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Abstract After calibrating the predictions of the Effective Field Theory of Large-Scale Structure
against several sets of simulations, as well as implementing a new method to assert the scale cut of
the theory without the use of any simulation, we analyze the Full Shape of the BOSS Correlation
Function. Imposing a prior from Big Bang Nucleosynthesis on the baryon density, we are able to
measure all the parameters in ΛCDM + massive neutrinos in normal hierarchy, except for the total
neutrino mass, which is just bounded. When combining the BOSS Full Shape with the Baryon
Acoustic Oscillation measurements from BOSS, 6DF/MGS and eBOSS, we determine the present
day Hubble constant, H0, the present day matter fraction, Ωm, the amplitude of the primordial
power spectrum, As, and the tilt of the primordial power spectrum, ns, to 1.4%, 4.5%, 23.5% and
7.6% precision, respectively, at 68%-confidence level, finding H0 = 68.19± 0.99 (km/s)/Mpc, Ωm =

0.309± 0.014, ln(1010As) = 3.12+0.21
−0.26 and ns = 0.963+0.062

−0.085, and we bound the total neutrino mass to
0.87 eV at 95%-confidence level. These constraints are fully consistent with Planck results and the
ones obtained from BOSS power spectrum analysis. In particular, we find no tension in H0 or σ8

with Planck measurements, finding consistency at 1.2σ and 0.6σ, respectively.
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1 Introduction and Summary

Introduction: In the last couple of years, the Effective Field Theory of Large-Scale Struc-
ture (EFTofLSS) has been applied to the analysis of the Full Shape (FS) of the Power Spec-
trum (PS) of the BOSS galaxy-clustering data by using the EFTofLSS prediction at one-loop
order [1, 2, 3]. Ref. [1] has also analyzed the BOSS galaxy-clustering bispectrum monopole
using the tree-level prediction. These analyses have produced measurements of all the ΛCDM
cosmological parameters using just a prior from Big Bang Nucleosynthesis (BBN), achieving
extremely good measurements for some parameters such as the present amount of matter, Ωm,
or the Hubble constant (see also [4, 5] for subsequent refinements), whose error bars are not
far from the ones obtained from the Cosmic Microwave Background (CMB) [6]. Quintessence
models have also been investigated, finding . 5% limits on the dark energy equation of state
w parameter using only late-time measurements [5, 7], which is again not far from the ones
obtained with the CMB [6].

In particular, the measurements of the Hubble constant represent a novel, CMB-independent,
way of determining this parameter [1], which is already comparable in precision with the mea-
surements obtained from the cosmic ladder [8]. In fact, very recently, this capability has been
employed to show how some models that were proposed to alleviate the discrepancy between
the CMB and cosmic-ladder measurements of the Hubble constant (the so called Hubble
tension [9]) do not actually significantly improve the concordance once the BOSS data are
analyzed with a controlled model such as the EFTofLSS [10, 11] (see also [12, 13]).
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Of course, these results did not come effortlessly. An intense and years-long line of study
was needed to develop the EFTofLSS from the initial formulation to the level that allows it to
be applied to data. We therefore find it fair to add the following footnote in every paper where
the EFTofLSS is used to analyze observational data. Even though some of the mentioned
papers are not strictly required to analyze the data, we believe that we, and probably anybody
else, would not have applied the EFTofLSS to data without all these intermediate results 1.

In this paper, after calibrating the scale cut of the model against several sets of simulations
as well as implementing a new method to assert the scale cut of the theory without the use
of any simulation in Section 2, in Section 3 we analyze the FS of the BOSS Correlation
Function (CF). The reason why it is worthwhile to investigate the CF is twofold. First,
all the information available in the Baryon Acoustic Oscillation (BAO) peak from the two
point function is easily recovered in full in the CF analysis, while, in the PS, part of the signal
resides at wavenumbers too high for a straightforward analysis to apply. Second, observational
systematics can play a different role in this observable. We therefore analyze the FS of BOSS
CF pre-reconstructed multipoles using the EFTofLSS. The results are summarized below and
discussed in Section 3. A careful comparison with results obtained fitting the FS of BOSS PS
measurements using the EFTofLSS is also presented there. We provide formulas and details
on the evaluation of the redshift-space galaxy CF at one loop in the EFTofLSS and on the
posterior sampling in App. A. In App. B, we determine the scale cut for BOSS PS FS analysis
without relying on simulations as put forward for the CF in Section 2. The CF best fits are
given in App. C. Finally, we check in App. D how our results are affected by line-of-sight
selection effects.

Data sets: We separate the BOSS DR12 data into two redshift bins, 0.2 < z < 0.43 and
0.43 < z < 0.7, respectively named LOWZ and CMASS. The CF FS data are measured using

1The initial formulation of the EFTofLSS was performed in Eulerian space in [14, 15], and subsequently
extended to Lagrangian space in [16]. The dark matter power spectrum has been computed at one-, two-
and three-loop orders in [15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. These calculations were accompanied by
some theoretical developments of the EFTofLSS, such as a careful understanding of renormalization [15, 27,
28] (including rather-subtle aspects such as lattice-running [15] and a better understanding of the velocity
field [17, 29]), of several ways for extracting the value of the counterterms from simulations [15, 30], and of the
non-locality in time of the EFTofLSS [17, 19, 31]. These theoretical explorations also include an enlightening
study in 1+1 dimensions [30]. An IR-resummation of the long displacement fields had to be performed in
order to reproduce the Baryon Acoustic Oscillation (BAO) peak, giving rise to the so-called IR-Resummed
EFTofLSS [32, 33, 34, 35, 36]. Accounts of baryonic effects were presented in [37, 38]. The dark-matter
bispectrum has been computed at one-loop in [39, 40], the one-loop trispectrum in [41], and the displacement
field in [42]. The lensing power spectrum has been computed at two loops in [43]. Biased tracers, such as halos
and galaxies, have been studied in the context of the EFTofLSS in [31, 44, 45, 46, 47, 48, 49] (see also [50]),
the halo and matter power spectra and bispectra (including all cross correlations) in [31, 45]. Redshift space
distortions have been developed in [32, 51, 47]. Neutrinos have been included in the EFTofLSS in [52, 53],
clustering dark energy in [54, 25, 55, 56], and primordial non-Gaussianities in [45, 57, 58, 59, 51, 60]. Faster
evaluation schemes for the calculation of some of the loop integrals have been developed in [61]. Comparison
with high-quality N -body simulations to show that the EFTofLSS can accurately recover the cosmological
parameters have been performed in [1, 3, 62, 63]
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the Landy-Szalay estimator [64] in fine bins (1 Mpc/h) in separation s and µ = ŝ · ẑ, where ẑ

is the line-of-sight direction. Systematic effects have been corrected by appropriate weights,
as described in [65]. We bin in separation s by ∆s = 5 Mpc/h and into two multipoles, the
monopole and the quadrupole. The covariances are built from measurements on 2048 patchy
mocks [66]. We have checked that fitting the data with a covariance built with about half of
the mocks (1000) instead of the 2048 mocks leads to the same cosmological constraints, with
at most 0.2σ shift in Ωm, and . 0.1σ in the other parameters. As those shifts are negligibly
small, this validates our estimation of the covariance.

In order to perform a careful comparison between the results of the BOSS CF and PS
analyses, we measure the BOSS PS multipoles on the same catalog and with same redshift
selection, using the estimator described in [67]. We use Piecewise Cubic Spline (PCS) particle
assignment scheme, with grid interlacing as described in [68], and a grid size consisting of
5123 cells.

We also include the baryon acoustic oscillations (BAO) of BOSS DR12 post-reconstructed
power spectrum measurements [69] obtained in [5] using standard BAO extraction analysis.
When quoting results as just ‘BOSS’, we refer to BOSS pre-reconstructed CF FS combined
with BOSS post-reconstructed BAO. Moreover, we will consider various combinations with
other experiments: measurements at small redshift from 6DF [70] and SDSS DR7 MGS [71],
as well as high redshift Lyman-α forest auto-correlation and cross-correlation with quasars
from eBOSS DR14 BAO measurements [72, 73], that we will collectively refer as ‘ext. BAO’;
Supernovae (SN) measurements from the Pantheon sample [74]; and finally, Planck2018
TT,TE,EE+lowE + lensing [6]. The inclusion of post-reconstructed BOSS BAO measure-
ments gives a non-negligible improvement because the reconstruction amounts to using higher
n-point functions. Importantly, the pre- and post-reconstruction BOSS BAO measurements
are correlated. This is taken into account as in [5] (see also [4]). When combining with other
experiments, we simply add the log-likelihoods, since all the measurements refer to separate
redshift bins. The small cross-correlation of the galaxy clustering data with the Planck weak
lensing and integrated Sachs-Wolfe effect is neglected.

Main Results: Using these data sets in various combinations, we measure all parameters in
ΛCDM + massive neutrinos in normal hierarchy (νΛCDM model). When not analyzed with
Planck, we use a BBN prior centered on ωb,BBN = 0.02233 of width σBBN = 0.00036 [75]. We
also impose a flat prior of [0.06, 1.5] eV on the sum of neutrino masses, that plays a negligible
role. The main results of our analyses are maybe best represented by Fig. 1. Fitting BOSS
CF FS, we determine at 68%-confidence level (CL) h to 1.8% precision, Ωm to 5.7% precision,
As to 25% precision and ns to 8.8% precision, and also get a bound on the total neutrino
mass of about 1.1 eV at 95% CL. Combining with BAO measurements from BOSS in cross-
correlation and from 6DF/MGS and eBOSS, h is determined to 1.4% precision and Ωm to
4.5% precision. Notice that the precision of the measurements on h and Ωm is very close
to the one of Planck for the νΛCDM model, see Table 3 (see also [6]). Finally, adding SN
data from Pantheon, the constraint on Ωm improves to 3.8% precision, and the total neutrino
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h 0.691± 0.012 0.6819± 0.0099 0.6822± 0.0096 0.6655+0.0110
−0.0067 0.6776± 0.0046 0.6780± 0.0043

Ωm 0.323± 0.018 0.309± 0.014 0.306± 0.012 0.3262+0.0092
−0.0150 0.3097± 0.0060 0.3090± 0.0056

σ8 0.756± 0.058 0.766± 0.057 0.766± 0.056 0.8004± 0.012 0.8052± 0.0075 0.8054± 0.0071∑
mν < 1.15eV(2σ) < 0.87eV(2σ) < 0.74eV(2σ) < 0.26eV(2σ) < 0.14eV(2σ) < 0.14eV(2σ)

Figure 1: h − Ωm − σ8 contours and their 68%-confidence intervals from the various analyses per-
formed in this work. Here BOSS refers to BOSS pre-reconstructed CF FS combined with BOSS
post-reconstructed BAO. For the total neutrino mass, we instead quote the 95%-confidence bound.

mass is bounded to about 0.74 eV at 95% CL. App. D suggests that our results are robust to
line-of-sight selection effects, once physical priors on the size of these terms are imposed.

