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We examine a quantum Otto engine with a harmonic working medium consisting of two particles to explore

the use of wave function symmetry as an accessible resource. It is shown that the bosonic system displays

enhanced performance when compared to two independent single particle engines, while the fermionic system

displays reduced performance. To this end, we explore the trade-off between efficiency and power output and the

parameter regimes under which the system functions as engine, refrigerator, or heater. Remarkably, the bosonic

system operates under a wider parameter space both when operating as an engine and as a refrigerator.

DOI: 10.1103/PhysRevE.101.012110

I. INTRODUCTION

With the widespread adoption of the steam engine during

the industrial revolution, thermodynamics emerged as a phys-

ical theory that could describe and optimize the performance

of these devices [1]. While modern thermodynamics has

expanded far beyond its original scope, heat engines have

remained the canonical systems for studying thermodynamic

mechanisms. Not only do they have clear practical applica-

tions, but they also provide a paradigmatic way of studying

how the thermodynamic properties of a system evolve—with

applications ranging from biological processes, over climate

systems, to black holes [2–4].

Quantum systems, subject to inherent fluctuations and

decidedly nonequilibrium in nature, introduce new challenges

for applying the framework of thermodynamics [5]. Neverthe-

less, quantum heat engines [5,6] provide a natural foundation

for studying thermodynamic behavior in quantum systems

in comprehensible terms. For instance, heat can always be

found as the change in energy during an isochoric stroke, just

as work can be found from the change in energy during an

isentropic stroke [7].

This might explain the plethora of studies to investigate

possible enhancements of engine performance through the ex-

ploitation of quantum resources including coherence [8–15],

measurement effects [16], squeezed reservoirs [17–19], quan-

tum phase transitions [20], and quantum many-body effects

[15,21–23]. Other works have examined the fundamental

differences between quantum and classical thermal machines

[24–26], finite time cycles [13,27,28], utilizing shortcuts

to adiabaticity [12,22,23,29–33], operating over nonthermal

states [34,35], non-Markovian effects [36], magnetic systems

[37–42], anharmonic potentials [43], optomechanical im-

plementation [44], quantum dot implementation [38,40,42],

implementation in 2D materials [38,41], classical engines

coupled to quantum systems [45], quantum cooling [46,47],

relativistic systems [48,49], degeneracy effects [39,50], and
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autonomous cycles [51]. Moreover, recent experimental ad-

vances have demonstrated the practical implementation of

nanoscale heat engines [52,53], including those that harness

quantum resources [54,55].

Two primary quantities of practical interest when charac-

terizing the performance of a heat engine are its efficiency and

power output. However, analysis of an ideal engine assumes

that the strokes of the engine are carried out quasistatically

over an infinitely slow period, maximizing efficiency but

resulting in zero power output [7]. Rather, one is interested

in the efficiency at maximum power (EMP) [56]. To this end,

it has been shown that such analyses are particularly fruitful

for quantum engines [19,57–65].

In this paper we explore a quantum Otto cycle similar to

the model pioneered by Kosloff [57]. Our working medium

consists of two particles in a harmonic trap. We examine

performance, including efficiency, power, EMP, trade-off be-

tween efficiency and power, and the parameter regimes where

the cycle functions as various types of thermal machines,

depending on if the particles are bosons, fermions, or dis-

tinguishable (often referred to as “classical”). Through this,

we explore the effect of wave function symmetry on engine

performance. We find that in all examined performance char-

acterizations the bosons perform better in comparison to the

distinguishable particles, while the fermions perform worse.

Symmetry effects in engine performance have been explored

for other potentials or interactions [66–68]; however, our work

provides additional insight through a fully analytical model of

the complete dynamics, demonstrating how these effects arise

solely from the underlying wave function symmetry.

