BotFinder: Finding Bots in Network Traffic
Without Deep Packet Inspection

Florian Tegeler
University of Gottingen

tegeler@cs.uni-
goettingen.de

Giovanni Vigna
. UC Santa Barbara
vigna@cs.ucsb.edu

ABSTRACT

Bots are the root cause of many security problems on the Internet,
as they send spam, steal information from infected machines, and
perform distributed denial-of-service attacks. Many approaches to
bot detection have been proposed, but they either rely on end-host
installations, or, if they operate on network traffic, require deep
packet inspection for signature matching.

In this paper, we present BOTFINDER, a novel system that de-
tects infected hosts in a network using only high-level properties
of the bot’s network traffic. BOTFINDER does not rely on content
analysis. Instead, it uses machine learning to identify the key fea-
tures of command-and-control communication, based on observing
traffic that bots produce in a controlled environment. Using these
features, BOTFINDER creates models that can be deployed at net-
work egress points to identify infected hosts. We trained our sys-
tem on a number of representative bot families, and we evaluated
BOTFINDER on real-world traffic datasets — most notably, the Net-
Flow information of a large ISP that contains more than 25 billion
flows. Our results show that BOTFINDER is able to detect bots in
network traffic without the need of deep packet inspection, while
still achieving high detection rates with very few false positives.

Categories and Subject Descriptors
C.2.0 [General]: Security and Protection

Keywords

Malware Detection, Security, NetFlow Analysis

1. INTRODUCTION

Many security problems on today’s Internet such as spam, dis-
tributed denial-of-service (DDoS) attacks, data theft, and click fraud
are caused by malicious software running undetected on end-user
machines. The most efficient, and arguably, most relevant kind of
such malware are bots. The malicious software components are co-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Co-NEXT’12, December 10-13, 2012, Nice, France.

Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

349

Xiaoming Fu
University of Géttingen

fu@cs.uni-goettingen.de

Christopher Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

ordinated over a command and control (C&C) channel by a single
entity — called the botmaster — and form a botnet [6,13,29] to carry
out a number of different criminal activities. Consequently, de-
fenses against malware infections are a high priority, and the iden-
tification of infected machines is the first step to purge the Internet
of bots.

Acknowledging the limitations of traditional host-based malware
detection, such as anti-virus scanners, network-based bot detection
approaches are increasingly deployed for complementary protec-
tion. Network devices provide a number of advantages, such as the
possibility to inspect a large number of hosts without the need for
any end-point software installation.

Recently, a trend toward smaller botnets [6] and a shift [11] in
malware development from a for-fun activity to a for-profit busi-
ness was observed. This introduces very stealthy bots with en-
crypted C&C communication and we derive three core design goals
for network based solutions to capture such bots: (a) The system
should be able to detect individual bot infections. (b) The system
should rely only on network-flow information to be resilient to en-
crypted traffic, and (c) should work for stealthy bots that do not
send spam or carry out DoS attacks but steal sensitive data (e.g.,
credit cards or login credentials).

In this paper, we present BOTFINDER, a system that detects indi-
vidual, bot-infected machines by monitoring their network traffic.
BOTFINDER leverages the observation that C&C connections asso-
ciated with a particular bot family follow certain regular patterns.
That is, bots of a certain family send similar traffic to their C&C
server to request commands, and they upload information about
infected hosts in a specific format. Also, repeated connections to
the command and control infrastructure often follow certain timing
patterns.

BOTFINDER works by automatically building multi-faceted mod-
els for C&C traffic of different malware families. To this end, we
execute bot instances that belong to a single family in a controlled
environment and record their traffic. In the next step, our system
extracts features related to this traffic and uses them to build a de-
tection model. The detection model can then be applied to unknown
network traffic. When traffic is found that matches the model, we
flag the host responsible for this traffic as infected.

Due to its design, BOTFINDER offers a combination of salient
properties that sets it apart from previous work and fulfills the afore-
mentioned design goals. Our solution is able to detect individual
bot infections and does not correlate activity among multiple hosts
during the detection phase as, for example, BotSniffer [18], Bot-
Miner [16], or TAMD [37]. Moreover, such systems rely on noisy
activity, such as spamming and DoS activity (for example called A-

Plane in BotMiner) which prevents the detection of stealthy bots.
Yet, many existing systems [15, 17,36] allow the detection of indi-
vidual infections, but they use deep packet inspection. In contrast,
BOTFINDER requires only high-level (NetFlow-like [5]) informa-
tion about network connections; it does not inspect payloads. Thus,
it is resilient to the presence of encrypted bot communication, and it
can process network-level information (e.g., NetFlow) that is typi-
cally easier to obtain than full-packet dumps (because of the privacy
concerns of network operators).

We evaluated our approach by generating detection models for
a number of botnet families. These families are currently active in
the wild, and make use of a mix of different infection and C&C
strategies. Our results show that BOTFINDER is able to detect ma-
licious traffic from these bots with high accuracy. We also applied
our detection models to traffic collected both on an academic com-
puter laboratory network and a large ISP network (with tens of bil-
lions of flows), demonstrating that our system produces promising
results with few false positives.

In summary, this paper makes the following contributions:

o We observe that C&C traffic of different bot families exhibits reg-
ularities (both in terms of traffic properties and timing) that can
be leveraged for network-based detection of bot-infected hosts.
Being independent of packet payloads, our detection approach
can handle encrypted or obfuscated traffic.

e We present BOTFINDER, a learning-based approach that auto-
matically generates bot detection models. To this end, we run
bot binaries in a controlled environment and record their traffic.
Using this data, we build models of characteristic network traffic
features.

e We develop a prototype of BOTFINDER, and we show that the
system is able to operate on high-performance networks with
hundreds of thousands of active hosts and Gigabit throughput in
real time. We apply BOTFINDER to real traffic traces and demon-
strate its high detection rate and low false positive rate. Addition-
ally, we show that BOTFINDER outperforms existing bot detec-
tion systems and discuss how BOTFINDER handles certain eva-
sion strategies by adaptive attackers.

2. SYSTEM OVERVIEW

BOTFINDER detects malware infections in network traffic by
comparing statistical features of the traffic to previously-observed
bot activity. Therefore, BOTFINDER operates in two phases: a
training phase and a detection phase. During the training phase,
our system learns the statistical properties that are characteristic of
the command and control traffic of different bot families. Then,
BOTFINDER uses these statistical properties to create models that
can identify similar traffic. In the detection phase, the models are
applied to the traffic under investigation. This allows BOTFINDER
to identify potential bot infections in the network, even when the
bots use encrypted C&C communication.

Figure 1 depicts the various steps involved in both phases: First,
we need to obtain input for our system. In the training phase, this
input is generated by executing malware samples in a controlled
environment (such as Anubis [2], BitBlaze [30], CWSandbox [35],
or Ether [8]) and capturing the traffic that these samples produce.
In the second step, we reassemble the flows' in the captured traffic;
a step that can be omitted when NetFlow data is used instead of full
packet captures. In the third step, we aggregate the flows in traces
— chronologically-ordered sequences of connections between two

"We will use the words flow and connection interchangeably in this
paper.

350

\
1a) Training Malware \
Traffic }

\
[

N

1b) Traffic for
Investigation

/

2) Flow Reassembly

v

3) Trace Extraction

v

4) Statistical Feature Analysis

/ AN

\
\
\
5a) Model Creation } 5b) Malware
\

Detection

a) Training phase. b) Detection phase.