We find that these constraints from late-time probes, that are independent from Planck
or the cosmic distance ladder, are completely consistent with Planck results: all parameters
are consistent within . 1.2σ. In particular, we find no tension in h or σ8. Combining Planck
and BOSS FS+BAO, we find that the constraints on Ωm and h are improved by ∼ 50% with
respect to the results of Planck alone, and we bound the neutrino total mass to < 0.14eV at
95% CL.

We end this summary of the main results with a note of warning. It should be emphasized
that in performing this analysis, as well as the preceding ones using the EFTofLSS by our
group [1, 3, 5, 10, 7], we have assumed that the observational data are not affected by any
unknown systematic error, such as, for example, selection effects beyond the ones we discuss
in app. D or undetected foregrounds. In other words, we have simply analyzed the publicly
available data for what they were declared to be: the two-point function of the galaxy density
in redshift space. Given the additional cosmological information that the theoretical modeling
of the EFTofLSS allows us to exploit in BOSS data, it might be worthwhile to investigate if
potential undetected systematic errors might affect our results. We leave an investigation of
these issues to future work.
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Public Codes: The predictions for the FS of the galaxy CF and PS in the EFTofLSS are
obtained using PyBird: Python code for Biased tracers in Redshift space [5] 2. The linear
power spectra were computed with the CLASS Boltzmann code [76] 3. The posteriors were
sampled using the MontePython cosmological parameter inference code [77, 78] 4. The plots
have been obtained using the GetDist package [79]. The FS of BOSS CF and PS, as well as
the ones from the patchy mocks for the covariance, are measured using FCFC and powspec,
respectively [80] 5. The PS window functions have been measured as described in [81] using
nbodykit [82] 6.

2 Scale cuts

Although the EFTofLSS has already been extensively tested against simulations for the power
spectrum (see e.g. [1, 3, 62]), due to the different correlations in the data there is no direct
translation between the Fourier space scale cuts and the configuration space ones. We there-
fore repeat here, for the correlation function, the series of tests performed in [1, 3], by fitting
various sets of simulations.

We also present yet another way to assert the scale cut of the theory without relying on
simulations but directly fitting the data, by measuring the shift in the posteriors upon adding
an estimate for some of the next-to-next-to-leading-order (NNLO) terms, i.e. the terms that
we do not include in our predictions. Both calibration methods give the same (or a very
close) answer and for BOSS CMASS data we find that we can fit the multipoles down to
smin = 20 Mpc/h without a significant theoretical systematic error (i.e. less than about 1/3

of the error bars of the cosmological parameters measured on BOSS).

2.1 Tests against simulations

We analyze several sets of simulations as described in [1]: the ‘lettered’ challenges and the
patchy mocks. In practice, we fit the CF FS monopole and quadrupole measured from those
mocks, that are in redshift space. The covariance matrices are computed from the measure-
ments of patchy mocks: when analyzing the FS of the ‘lettered’ challenges or the mean of the
periodic patchy mocks, we will use the patchy periodic mocks of side length 2.5 Gpc/h, while
when analyzing the mean of the patchy lightcone, we will use the patchy lightcone mocks, as
described in Section (1). In the following, we will be interested to find the scale cut, i.e. the
minimal scale at which we fit those simulations, with a controlled theory-systematic error.
We will find that we can fit them down to smin = 20Mpc/h such that the theory error is
under control for BOSS data. For the longest scale, we will always use the maximal scale

2https://github.com/pierrexyz/pybird
3http://class-code.net
4https://github.com/brinckmann/montepython_public
5https://github.com/cheng-zhao/FCFC ; https://github.com/cheng-zhao/powspec
6https://github.com/bccp/nbodykit
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made available to us in the measurements, smax = 180Mpc/h. We have checked that using
instead smax = 150Mpc/h does not affect significantly our results, as discussed in App. C. Let
us now describe in details how we determine the scale cut using these simulations.

First, we consider two independent realizations of side length 2.5 Gpc/h, one being popu-
lated by 4 different halo occupation distribution (HOD) models, labelled A, B, F, G, and the
other one labelled D, populated by a different HOD model. These ‘lettered’ challenge boxes
are high-fidelity simulations that we use to calibrate the scale cut of the EFTofLSS. Details
on the HOD models and other specifics of those simulations can be found in [83]. Since A,
B, F, and G are correlated, we fit them separately and average the posteriors of the cosmo-
logical parameters over the 4 boxes, instead of taking the product of the posteriors. We fit D
separately. Using one or either realization, we measure the theory-systematic error for each
cosmological parameter as the distance of the 68%-confidence interval of the 1D posterior to
the truth. In particular, if the truth lies within the 1σ-region, we have no statistical evidence
for the detection of a theory error, and we thus do not report one in this case. This already
allows us to measure the theory-systematic error quite well, given the size of the simulations
with respect to the data. However, we can do even better. As ABFG and D are independent
realizations, we can combine them, allowing us to measure the theory-systematic error with a
better precision by another factor ∼

√
2. In practice, we combine the individual 1D posteriors

of the shifts from the truth of the mean of the 1D posteriors from boxes A, B, F and G with
the independent realization D (as the product of two Gaussians). The theory-systematic error
for each ΛCDM parameter is the distance from zero of the 68%-confidence interval of the re-
sulting 1D posteriors of the shifts. Given the number of cosmological parameters we actually
measure, this represents a conservative requirement: after all, it is not extraordinary to find
the mean of one or few parameters farther than 1σ to the truth in our multi-dimensional
analysis. The combination of ABFG+D allows us to measure the theory systematics using a
volume about 14 times larger than the BOSS effective volume. In practice, the minimally-
measurable systematic errors that this procedure allows us to detect are the following fraction
of the errors that we obtain on BOSS data: 0.33, 0.42, 0.26, 0.33 for Ωm, h, ln(1010As) and
ns respectively 7.

7A fraction of systematic error equal to 0.42σdata on h might not appear negligible. We however stress that
we are not detecting such a large systematic error, we are simply unable to detect an error smaller than this.
In fact, from the analysis of the subsequent section, we find indications that the systematic error is indeed
smaller. Furthermore, if we were to correct our findings on the data by the offset measured in simulations,
we would need to add in quadrature the statistical error of the simulations to the one of the data. Then, as
we can see from Table 1, we would need to add 0.001± 0.006 to our observed value of h. This would increase
the error on h just by a relative fraction of about 8%, which is certainly negligible, and produce a negligible
shift of the central value. Similar considerations apply to the other cosmological parameters.
We do not perform these shifts in the posteriors on the data also for another reason. While it is believed

that we can trust simulations to measure the overall size of ‘average−truth’, it is unclear if we can trust them
for the actual shift. This would motivate an alternative procedure to account for the theoretical systematic
error measured from simulation: to simply add in quadrature ‘average−truth’ to our statistical errors on the
data. As we said, this is imprecise because it would consider as systematic error deviations from truth that
are within the 68% C.L.; still, even doing this, for the worst case, which is given by ns, would just degrade
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Figure 2: Triangle plots obtained fitting the lettered challenge or patchy multipoles on ΛCDM with
a BBN prior. Upper left: box A for various scale cuts smin. Upper right: box D for various scale
cuts smin. Lower left: boxes ABFG at scale cut smin = 20Mpc/h. Lower right: Patchy periodic,
patchy CMASS NGC lightcone, and patchy CMASS NGC lightcone combined with reconstructed
BAO, at scale cut smin = 20Mpc/h. The patchy lightcone covariance, as well as the BAO covariance
and the cross-covariance, are rescaled by 16, see main text for details.
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(mean− truth)± σstat ∆ωcdm ∆h ∆ ln(1010As) ∆ns ∆Ωm ∆σ8

ABFG −0.004± 0.007 −0.011± 0.008 0.16± 0.09 −0.036± 0.037 0.001± 0.010 0.021± 0.028

D 0.006± 0.006 −0.001± 0.009 0.03± 0.08 −0.057± 0.035 0.013± 0.009 −0.011± 0.025

ABFG+D 0.001± 0.005 −0.007± 0.006 0.08± 0.06 −0.047± 0.025 0.008± 0.007 0.003± 0.019

P 0.005± 0.008 0.005± 0.009 −0.07± 0.09 −0.063± 0.044 0.005± 0.012 −0.033± 0.027

L 0.002± 0.006 0.003± 0.007 0.07± 0.07 −0.039± 0.030 0.003± 0.008 0.021± 0.019

L +BAO 0.000± 0.005 −0.002± 0.006 0.08± 0.07 −0.034± 0.030 0.002± 0.008 0.017± 0.018

Table 1: 68%-confidence intervals of ‘mean− truth’ found fitting simulation FS with a BBN prior.
The simulations are: ABFG: mean of lettered challenge boxes A, B, F, G; lettered challenge box
D; ABFG+D: ABFG combined with D; P: patchy Periodic; L: patchy lightcone; L+BAO: patchy
lightcone FS combined with reconstructed BAO. We define the minimally-measurable (given the
simulations available to us) theoretical systematic error, σsys, as the max [|mean− truth| − σstat, 0],
so that if the truth lies within the 68% confidence interval around the mean, we do not report a
systematic error.

The triangle plots for the posteriors are shown in Fig. 2. The 68%-confidence intervals
as well as the theory systematic errors are summarized in Table 1. Using the combination of
ABFG+D, we find, relative to BOSS volume and down to smin = 20 Mpc/h, zero or negligible
theory-systematic errors on all cosmological parameters but a marginal one on ns of less
than σdata/3, which we consider still negligible for the purpose of data analysis. This test
is particularly reassuring given that our criterion to measure the systematic error is very
stringent once we take into account that we measure four cosmological parameters. These
tests on the lettered challenge boxes tell us that we can confidently fit the BOSS data down
to those scales.

We perform further tests using the patchy mocks [66], as they allow us to test for some
observational effects. Triangle plots for the posteriors of the cosmological parameters are
shown in Fig. 2 and results are in Table 1. First, we check that we find no or negligible
theory-systematic errors for all cosmological parameters on the periodic box of side length
2.5Gpc/h at redshift z = 0.5763 by fitting the mean over all realizations, but keeping the
covariance for the volume of one box. Similar results hold when fitting the mean over all
realizations of CMASS NGC lightcones patchy mocks, with the covariance corresponding to
the volume of CMASS NGC rescaled by 16. Both fits to the patchy periodic box or the patchy
lightcone with rescaled covariance amount to fitting a volume approximately equal to the one
of a lettered challenge box 8. Upon addition of the reconstructed BAO measurements with

our error bars by ∼ 15%, which is small. We thank Chia-Hsun Chuang for stimulating discussions on this
point.