II. PRELIMINARIES

Our working medium is given by two noninteracting, spin-

less particles, either both bosons or both fermions. Excluding

any additional interaction terms and considering spinless par-

ticles (or alternatively particles of identical spin) allows us to

isolate behavior arising from symmetry effects. The potential

is a harmonic trap, such as a linear Paul trap, whose frequency

can be varied with time. This is a two-particle generalization

of the experimental system proposed in Ref. [65].
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FIG. 1. Position distributions of the thermal state (7) of (a) two distinguishable particles, (b) two bosons, and (c) two fermions in a harmonic

potential. Parameters are h̄ = kB = 1 and β = ω = m = 1.

To analyze an engine operating in finite time, we need

the dynamics of a quantum harmonic oscillator with a time-

dependent angular frequency ω(t ) that varies from ω1 at t = 0

to ω2 at t = τs. To this end, we start by briefly reviewing the

case of a single particle, which we can then generalize to the

case of two particles.

For a single particle the Hamiltonian is the sum of the

kinetic and potential energies,

H =
p2

2m
+

1

2
mω2(t )x2. (1)

Following the method developed by Husimi [69] we can solve

the time-dependent Schrödinger equation by introducing the

Gaussian wave-function ansatz,

ψt (x) = exp

(

i

2h̄
(at x

2 + 2bt x + ct )

)

, (2)

where at , bt , and ct are time-dependent coefficients. This

allows us to reduce the Schrödinger equation to a set of three

coupled differential equations for at , bt , and ct that can be

solved by mapping to the equation of motion of the classical

time-dependent harmonic oscillator,

Ẍt + ω2(t )Xt = 0. (3)

The single-particle propagator then reads [69]

U1 =
√

m

2π ihXt

exp

(

im

2h̄Xt

(

Ẋt x
2 − 2xx0 + Yt x

2
0

)

)

, (4)

where Xt and Yt are time-dependent solutions to Eq. (3) with

initial conditions X0 = 0, Ẋ0 = 1 and Y0 = 1, Ẏ0 = 0.

This framework can be directly expanded to two particles

with Hamiltonian Htot = H1 + H2. For two particles the pure

state wave function,

�n1,n2
(x1, x2) = 1

2

[

ψn1
(x1)ψn2

(x2) ± ψn1
(x2)ψn2

(x1)
]

, (5)

consists of the symmetric (for bosons) or antisymmetric (for

fermions) linear combination of the single particle wave func-

tions.

Accordingly, the two-particle equilibrium thermal state

reads

ρ0(x1, x2, y1, y2) =
1

Z

∞
∑

n1=0

∞
∑

n2=0

exp (−β h̄ω(n1 + n2 + 1))

×�∗
n1,n2

(x1, x2)�n1,n2
(y1, y2), (6)

where Z is the standard partition function Z = tr{exp (−βH )}.
Inserting the harmonic oscillator energy eigenstates in posi-

tion representation for ψn1
and ψn2

yields the position space

density operator,

ρ0(x1, x2, y1, y2) =
1

Z

mω

2π h̄ sinh (β h̄ω)

[

e− mω
4h̄

{[(x1+y1 )2+(x2+y2 )2] tanh (β h̄ω/2)+[(x1−y1 )2+(x2−y2 )2] coth (β h̄ω/2)}

± e− mω
4h̄

{[(x2+y1 )2+(x1+y2 )2] tanh (β h̄ω/2)+[(x2−y1 )2+(x1−y2 )2] coth (β h̄ω/2)}]. (7)

The thermal state (7) already displays notable differ-

ences in behavior arising from the wave function symmetry.

This can be most easily observed from the states’ Wigner

quasiprobability distributions [70]. See Appendix B for the

full expressions. By integrating the Wigner distributions over

the momentum components we determine the position prob-

ability distributions for each thermal state. Figure 1 depicts

the position distribution for two distinguishable particles,

two bosons, and two fermions. The stretching of the boson

distribution along the diagonal (where the position of the
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FIG. 2. Energy-frequency diagram of a quantum Otto cycle with

representation of each stroke’s trapping potential.

two particles coincide) is a demonstration of the effective

attraction (boson bunching); conversely, the splitting of the

fermion distribution along its diagonal is a demonstration of

the corresponding effective repulsion between fermions (Pauli

exclusion principle).