Figure 1: General architecture of BOTFINDER.

IP addresses on a given destination port. BOTFINDER then extracts
five statistical features for each trace in the forth step. These sta-
tistical features are the average time between the start times of two
subsequent flows in the trace, the average duration of a connection,
the number of bytes on average transferred to the source, the num-
ber of bytes on average transferred to the destination, and a Fourier
Transformation over the flow start times in the trace. The latter al-
lows us to identify underlying frequencies of communication that
might not be captured by using simple averages. Finally, in the fifth
step, BOTFINDER leverages the aforementioned features to build
models. During model creation, BOTFINDER clusters the observed
feature values. Each feature is treated separately to reflect the fact
that we did not always observe correlations between features: For
example, a malware family might exhibit similar periodicity be-
tween their C&C communications, but each connection transmits a
very different number of bytes. The combination of multiple clus-
ters for each of a bot’s features produces the final malware family
model.

When BOTFINDER works in the detection phase, it operates on
network traffic and uses the previously-created models for malware
detection.

It is important to note that we do not rely on any payload in-
formation of the traffic for the whole process, but we work on the
statistical properties exhibited by the command and control com-
munication only.

3. SYSTEM DETAILS

This section provides more details on how BOTFINDER and the
previously-mentioned five steps work.

3.1 Input Data Processing

The input for BOTFINDER is either a traffic capture or NetFlow
data. During the training phase, malware samples are executed in
a controlled environment, and all network traffic is recorded. In
this step, it is important to correctly classify the malware samples

Traffic Capture Start

w i :AtoB:Port8l [\ b
[V}
@ BAtCPot80 D DD EDEDD DDODODO .
—

B:AtoD:Port347 [0 O] -

7;Cto F:Port80 [O0II oI (] -

Time
Figure 2: Traces with different statistical behaviors.

so that different samples of the same malware family are analyzed
together. Our classification is based on the output of various anti-
virus scanners executed via VirusTotal? and on the results of be-
havioral similarity analysis in Anubis [1]. Of course, incorrectly
classified samples are possible. This might affect the quality of the
produced models. However, as explained later, BOTFINDER toler-
ates a certain amount of noise in the training data.

3.2 Flow Reassembly

If NetFlow data is available, BOTFINDER directly imports it,
otherwise, we reassemble flows from captured packet data. For
each connection, properties such as start and end times, the number
of bytes transferred in total, and the number of packets is extracted.
As a final result of this reassembly step, our system yields aggre-
gated data similar to NetFlow, which is the industry standard for
traffic monitoring and IP traffic collection. For all further process-
ing steps, BOTFINDER only operates on these aggregated, content-
agnostic data.

3.3 Trace Extraction

Traces are an important concept in BOTFINDER: A trace 7T is
a sequence of chronologically-ordered flows between two network
endpoints. Figure 2 illustrates different shapes of traces showing
start times and durations of flows. For example, the trace 7> from
A to C on port 80 shows a highly regular behavior. The regularity in
T allows BOTFINDER to extract the recurrence and statistical fea-
tures over all flows of 72. Here, the roughly constant distance be-
tween two flows and the similar duration of communication allows
for an accurate description of the whole trace, using the average
time distance between flows and their average duration.

To obtain meaningful statistical data, we require at least a mini-
mal number of connections |7 |min (typically between 10 and 50)
in a trace 7. This minimal length requirement is consistent with
the fact that command-and-control traffic consists of multiple con-
nections between the infected host and the C&C server.

A challenge in performing fully-automated analysis of malware
samples is to distinguish between traces that correspond to actual
command and control interactions and traces that are just additional
“noise.” Many bots connect to legitimate sites, for various different
reasons, such as checking for network connectivity, checking for
the current time, or for sending spams. Some bot variants even de-
liberately create noisy benign traffic to legitimate websites to cloak
their own C&C communication [9,10,26] and to counter automatic
signature generation systems. We use two ways to filter the traf-
fic and identify the relevant traffic traces: First, we easily whitelist
common Internet services such as Microsoft Update and Google. In
addition, if available, we leverage third-party knowledge and com-

http://www.virustotal.com

Traffic
Capture End

351

pare our training traffic (whenever un-encrypted) to known signa-
tures or special communication patterns. Moreover, we compare
the destination IP addresses to a list of known C&C servers. An-
other, more advanced and automated technique that allows identifi-
cation of previously unknown C&C servers is JACKSTRAWS [21],
an approach that leverages additional system call information from
the bot sample execution. Distinguishing between C&C traffic and
unrelated traces allows models to capture only characteristic bot
traffic. Interestingly, when traffic that is not related to C&C con-
nections is included into the model generation process, the result-
ing models are typically of low confidence (as shown later). As a
result, they have little impact on the detection results.

3.4 Feature Extraction

After trace generation, BOTFINDER processes each trace to ex-
tract relevant statistical features for subsequent trace classification.
We focus on the following five features:

e The average time interval between the start times of two sub-
sequent flows in the trace. The botmaster has to ensure that all
bots under his control receive new commands and updates fre-
quently. Often, communication from the C&C server to the bots,
following a push model, is impossible. The reason is that many
infected hosts in private networks are behind NAT boxes or not
registered with the C&C server yet. We assume that most bots
use a constant time interval between C&C connections (or a ran-
dom value within a certain, specific time interval). This leads to
detectable periodicity in the communication. For the communi-
cation pattern, the botmaster has to balance the scalability and
agility of his botnet with the increasing risk of detection associ-
ated with an increasing number of C&C server connections. As
mentioned before, some bot variants already open random, be-
nign connections [9, 10, 26] to distract signature generation and
malware detection systems. Other approaches, such as “connect
each day at time X” also suffer from issues like the requirement
of synchronization between the bots’ host clocks. Nevertheless,
malware authors might craft their bots explicitly to not show pe-
riodic behavior. As we discuss in more detail in Section 6, mim-
icking random, benign traffic is hard and often detectable. Based
on our observations working with different malware families, we
found that a significant fraction of current malware follows our
assumption and exhibit loosely periodic C&C communication.

e The average duration of connections. As bots often do not re-
ceive new commands, most of the communication consists of a
simple handshake: The bot requests new commands and the C&C
server responds that no new commands have been issued. Thus,
we expect that the durations for most flows in a C&C trace are
similar.

e The average number of source bytes and destination bytes per
flow. By splitting up the two directions of communication using
source and destination bytes, we are able to separate the request
channel from the command transmission. That is, the request for
an updated spam address list might always be of identical size,
while the data transferred from the C&C server, containing the
actual list, varies. As a result, a C&C trace might contain many
flows with the same number of source bytes. Similar considera-
tions apply to the destination bytes — for example, when the re-
sponse from the C&C server has a fixed format.

o The Fast Fourier Transformation (FFT) over a binary sampling
of the C&C communication with the goal to detect underlying
communication regularities. In this step, we sample our trace like
a binary signal by assigning it to be 1 at each connection start, and
0 in-between connections. To calculate a high-quality FFT, we

used a sampling interval of 1/4th of the smallest time interval in
the trace, which ensures that we do not undersample. However, if
the distance between two flows is extremely small and large gaps
occur between other flows of the trace, this sampling method can
lead to a significant amount of data points. In such cases, we
limit the length of our FFT trace to 2'® = 65, 536 datapoints and
accept minor undersampling. We chose this value as the FFT is
fastest for a length of power of two, and, with this value, only
a few datapoints in our experiments were (under)sampled as a
single one. More precisely, for the observed C&C traces, 18%
showed undersampling, which resulted in a median of only 1%
of the start times that were sampled together.