8We remind that the patchy lightcone are constructed from 5 snapshots of the patchy periodic at different
redshifts, which, given their volume ratio of about 16, induce a very small correlation between patchy periodic
and patchy lightcone simulations: thus in practice, the patchy lightcone and the patchy periodic can be
considered to be uncorrelated. Then, there is no reason to worry about the eventual shifts in the parameters
measured from those two ‘independent’ realizations: we compare their results only with the truth to assess
the theory-systematic error.
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error bars rescaled by 4, there is no significant shift of the systematic error. We also checked
that fitting with a covariance built from half of the mocks gives similar results, validating
our covariance measurements. To sum up, these tests using the patchy mocks show that we
can confidently fit the BOSS data given the lightcone geometry and upon addition of the
reconstructed BAO measurements.

As the sets of simulations we used have effective redshift z ∼ zCMASS, we rescale the scale
cut for LOWZ as done in [1]. We use for LOWZ smin = 23Mpc/h (instead of smin = 20Mpc/h

for CMASS).

2.2 Adding NNLO

If using state-of-the-art simulations is a standard, and quite tested, way for model calibration,
it is desirable to have other means to corroborate the answer that we can get from simula-
tions, in order to be robust against potential undetected systematics in the simulations (for
example, these can range from lack of modeling baryonic effects, satellites, etc., to issues in
the estimators for the observables). In particular, increasing number of tests should be per-
formed given the possible varieties of HOD populations, tracer masses, etc. (see discussions
in [46, 84]). Furthermore, it is notoriously hard to simulate some extensions to ΛCDM. Given
these considerations, we present here another way to determine the scale cut of the theory
relying solely on the data and without comparing with simulations. This is possible as we
use a controlled perturbative approach to LSS: at a given order, one should stop fitting at
the scales where the size of the contribution that comes at the next order in perturbation
theory and that was not included in the model prediction becomes relevant (with respect to
the error bars of the data). In the data analysis we do in this paper, we include the linear
power spectrum, which is the Leading Order (LO) prediction, and the one-loop correction,
which is the Next-to-Leading Order (NLO) term. Therefore, the first order in perturbation
theory that we do not include is the Next-to-Next-to-Leading-Order (NNLO) correction. To
quantitatively identify the scale at which the NNLO contribution becomes relevant, we fit the
BOSS data adding an estimate of the NNLO term to our EFTofLSS prediction. The scale cut
is then chosen as the smallest analyzed scale where the shift in the cosmological parameters
induced by the mistake of not including the NNLO is safely small. A plot of the NNLO
estimates used in this analysis is shown in Fig. 3. The difference in the posteriors obtained
fitting with and without NNLO terms are shown in Fig. 4. In App. B, the same is shown for
BOSS PS analysis.

For each skycut and each multipole `, our NNLO estimate consists in:

ξ`NNLO(s) = i`
∫

dk

2π2
k2P `

NNLO(k)j`(ks) , (1)

P `
NNLO(k) =

1

4
cr,4b

2
1µ

4 k4

k4
M,R

P11(k)
∣∣∣
`

+
1

4
cr,6b1µ

6 k4

k4
M,R

P11(k)
∣∣∣
`
, (2)

where k2
M,R = k2

M/8, P11 is the matter linear power spectrum, and ?|` denotes the multipole of
order ` of ?. Here cr,4 and cr,6 are free ‘NNLO’ parameters. They can be thought as some of
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Figure 3: Size of the NNLO estimates for the multipoles of the CF (left) and the PS (right) with
respect to BOSS CMASS error bars. Here we set cr,4 and cr,6 to 1. FT denotes the Fourier transform.

the higher-order counterterms appearing at NNLO, respectively. This estimate is obviously
not the full NNLO expression, that contains many more terms. However, it can serve as a
good proxy of the potential impact of the NNLO on our analysis, as it is let free to vary
within physical range. We put Gaussian priors on cr,4 and cr,6 centered on 0 of width 1, as
discussed in [85]. Note that here we are keeping track of the factorial and symmetrization
factors in our NNLO estimate, making for an overall factor of 1/4.

Let us give some practical details regarding the evaluation of the NNLO terms in Eq. (1).
First, as our baseline LO+NLO is consistently IR-resummed up to NLO, we do not want to add
extra (spurious) contributions to the BAO signal. We therefore use the smooth Eisenstein-
Hu linear power spectrum [86] as input to evaluate the NNLO terms. Second, we damp
the high-k tails by changing the powers of k entering in Eq. (1) by Padé approximants:
k4 → k4/(1+k4/(1hMpc−1)4), in order to perform (analytically) the FFTLog from the power
spectrum to the correlation function, as described in App. A. This amounts to add terms that
are of even higher order than NNLO, and are thus under parametric control. Therefore,
adding similar damping terms at high wavenumbers, such as Gaussian with variance larger
than kNL, will lead to equivalent results.

Let us now comment on the posteriors. We see that, upon addition of the NNLO terms,
the shift in the cosmological parameters is practically zero (. 0.1σ) at smin = 20 Mpc/h

and smin = 15 Mpc/h. At smin = 10 Mpc/h, in contrast, the shifts become significant: in
particular, Ωm is shifted by about 2σ/3. These observations tell us that we should stop fitting
the BOSS data multipoles at about smin = 15 Mpc/h. Simulations instead show that we
should stop at smin = 20 Mpc/h, which is a close answer (for our binning, it corresponds to
fitting one less bin). Keeping the most conservative scale cut, we fit the data multipoles down
to smin = 20 Mpc/h.

It would be interesting to see if similar conclusions hold for other data sets or observables.
We leave this for future work (see also [87, 4, 22] for different methods based on similar
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Figure 4: Posteriors obtained fitting BOSS CF on νΛCDM with a BBN prior, with or without
NNLO term, at smin = 20, 15, 10Mpc/h.

considerations).

3 Cosmological results

3.1 BOSS CF and combined probes

In Fig. 5 and Table 2 we show our results for the νΛCDM fit of BOSS CF, BOSS CF + BAO,
and in combination with other late-time experiments, namely small-z BAO and Ly-α BAO
(collectively designated as ext. BAO) and Pantheon supernovae (SN). Results from BOSS
PS and BOSS PS + BAO are inserted for comparison. The best fits are provided in App. C,
as well as a discussion of the contribution of some potential systematic errors, finding that
these do not affect significantly our cosmological parameter determination. In App. D, we
argue that line-of-sight selection effects, given physical priors on their size, do not change
significantly our results.

To combine the CF FS and post-reconstructed BAO measurements, we follow our method-
ology described in [5]. The post-reconstructed BAO parameters are the two usual best-fit BAO
scaling parameters α‖ and α⊥, parallel and perpendicular to the line of sight, obtained by fit-
ting the reconstructed PS with a fixed template [88]. Their covariance is built from the best-fit
BAO parameters obtained fitting the 2048 post-reconstructed patchy mocks. To account for
the cross-covariance with CF FS, we first combine in one vector, for each patchy mock, the
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Figure 5: Triangle plots obtained fitting BOSS CF, BOSS CF + BAO, and in combination with
other late-time experiments, on νΛCDM with a BBN prior.

CF FS pre-reconstructed data, with the best-fit BAO parameters from the post-reconstructed
data from the same mock, then compute the full covariance using those vectors.

Looking at Table 2 and focusing first on BOSS, we can clearly see that we can measure all
cosmological parameters. This is expected given the fact that the FS has enough information
to determine all of them (see the discussion of sec. 4.3 of [1]). Furthermore, we see that
adding BOSS BAO slightly decreases the error on h by about 10%. Notice that the gain from
adding post-reconstructed BAO to the (pre-reconstructed) CF is less than when it is added
to the (pre-reconstructed) PS, analyzed with a sharp scale cut: the gain in Ωm is ∼ 5% for
the CF, while ∼ 10% for the PS, and the gain in h is about the same for CF and PS. In
the CF analysis all the BAO information available in the two-point function is automatically
included. Thus, only the BAO information from the higher-order n-point function adds up
to the CF, whereas the PS receives also information from the two-point function.

When combining BOSS data with other datasets, the main improvement comes from
adding ext. BAO, with some gain coming from the SN data. In particular, there is an
improvement of about ∼ 15% on the error bars of h (mainly from ext. BAO), and a ∼ 35%
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CF best-fit mean±σ

ωcdm 0.1118 0.1243+0.0095
−0.012

h 0.6781 0.689+0.012
−0.014

ln(1010As) 3.287 3.06+0.23
−0.27

ns 0.9542 0.948+0.074
−0.094∑

mν [eV] 0.35 < 1.09(2σ)

Ωm 0.3004 0.319+0.018
−0.019

σ8 0.8055 0.754+0.055
−0.06

S8 0.806 0.777+0.055
−0.062

CF+BAO best-fit mean±σ

ωcdm 0.1167 0.1266+0.0098
−0.013

h 0.6817 0.692+0.011
−0.013

ln(1010As) 3.235 3.06+0.24
−0.28

ns 0.9743 0.950+0.082
−0.098∑

mν [eV] 0.52 < 1.15(2σ)

Ωm 0.3113 0.323+0.017
−0.019

σ8 0.7796 0.756+0.054
−0.062

S8 0.794 0.784+0.056
−0.063

CF+BAO

+ext.BAO
best-fit mean±σ

ωcdm 0.1124 0.1172+0.0075
−0.0088

h 0.6806 0.6819+0.0097
−0.01

ln(1010As) 3.255 3.12+0.21
−0.26

ns 0.9421 0.963+0.062
−0.085∑

mν [eV] 0.31 < 0.87(2σ)

Ωm 0.298 0.3085+0.014
−0.014

σ8 0.8033 0.766+0.054
−0.059

S8 0.801 0.776± 0.056

CF+BAO

+ext.BAO+SN
best-fit mean±σ

ωcdm 0.1111 0.1163+0.0066
−0.0078

h 0.6755 0.6822+0.0095
−0.0097

ln(1010As) 3.217 3.11+0.19
−0.24

ns 0.939 0.961+0.058
−0.076∑

mν [eV] 0.32 < 0.74(2σ)

Ωm 0.2997 0.306+0.011
−0.012

σ8 0.7777 0.766+0.053
−0.058

S8 0.777 0.773+0.052
−0.059

PS best-fit mean±σ

ωcdm 0.1174 0.1258+0.009
−0.012

h 0.677 0.683+0.012
−0.014

ln(1010As) 3.081 3.08+0.19
−0.26

ns 0.9469 0.970+0.07
−0.098∑

mν [eV] 0.08 < 1.25(2σ)

Ωm 0.3067 0.329+0.019
−0.023

σ8 0.8064 0.770+0.046
−0.053

S8 0.815 0.806+0.048
−0.060

PS+BAO best-fit mean±σ

ωcdm 0.1181 0.1279+0.0085
−0.013

h 0.6851 0.690+0.011
−0.013

ln(1010As) 2.998 3.07+0.21
−0.26

ns 0.9362 0.972+0.074
−0.10∑

mν [eV] 0.07 < 1.30(2σ)

Ωm 0.3006 0.327+0.017
−0.021

σ8 0.7789 0.767+0.045
−0.051

S8 0.780 0.801+0.049
−0.060

Table 2: Results obtained fitting BOSS CF, BOSS CF+BAO, and in combination with other late-
time experiments, on νΛCDM with a BBN prior. For the total neutrino mass we quote the 95%-
confidence bound instead of the 68%-confidence interval. For comparison are also shown the results
obtained fitting BOSS PS and BOSS PS+BAO.

improvement on Ωm (mainly from SN but also ext. BAO). The combination of all datasets
also provides a ∼ 20% and 25% better constraint on ln(1010As) and ns, respectively, and a
∼ 35% tighter bound on neutrino masses.