A heat engine cycle will necessarily involve some com-

pression and expansion of the working medium. Considering

this, the differences in the thermal state from the exchange

forces already give us reason to suspect that symmetry should

affect engine performance.

Finally, to determine the time evolved density operator we

further require the proper two particle evolution operator. It

can be shown that in energy representation the two particle

propagator is the symmetric (for bosons) or antisymmetric

(for fermions) linear combination of single particle propa-

gators [71]. The same is true in position representation (see

Appendix A for a full derivation),

U2

(

x1, x0
1, x2, x0

2

)

= 1
2

[

U1

(

x1, x0
1

)

U1

(

x2, x0
2

)

± U1

(

x1, x0
2

)

U1

(

x2, x0
1

)]

, (8)

where again the plus is for bosons and the minus for fermions.

III. FINITE-TIME QUANTUM OTTO CYCLE

Classically, the Otto cycle consists of four strokes:

(1) isentropic compression, (2) isochoric heating, (3) isen-

tropic expansion, and (4) isochoric cooling [7]. Note that

the classical and the quantum Otto cycle are implemented in

a fundamentally different manner: typically, in the quantum

Otto cycle, the isentropic strokes are given by unitary strokes

[5,57], such that the von Neumann entropy remains constant.

This is in contrast to classical adiabatic strokes which are

carried out quickly to prevent heat transference, and hence

keep the thermodynamic entropy constant [7].

In our model the oscillator frequency plays the role of

inverse volume, with the compression and expansion strokes

corresponding to closing (increasing frequency) and opening

the trap (decreasing frequency), respectively. The heating

(cooling) stroke corresponds to coupling the oscillator respec-

tively to a high (low) temperature bath that increases (de-

creases) the energy of the system [65]. This thermodynamic

cycle is illustrated graphically in Fig. 2: at A the system is in

an equilibrium thermal state with inverse temperature β1 and

frequency ω1. The isentropic compression stroke is carried

out via unitary evolution to nonthermal state B with increased

frequency ω2. The system is then coupled to the hot reservoir

and allowed to thermalize to state C at inverse temperature β2

and frequency ω2. The frequency is then decreased unitarily

during the expansion stroke resulting in state D with ω1 and

β2. Finally, the system is coupled to the cold reservoir and

allowed to thermalize back to β1, returning it to its original

state A.

Applying the two particle propagator derived above to the

thermal state density operator we can determine the state of

the system after either of the unitary strokes [(1) and (3)]. The

full expression can be found in Appendix A. Using the explicit

expression for the Wigner distribution of time evolved state

(B4), we obtain the internal energy at each corner of the cycle,

〈H〉A =
h̄ω1

2
[3 coth(β1h̄ω1) + csch(β1h̄ω1) ∓ 1],

〈H〉B =
h̄ω2

2
Q∗

12[3 coth(β1h̄ω1) + csch(β1h̄ω1) ∓ 1],

〈H〉C =
h̄ω2

2
[3 coth(β2h̄ω2) + csch(β2h̄ω2) ∓ 1],

〈H〉D =
h̄ω1

2
Q∗

21[3 coth(β2h̄ω2) + csch(β2h̄ω2) ∓ 1].

(9)

Here Q∗
12 and Q∗

21 are dimensionless parameters that measure

the degree of adiabaticity of the isentropic strokes [69]. They

are given by

Q∗ =
1

2ω0ωτs

[

ω2
0

(

ω2
τs

X 2
τs

+ Ẋ 2
τs

)

+
(

ω2
2Y 2

τs
+ Ẏ 2

τs

)]

, (10)

where Xt and Yt are solutions of Eq. (3) with ω(t = 0) =
ω1 and ω(t = τs) = ω2 during compression, and the reverse

during the expansion. Note that for a completely adiabatic

stroke Q∗ = 1 and in general Q∗ � 1 [65,69].