In the next step, we compute the Power Spectral Density (PSD)
of the Fast Fourier Transformation over our sampled trace and
extract the most significant frequency. The FFT peaks are corre-
lated with time periodicities and resistant against irregular large
gaps in the trace (as we will show in Section 6). We observed the
introduction of gaps in the wild for bots in which communica-
tion with the C&C server is periodic and then pauses for a while.
When malware authors randomly vary the C&C connection fre-
quency within a certain window, the random variation lowers the
FFT peak. However, the peak remains detectable and at the same
frequency, enabling the detection of the malware communication.

3.5 Model Creation (Training)

We create models via clustering of the five features: average
time, average duration, average source bytes, average destination
bytes, and the FFT. We process the dataset for each feature sepa-
rately, as we observed malware behavior with non-correlated fea-
tures. As an example of such behavior, two versions of a bot might
connect to different versions of C&C servers C and C> and trans-
fer different amounts of bytes, depending of their version. Never-
theless, these two bot versions might still follow the same commu-
nication periodicity pattern.

After clustering, we typically observe a number of rather large
clusters that contain the —suspected — actual malware-specific be-
havior. In addition, there are often some smaller clusters with more
diverse data (lower clustering quality) and even individual traces
present. These small clusters are typically related to non-C&C traf-
fic, and our analysis drops them. A final model for a malware fam-
ily contains five sets of clusters, one set for each feature. A set
of clusters for a feature characterizes the expected values for this
feature. In human terms, a model can be understood as:

An average interval between connections of 850 or
2,100 seconds, a transfer of 51kB to the source, 140
bytes to the destination, a flow duration of 0.2 or 10
seconds, and a communication frequency of around
0.0012Hz or 0.04Hz indicate a Dedler infection.

To cluster the trace-features for a bot family, we use the CLUES
(CLUstEring based on local Shrinking) algorithm [34], which al-
lows non-parametric clustering without having to select an initial
number of clusters. In short, CLUES iteratively applies gravita-
tional clustering [23] and selects a number of clusters that complies
best to a cluster strength measure such as the Silhouette index by
Kaufman and Rousseuw [22].

To confirm the applicability of CLUES for BOTFINDER, we ap-
plied CLUES to our datasets and compared its clustering results
with the results obtained by running the well-known k-means algo-
rithm [20]. For our datasets, the fully automated, non-supervised
CLUES algorithm typically showed the same results as manually-
supervised k-means clustering. In some cases, we even found bet-

352

ter cluster formation than with k-means. This demonstrates that
CLUES is a good candidate for our clustering scenario.

After calculating cluster centers and members, we judge the qual-
ity of each individual cluster using a quality rating function. As we
tend to trust large clusters with highly similar values over smaller,
more diverse clusters, we relate the standard deviation sd of the
cluster with its mean c and calculate the fraction sd/c. This frac-
tion is then used as part of an exponentially decreasing quality rat-
ing function gciuster = exp(—p - %) with a control factor 3, em-
pirically set to 2.5.

The average qciuster Over all clusters is a measure of the overall
input trace similarity. A high average cluster quality indicates that
many binary samples generated highly similar traces that yield sim-
ilar extracted features. If the traces are more diverse, more clusters
of lower quality exists, which is, however, not necessarily a bad
sign: Imagine a malware family that has a fixed interval in its peri-
odic C&C communication but tries to evade detection by adding ar-
tificial, random traffic. As described in Section 3.3, we are trying to
extract the relevant C&C communication from the traffic generated
by the malware sample, yet this process is error prone. Throughout
the clustering process, the fixed interval C&C communication emit-
ted by most samples is clustered in a high quality cluster whereas
the random traffic clusters very bad and generates very loose clus-
ters with high standard deviation. Such clusters have a low qual-
ity and reduce the average cluster quality, however the cluster that
captured the actual C&C communication is still of high quality and
expresses the relevant malware behavior well.

3.6 Model Matching (Detection)

To check whether a trace 7 matches a given model M, we com-
pare each statistical feature of this trace with the model’s clusters
that were generated in the previous steps. If, for example, the
trace’s average time property lies in one of M'’s clusters for this
feature, we count this as a “hit” and increase a score yas. The
amount by which the score v is increased depends on the qual-
ity of the cluster and the quality of the (feature of the) trace. These
“qualities” reflect the uncertainties inherited by trace collection and
feature extraction during the previous steps. Additionally, we con-
sider how “tight” the feature of a trace (for example, the average
time) is regarding its periodicity. In general, for higher cluster qual-
ities and tighter traces, yas is increased more. More precisely, we
add qeruster - exp{—ﬂ%}, with 3 again set to 2.5, to yas
for all values that hit a cluster by matching its cluster center 4 two
times the cluster’s standard deviation. The limitation to this range is
primarily motivated to optimize processing speed. Mathematically
the described exponential scoring function decreases very quickly,
therefore comparison of any value with the cluster center would
contribute nearly 0 to s for values off more than twice the stan-
dard deviation.

To allow hits in multiple models M; and M for different bot
families, we maintain a yas for each model. Note that clusters of
low quality, which are often introduced as artifacts of the training
data (from traffic unrelated to C&C communication), only lead to
a small increase of yps. In this fashion, the system implicitly com-
pensates for some noise in the training data.

Finally, the highest v is compared to a global pre-specified ac-
ceptance threshold a, which has to be set by the BOTFINDER ad-
ministrator. If v > a, the model is considered to have matched, and
BOTFINDER raises an alarm. To reduce false positives and not rely
on a single feature alone, we allow the user to specify a minimal
number of feature hits h. That is, in addition to the requirement
v > a, the trace has to have matches for at least h features. This
rule avoids accidental matches solely based on a single feature. For

Table 1: Malware families used for training. A high cluster
quality indicates a low standard deviation within the clusters.

Family Samples | Total Cluster
Traces | Quality [0,1]

Banbra 29 29 0.99
Bifrose 33 31 0.52
Blackenergy 34 67 0.57
Dedler 23 46 0.76
Pushdo 55 106 0.49
Sasfis 14 14 0.88
Average 32 49 0.70

example, consider a trace with features “average time” and “FFT”
that match the model clusters very well (so that the condition y > a
is satisfied). By setting h = 3, BOTFINDER requires that an addi-
tional feature, such as the “average duration” or one of the byte
transmission features, hits its respective model to actually raise an
alarm.

4. TRAINING

We trained BOTFINDER on six different malware families that
are a representative mix of families currently active and observed
in the wild. More precisely, we picked active malware samples that
we observed in Anubis within a window of 30 days in June 2011.
Anubis receives and analyzes tens of thousands of samples every
day. This selection process ensures that our system operates on
malware that is active and relevant.