In Fig. 6 and Table 3, we show the results obtained fitting Planck, and in combination with
BOSS CF+BAO and other late-time probes, on νΛCDM. First, we notice that the results
from BOSS+BBN and Planck are consistent: all posteriors of the cosmological parameters
are consistent at < 1σ, with the exception of h, whose posteriors are consistent at ∼ 1.7σ.
If we instead compare the results from BOSS+BBN+ext.BAO to Planck, the measurements
on h are then consistent at ∼ 1.2σ, as well as those for the other parameters. We find no
tension on h or σ8: Planck measures h = 0.6655+0.011

−0.0067 and σ8 = 0.8004+0.016
−0.008 at 68%CL, while

we obtain h = 0.6819+0.0097
−0.01 and σ8 = 0.766+0.054

−0.059. This is also true on S8 ≡ σ8

√
Ωm/0.3, for

14



2.20 2.24 2.28

10 2
b

0.1

0.2

0.3

0.4

0.5

m

0.30
0.32
0.34
0.36
0.38

m

0.95

0.96

0.97

0.98

n s

3.02

3.06

3.10

ln
10

10
A s

0.62

0.64

0.66

0.68

h

0.116

0.118

0.120

0.122

0.124

cd
m

0.117 0.120 0.123

cdm

0.62 0.64 0.66 0.68

h
3.02 3.06 3.10

ln1010As

0.96 0.97 0.98

ns

0.30 0.34 0.38

m

0.1 0.2 0.3 0.4 0.5

m

Planck
Planck + BOSS
Planck + BOSS + ext. BAO + SN

Figure 6: Triangle plots obtained fitting Planck, Planck + BOSS CF+BAO, and in combination
with other late-time experiments, on νΛCDM.

which Planck gets S8 = 0.835± 0.013 at 68%CL, while we get S8 = 0.776± 0.056 (9).
Second, we find that the combination with BOSS improves the error bars over Planck

alone mainly on Ωm and h, by about 50%. This is because LSS data can help break the
degeneracy in the Ωm− h plane present in the CMB analysis. The neutrino 2σ-bound is also

9The results from Planck and LSS are still in close agreements if we put a prior bound on the neutrino
total mass of < 0.25eV instead of < 1.5eV. In this case, we obtain at 68%CL:

• BOSS+BBN: Ωm = 0.314 ± 0.017, h = 0.694 ± 0.012, ln(1010As) = 2.87 ± 0.19, ns = 0.881 ± 0.063,
σ8 = 0.733± 0.053, and S8 = 0.750± 0.052;

• BOSS+ext.BAO+BBN: Ωm = 0.304 ± 0.013, h = 0.6844 ± 0.0095, ln(1010As) = 2.97 ± 0.17, ns =

0.917± 0.052, σ8 = 0.748± 0.051, and S8 = 0.752± 0.050;

• Planck: Ωm = 0.3267+0.0083
−0.014 , h = 0.665+0.010

−0.0063, ln(1010As) = 3.050 ± 0.015, ns = 0.9642 ± 0.0043,
σ8 = 0.800+0.016

−0.0072, and S8 = 0.835± 0.013.

Thus, BOSS+BBN constraints are consistent with the ones of Planck at 0.6σ, 1.8σ, 1.0σ, 1.3σ, 1.2σ, 1.6σ,
respectively, while BOSS+ext.BAO+BBN constraints are consistent with the ones of Planck at
1.2σ, 1.4σ, 0.5σ, 0.9σ, 1.0σ, 1.6σ, respectively.
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Planck best-fit mean±σ

100 ωb 2.236 2.233+0.015
−0.015

ωcdm 0.1202 0.1206+0.0013
−0.0013

100 ∗ θs 1.042 1.042+0.00029
−0.0003

ln(1010As) 3.041 3.05+0.015
−0.015

ns 0.9654 0.9643+0.0042
−0.0043

τreio 0.05238 0.05597+0.0073
−0.0081∑

mν [eV] 0.06 < 0.26(2σ)

h 0.6731 0.6655+0.011
−0.0067

Ωm 0.3162 0.3262+0.0092
−0.015

σ8 0.8101 0.8004+0.016
−0.008

S8 0.8317 0.835± 0.013

Planck+BOSS best-fit mean±σ

100 ωb 2.244 2.246+0.013
−0.013

ωcdm 0.1192 0.1187+0.00097
−0.00089

100 ∗ θs 1.042 1.042+0.00029
−0.00029

ln(1010As) 3.048 3.053+0.014
−0.016

ns 0.9689 0.9684+0.0037
−0.0039

τreio 0.05623 0.05908+0.0071
−0.0079∑

mν [eV] 0.06 < 0.14(2σ)

h 0.6779 0.6776+0.0047
−0.0045

Ωm 0.3097 0.3097+0.0059
−0.0061

σ8 0.8103 0.8052+0.0086
−0.0069

S8 0.8233 0.818± 0.010

Planck+BOSS

+ext.BAO
best-fit mean±σ

100 ωb 2.242 2.247+0.013
−0.013

ωcdm 0.1186 0.1187+0.00091
−0.00087

100 ∗ θs 1.042 1.042+0.00029
−0.00028

ln(1010As) 3.05 3.053+0.014
−0.016

ns 0.9667 0.9685+0.0037
−0.0036

τreio 0.05638 0.0592+0.0073
−0.0078∑

mν [eV] 0.06 < 0.14(2σ)

h 0.6791 0.6776+0.0042
−0.0045

Ωm 0.3073 0.3097+0.0057
−0.0056

σ8 0.8092 0.8051+0.0088
−0.007

S8 0.8189 0.818± 0.011

Planck+BOSS

+ext.BAO+SN
best-fit mean±σ

100 ωb 2.247 2.247+0.013
−0.013

ωcdm 0.1189 0.1186+0.0009
−0.00089

100 ∗ θs 1.042 1.042+0.00029
−0.00028

ln(1010As) 3.05 3.054+0.014
−0.017

ns 0.9672 0.9687+0.0036
−0.0037

τreio 0.05869 0.05976+0.007
−0.0084∑

mν [eV] 0.06 < 0.14(2σ)

h 0.6787 0.678+0.0042
−0.0043

Ωm 0.3085 0.309+0.0055
−0.0056

σ8 0.8102 0.8054+0.0082
−0.0069

S8 0.8215 0.817± 0.010

Table 3: Results obtained fitting Planck, Planck + BOSS CF+BAO, and in combination with other
late-time experiments, on νΛCDM. For the total neutrino mass we quote the 95%-confidence bound
instead of the 68%-confidence interval.

decreased from 0.26eV to 0.14eV. This bound is comparable to one obtained combining Planck
with BOSS BAO + RSD [6] (see also [89, 5, 7, 10] for a combination of Planck with BOSS
PS FS analyzed with the EFTofLSS, on νΛCDM and various other cosmological models).

3.2 Comparison to BOSS PS

We compare our results obtained fitting the FS of BOSS CF and BOSS PS using the EFTofLSS
on νΛCDM with a BBN prior. BOSS PS were analyzed using the EFTofLSS in [1, 3], and in
cross-correlation with reconstructed BAO in [5]. These previous analyses were based on the
PS FS measurements of [90]. For the present work, we re-measure the BOSS PS multipoles, in
order to perform a careful comparison between the results of the BOSS CF and PS analyses.
The reason is twofold: first, the catalog versions used in [90] are older than the one we use
here. Especially, [90] uses the split LOWZ and CMASS samples, covering redshift ranges
0.15 < z < 0.43 and 0.43 < z < 0.7, respectively, whereas we use the final BOSS DR12
sample combining both the LOWZ and CMASS galaxies, that we then split into two samples
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Figure 7: Top: Triangle plots obtained fitting BOSS CF and BOSS PS, at smin = 20Mpc/h and
kmax = 0.23hMpc−1, respectively, and with their cross-correlation with BOSS reconstructed BAO.
Bottom: Relative shifts of the mean of the cosmological parameters between the fits of CF and PS
(black cross), of CF and PS both combined with BAO (red cross), of CF at smin = 20Mpc/h and
25Mpc/h (green line), and of PS at kmax = 0.23hMpc−1 and 0.20hMpc−1 (purple line). The grey
band represents the standard deviation of the shifts measured among 40 patchy boxes, where the
darker grey region represents the uncertainty on the mean of the shifts, that is equal to the standard
deviation divided by

√
40 ∼ 6. Similarly, the blue band represents the standard deviation of the

shifts measured among 40 patchy boxes when combined with BAO.

by selecting the redshift ranges 0.2 < z < 0.43 and 0.43 < z < 0.7 (that we ‘abusively’ name
LOWZ and CMASS). We therefore use the exact same catalog and redshift selection function
for both the PS and CF measurements. Second, the PS measurements can be subject to
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various hyper-parameter choices. In particular, we here use PCS particle assignment scheme
with grid interlacing, and use k-bin size of ∆k = 0.01. The window functions are measured
as described in [81] on the randoms catalogs with selections corresponding to the ones used
on the data catalogs. We have also checked that the measurements obtained with powspec
and nbodykit give excellent agreements (see Section 1 for references).

For completeness, let us mention that when comparing the present and previous analyses
on BOSS PS [3, 5], there are other minor differences in the analyses: we here analyze all
four BOSS skycuts, whereas before LOWZ SGC was left over; the BBN constraint on ωb has
been updated since (σBBN = 0.0005 → 0.00036); we enlarge slightly the prior on the sum of
the neutrino masses, from 0.06 <

∑
mν/eV < 1 → 1.5 such that the prior plays practically

no role anymore. We have checked that these last minor changes do not affect the results
significantly (. 0.2σ in shifts and 20% in error bars). In particular, to test the accuracy
of the EFTofLSS predictions that we use here in the high neutrino masses regime, we find
that the results, both for the CF and the PS, are barely changed when instead bounding the
sum of the neutrino masses to 0.06 <

∑
mν/eV < 1. However, we find that the differences

at the level of the catalog and, possibly, the measurements, make a significant difference in
the determination of the cosmological parameters, in particular in ln(1010As), which shifts by
about 2σ/3 (10).