Since the only energy exchange during the isentropic

strokes is in the form of work, we can determine the average

work directly from the differences in internal energy 〈W1〉 =
〈H〉B − 〈H〉A and 〈W3〉 = 〈H〉D − 〈H〉C . Analogously, we

have from the isochoric strokes that 〈Q2〉 = 〈H〉C − 〈H〉B and

〈Q4〉 = 〈H〉A − 〈H〉D.

IV. ENGINE CHARACTERIZATIONS

A. Efficiency and power

For any thermodynamic engine, the efficiency is defined as

the ratio of the total work to the heat input while the power is

defined by ratio of the total work to the cycle time,

η = −
〈W1〉 + 〈W3〉

〈Q2〉
, P =

〈W1〉 + 〈W3〉
τ

. (11)

Thus the full two-particle efficiency becomes

η = 1 − Q∗
21

ω1

ω2

∓
ω1(Q∗

12Q∗
21 − 1)[3 coth(β1h̄ω1) + csch(β1h̄ω1) ∓ 1]

ω2{±3 coth(β2h̄ω2) ∓ Q∗
12[3 coth(β1h̄ω1) + csch(β1h̄ω1) ∓ 1] ± csch(β2h̄ω2) − 1}

, (12)
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FIG. 3. Efficiency as a function of the ratio of bath temperatures (a) and final to initial frequencies (b) for a bosonic engine (dashed, blue

line), fermionic engine (dot-dashed, green line), and single particle engine (solid, red line). We have taken h̄ = kB = 1. Other parameters are

for (a) ω1 = 1, ω2 = 2 and for (b) Tcold = 1, Thot = 20.

where the top sign denotes the bosonic efficiency and the

bottom sign the fermionic efficiency.

To check the consistency of our results, we examine the

classical limit (high-temperature, quasistatic) of the maximum

efficiency. In the quasistatic limit (Q∗
12 = Q∗

21 = 1) Eq. (12)

reduces (as expected) to

η = 1 −
ω1

ω2

, (13)

which is the quasistatic efficiency of the ideal quantum Otto

engine [57].

In order to restrict the operation of our cycle to the regime

in which it behaves as an engine (and thus ensure discussion of

efficiencies is valid) we impose the following (positive work)

conditions:

〈Q2〉 > 0, 〈Q4〉 < 0, 〈Wtotal〉 > 0. (14)

In the classical limit these positive work conditions are

equivalent to

β2

β1

�
ω1

ω2

. (15)

Therefore, we see that, indeed, the maximum efficiency be-

comes

ηmax = 1 −
Tc

Th

, (16)

which is just the Carnot efficiency.

To examine the behavior of the efficiency and power out-

side of limiting cases we first select a protocol ω(t ). For the

sake of simplicity, we start with the “sudden switch” protocol,

which corresponds to an instantaneous change from ω1 to ω2

[65]. In this case

Q∗
12 = Q∗

21 =
ω2

2 + ω2
1

2ω2ω1

. (17)

The efficiency for bosonic and fermionic engines using

this protocol is shown in comparison to that of a single

particle quantum Otto engine in Fig. 3. Note that efficiency is

identical for the sum of any number of single particle engines.

We see a notable enhancement in efficiency over the single

particle engine at intermediate bath temperature ratios for the

bosonic engine, and a universal decrease in efficiency for the

fermionic engine. We see a similar enhancement for bosons

and reduction for fermions at high frequency ratios.

The power output for bosonic and fermionic engines using

this protocol is shown in comparison to that of the sum of two,

macroscopically distinguishable single particle quantum Otto

engines in Fig. 4. Note that in the case of the sudden switch

protocol the cycle time, τ , consists of just the sum of the

thermalization times, as the isentropic strokes are considered

to be instantaneous. A direct calculation of the thermalization

time requires an explicit model of the bath-system interaction,

which is beyond the scope of this paper. In order to estimate

the power, we have taken τ = 1, leaving optimization of

power with respect to cycle time as a topic for future work.