For each family, we executed on average 32 samples in a Win-
dows XP VM in our controlled, Virtualbox>-based environment for
one to two days and captured all network traffic. The virtual ma-
chine runs a real OS, is connected to the Internet, and contains re-
alistic user data. Of course, we restricted SPAM and DoS attempts.
The malware families used for training are:

e Banbra: A Trojan horse/spyware program that downloads and
installs further malware components.

o Bifrose (also represented in Trojan variants called Bifrost): A
family of more than 10 variants of backdoor Trojans that estab-
lish a connection to a remote host on port 81 and allow a mali-
cious user to access the infected machine. It periodically sends
the hosts status information and requests new commands.

e Blackenergy: A DDoS bot that communicates through HTTP re-
quests. Blackenergy’s current version 2 increased detection coun-
termeasures, such as strong encryption and polymorphism.

e Dedler: A classical spambot that evolved through different ver-
sions from a simple worm that spreads through open fileshares
to an advanced Trojan/spambot system. Whereas initial versions
appeared already in 2004, recent versions are still prevalent and
active and in the traffic traces analyzed, massive spam output was
observed.

e Pushdo (also known as Pandex or Cutwail): An advanced DDoS
and spamming botnet that is active and continuously evolving in
the wild since January 2007.

e Sasfis: A Trojan horse that spreads via spam and allows the re-
mote control of compromised machines. Following typical bot
behavior, the C&C channel is used to transfer new commands or
download additional malware to the computer.

Table 1 shows the detailed distribution of malware samples and
associated malware traces. The “Cluster Quality” column reflects

*http://www.virtualbox.org

353

the quality rating function’s results. A high value implies close
clusters (low standard deviation) and indicates that our core as-
sumption holds: Different binaries of the same malware family
produce similar C&C traffic, and this traffic can be effectively de-
scribed using clustering techniques. However, as aforementioned,
a low average cluster quality does not necessarily reflect ineffective
capture of a malware’s behavior. For example, the largest clusters
for each feature in the Pushdo model have a high quality > 0.9.
However, many small clusters with low qualities reduce the over-
all cluster quality. Still the large, high quality clusters give a good
representation of the Pushdo behavior. For Bifrose, the clusters are
in general more diverse due to higher variances in the traces gen-
erated by the malware binaries and the model has to be considered
weaker than for the other bot families. For the clustering we used
the default values as described in Chang et al. [4] and obtained on
average 3.14 (median 3) clusters per feature for each family.

S. EVALUATION

To evaluate BOTFINDER, we performed a number of experi-
ments on two real-world datasets (see Table 2 for a summary): The
first dataset, LabCapture, is a full packet capture of 2.5 months of
traffic of a security lab with approximately 80 lab machines. Ac-
cording to the lab policy, no malware-related experiments should
have been executed in this environment, and the LabCapture should
consist of only benign traffic. As we have the full traffic capture,
we are also able to manually verify reported infections. The sec-
ond dataset, ISPNetFlow, covers 37 days of NetFlow data collected
from a large network. The captured data reflects around 540 Ter-
abytes of data or 170 Megabytes per second of traffic. We are aware
that we do not have ground truth for the second network dataset, as
we lack the underlying, full traffic capture that would be required
for full content inspection. Nevertheless, we can compare our iden-
tified hits to known malware IP blacklists, identify clusters of in-
fected machines, and judge the usability of our approach for the
daily operation of large networks.

After developing a prototype implementation, we performed the
following experiments (for a detailed description please refer to the
respective subsections):

e A cross-validation experiment based on our ground truth training
data and the LabCapture dataset: In short, the training data is split
into a training set and a detection set. The latter is then mixed
with all traces from the LabCapture data that should not contain
bot traces. After BOTFINDER has learned the bots’ behavior on
the training set, we analyzed the detection ratio and false positives
in the dataset that contained both the remaining known malicious
traces and the LabCapture data. [Section 5.2]

e Comparison to related work: In our case, the most relevant related
work is the well-known, packet-inspection-based system BotH-
unter [17]. We performed all experiments on a set of a fraction
of ground truth C&C traces mixed with the LabCapture dataset.
[Section 5.3]

e [SPNetFlow analysis: We trained BOTFINDER on all training
traces and ran it on the ISPNetFlow dataset in daily slices. We
investigated the identified malicious traces and compared it to
blacklisted malicious C&C server IPs.

[Section 5.4]

5.1 Implementation and Performance

We implemented BOTFINDER in Python. For flow reassembly
from full packet data captures, we utilized the intrusion detection
system Bro [25]. Our implementation also operates on FlowTools*-

‘http://www.splintered.net/sw/flow-tools/.

Table 2: Evaluation Datasets

Name Traffic Internal | Concurrently Start Length | Connections | Long
Hosts Active Time Traces
LabCapture | ~ 3.6 TB ~80 ~60 2011-05-04 | 84 days | ~ 64.3-10° | ~ 39k
ISPNetFlow | =~ 540 TB | ~IM ~250k 2011-05-28 | 37 days | ~ 2.5-10'° | ~ 30M
4
1 1
~+Detection 0.9
0.9 -=False Positives (log)
0,1 0.8
0,8
) 0.7
© 0.7 oo1 3 2 o
o g |
505 0001 < S 0.5
304 § % 0.4
J9) = =
a 0.3 0,0001 2 03
o
(0]
0.2 0,00001 8 b2
0,1 w 0.1
0 0,000001 0
0 0,5 1 1,5 2 2,5 3 0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Acceptance Threshold

(@)

False Positives (Log. Scale)

(b)

Figure 3: Detection rate and false positives of BOTFINDER in cross validation experiments.

compressed NetFlow data. BOTFINDER is able to process network
information, even for high-speed Gigabit networks, in real time.
In our setup, we used a lab machine equipped with an Intel Core
i7 CPU with eight cores and 12GB of RAM. Using this setup, we
were able to process half a billion NetFlow records or ~ 33 GB of
stored NetFlows, which reflected approximately one day of traffic
in the ISPNetFlow dataset network, in about three hours.

As the feature extraction for a given trace 74 does not depend
on any features of another trace 7z, we were able to distribute the
computational load of statistical analysis. Our implementation sup-
ports remote machines that receive traces to analyze, and reply with
the aggregated features for these traces. On the worker site, these
thin clients use Python’s multiprocessing library to fully utilize all
cores, especially for the FFT sampling and calculations, which we
performed in the statistical computing environment R [28]. During
our analysis of the large ISPNetFlow dataset, we used eight remote
workers from our cluster (48 cores in total) for data processing and
the aforementioned lab machine for data reading and analysis.

As our system allows an arbitrary number of worker CPUs, the
primary bottleneck is reading and writing back to disk. Roughly,
BOTFINDER requires 1.2 seconds to read 100, 000 lines of Flow-
Tools compressed NetFlow and 0.8 seconds to read 100, 000 lines
of Bro IP flow output. Each line represents a connection dataset. If
a full packet traffic capture is analyzed, it is necessary to add the
processing time for Bro to pre-process the output and create the IP
flow file. Please note that all data handling and most of the pro-
cessing is performed directly in Python; a native fast programming
language can be expected to boost the processing performance sig-
nificantly.

We used pyflowtools http://code.google.com/p/
pyflowtools/ for handling FlowTools files in Python.

354

5.2 Cross-Validation

To determine the detection capabilities of BOTFINDER we per-
formed a cross-validation experiment based on our labeled ground
truth training data and the LabCapture dataset. Both datasets were
collected in the same network environment to ensure similarly ca-
pable connectivity settings. For each varying acceptance threshold
a, we performed 50 independent cross-validation runs as follows:

1: We split our ground truth malware dataset (from Table 1)
into a training set W (70% of the traces) and a detection set
D (the remaining 30%).