In Fig. 7, we show the triangle plots obtained fitting BOSS CF and PS, at (smin, smax) =

(20, 200)Mpc/h and (kmin, kmax) = (0.01, 0.23)hMpc−1, respectively, and the relative differ-
ences between the two analyses in the cosmological parameters. We can observe two differ-
ences: one, the mean of the cosmological parameters are different, and second, the error bars
are slightly different. Let us discuss them.

Differences in mean From Table 2, we see that the means of Ωm, h, ln(1010As), and ns
are different between the CF and PS fits by about 0.5, 0.5, 0.1, and 0.3 in unit of their error
bars. Although not large, these differences are, still, not completely negligible, keeping in
mind that the actual data are mostly the same. To understand what causes such differences,
let us scrutiny the difference in the CF and PS data. There are two main differences: the
BAO information and the analyzed scales. Schematically, the BAO information in the two-
point function is encoded in the BAO peak that is fully analyzed in the CF, while it is
encoded in the BAO wiggles that are partially analyzed in the PS given that we stop at
kmax = 0.23hMpc−1. Furthermore, the analyzed scales are not exactly similar given sharp
scale cuts in either configuration space or Fourier space, as the transformation between the
CF and the PS involves a spherical-Bessel function that has support with non-vanishing finite
width in k or s. In order to assess the impact on the cosmological parameters coming from
those differences, we perform the following tests.

First, we compare the CF and PS results both cross-correlated with reconstructed BAO.
The reconstructed BAO are analyzed up to kmax = 0.3hMpc−1. Thus, besides the information

10See discussions about potential issues in previous BOSS measurements in [91, 92].
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coming from the higher-n point functions in the reconstructed BAO, that is added equally
to the CF and the PS analyses, the BAO information from the two-point function in the
reconstructed BAO, that is already saturated in the CF analysis, adds up to the PS analysis.
As such, if the BAO plays a role in the difference between the CF and PS results, we expect
that adding reconstructed BAO to both analyses should make the results closer. Besides, we
expect the BAO to play a role only on Ωm and h, see e.g. [1]. As we can see from Fig. 7 and
Table 2, the differences in Ωm, h, ln(1010As), and ns between the CF and PS fit are reduced
to about 0.25, 0.10, 0.05, and 0.24 in unit of their error bars, when reconstructed BAO are
added. Interestingly, we now see that the difference in Ωm and h between the CF and PS fit is
now relatively small. More precisely, adding the reconstructed BAO does not shift ln(1010As)

nor ns significantly, but shifts h and Ωm, as expected: h is shifted by about 0.2 and 0.6 in the
same direction for the CF and the PS, respectively, while Ωm is shifted by about in opposite
direction for the CF and for the PS, respectively. The fact that the shift in Ωm is in opposite
direction, or that the sizes of the shifts in h are significantly different, clearly indicates that the
BAO information from the two-point function that is localized between k ∼ 0.23−0.3hMpc−1

plays a role. Therefore, it seems that the difference in the BAO information between the CF
and the PS analysis can explain a large part of the differences that we see in Ωm and h, that
are reduced when adding the reconstructed BAO. Eventually, the residual small difference
in Ωm and h could be explained by the residual difference in the BAO between the two fits
after the addition of the reconstructed BAO, which mainly consists in the BAO information
from the two-point function above k ∼ 0.3hMpc−1 not included in the PS analysis, and in
the scale cuts, as we discuss next.

We now compare the results obtained at different scale cuts. We see from Fig. 7 that
changing the scale cut in either CF or PS analysis does not change their results significantly,
as the cosmological parameters are shifted by at most ∼ 0.2 or ∼ 0.3, respectively, in unit of
their error bars. Nevertheless, those shifts, when compared to the standard deviation of the
differences found in patchy between CF and PS (see below), are not so small: difference in
the effective scale cut can thus explain, in part, the difference we see between the CF and the
PS results. 11

Finally, we perform the following rather powerful test. By fitting the CF and PS of 40
patchy mocks, we find that, on average among those many realizations, the difference in the
cosmological parameters between the CF and PS results is consistent with 0, or negligibly
small. This tells us that there is no particular systematics related to our theoretical modeling,
nor in the way the data are measured. Importantly, furthermore, the differences observed in
the BOSS data lie within the standard deviation of the differences observed among the 40
patchy boxes. This tells us that the differences observed in BOSS are typical. We can also
observe that the typical differences in patchy are less than the size of the error bars, . 50%

11We warn however that it is difficult to interpret the size of the shifts as we change the scale cut, as the
choice of the change in scale cut is somewhat arbitrary. Moreover, the fact that we see the shift in the PS fit
to be slightly bigger than in the CF fit might also be attributed to the BAO information that is cut out in
the PS fit when reducing the scale cut.
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with the exception of h where the typical difference is ∼ 70%. When adding reconstructed
BAO, the typical differences are reduced by about 5% for ωcdm and ln(1010As) and 25% for h,
while there is no reduction on ns and an increase of about 5% in Ωm. Moreover, on average
among the 40 patchy mocks, the differences in the cosmological parameters between the CF
and PS results is now fully consistent with 0.

In conclusion, the marginally-significant differences between the CF and the PS results
in the cosmological parameters can be attributed to the difference in the BAO information
analyzed and in the scales analyzed, and appear to be consistent with what we measure in
simulations. The size of the residual differences gives a measure of the independent informa-
tion contained in CF and PS. It would be interesting therefore to perform a combined analysis
of CF and PS. This however requires a careful measurement or modeling of the covariance.
Work is in progress to perform such an analysis.

Error bars Looking at Table 2, we see that the error bars between PS and CF on ns and h
are similar. ln(1010As) however is slightly larger by ∼ 10%, in the CF fit, with respect to the
PS fit. This difference might be due to the fact that we effectively analyze a bit less modes in
configuration space than in Fourier space. In contrast, the error bars on Ωm is slightly tighter
by about 10%, in the CF fit, with respect to the PS fit. This reflects that the CF contains
more BAO information than the PS.

Note Added: While we were carefully finalizing this paper, Ref. [93], which overlaps in parts
with this work, appeared.
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A Redshift-space one-loop galaxy correlation function

Main formulas: The redshift-space galaxy correlation function at one loop in the EFTofLSS
is the (inverse) Fourier transform of the power spectrum:

ξg(s, µs) =

∫
d3k

(2π)3
eik·qPg(k, µk) (3)

where µs, µk are, respectively, the cosines of the angles between the line-of-sight and the
separation s and of the wavenumber k, and the power spectrum reads [47, 1]:

Pg(k, µ) = Z1(µ)2P11(k) + 2Z1(µ)P11(k)

(
cct
k2

k2
m

+ cr,1µ
2 k

2

k2
m

+ cr,2µ
4 k

2

k2
m

)
(4)

+ 2

∫
d3q

(2π)3
Z2(q, k− q, µ)2P11(|k− q|)P11(q) + 6Z1(µ)P11(k)

∫
d3q

(2π)3
Z3(q,−q, k, µ)P11(q),

where k−1
m (' k−1

nl ) controls the bias (dark matter) derivative expansion. In the first line, the
first term is the linear contribution, and the next ones are the counterterms: the term in cct is a
linear combination of the dark matter speed of sound [14, 15] and a higher derivative bias [31],
and the terms in cr,1 and cr,2 represent the redshift-space counterterms [32]. The second line is
the 1-loop contribution. Here we dropped the stochastic terms, as in configuration space there
are none: in Fourier space, they are integer power laws, and therefore yield to Laplacians of
the delta function in configuration space, that can be dropped for all practical purposes 12.

The redshift-space galaxy density kernels Z1, Z2 and Z3 are given by (see e.g. [47]):

Z1(q1) = K1(q1) + fµ2
1G1(q1) = b1 + fµ2

1,

Z2(q1, q2, µ) = K2(q1, q2) + fµ2
12G2(q1, q2) +

1

2
fµq

(
µ2

q2

G1(q2)Z1(q1) + perm.
)
,

Z3(q1, q2, q3, µ) = K3(q1, q2, q3) + fµ2
123G3(q1, q2, q3)

+
1

3
fµq

(
µ3

q3

G1(q3)Z2(q1, q2, µ123) +
µ23

q23

G2(q2, q3)Z1(q1) + cyc.
)
, (5)

where µ = q · ẑ/q, q = q1 + · · · + qn, and µi1...in = qi1...in · ẑ/qi1...in , qi1...im = qi1 + · · · + qim ,
with ẑ being the unit vector in the direction of the line of sight, f is the growth rate, and n
is the order of the kernel Zn. Gi are the standard perturbation theory velocity kernels, while

12Instead of Taylor expanding in powers of k/kM, one can instead write the stochastic contributions
in terms of their Padé approximant, e.g. n̄−1(k/kM)0 → n̄−1

1+k2/k2
M
, which upon Fourier transform gives

−n̄−1(4πs)−1k2
Me

−kMs. These ‘Yukawa’ potentials decrease exponentially fast as s > 1/kM and are therefore
very short range. We checked that adding them does not change our results.
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Ki are the galaxy density kernels given by 13:

K1 = b1, (6)

K2(q1, q2) = b1
q1 · q2(q2

1 + q2
2)

2q2
1q

2
2

+ b2

(
F2(q1, q2)− q1 · q2(q2

1 + q2
2)

2q2
1q

2
2

)
+ b4 , (7)

K3(q,−q, k) =
b1

504k3q3

(
−38k5q + 48k3q3 − 18kq5 + 9(k2 − q2)3 log

[
k − q
k + q

])
+

b3

756k3q5

(
2kq(k2 + q2)(3k4 − 14k2q2 + 3q4) + 3(k2 − q2)4 log

[
k − q
k + q

])
+

b1

36k3q3

(
6k5q + 16k3q3 − 6kq5 + 3(k2 − q2)3 log

[
k − q
k + q

])
, (8)

where F2 is the symmetrized standard perturbation theory second-order density kernel (for
explicit expressions see e.g. [94]), and the third-order kernel is written in its UV-subtracted
version and is integrated over k · q̂. We work in the basis of descendants [31, 45, 46]: at the
one-loop order, all kernels can be described with 4 galaxy bias parameters bi.

Writing ξg(s, µs) =
∑

` ξ
`
g(s)L`(µs), where L`(µs) is the Legendre polynomial of order `,

one can relate the correlation function multipoles ξ`g(s) to the power spectrum multipoles
P `
g (k) through a spherical-Bessel transform:

ξ`g(s) = i`
∫

dk

2π2
k2P `

g (k)j`(ks), (9)

where j` is the spherical Bessel function of order `.