Again, we see an enhancement to the power output in the

case of bosons, and a significantly larger decrease in power

output in the case of fermions, in comparison to the equivalent

number of distinguishable single particle engines.

B. Efficiency at maximum power

As stated above, due to the inherent trade-off between

efficiency and power, the more practically significant char-

acterization of heat engine performance is the efficiency at

maximum power. To determine this, we first maximize the

power with respect to the second frequency, ω2, assuming ω1,

the cycle time, and the bath temperatures are held fixed.

Carrying out this maximization in the classical limit yields

ω2

ω1

=

√

β1

β2

. (18)

Thus we have

ηEMP = 1 −

√

Tc

Th

, (19)

which is nothing else but the Curzon-Ahlborn efficiency [56].

This is in full agreement with recent findings in Refs. [61]
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FIG. 4. Power as a function of the ratio of bath temperatures (a) and final to initial frequencies (b) for a bosonic engine (dashed, blue line),

fermionic engine (dot-dashed, green line), and two distinguishable single particle engines (solid, red line). We have taken h̄ = kB = 1. Other

parameters are for (a) ω1 = 1, ω2 = 2, τ = 1 and for (b) Tcold = 1, Thot = 20, τ = 1.

and [63] that show in the quasistatic and classical high-

temperature limits, respectively, the EMP of a quantum har-

monic Otto is given by Eq. (19).

To examine the EMP outside of the classical limit we

again choose the sudden switch protocol. Figure 5 shows the

EMP as a function of the ratio of bath temperatures for our

three working mediums. Here we see the same pattern as

before, an enhancement over the equivalent number of single

particle engines in the case of bosons, and a significantly

larger reduction in the case of fermions.

C. Efficiency and power trade-off

While the EMP provides information about the amount

of efficiency sacrificed to achieve maximum power, it can be

enlightening to also examine the trade-off across the entire

parameter space. Various trade-off measures have been put

forward (see Refs. [72–79] for further discussion). Here we

use the “efficient power” criterion proposed by Yilmaz, which

FIG. 5. EMP as a function of the ratio of bath temperatures for

a bosonic engine (dashed, blue line), fermionic engine (dot-dashed,

green line), and two distinguishable single particle engines (solid, red

line) given in comparison to the Curzon-Ahlborn efficiency (dotted,

brown line). We have taken h̄ = kB = 1. Other parameters are ω1 = 1

and τ = 1.

is defined as the simple product of efficiency and power [75].

This provides us with a direct measure of the power output

gained per corresponding unit decrease in efficiency. The

difference in efficient power between the bosons and fermions

for the case of the sudden switch protocol is shown in Fig. 6 as

a function of both the ratio of bath temperatures and initial and

final frequencies. We see that over the whole parameter space

the efficient power for bosons is superior to the trade-off for

fermions.

D. Operational parameter regimes

Aside from engine characterizations, the other main area in

which a quantum advantage could manifest is in the size of the

parameter space in which the cycle functions as the desired

type of thermal machine. In general, there are four possible

types of thermal machines allowed by the second law: engine,

refrigerator, and two types of heater [80]. An engine extracts

FIG. 6. Difference between bosonic and fermionic efficient

power as a function of the ratio of both bath temperatures and initial

and final frequencies. We have taken h̄ = kB = 1 and τ = 1.
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FIG. 7. Block diagrams for all allowed thermal machines.

work from heat flowing between a hot and cold reservoir. A

refrigerator puts in work in order to facilitate the flow of heat

from a cold to a hot reservoir. The first type of heater puts in

work that is then dissipated as heat into both reservoirs. The

second type of heater puts in work to facilitate the flow of

heat from the hot to the cold reservoir. The operation of these

machines is summarized in Fig. 7.

When thinking practically, heater II is clearly the least

desired mode of operation as it involves spending work to

facilitate a process that will occur spontaneously. With this

in mind we define an advantage as an expansion of the

parameter space under which the cycle functions as either

engine, refrigerator, or heater I and a corresponding reduction

in the parameter space where it functions as heater II.