2: We mixed D with the traces from the LabCapture dataset and
assumed the LabCapture dataset to be completely infection-
free, and therefore a reasonable dataset to derive the false
positive ratio of BOTFINDER.

3: Further, we trained BOTFINDER and created models on the
bot behavior exhibited in the traces in WW.

Finally, we applied these models to the mixed set combined
from D and the LabCapture dataset.

The analysis is performed on a per-sample level, as we have the
information of which malware binary generated a specific trace.
More precisely, if one trace of a sample is correctly identified by a
trace match, we count the entire sample as correctly identified; if
a trace of a given malware is classified as a different malware, we
consider this match as a false positive.

Figure 3 shows the detection rates for a € [0,3] and h = 3.
Very low acceptance thresholds yield high detection rates of above
90%, but with high false positives. For example, the false positive
rate was greater than 1% for a < 0.6. As can be seen in Figure
3(a), the false positive rate decreases exponentially (near linear in

0,4
0,35
0,3

0,25
02 = Time
Duration
0,15 = SrcBytes
m DstBytes
0.1 FFT
0,05
0 |
$ @

Normalized Contribution to Detection

> 2 5 o @
F ¥ & O q)
J
&
2

Figure 4: Normalized contribution of the different features to-
ward a successful detection.

logarithmic scaling) whereas the detection rate decreases roughly
linearly. This yields to a good threshold of a € [1.7,2.0] — com-
pare the lower left corner of Figure 3(b) — with good detection rates
and reasonably low false positives. For an acceptance threshold of
a = 1.8 we achieve 77% detection rate with 5 - 10~° false posi-
tives. For this parameter, Table 3 shows the detection rates of the
individual malware families, averaged over the 50 cross-validation
runs. Here, all Banbra samples and ~ 85% of the Blackenergy,
Pushdo and Sasfis samples were detected. The only false positives
were raised by Blackenergy (2) and Sasfis (1).

As one can see, detection rates vary highly for different bot fam-
ilies. For example, the Banbra samples all show highly periodic
behavior and are very similar, which allows for good clustering
quality, and, as a consequence, 100% detection rate. Blackenergy
has relatively weak clusters (high standard deviation) but is still
producing a roughly similar behavior. Unfortunately, the “broader”
clusters lead to a higher false positive rate. Bifrose has the low-
est detection rate among the malware families analyzed, which is a
result of highly diverse — and therefore low quality — clusters as de-
scribed in Section 4. Additionally, the quality of the Bifrose traces
themselves is lower than for other bot families due to some strong,
non-periodic behavior.

Another interesting experiment is the more realistic analysis of
the LabCapture dataset in daily intervals, similar to a system ad-
ministrator checking the network daily. More precisely, the traf-
fic captures are split into separate files spanning one day each and
analyzed in slices via BOTFINDER. Overall, 14 false positives —
12 Blackenergy and 2 Pushdo — were observed over the whole 2.5
month time span.

5.2.1 Contribution of Features toward Detection

To asses the quality of BOTFINDER’s detection algorithm and
the weighting of the different features toward a successful detec-
tion, we extracted the normalized contribution of each feature to
Ym. Figure 4 shows the averaged contribution of each feature to
successful trace-to-malware identification.

Interestingly, we found fundamentally different distributions for
the bots under investigation: Whereas the bot families of Banbra
and Sasfis are equally periodic — and thereby well detectable — in

355

Table 3: Detection rate and false positive results of BOTFINDER
(acceptance threshold a=1.8) in the cross-validation experiment
and compared to BotHunter.

Malware BOTFINDER BOTFINDER BotHunter
Family Detection False Positives | Detection
Banbra 100% 0 24%
Bifrose 49% 0 0%
Blackenergy 85% 2 21%
Dedler 63% 0 n/a
Pushdo 81% 0 11%
Sasfis 87% 1 0%
45
40
@ 35
S 30
[&]
Q 25
£
< 20
£
s 15
& 10
5
0
1 6 " 16 21 26 31 36

Day

Figure 5: On average, BOTFINDER reported 15 infections per
day.

each dimension, the remaining bots show significant discrepancies
between the features. For Pushdo, the duration and the FFT is of
lower significance for detection, which is primarily based on the
average time interval and the number of bytes transmitted on av-
erage. The feature of destination bytes is of low importance for
the remaining three bot families Bifrose, Blackenergy and Dedler,
whereby Bifrose does not benefit from the feature at all. However,
the source byte destination — the request toward the C&C server —
highly contributes toward detection.

Of special interest is the impact of the Fast Fourier Transform,
especially considering that the FFT accounts for the vast majority
of the overall computational complexity of BOTFINDER. For all
malware families except Dedler and Pushdo, the FFT is the most
significant feature to detect a malware infection in the network traf-
fic. Hereby, Bifrose is of special interest, as the average time fea-
ture contributes only minimally toward detection whereas the FFT
contributes most. This indicates a much better quality and period-
icity of underlying frequencies compared to the simple averaging
— an indication that is verified under inspection of the underlying
models which cluster significantly better for the FFT frequencies.

For the averaged contribution over all malware families (the right-
most bars in Figure 4), a relatively balanced contribution is ob-
served. Still, the FFT and the source bytes dimension contribute
slightly more toward successful detection than, e.g., the average
duration or the destination bytes. Considering the mode of opera-
tion of typical bots, this outcome fits the concept of bots sending
similar requests to the C&C and receive answers of changing size.
Additionally, the superiority of underlying FFT frequencies over
simple averages for the flow interval times can be seen.

.

M~~~

Sasfis

NN

Pushdo

Dedler

Blackenergy

Bifrose |
N Blacklist Confirmed
Banbra = Reported Infection
0 50 100 150 200 250 300

Figure 6: Reported infections by malware family. 56% of the
reported malware traces had a destination IP to a know mali-
cious, blacklisted host.

5.3 Comparison with BotHunter

Although BOTFINDER is content-agnostic, we compare our sys-
tem to the well-known packet inspecting bot detection system BotH-
unter since — to the best of our knowledge — no other system al-
lows individual bot detection in a content-agnostic manner. BotH-
unter [17] is a sophisticated bot detection system that relies on a
substantially-modified Snort® intrusion detection system for flow
identification combined with anomaly detection. It leverages de-
tection mechanisms on the whole infection and malware execution
lifecycle: Port scanning activities and dangerous binary transfers
(e.g., encoded or encrypted HTTP POSTs or shell code) are used
to detect the first step of the infection process. Malware downloads
(“egg downloads™) and, eventually, structural information regard-
ing the command and control server plus IP blacklisting of multiple
list providers are used to identify infected hosts. The later released
BotMiner [16] adds horizontal correlation between multiple hosts,
which is not in scope of this paper. Furthermore, BotHunter is
made publicly available® by the authors.

We ran version 1.6.0 of BotHunter on full traffic dumps of our
training samples and the LabCapture dataset. We installed the sys-
tem strictly following the User Guide’ and configured it for batch
processing. We chose this BotHunter version as its release time fits
the time of execution of our LabCapture traffic capture and approx-
imates the execution time of our malware samples. As can be seen
in Table 3, very few alarms were raised by BotHunter for the train-
ing samples. The detection rate varies between 0 and 24 percent
for the different families, and we observed a high dependency on
IP blacklisting for successful detection. Note that BotHunter had
access to the full payload for the experiments, while BOTFINDER
only operates on flows.