Evaluation strategy: The correlation function, including the loop and the counterterms,
can be analytically evaluated using the FFTLog decomposition of the matter power spectrum
in a sum of complex power laws, following [61, 35]. In the following we detail this procedure,
and later we discuss the IR-resummation in configuration space.

First, the linear matter power spectrum can be decomposed using the FFTLog [95]:

P11(kn) =

Nmax/2∑
m=−Nmax/2

cmk
−2νm
n (10)

where −2νm ≡ ν + iηm, with ν a real number, and

cm =
1

Nmax

Nmax−1∑
l=0

P11(kl)k
−ν
l k−iηmmin e−2iml/N , ηm =

2πm

log(kmax/kmin)
. (11)

In the equations above, we denote by kn the Nmax sampling points, which are chosen loga-
rithmically spaced from kmin to kmax. Once the cm have been computed with this sampling

13Notice that here we write explicitly the symmetrized version of the kernels, correcting a typo (missing
factor 1/2 in K2) appearing previously in our series of works [1, 5, 62]
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choice, we can interpolate the equations below at every value of k, which are therefore written
without a subscript. For the power spectrum, each one-loop contribution P13 or P22 (below
σ ∈ {13, 22}), of diagram type ‘13’ or ‘22’ respectively, can be written as simple matrix
multiplications [61]:

Pσ(k) = k3
∑
m1,m2

cm1k
−2ν1Mσ(ν1, ν2)k−2ν2cm2 (12)

where νi ≡ νmi . This expression comes from the following integral evaluated using dimensional
regularization [96, 27]:∫

d3q

(2π)3

1

q2ν1|~k − ~q|2ν2

= k3−2ν12
1

8π3/2

Γ(3
2
− ν1)Γ(3

2
− ν2)Γ(ν12 − 3

2
)

Γ(ν1)Γ(ν2)Γ(3− ν1 − ν2)
. (13)

Explicitly, we have:

P13(k) =
∑
i

B13,i k
3
∑
m1,m2

cm1k
−2ν1M13,i(ν1)M̄13(ν1)k−2ν2cm2 , (14)

P22(k) =
∑
i

B22,i k
3
∑
m1,m2

cm1k
−2ν1M22,i(ν1, ν2)M̄22(ν1, ν2)k−2ν2cm2 , (15)

where:

M̄13(ν) =
1

14π

tan(νπ)

(−3 + ν)(−2 + ν)(−1 + ν)ν
, (16)

M̄22(ν1, ν2) =
1

8π3/2

Γ(3
2
− ν1)Γ(3

2
− ν2)Γ(ν12 − 3

2
)

Γ(ν1)Γ(ν2)Γ(3− ν1 − ν2)
. (17)

The various terms appearing in Eqs. (14) and (15) are given by:

B13,0 = b
2
1 M13,0(ν) =

9

8
,

B13,1 = b1b3 M13,1(ν) = −
1

1 + ν
,

B13,2 = b
2
1fµ

2
M13,2(ν) =

9

4
,

B13,3 = b1fµ
2

M13,3(ν) =
3

4

−1 + 3ν

1 + ν
,

B13,4 = b3fµ
2

M13,4(ν) = −
1

1 + ν
,

B13,5 = b1f
2
µ
2

M13,5(ν) = −
9

4

1

1 + ν
,

B13,6 = b1f
2
µ
4

M13,6(ν) =
9

4

1 + 2ν

1 + ν
,

B13,7 = f
2
µ
4

M13,7(ν) =
3

8

−5 + 3ν

1 + ν
,

B13,8 = f
3
µ
4

M13,8(ν) = −
9

4

1

1 + ν
,

B13,9 = f
3
µ
6

M13,9(ν) =
9

4

ν

1 + ν
,
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and:

B22,0 = b
2
1 M22,0(ν1, ν2) =

2
(
ν1

(
8ν21 − 4ν1 − 5

)
+ 2

)
ν32 +

(
2ν1

(
−4ν21 + 6ν1 + 19

)
− 13

)
ν22 + ν1(2ν1 + 1)

(
2ν21 + ν1 − 7

)
+ 8ν1ν

5
2

+ 4(1− 6ν1)ν42 + 2ν1(ν1(ν1(4(ν1 − 3)ν1 − 5) + 19)− 3)ν2 − 7ν2 + 6

4ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)
,

B22,1 = b1b2 M22,1(ν1, ν2) =

(
2ν31 (7ν2 + 5) + ν21 (1− 11ν2) + ν1(ν2(ν2(14ν2 − 11)− 38)− 12) + (2ν2 − 3)(ν2(5ν2 + 8) + 6)

)
Γ(ν1)Γ(ν2)

7Γ(ν1 + 2)Γ(ν2 + 2)
,

B22,2 = b1b4 M22,2(ν1, ν2) =
2ν1 − 3

ν2
+

2ν2 − 3

ν1
,

B22,3 = b
2
2 M22,3(ν1, ν2) =

2
(
(7ν1(7ν1 + 3)− 20)ν22 + 3ν1(7ν1 + 17)ν2 − 2ν1(10ν1 + 1)− 2ν2 + 48

)
Γ(ν2)

49ν1(ν1 + 1)Γ(ν2 + 2)
,

B22,4 = b2b4 M22,4(ν1, ν2) =
4(ν1(7ν2 − 2)− 2ν2 + 3)

7ν1ν2
,

B22,5 = b
2
4 M22,5(ν1, ν2) = 2 ,

B22,6 = b
2
1fµ

2
M22,6(ν1, ν2) = (2ν1 + 2ν2 − 3)

4ν41ν2 + 2ν31 (ν2 − 1)(2ν2 + 1) + ν21 (2ν2(2(ν2 − 1)ν2 − 5) + 3) + ν1(2ν2 + 1)(2(ν2 − 2)ν2(ν2 + 1) + 3)

+ (3− 2ν2)ν22 + 3ν2 − 2

2ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)
,

B22,7 = b1b2fµ
2

M22,7(ν1, ν2) =
(2ν1 + 2ν2 − 3)

(
ν21 (7ν2 + 5) + ν1(ν2(7ν2 + 10) + 4) + ν2(5ν2 + 4) + 2

)
7ν1(ν1 + 1)ν2(ν2 + 1)

,

B22,8 = b1b4fµ
2

M22,8(ν1, ν2) =
(ν1 + ν2)(2ν1 + 2ν2 − 3)

ν1ν2
,

B22,9 = b1fµ
2

M22,9(ν1, ν2) = (2ν1 + 2ν2 − 3)

28ν41ν2 + ν31

(
28ν22 − 46ν2 + 2

)
+ ν21 (2ν2(14(ν2 − 1)ν2 − 19) + 5) + (ν2 − 2)(ν2 + 5)(2ν2 − 1)

+ ν1(2ν2(ν2(ν2(14ν2 − 23)− 19) + 47)− 23)

14ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)
,

B22,10 = b2fµ
2

M22,10(ν1, ν2) =
(2ν1 + 2ν2 − 3)

(
7ν21 (7ν2 + 5) + ν1(7ν2(7ν2 + 2) + 4) + ν2(35ν2 + 4)− 58

)
49ν1(ν1 + 1)ν2(ν2 + 1)

,

B22,11 = b4fµ
2

M22,11(ν1, ν2) =
(2ν1 + 2ν2 − 3)(7ν1 + 7ν2 − 8)

7ν1ν2
,

B22,12 = b
2
1f

2
µ
2

M22,12(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)

(
−(2ν1 + 1)ν22 − 2ν1(ν1 + 1)ν2 + (ν1 − 1)ν1(2ν1 + 1) + 2ν32 − ν2 + 2

)
8ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)

,

B22,13 = b
2
1f

2
µ
4

M22,13(ν1, ν2) =
(ν1 + ν2 + 1)(ν1 + ν2 + 2)Γ(ν1)Γ(ν2)Γ

(
ν1 + ν2 + 1

2

)
2Γ(ν1 + 2)Γ(ν2 + 2)Γ

(
ν1 + ν2 − 3

2

) ,

B22,14 = b1f
2
µ
2

M22,14(ν1, ν2) =
(2ν1 + 2ν2 − 3)

(
−2ν21 + ν1 − 2ν22 + ν2 + 6

)
8ν1(ν1 + 1)ν2(ν2 + 1)

,

B22,15 = b1f
2
µ
4

M22,15(ν1, ν2) = (2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)
112ν31ν2 + 2ν21 (2ν2(28ν2 − 9)− 33) + ν1(4ν2(ν2(28ν2 − 9)− 58) + 41) + (41− 66ν2)ν2 + 38

56ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)
,

B22,16 = b2f
2
µ
2

M22,16(ν1, ν2) = −
(2ν1 + 2ν2 − 3)(7ν1ν2 + 3ν1 + 3ν2 + 9)Γ(ν2)

14ν1(ν1 + 1)Γ(ν2 + 2)
,

B22,17 = b2f
2
µ
4

M22,17(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)(7ν1ν2 + 5ν1 + 5ν2 + 5)Γ(ν2)

14ν1(ν1 + 1)Γ(ν2 + 2)
,

B22,18 = b4f
2
µ
2

M22,18(ν1, ν2) =
−2ν1 − 2ν2 + 3

2ν1ν2
,

B22,19 = b4f
2
µ
4

M22,19(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)

2ν1ν2
,

B22,20 = f
2
µ
4

M22,20(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)

(
98ν31ν2 + 7ν21 (2ν2(14ν2 − 9)− 5) + ν1(2ν2(7ν2(7ν2 − 9)− 33)− 9)− ν2(35ν2 + 9) + 50

)
196ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)

,

B22,21 = b1f
3
µ
4

M22,21(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)

(
4ν31 − 8ν21ν2 − 8ν1ν2(ν2 + 1) + ν1 + 4ν32 + ν2 + 2

)
8ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)

,

B22,22 = b1f
3
µ
6

M22,22(ν1, ν2) =
(ν1 + ν2 + 2)Γ(ν1)Γ(ν2)Γ

(
ν1 + ν2 + 3

2

)
Γ(ν1 + 2)Γ(ν2 + 2)Γ

(
ν1 + ν2 − 3

2

) ,

B22,23 = f
3
µ
4

M22,23(ν1, ν2) = −
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)(7ν1 + 7ν2 − 2)

56ν1(ν1 + 1)ν2(ν2 + 1)
,

B22,24 = f
3
µ
6

M22,24(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)

(
56ν31ν2 + 2ν21 (2ν2(28ν2 − 9)− 19) + ν1(4ν2(ν2(14ν2 − 9)− 21) + 9) + (9− 38ν2)ν2 + 26

)
56ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)

,

B22,25 = f
4
µ
4

M22,25(ν1, ν2) =
3(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)

32ν1(ν1 + 1)ν2(ν2 + 1)
,

B22,26 = f
4
µ
6

M22,26(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)(2ν1 + 2ν2 + 1)

(
2
(
ν21 − 4ν1ν2 + ν22

)
+ 1

)
16ν1(ν1 + 1)(2ν1 − 1)ν2(ν2 + 1)(2ν2 − 1)

,

B22,27 = f
4
µ
8

M22,27(ν1, ν2) =
(2ν1 + 2ν2 − 3)(2ν1 + 2ν2 − 1)(2ν1 + 2ν2 + 1)(2ν1 + 2ν2 + 3)

32ν1(ν1 + 1)ν2(ν2 + 1)
.

