagrangian for the gauge field A.u generated from the fermion 

determinant up to the next-to-leading order in 1/lmjl: 

..£ c[A.u]= i~cs €,uvp APF.uv- 24;jml FwF~'" + lJ ( ~~~2). (5·2) 

This interpolating Lagrangian is shown to interpolate between the massive Thirring 

model with the Lagrangian ..£Th and the Maxwell-Chern-Simons theory with the 

Lagrangian: 

..£Mcs[H,.]=- ~ ( 1 + 61retslml )fi.uvfiw+ ~~: €,uvpH.uavHP. (5·3) 

In contrast to the previous interpolating Lagrangian,21
>'

18
> our interpolating Lagran­

gian is invariant under the independent gauge transformations for two gauge fields, 

A.u,H.u: 

(5·4) 

It is interesting to see that the weak coupling limit G J. 0 (i.e., Ocs J. 0) of the massive 

Thirring model is nothing but the topological theory, the Chern-Simons theory, to 
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912 K.-I. Kondo 

leading order in 1/lml. 
In the multifiavor Thirring case we have treated in this paper, a specific situation 

such that Bcs=O may occur for an even number of two-component fermions or four­

component fermions, which is important in discussing the chiral symmetry breaking3
> 

(see Eq. (3 ·15)), in contrast to the case considered in Ref. 18). In such a case, the 

inverse of K"v is given by 

(5·5) 

This leads to a non-local Maxwell-like Lagrangian. In the multifiavor case, there­

fore, the exact bosonization of the massive Thirring model up to the next-to-leading 

order in 1/m is possible only when fermion masses are configured such that the 

coefficient Bcs is nonzero. 

In order to formulate the Thirring model as a gauge theory based on the BFV 

formalism, we need a kinetic term for the gauge field A". Therefore the existence of 

the next-to-leading order term in_£ c[A] is essential in our formulation. The Chern­

Simons theory and the Maxwell theory have completely different structures as 

constraint systems in the bosonization scenario. From this point of view, we con­

sider the bosonization in a subsequent paper.40
> 

In dimensions D :::::4, the Lagrangian _£ c[A] for the gauge field A" coming from 

integrating out the fermion field becomes non-local, since 

( z ) z 2tr(1)F(2- D/2) 11 a(1- a) 
Ilr k; m =- k (4n-)DI2 

0 
da [a(1- a)kz+ mz]z v12 

tr(1)F(2- D/2) k
2 

( D 5 k
2 

) 

3(4 .7r)Di2 m4-D zFt 2, 2-2, 2;- 4m2 , (5·6) 

where zFt(a, b, c; z) is a hypergeometric function. This makes the bosonization in 

the exact sense rather difficult together with the reducibility of the antisymmetric 

tensor gauge theory written in terms of H"• .. ·l'o· This case will be discussed else­

where. 

Finally we discuss how to extend our method into the non-Abelian case. First of 

all, we observe that the following master Lagrangian is equivalent to the interpolating 

Lagrangian (2·3) apart from the gauge-fixing and the ghost terms: 

_£ M[AI', HI', K"] = ~
2 

(A"- K")
2 + ~ E"'"·l'o Hl'o .. ·l'oFI'>1'2[K] + _£ c[A"] , (5 • 7) 

where F"v[K] is the field strength for K" defined by F"v[K]: = a"Kv- avK". By 

introducing the vector field /" as in § 2, this Lagrangian is cast into 

Integrating out the field K", we obtain the constraint/"'= E"' ... "oa"2HI' ... ·I'o· Therefore 

the Lagrangian (5·7) reproduces the interpolating Lagrangian (2·9) for arbitrary 

dimension and especially (5·1) for D=3. 

Next, we point out that, by introducing the scalar field 
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Bosonization and Duality of Massive Thirring Model 913 

rp=/N }zeieJv, ( V=M/g=1/ .{G), (5·9) 

and integrating out the fermion field, the Thirring model as a gauge theory can be 

regarded with the gauged non-linear sigma model: 

(5·10) 

with the local constraint rp(x)rp*(x)=(N/2G). Actually, after redefinition of the field 

variable, another form of the master Lagrangian (5·7) is obtained: 

_[M[A!', HI', VI']= ~
2 

( Vl'2)+ ~ €"'''•1'Dfli'3"'1'DFI'II'2[ v + A]+_f c[AI']' (5·11) 

which is shown to be at least classically equivalent to the non-linear sigma model with 

the Lagrangian _fH. Indeed the master Lagrangian (5·11) has the local gauge invar­

iance (5·4). It is easy to extend the master Lagrangian (5·7) or (5·11) into the 

non-Abelian case. However the quantum nature of the theory produces subtle 

problems in bosonization. The bosonization of a non-Abelian version of the massive 

Thirring model will be given in a subsequent paper.40
> 
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