The low detection rates of BotHunter are — to the best of our
understanding — a result of the different detection approaches and
the weighting that BotHunter assigns to its various detection steps.
BotHunter uses an algorithm that classifies network communica-
tion events as potential dialog steps in a malware infection process.
It then correlates the observed network dialog events and compares
the result to an abstract malware infection lifecycle model. Hereby,
BotHunter works on a large number of dialog classes such as scan-
ning, inbound attacks like web hijack attempts, DNS lookups of

Shttp://www.snort.org
*http://www.bothunter.org/
"http://www.bothunter.net/OnlinePDF.html

356

the client to known C&C sites, egg downloads, connections to a
monitored Russian Business Network site, outbound attacks and
scans, P2P coordination, and outbound connections to known mal-
ware sites. As we injected the malware communication into the
LabCapture dataset, our experimental setup does not reproduce the
complete malware infection lifecycle. In particular, the victim host
infection and the binary download was not observable by BotH-
unter. However, these steps seem to significantly contribute to raise
the score above BotHunter’s predefined alarm threshold (and, since
they are missing, cause BotHunter to miss the malicious traffic).
This finding is consistent with the following analysis on the mixed
dataset.

Regarding the test with BotHunter on the malware traces mixed
with the LabCapture dataset, we received alarms for 41 distinct IP
addresses. For four IP addresses with a significant peak of alarms,
we could actually confirm a bot infection, as researchers executed
malware in a bridged VM. As BOTFINDER was not trained for the
specific bot family that the researcher was working on, it is not
surprising that BOTFINDER missed this infection. For most IP ad-
dresses (37), we were unable to confirm an actual infection. Of-
ten, the connections were made to IRC servers (BitCoin trades) or
raised because of the high NXDOMALIN activity of the University’s
core router. In another instance, BotHunter identified the download
of an Ubuntu Natty ISO as an exploit (Windows Packed Executable
and egg download). This shows that the number of false positives
is significantly higher than those raised by our system on the same
traffic.

5.4 1ISPNetFlow Analysis

The ISPNetFlow dataset is the most challenging dataset to an-
alyze, as we do not have much information about the associated
network. We trained BOTFINDER with all available training mal-
ware traces and applied BOTFINDER to the dataset.

Overall, BOTFINDER labeled 542 traces as evidence of bot infec-
tions, which corresponds to an average of 14.6 alerts per day. This
number of events can be easily handled by a system administra-
tor, manually during daily operations or by triggering an automated
user notification about potential problems. Figure 5 shows the evo-
lution of infections over the analysis time frame, which varies from
days with no infections at all to days with a maximum of 40 re-
ported infections. Figure 6 illustrates the total number of reported
incidents per bot. Pushdo and Dedler are dominating the detected
infections with 268 and 214 reports, respectively, followed by Sas-
fis with 14 and Blackenergy with 12. Bifrose was found only once
in the traffic.

We investigated the IP addresses involved in suspicious connec-
tions to judge the detection quality of BOTFINDER. We received
the internal IP ranges from the ISPNetFlow system administrators
and were able to split the set of all involved IPs into internal and
external IP addresses. Only two out of the 542 traces had their
source and destination IP addresses both inside the network. This
indicates that our system is not generating many — most probably
false — indications of internal infections where both the bot and the
C&C server are inside the observed network. We compared the
remaining 540 external IP addresses to a number of publicly avail-
able blacklists® and had a positive match for 302 IPs or 56%. This
result strongly supports our hypothesis that BOTFINDER is able to
identify real malware infections with a relatively low number of
false positives.

Whereas the 302 blacklist-confirmed IP addresses do not strongly

8The RBLS http://rbls.org/ service allows to analyze a
large number of blacklists using a single query. We ignored "RFC-
ignorant” listings.

Table 4: Top-5 aggregated clusters of non-blacklisted destina-
tion IP addresses in the ISPNetFlow dataset.

Size Service or Organization
46 Apple Inc.
21 | A company that offers web services and dedicated servers

A Russian BitTorrent tracker
A company that offers dedicated servers
NTT / Akamai

[Be N |

cluster to specific networks, the 238 non-confirmed IP addresses
show multiple large clusters and in total, 85 IPs contribute to the
Top-5 destination networks. Table 4 lists the companies or services
offered by the Top-5 found in the list of not blacklisted destina-
tion IP addresses. Overall, we found 46 destination IP addresses
to point to servers of the Apple Incorporation, which can be con-
sidered a false positive. Two services offer a variety of web ser-
vices and advertise dedicated web servers for rent. Although only
speculation, a possible cause might be malware authors that rent
dedicated servers. Paying by maliciously obtained payment infor-
mation allows botmasters access to C&C servers while hiding their
trails and evading law enforcement. However, this assumption is
unable to be verified in the scope of this paper. A company located
in the Seychelles offers a Russian BitTorrent tracker. No informa-
tion is available on the service offered at the final 5 destination IPs
which point to NTT / Akamai.

If we add Apple Inc. to the whitelist, effectively a rate of 61%
(302 of 496 destination IP addresses) matching blacklist-entries is
observed. Considering that various not blacklisted destination IP
addresses belong to rented dedicated servers or other web providers,
it is a reasonable assumption that a significant fraction of the 194
not blacklisted IP addresses actually belong to malicious servers.

5.5 Summary
In our evaluation we showed that BOTFINDER

has a detection rate around 80% for a parameter setting with low
false positives,

outperforms the content-inspection-based IDS BotHunter,
is able to operate on large datasets,

and identifies likely true positive connections to C&C hosts in the
ISPNetFlow dataset.

Overall, BOTFINDER proved that the malware families under in-
vestigation exhibit a behavior regular enough to allow high detec-
tion rates using network-statistics only.

6. BOT EVOLUTION

By detecting malware without relying on deep packet (content)
inspection — which is an inherently difficult task — BOTFINDER
raises the bar for malware authors and might trigger a new round of
bot evolution. In the following, we will introduce potential evasion
techniques that malware authors might try to thwart BOTFINDER,
and we discuss how we can handle these techniques.

6.1 Adding Randomness

We assume regularity in the communication between bots and
their C&C servers and showed that this assumption holds for the
bots under investigation. Nevertheless, malware authors might in-
tentionally modify the communication patterns of their bots to evade
detection, as suggested, for example, by Stinson et al. [31]. More
specifically, botnet authors could randomize the time between con-
nections from the bot to the C&C server or the number of bytes

357

that are exchanged. For the botmaster, this comes at the price
of loss of network agility and degraded information propagation
within the botnet. However, by using randomization techniques,
the malware author effectively decreases the quality of the trace
for BOTFINDER, which lowers the detection quality. Interestingly,
BOTFINDER already operates on highly fluctuating traces and is, as
our detection results show, robust against significant randomization
around the average. To further illustrate BOTFINDER’s resilience
against randomization, we analyzed the C&C trace detection rate
with (artificially) increasing randomization. A randomization of
50% means that we subtract or add up to 50% of the mean value.
For example, for an interval of 100 seconds and a randomization
rate of 20%, we obtain a new interval between 80 and 120 seconds.
Figure 7(a) shows the effect on the detection rate of BOTFINDER
with randomization on the time (impacting the “average time” and
the “FFT” feature), randomization of time and “duration,” and with
randomized “source bytes”, “destination bytes,” and ‘“duration”.
As can be seen, BOTFINDER’s detection rate drops slightly but
remains stable above 60% even when the randomization reaches
100%.