24



The one-loop power spectrum counterterms can be written as:

Pct(k) ∝
∑
m

cmk
−2(νm−1) . (18)

Noting that:

1

2π2

∫ ∞
0

dx j`(x)x2−2ν =
2−2ν

π3/2

Γ [(3 + `− 2ν)/2)]

Γ [(`+ 2ν)/2]
≡ M̃ `(ν) , (19)

and using Eq. (9), the correlation function multipoles can easily be expressed as simple matrix
multiplications as well (see e.g. [35] for explicit expressions for the real-space one-loop matter
correlation function).

Explicitly, the linear terms, counterterms, and one-loop terms σ ∈ {13, 22}, of the galaxy
correlation function multipoles, are given by, respectively:

ξ`11(s) = L`11

i`

s3

∑
m

cms
2νmM̃ `(νm) , (20)

ξ`ct(s) = L`ct

i`

s5

∑
m

cms
2νmM̃ `(νm − 1) , (21)

ξ`σ,i(s) = L`σ,i
i`

s6

∑
m1,m2

cm1cm2s
2ν1+2ν2M̃ `(ν1 + ν2 − 3/2)Mσ,i(ν1, ν2)M̄σ(ν1, ν2) , (22)

where L`11/ct/σ,i are functions of the EFT parameters and f whose µ-dependence is projected
onto the multipole `. For the linear terms, we have:

L`11 =
2`+ 1

2

∫ +1

−1

dµL`(µ)
(
b1 + fµ2

)2
. (23)

For the counterterms, we have:

L`ct =
2`+ 1

2

∫ +1

−1

dµL`(µ) 2
(
b1 + fµ2

)( cct

k2
M

+
cr,1
k2

M

µ2 +
cr,2
k2

M

µ4

)
. (24)

Finally, for the loop terms (that are not counterterms), we have:

L`13,i =
2`+ 1

2

∫ +1

−1

dµL`(µ)B13,i , (25)

L`22,i =
2`+ 1

2

∫ +1

−1

dµL`(µ)B22,i , (26)

where B13,i and B22,i are defined for and below Eqs. (14) and (15). In practice, the integrals
in dµ are performed analytically on the powers of µ2j, j = 0, 1, 2, . . . , and not on the whole
integrands appearing in Eqs. (23)-(26). In particular, the integrands in Eqs. (23) and (24) are
expanded first. We can then take the EFT parameters and the powers of f out of the integrals
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of Eqs. (23)-(26) before integrating the remaining parts in µ2j analytically. Such evaluation
strategy allows us to marginalize analytically, at the level of the likelihood, over the EFT
parameters appearing only linearly in the correlation function prediction, as described below
in this section.

Then, the IR-resummation is performed as follows. In Fourier space, the IR-resummation
in redshift space for galaxies up to the N -loop order reads [32, 51]:

P `(k)|N =
N∑
j=0

∑
`′

4π(−i)`′
∫
dq q2Q``′

||N−j(k, q) ξ
`′

j (q), (27)

ξ`
′

j (q) = i`
′
∫
dp p2

2π2
P `′

j (p) j`′(pq), (28)

where P `(k)|N denotes the resummed power spectrum, and P `
j (k) and ξ`j(k) are the j-loop

order pieces of the Eulerian (i.e. non-resummed) power spectrum and correlation function,
respectively. The effects from the bulk displacements are encoded in Q``′

||N−j(k, q), given by:

Q``′

||N−j(k, q) =
2`+ 1

2

∫ 1

−1

dµk
i`
′

4π

∫
d2q̂ e−iq·k F||N−j(k, q)L`(µk)L`′(µq) , (29)

F||N−j(k, q) = T0,r(k, q)× T−1
0,r ||N−j(k, q) ,

T0,r(k, q) = exp

{
−k

2

2

[
Ξ0(q)(1 + 2fµ2

k + f 2µ2
k) + Ξ2(q)

(
(k̂ · q̂)2 + 2fµkµq(k̂ · q̂) + f 2µ2

kµ
2
q

)]}
,

where Ξ0(q) and Ξ2(q) are given by:

Ξ0(q) =
2

3

∫
dp

2π2
exp

(
− p2

Λ2
IR

)
P11(p) [1− j0(pq)− j2(pq)] ,

Ξ2(q) = 2

∫
dp

2π2
exp

(
− p2

Λ2
IR

)
P11(p) j2(pq).

(30)

Ref. [5] showed that by Taylor expanding the effects from the bulk displacements (i.e.
the exponential in Q``′

||N−j(k, q)), the IR-resummed power spectrum can be written as a sum
of the non-resummed one plus ‘IR-corrections’. Those IR-corrections can be gathered and
easily inverse-Fourier transformed to configuration space. Thus, the IR-resummed correlation
function ξ`(s)|N is simply the sum of the non-resummed one ξ`(s) plus the configuration-space
IR-corrections:

ξ`(s)|N = ξ`(s) (31)

+

∫
dk

2π2
k2j`(ks)

N∑
j=0

∑
`′

∑
n=1

∑
α

4π(−i)`′k2nQ``′||N−j(n, α)

∫
dq q2 [Ξi(q)]

n ξ`
′

j (q) jα(kq) ,

where j = 0, 1, . . . , N is the loop order, n is the integer controlling the expansion in powers
of k2 of the exponential of the bulk displacements, [Ξi(q)]

n denotes a product of the form
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Ξ0(q) × ... × Ξ0(q) × Ξ2(q) × ... × Ξ2(q) such that the total number of terms in the product
is n, and Q``′||N−j(n, α) is a number that depends on N − j, `, `′, n, α (and f). α represents
the orders of the spherical Bessel functions generated in the Taylor expansion and runs over
{0, 2, 4, ...} 14. Notice that, in Eq. (31), both the k and q integrals are performed numerically
through the FFTLog. One could be tempted to perform the q integrals analytically since
ξj(q) ∼ qν1 . . . qνj ; however, the factor [Ξi(q)]

n adds n more sums, ∼ qm1qm2 . . . qmn , from the
FFTLog’s of Ξ0/2(q) in Eq. (30), resulting in n + j matrix multiplications, which make the
integration slow. We leave the study of further optimizations to future work.

With the exception of one additional (inverse-)Fourier transform (per EFT-parameter-
independent term), such evaluation represents almost no extra operation with respect to
the one of the power spectrum, that was shown to be extremely fast within PyBird [5].
The evaluation time of the correlation function is somewhat increased with respect to the
power spectrum, because of the fact that, generally, the IR-resummation needs to be Taylor
expanded to higher order to grasp, in Fourier space, all the BAO wiggles up to k ∼ 0.6hMpc−1,
in order to reconstruct at best the BAO peak in configuration space. Within PyBird, if one
power spectrum evaluation takes about . 0.3 second on a laptop (for ` = 0, 2 and up to
kmax ∼ 0.25hMpc−1), the correlation function is evaluated in . 1 second (for ` = 0, 2, 4 15

and for all s).
Finally, we apply the Alcock-Paczynski effect to correct for the choice of the fiducial

cosmology (Ωm = 0.310) used to transform the galaxy coordinates into distances [97] and bin
the theory model in s as we bin the data. Explicitly, we introduce the distortion parameters

q⊥ =
DA(z)H0

Dref
A (z)Href

0

, q‖ =
Href(z)/Href

0

H(z)/H0

, (32)

where DA(z), H(z), H0 are, respectively, the true angular diameter distance at redshift z,
the true Hubble function at redshift z, and the true Hubble parameter at present time. The
quantities with superscript ‘ref’ are the same quantities for the reference cosmology. In terms
of these, the relations between the components of the separation s in the true cosmology and
sref in the reference cosmology is:

s⊥ = sref
⊥ q⊥ , s‖ = sref

‖ q‖ . (33)

Finally, the multipoles of the correlation function in the reference cosmology are computed
as:

ξ`(s
ref) =

2`+ 1

2

∫ 1

−1

dµref ξ
(
s(sref , µref), µ(µref)

)
L`(µref) , (34)

where L` are the Legendre polynomials. The true s, µ are related to the reference sref , µref by

s = srefG , µ = µrefq‖/G , G =
√

(µref)2q2
‖ + (1− (µref)2)q2

⊥ . (35)
14All spherical Bessel functions of odd order can be expressed as functions of spherical Bessel functions of

even order.
15We here quote the time for ` = 0, 2, 4 as even when analyzing only the two first multipoles, the hexade-

capole contributes significantly to the resummation of the BAO peak in configuration space (correspondingly
in Fourier space, for the BAO wiggles above k & 0.25hMpc−1), and thus needs to be computed anyway.
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Priors and Likelihood: For all runs presented here we run with the same physical priors
on the EFT parameters chosen in [1] (but with no stochastic term): flat prior [0, 4] on b1

and [−4, 4] on c2 = (b2 + b4)/
√

2, setting b2 − b4 = 0, and Gaussian prior centered on 0 of
width 2 (8) on b3, cct (cr,1). As we fit only the monopole and the quadrupole, we set cr,2 = 0

as it is degenerate with cr,1 (16). We choose kM = 0.7hMpc−1. We analytically marginalize
over the EFT parameters b3, cct, cr,1, that appear only linearly in the power spectrum (so at
most quadratically in the likelihood) at the level of the likelihood by performing the Gaussian
integrals as in [1]. We use one set of EFT parameters {b1, c2, b3, cct, cr,1} per skycut when fitting
the BOSS DR12 correlation function. In addition to the non-marginalized EFT parameters
b1, c2, we sample over the cosmological parameters ωb, ωcdm, h, ln(1010As), ns and

∑
mν . For

the neutrinos we take the normal hierarchy.
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Figure 8: Posteriors obtained fitting BOSS PS on νΛCDM with a BBN prior, with or without NNLO
term, at kmax = 0.20, 0.23, 0.25hMpc−1.