By determining the signs for the work and heat compo-

nents we can determine which thermal machine the cycle is

functioning as for any combination of frequencies and bath

temperatures. Figure 8 gives a comparison between the oper-

ational space of the bosonic, fermionic, and distinguishable

particle systems as a function of their parameters. We see

that the bosonic system experiences an expanded operational

space for both the engine, refrigerator, and heater I machines

in comparison to both fermions [Fig. 8(a)] and an equivalent

number of distinguishable single particle engines [Fig. 8(b)].

Conversely the fermionic system experiences a reduced

operational space under the same comparisons [Fig. 8(a) and

Fig. 8(c)]. This demonstrates a clear advantage for the bosonic

engine by our above definition.

E. Linear protocol and instantaneous power

It is also of interest to explore how the operational spaces

evolve as the cycle transitions from the instantaneous sudden

switch protocol to the infinite-time quasistatic limit. In order

to do so we consider a linear protocol that allows us to

interpolate smoothly between these limits,

ω(t ) =
(

ω2
1 + δω

t

τs

)1/2

, (20)

where τs is the duration of the isentropic strokes. A compar-

ison between the the operational space of the bosonic and

fermionic systems at selected stroke durations is shown in

Fig. 9. As stroke duration increases the heater I and heater

II regimes shrink while the engine and refrigerator regimes

expand. We see for very large τs, i.e., approximately qua-

sistatic, the heater regimes disappear entirely and the boson

and fermion operational diagrams become nearly identical.

This matches expectations as the heaters are fundamentally

nonequilibrium machines. The convergence of the operational

diagrams is due to the fact that in the quasistatic limit both

cycles’ performance approach the same limits (such as the

Carnot and Curzon-Ahlborn efficiencies).

In conclusion, we have seen in all explored characteristics

that the bosonic working medium outperforms the fermionic

one. The linear protocol allows us to examine how the internal

energy and power evolve throughout the isentropic strokes

which can provide us with insight into the source of this

advantage.

Figure 10 depicts the instantaneous power (the time deriva-

tive of the instantaneous internal energy) during both the

expansion (opening) and compression (closing) strokes. We

see that at any given time during the expansion stroke the

bosons are extracting less work than an equivalent number of

distinguishable single particle engines, but at the same time

during the compression stroke they require less work input

resulting in a net gain in performance. The reverse is true for

fermions. However, in their case the extra work input required

FIG. 8. Operational diagrams whose shaded portions give the regions in parameter space under which the cycle functions as an engine

(bottom, yellow region), heater I (middle, orange region), and refrigerator (top, blue region) for one working medium, but not for the compared

medium. Panel (a) compares bosons and fermions, (b) compares bosons and distinguishable single particles, and (c) compares distinguishable

single particles and fermions. Parameters are h̄ = kB = 1.
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FIG. 9. Operational diagrams whose shaded portions give the regions in parameter space under which the cycle functions as an engine

(bottom, yellow region), heater I (middle, orange region), and refrigerator (top, blue region) for bosons, but not for fermions. We have taken

the linear protocol with stroke durations (a) τs = 1, (b) τs = 10, and (c) τs = 200. Parameters are h̄ = kB = 1.

outweighs the advantage they gain on extraction resulting in

a net decrease in performance. Physically, this means that the

repulsive force between fermions hinders more on compres-

sion than it aids in expansion, while the opposite is true of the

attractive force between bosons. We also note that the slope of

the instantaneous power and the separation between each case

remains roughly constant (aside from some small oscillations

induced by the form of Q∗ in the linear protocol). This is an

indication that the variation in performance arises solely from

the differences in internal energy and not from differences in

entropy induced by changes in quantum correlations.