6.2 Introducing Larger Gaps

Malware authors might try to evade detection by adding longer
intervals of inactivity between C&C connections. In this case, the
Fast Fourier Transformation significantly increases BOTFINDER’s
detection capabilities: Due to its ability to separate different C&C
communication periodicities, the introduction of large gaps into the
trace (which impacts the average) does not significantly reduce the
FFT detection rate. For a randomization between 0 and 100 percent
of the base frequency, Figure 7(b) shows the fraction of FFTs that
detected the correct, underlying communication frequency. As can
be seen, the introduction of large, randomly distributed long gaps
does not significantly reduce the detection quality of the FFT-based
models.

6.3 High Fluctuation of C&C Servers

Malware programs might try to exploit the fact that BOTFINDER
requires collection of a certain, minimal amount of data for anal-
ysis. Now, if the C&C server IP addresses are changed very fre-
quently, BOTFINDER cannot build traces of minimal length |T|7nin
50. Currently, we do not observe such high C&C server fluc-
tuations (IP flux) in our collected malware data. Even a highly
domain-fluxing malware, such as Torpig (as analyzed in [32]) uses
two main communication intervals of 20 minutes (for upload of
stolen data) and 2 hours for updating server information. Still, Tor-
pig changes the C&C server domain in weekly intervals. Neverthe-
less, we already introduce a countermeasure (that might also help
with P2P botnets) by using elements of horizontal correlation. This
is an additional pre-processing step that operates before the full
feature extraction (Step 4 in Figure 1). The step constructs longer
traces from shorter traces (e.g, of length 20 to 49) that exhibit simi-
lar statistical features. Hereby, we again utilize the observation that
C&C communication exhibits higher regularity than other frequent
communication.

To decide whether to merge two sub-traces 74 and Tz, we use
two factors:

e We require that the standard deviation of the combined 7ap is
lower than the standard deviation of at least one of the individual
traces. Thereby, traces around a significantly different average
— even with relatively low fluctuations — do not match and are
automatically excluded.

We use a quality rating function analog to the model-matching
algorithm to rate each individual feature. If the sum over all

0.9 1

0.8 = 809
i o

07 |7 mw.w 8 0.8

06 Q07

o) =06
S 0.5 2

o 2 0.5
5 04 Q

g g 04

g 03 3 0.3
o ~Random Time c

002)) S 0.2
Random Time & Duration g

0.1 Random Bytes & Duration E 01

0 0

0 20 40 60 80 100 0 25

Randomization (in Percent)

(a) Randomization Impact

50
Randomization (in Percent)

(b) FFT Detection

~+No gaps

With 10% gaps 0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

~Real C&C Traces
Other Long Traces

Re-combination Rate

AV

75 100 0 0.5 1 1.5 2

Re-combination threshold t

25 3

(c) Pre-Processing

Figure 7: (a) depicts BOTFINDER’s detection rate with increasing randomization, (b) summarizes the degrading of the FFT peri-
odicity detection capability, and (c) depicts the re-combination ratio during the pre-processing step of real C&C and other, long

traces.

feature-qualities of the combined trace T4 g is above a threshold
t, we accept the trace recombination.
The lower the value of ¢ is, the more sub-trace combinations we
accept and the higher the additional workload for BOTFINDER is.
We applied the presented pre-processing step on real-world data
and investigated:
o The ability to re-assemble real C&C traces.
e The re-assembly difference between real C&C and other, long

traces.
The amount of additional traces that need to be analyzed by BOT-
FINDER and the implied additional workload.

e The false positive ratio of the newly generated traces.

The impact of the higher periodicity of C&C traffic can be clearly
seen in Figure 7(c), which illustrates the re-assembly rates of bi-
sected real C&C traces and of long non-C&C traces for different
acceptance thresholds ¢. For ¢ = 1.9, BOTFINDER re-assembled
91% of the real C&C traces and combined only 8% of non-C&C
long traces.

Further, when running on the 2.5 months of LabCapture data,
we (incorrectly) re-assembled only 3.4 million new traces. Using
the same detection threshold as in our evaluation (¢ = 1.8), this
does not introduce any new false positives. As we would typically
run pre-processing over shorter time frames — as it is a countermea-
sure against fast flux — even fewer new traces will be generated.
For example, in a ten day NetFlow traffic set, only 0.6% of the IP
addresses with more than one sub-trace generated additional traces.
Computing these traces increased the workload for BOTFINDER by
85% compared to normal operation. That is, with a modest increase
in overhead, BOTFINDER also covers cases where bots frequently
switch IP addresses.

6.4 P2P Bots

BOTFINDER might be able to detect P2P networks by concate-
nating the communication to different peers in one trace. Never-
theless, complementing BOTFINDER with elements from differ-
ent existing different approaches might be beneficial: BOTFINDER
could be expanded by a component that creates structural behav-
ior graphs, as proposed by Gu et al. [16, 17], or be complemented
by P2P net analysis techniques similar to BotTrack [12] or Bot-
Grep [24], which try to reveal members of a bot network by surveil-
lance of a single member of the network. Still, completely changing
to a P2P-based botnet also imposes significant challenges for the

358

botmaster. These include the ease of enumeration of all participat-
ing bots by every member in the botnet (for example, a honeypot-
caught bot under control of a security researcher as performed by
BotGrep, and the time to disseminate commands. Hence, most bot-
nets today use a centralized infrastructure.

6.5 Bot-like Benign Traffic

Although unlikely, benign communication might accidentally ex-
hibit a similar traffic pattern as a bot family. For example, a POP3
mail server might get queried in the same interval as a bot commu-
nicates with its C&C server, and the traffic sizes might accidentally
match. If these services operate on a static IP, a system adminis-
trator can easily exclude these false positives by whitelisting this
IP address. A local BOTFINDER installation should be configured
to ignore communication between hosts under the same local au-
thority. For popular web services with similar features, a generic
whitelisting is possible.

6.6 Discussion

BOTFINDER is able to learn new communication patterns dur-
ing training and is robust against the addition of randomized traffic
or large gaps. Furthermore, given the pre-processing step, even
changing the C&C server frequently is highly likely to be detected.
Nevertheless, BOTFINDER is completely reliant on statistical data
and regularities. If the attacker is willing to:
significantly randomize the bot’s communication pattern,
drastically increase the communication intervals to force BOT-
FINDER to capture traces over longer periods of time,

introduce overhead traffic for source and destination byte varia-
tion,

change the C&C server extremely frequently, e.g., after each tenth
communication,

use completely different traffic patterns after each C&C server
change, then

BOTFINDER’s detection fails as minimal or no statistical consis-
tency can be found anymore. On the contrary, a malware author
who implements such evasion techniques, has to trade the botnets
performance in order to evade BOTFINDER: Using randomization
and additional traffic increases the overhead and reduces synchro-
nization and the network-agility of the botnet. In particular, espe-
cially the frequent change of C&C servers is costly and requires
an increased amount of work and cost by the botmaster: Domains

need to be pre-registered and paid and new globally routeable IP
addresses must be obtained. Hereby, the bots need to know to
which C&C server to connect, so the new domains must either fol-
low a pre-defined and malware-hardcoded pattern — which allows
take-over attacks by security researchers such as in Stone-Gross et
al. [32] (with a weekly changing domain) — or lists of new C&C
servers need to be distributed to the members of the botnet. Both
ways increase the botnet operator’s costs and reduce stability and
performance of the malware network.