We present in Fig. 8 the analogous scale cut study of Sec. 2.2 by varying the NNLO term,
Eq. (1), for BOSS PS FS on νΛCDM with a BBN prior, at kmax = 0.20, 0.23, 0.25hMpc−1.
We find that the shifts in the cosmological parameters are negligible at kmax = 0.20hMpc−1

and 0.23hMpc−1, . σ/3, but start to become significant at kmax = 0.25hMpc−1: we find
16We have checked that the hexadecapole does not bring significant extra information for the BOSS survey.
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about 0.5σ on Ωm. As this result is further corroborated by the answer we get from tests on
simulations [3, 5], this tells that we should stop fitting at kmax = 0.23hMpc−1 in order to get
cosmological constraints free from uncontrolled theory-systematic errors.

C Best fits and systematics

In Fig. 9 and Fig. 10, we show the best fits on simulations and on the BOSS data, respectively.
Overall, the fits on simulations look acceptable. The monopole displays small residuals.

Around the BAO peak, we notice a similar trend, although not so significant, in the residuals
of boxes A, B, F, G. First, we remind that those boxes are not independent but they actually
originate from the same realization, while indeed the shape of the residuals is different in box
D, which originates from a different realization. Second, we observe that the correlations are
important, therefore one should interpret the residuals with care. There are strong positive
correlations among the s bins. On average, in the monopole, we find about 90%, 80% and 70%

for the first, second, and third diagonals above the main, respectively. As such, the best fit
stays consistently on one side of the data for consecutive bins. We checked that using only the
diagonal of the covariance instead produces a closer fit around the BAO peak. This suggests
that there are no significant theory systematics. Turning to the quadrupole, we notice large
deviations on large scales, especially for box D. To dissipate doubts about the potential role
of systematics coming from this regime (EFTofLSS systematics are unexpected on theoretical
grounds in this regime), we have fitted this box with a large-scale cut – smax = 150 Mpc/h –
finding no appreciable shifts on the cosmological parameters. Last, we present the best fit on
patchy lightcone mocks, which appears to show no significant residuals.

On the data, the first aspect to notice is that the monopole data seems to be systematically
high with respect to the best fit model on large scales. For instance, for CMASS NGC, the
monopole is always positive and the correlation function cannot satisfy the integral constraint.
This is a known broadband observational systematic. As suggested in [98], it can be corrected
by adding to the correlation function monopole the function A(s) = a0+a1/s+a2/s

2. We have
checked that, by adding A(s), the χ2 of the fit is marginally improved by about 6.2, while the
posteriors on the cosmological parameters are not affected. Actually, the improvement on χ2

comes largely from the CMASS NGC skycut, with a ∆χ2 = 3.9, while the other skycuts give
∆χ2 ' 0.7 each. In fact, the monopole data of the other skycuts seem to display oscillating
features on large scales, rather than a smooth broadband effect.

More worrisome residuals come from features in the quadrupole, in particular on CMASS
SGC, whose best fit has a high χ2/d.o.f. = 87.5/(72 − 5 − 6) = 1.43, corresponding to
a rather low p-value of ∼ 0.015 (17). To check that this feature (which could represent
a systematic error) does not affect our determination of the cosmological parameters, we

17We count the degrees of freedom as the number of data points minus 5 cosmological parameters (as fixing
ωb instead of letting it vary inside the BBN prior does not change the χ2) minus 6 EFT parameters. Note
that we calculate the p-value taking the data points as independent, which is an approximation.
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Figure 9: Best fits and residuals of simulation multipoles: monopole (black) and quadrupole (blue).
The quadrupole is shown with a minus sign. The error bars are the square root of the covariance
diagonal elements. From top to bottom: lettered challenge box A, B, F, G, D, and mean of 1000
patchy mock Lightcones. The residuals are shown with a slight shift in s for clarity.
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Figure 10: Best fits of BOSS multipoles. The individual min χ2 are respectively, for CMASS
NGC, CMASS SGC, LOWZ NGC and LOWZ SGC: 64, 88, 61 and 68. The total min χ2/d.o.f.

is 280/(2 · 72 + 2 · 70 − 5 − 4 · 6) = 1.10, for a corresponding p-value of 0.14. The multipoles are
shown with a slight shift in s for clarity. In dashed grey line is the fit adding the smooth broadband
systematic corrections to the monopole, that does not affect the cosmological constraints.

combined at the level of the pair counts CMASS NGC and CMASS SGC, which reduces the
oscillating residuals, as done in [99]. Running MCMC chains on the single CMASS sample plus
the LOWZ NGC and LOWZ SGC skycuts, we find the same posteriors on the cosmological
parameters, with only negligible shifts: the largest one is on ωcdm, of 0.2σ. For the multipoles,
the χ2/d.o.f. on the CMASS sample is now 67.5/(72− 5− 6) = 1.10, with corresponding p-
value of 0.26, while on the whole BOSS data set, CMASS plus LOWZ NGC and LOWZ
SGC, we get χ2/d.o.f. = 1.04, with corresponding p-value of 0.35. We therefore conclude
that these potential undetected systematics on the data do not affect the determination of
the cosmological parameters, and the best fit provides a good description of the data.

D Line-of-sight selection effects of galaxies

As first recognized in [100], there is a potential systematic effect when measuring the galaxy
correlations in redshift space. This is due to the alignment of galaxies with large-scale tidal
fields, and a selection effect which prefers galaxies viewed down the long axis: as a result,
Fourier modes along the line of sight are suppressed. This is a small effect, which is expected
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to contaminate the dependence on f at linear order at the 4− 8% level or less [100]. Since it
mimics the angular dependence of linear term in fµ2, it is difficult to remove at the level of
the dataset.

This, and similar effects that take the name of line-of-sight selection effects, can be un-
derstood by realizing that the true observable is not just the density in redshift space, but
a combination of the density in redshift space and other quantities that carry vector indices,
such as the ellipticity, with the indices contracted with the line of sight unit vector. Of course,
how large they are and how much weight is in these additional quantities strongly depends
on the experimental setting. However, these effects can be described extending the bias ex-
pansion by allowing for all the ordinary EFTofLSS-operators carrying a vector index to have
that vector index contracted with the line of sight unit vector. At linear level, one has:

δg,r,obs(~k) = (b1 + fµ2)δm(~k) +Asij(~k)ẑiẑj = (b1 + fµ2)δm(~k) +A

(
(k̂ · ẑ)2 − 1

3

)
δm(~k) , (36)

where ẑ is unit vector in the direction of the line of sight and sij =
(
∂i∂j − 1

3
δij∂

2
)
φ, with

φ being the Newtonian gravitational potential. Here, δg,r,obs is the redshift-space observed
galaxy overdensity, which is, in principle, different than the redshift-space galaxy overden-
sity, δg,r, and δm is the matter overdensity. The term in A represents the contribution at
linear order of line-of-sight selection effects. For extensions at non-linear order, see for ex-
ample [101]. Accounting for the term in A, the observed galaxy power spectrum in redshift
space is therefore, at linear level,

Pg,r,obs(k) =

[
b1 −

A

3
+ (f + A)µ2

]2

Pm(k) . (37)

It follows that there is a potential systematic effect of relative size A/f .
One can estimate the size of A following [100]. The coefficient A can be written as

A = 2Bηχ, where B is a coefficient that measures the intrinsic alignment of galaxies (due to
a large-scale tidal field), and ηχ is a selection-dependent coefficient depending on the galaxy
orientation. A recent measurement on BOSS data performed in [102] finds that B ' −0.03,
in agreement with the estimate of [100], which also estimates that ηχ ∼ 0.2. Given that the
growth rate at the BOSS redshifts is f(0.3) ' 0.68 and f(0.5) ' 0.75, the relative systematic
error due to these selection effects can be of order A/f ∼ 2%.

It is clear that this potential systematics needs to be included in our data analysis, since
we have seen that it is very difficult to subtract from the data and therefore it is not included
in the mock catalogs. We extend the model to non-linear scales by adding the line-of-sight
selection terms order by order in perturbation theory:

δ
(n)
g,r,obs(

~k) = δ(n)
g,r (~k) + A

(
(k̂ · ẑ)2 − 1

3

)
δ(n)
m (~k) , (38)

where n denotes the n-th order in perturbation theory. We do the data analysis adding A as
an additional parameter 18. Considering the size of errors in [102] and the estimates of [100],

18More exactly, we add one additional parameter per skycut. In the following, when quoting results on A,
we refer to the one of CMASS NGC.
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we impose a Gaussian prior on A with mean −0.05 and standard deviation 0.05, allowing for
a “pessimistic” case in which the systematics amounts to a ∼ 7% correction of the dependence
on f . In principle, we should add to Eq. (38) the contributions from the non-linear line-of-
sight selection biases [101]. However, assuming, as expected, that the physical prior on these
additional parameters is comparable to the one on A, the effect of the non-linear corrections
is very small, and we neglect it.
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Figure 11: Results of the fit to the BOSS CF and PS including line-of-sight selection effects. In the
CF, we also show the posteriors obtained when including the line-of-sight selection effects only at
tree-level for reference, which is the dominant one.

We show our results in Fig. 11, for both the power spectrum and correlation function fitting
all BOSS skycuts. We show the model without any line-of-sight selection effect compared to
the models in which the selection effect, measured by the A parameter, is added only at linear
or at linear plus loop level. First, we notice that the contribution of the term in A at loop
level is negligible, justifying us to neglect the inclusion of the full set of non-linear line-of-sight
selection effects. Second, it is apparent that in both analyses with selection effects, we measure
the A parameter without being completely prior-dominated, which shows that the linear-level
degeneracy is mildly broken: we have A = −0.037 ± 0.040 for the correlation function and
A = −0.009 ± 0.039 for the power spectrum. This can be understood as follow. Without
selection effects, the growth rate f is determined mainly by Ωm, that is well measured thanks
to the shape and geometrical information (see e.g. [1]). This leaves us with two ‘broadband’
parameters, the amplitude As and the galaxy bias b1, that are measured by fitting both the
monopole and the quadrupole. Including selection effects, a degeneracy is introduced by the
new parameter A at linear level, that is mildly broken by the loop correction that depends
on As, b1 and A, with a different functional form.

More importantly, the shift in cosmological parameters is negligible. In particular, the
change in the posteriors for h, ns and ωcdm are barely visible. For ln(1010As), the peak is
shifted by 0.24σ for the CF while is barely shifted for the PS, and the error bar is increased
by about 5% and 10%, respectively. We can estimate the shift in As in the following way. The
presence of A allows As to shift by about 2fA. Given the measured value of A, the relative
shift on As for the CF (for the PS) is then around 5% (1%), which is in agreement with the
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observed shift in ln(1010As) of about 0.05 (0.01). We conclude that the FS analysis of BOSS
data is robust to line-of-sight selection effects, assuming, as we expect, that the additional
nonlinear line-of-sight selection biases have similar physical priors.
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