V. CONCLUDING REMARKS

In this work we have examined a quantum Otto engine

operating on a two-particle working medium consisting of

either spinless bosons or fermions through fully analytical

models of the state dynamics. We have shown that in all ex-

amined engine characterizations, including efficiency, power,

FIG. 10. Instantaneous power output during the compression

(positive-valued lines) and expansion (negative-valued lines) strokes

for bosons (dashed, blue line), fermions (dot-dashed, green line),

and the sum of two distinguishable single particle engines (solid, red

line). Note that in this case negative power represents work extraction

from the engine. We have taken h̄ = kB = 1. Other parameters are

ω1 = 1, ω2 =
√

2, τ = 10, Tcold = 1, and Thot = 10.

EMP, trade-off between efficiency and power, and operational

parameter space, the bosonic system displays enhanced per-

formance while the fermionic system displays reduced per-

formance. This enhancement (or reduction) persists in com-

parison to the performance of an equivalent number of distin-

guishable single-particle quantum engines clearly indicating

that this effect arises from the particle symmetry. We have

examined the time-dependent behavior of the instantaneous

power output throughout the isentropic strokes for the case

of a linear protocol and found that the origin of this effect

lies in the differences in internal energy between the bosons

and fermions that result from the Pauli exclusion principle.

While the displayed advantage is moderate, we believe pro-

tocols can be developed that optimize this resource for more

significant enhancement to performance. However, the devel-

opment and analysis of such protocols is beyond the scope of

this work.

Wave-function symmetry is an inherently quantum prop-

erty; as such, this increase in performance (for bosons) is

a demonstration of a truly quantum advantage. Beyond this,

however, the wave-function symmetry is also an additional

information-bearing degree of freedom [81] available to the

system. Using information as a resource in a thermodynamic

system is an area that has seen much recent activity [82–94].

We leave an examination of how this additional information

resource may be leveraged, along with the effects of inter-

particle interactions [95,96] and scalability, as topics to be

explored in future work.
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APPENDIX A: TWO PARTICLE PROPAGATOR

In this Appendix we outline the derivation of the propagator in space representation for a two particle harmonic system and

apply it to the thermal state density operator. For a given two particle state represented by density operator ρ the propagator is

defined by

ρt (x1, x2, y1, y2) =
∫

dx0
1

∫

dx0
2

∫

dy0
1

∫

dy0
2 U2

(

x1, x0
1, x2, x0

2

)

ρ0

(

x0
1, x0

2, y0
1, y0

2

)

U
†
2

(

y1, y0
1, y2, y0

2

)

. (A1)

Note that in energy representation [71]

〈n1n2|U2

∣

∣n0
1n0

2

〉

= 1
2

[

〈n1|U1

∣

∣n0
1

〉

〈n2|U1

∣

∣n0
2

〉

± 〈n1|U1

∣

∣n0
2

〉

〈n2|U1

∣

∣n0
1

〉]

. (A2)

Changing the basis in the expression (A1) into energy representation and comparing terms, we have

U2 =
1

2

∞
∑

n1,n2=0

〈x1x2|n1n2〉

⎡

⎣

∞
∑

n0
1,n

0
2=0

(

〈n1|U1

∣

∣n0
1

〉

〈n2|U1

∣

∣n0
2

〉

±
〈

n1|U1

∣

∣n0
2

〉

〈n2|U1

∣

∣n0
1

〉)〈

n0
1n0

2|x
0
1x0

2

〉

⎤

⎦, (A3)

where

〈x1x2|n1n2〉 = 1
2
[ψn1

(x1)ψn2
(x2) ± ψn1

(x2)ψn2
(x1)]. (A4)

Further in position representation the harmonic oscillator energy eigenstates are

ψn(x) =
1

√
2nn!

(

mω

π h̄

)1/4

e− mωx2

2h̄ Hn

(
√

mω

h̄
x

)

, (A5)

and the orthogonality condition of the Hermite polynomials is

∞
∑

n=0

1
√

2nn!
Hn(x)Hn(y) =

√
πe

1
2

(x2+y2 )δ(x − y), (A6)

where δ(x − y) is the Dirac delta. Thus we obtain

U2

(

x1, x0
1, x2, x0

2

)

= 1
2

[

U1

(

x1, x0
1

)

U1

(

x2, x0
2

)

± U1

(

x1, x0
2

)

U1

(

x2, x0
1

)]

, (A7)

with the same method allowing for the simplification of the conjugate to a similar expression.

Applying the two particle propagator to the thermal state (7) yields the full time-evolved density operator,

ρt (x1, x2, y1, y2) =
mω

2π h̄(Y 2
t + X 2

t ω2)

(

e∓β h̄ω − 1
)

×
{

e
m

2h̄(Y 2
t +X2

t ω2 )
[i(x2

1+x2
2−y2

1−y2
2 )(Yt Ẏt +Xt Ẋt ω

2 )−ω(x2
1+x2

2+y2
1+y2

2 )coth(β h̄ω)+2ω(x1y1+x2y2 )csch(β h̄ω)]

± e
m

2h̄(Y 2
t +X2

t ω2 )
[i(x2

1+x2
2−y2

1−y2
2 )(Yt Ẏt +Xt Ẋt ω

2 )−ω(x2
1+x2

2+y2
1+y2

2 )coth(β h̄ω)+2ω(x2y1+x1y2 )csch(β h̄ω)]}

. (A8)

Here the top sign denotes the boson state and the bottom sign denotes the fermion state.

APPENDIX B: WIGNER FORMALISM

Finally, we outline the derivation of the thermal and time-evolved state Wigner distributions. The definition of the Wigner

distribution generalized to a two particle density matrix is

W (x1, p1, x2, p2) =
1

4π2 h̄2

∫

du1

∫

du2 ρ

(

x1 +
u1

2
, x2 +

u2

2
, x1 −

u1

2
, x2 −

u2

2

)

e− ip1u1
h̄ e− ip2u2

h̄ . (B1)

Plugging in the thermal state we obtain the thermal state Wigner function,

W0(x1, p1, x2, p2) =
sech2(β h̄ω/2)

π2h̄2[csch2(β h̄ω/2) ± 2 csch(β h̄ω)]

×
(

e− [p2
1
+p2

2
+m2 (x2

1
+x2

2
)ω2]tanh(β h̄ω/2)

mωh̄ ± 2 e
−[p2

1
+p2

2
+m2 (x2

1
+x2

2
)ω2]coth(β h̄ω)+2(p1 p2+m2ω2x1x2 )csch(β h̄ω)

mωh̄

)

. (B2)

Here the top sign denotes the boson distribution and the bottom sign the fermion. Integrating over the momentum coordinates

yields the position-space probability distribution, plotted in Fig. 1,

Px(x1, x2) =
2mω

π h̄

csch(β h̄ω)

csch2(β h̄ω/2) ± 2 csch(β h̄ω)

×
(

e− mω
h̄

(x2
1+x2

2 )tanh(β h̄ω/2) ± e− mω
h̄

[−2x1x2+(x2
1+x2

2 )cosh(β h̄ω)]csch(β h̄ω)
)

. (B3)
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Repeating the same process for the time-evolved density operator, given in (9), yields the time-evolved Wigner distribution,

Wt (x1, p1, x2, p2) =
1

2π2h̄2

[

e− [p2
1
α2+p2

2
α2−2mαγ (p1x1+p2x2 )+m2 (x2

1
+x2

2
)(ω2+γ 2 )]tanh[ 1

2
β h̄ω]

αmωh̄ (±1 ∓ e∓β h̄ω )tanh(β h̄ω/2)

∓ e− coth(β h̄ω)(p2
1
α2+p2

2
α2−2mαγ (p1x1+p2x2 )+m2 (x2

1
+x2

2
)(ω2+γ 2 )−2{p1α[Yt (p2Yt −mx2Ẏt )+Xt (p2Xt −mx2 Ẋt )ω2]+mx1[−p2αγ+mx2 (ω2+γ 2 )]}sech(β h̄ω))

αmωh̄

× (∓1 ± e∓β h̄ω )
]

, (B4)

where α = Y 2
t + X 2

t ω2 and γ = YtẎt + Xt Ẋtω
2.
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