7. RELATED WORK

Research in network based bot detection can be classified into
two main directions: In vertical correlation the network traffic is
inspected for evidence of bot infections, such as scanning, spam-
ming or command and control communication. BotHunter [17], for
instance, applies a combination of signature and anomaly-based in-
trusion detection components to detect a typical infection lifecycle,
whereas Rishi [15] and Binkley et al. [3] examine and model IRC-
based network traffic for nickname patterns that are frequently used
by bots. Unfortunately, some of these techniques are tailored to a
specific botnet structure [3, 15], or rely on the presence of a specific
bot-infection lifecycle [17]. Moreover, most techniques rely on the
presence of noisy behavior such as scans, spam, or DoS attack traf-
fic. Wurzinger et al. [36] and Perdisci et al. [27] automatically gen-
erate signatures that represent the behavior of an infected host. The
key point in these strategies is that bots receive commands from the
bot master and then respond in specific ways that allow signature
generation.

Although these approaches are shown to achieve a very high de-
tection rate and a limited false positives ratio, they require inspect-
ing packet content and can thus be circumvented by encrypting the
C&C communication. Giroire et al. [14] presented an approach
which is similar to BOTFINDER in this aspect as both focus on
temporal relationships. However, our system differs fundamen-
tally in the way malware detection is performed. In particular,
Giroire’s work is based on the concept of destination atoms and
persistence. Destination atoms group together communication to-
ward a common service or web-address, whereas the persistence
is a multi-granular measure of destination atoms’ temporal regu-
larity. The main idea is to observe the per-host initiated connec-
tions for a certain (training) period and group them into destina-
tion atoms. Subsequently, very persistent destination atoms form
a host’s whitelist, which will be compared against the very persis-
tent destination atoms found once the training session ends. Thus,
very persistent destination atoms will be flagged as anomalous and
potentially identify a C&C host.

The second direction is the horizontal correlation of network
events from two or more hosts, which are involved in similar, ma-
licious communication. Interesting approaches are represented by
BotSniffer [18], BotMiner [16], TAMD [37], and the work by Strayer
et al. [33]. Except the latter, which works on IRC analysis, the main
strength of these systems is their independence of the underlying
botnet structure, and thus, they have shown to be effective in detect-
ing pull-, push-, and P2P-based botnets. By contrast, correlating
actions performed by different hosts requires that at least two hosts
in the monitored network are infected by the same bot. As a con-
sequence, these techniques cannot detect single bot-infected hosts.
In addition, the detection mechanisms require that some noisy be-
havior is observed [16]. Unfortunately, low-pace, non-noisy, and
profit-driven behavior [11, 19] is increasing in bots as witnessed in
the past few years [32].

Another way to detect P2P botnets is shown by BotGrep [24],
BotTrack [12], and Coskun et al. [7] “Friends of An Enemy” (FoE),

359

which leverage the underlying communication infrastructure in the
P2P overlay. Whereas BotGrep uses specifics of the DHT inter-
actions, BotTrack operates on NetFlows only and is comparable
to BOTFINDER in this aspect. For FoE [7], mutual communica-
tion graphs are calculated based on mutual communication without
packet content inspection. However, all systems need to be boot-
strapped with the botnet under investigation, typically by utilizing
a participating active malware sample in a honeypot. Connections
of this bot under surveillance reveal other members of the network.
This requirement of an active source in the honeypot is a significant
drawback. Nevertheless, concepts from these solutions might com-
plement BOTFINDER to allow detection of P2P based bots during
NetFlow analysis as well.

8. FUTURE WORK

BOTFINDER can be seen as a bot detection framework that al-
lows improvement on multiple layers. Potential future optimiza-
tions, for example, cover:

1: The sandboxed training environment can be improved to bet-
ter circumvent malware authors to probe for virtual machine
settings and react by stopping all activity.

A separate problem — of the general anti malware research
community — is the classification of malware to families.
Currently we rely on Anubis signatures and VirusTotal labels
which yield sufficiently good results — especially because we
drop small clusters in the model building process and thereby
rely only on more persistent features among multiple binary
malware samples. However, more accurate classifiers will
definitely benefit our system.

We would also like to experiment with unsupervised learning
approaches in the training phase. Hereby, a machine learn-
ing algorithm might be able to select the ideal features that
describe a given malware family best and weight the features
correspondingly for the detection phase.

The malware detection might be improved by more sophisti-
cated features that do not exploit periodicity alone but peri-
odicity of communication sequences learned in the training
phase, such as recurring three times a 20 minutes interval
followed by a longer gap of 2 hours.

A substantial advantage is the fact that many improvements can
be performed on the training side alone, which makes changes to
any deployed BOTFINDER scanning installation unnecessary.

9. CONCLUSION

We presented BOTFINDER, a novel malware detection system
that is based on statistical network flow analysis. After a fully-
automated, non-supervised training phase on known bot families,
BOTFINDER creates models based on the clustered statistical fea-
tures of command and control communication. We showed that the
general assumption of C&C communication being periodic holds
and that BOTFINDER is able to detect malware infections with high
detection rates of nearly 80% via traffic pattern analysis. A signifi-
cant novelty is BOTFINDER'’s ability to detect malware without the
need of IP blacklisting or deep packet inspection. BOTFINDER is
therefore able to operate on fully-encrypted traffic, raising the bar
for malware authors.

10. ACKNOWLEDGEMENTS

We gracefully acknowledge the help of Bryce Boe throughout
the project. This work was supported by the Office of Naval Re-
search (ONR) under Grant N000140911042, the Army Research
Office (ARO) under grant W911NF0910553, and the National Sci-

ence Foundation (NSF) under grants CNS-0845559 and CNS-0905537.

11. REFERENCES

[1] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and
E. Kirda. Scalable, Behavior-Based Malware Clustering. In
NDSS, 2009.

[2] U. Bayer, C. Kruegel, and E. Kirda. Anubis: Analyzing
Unknown Binaries. In http://anubis.iseclab.org/, 2008.

[3] J. R. Binkley. An algorithm for anomaly-based botnet
detection. In SRUTI, 2006.

[4] F. Chang, W. Qiu, R. H. Zamar, R. Lazarus, and X. Wang.

clues: An R Package for Nonparametric Clustering Based on

Local Shrinking. Journal of Statistical Software, 33(4):1-16,

2 2010.

B. Claise. Cisco systems netflow services export version 9.

RFC 3954, IETF, Oct. 2004.

E. Cooke, F. Jahanian, and D. McPherson. The Zombie

roundup: understanding, detecting, and disrupting botnets. In

SRUTI, 2005.

B. Coskun, S. Dietrich, and N. Memon. Friends of An

Enemy: Identifying Local Members of Peer-to-Peer Botnets

Using Mutual Contacts. In ACSAC, 2010.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:

malware analysis via hardware virtualization extensions. In

ACM CCS, 2008.

P. Fogla and W. Lee. Evading network anomaly detection

systems: formal reasoning and practical techniques. In ACM

CCS, 2006.

P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee.

Polymorphic blending attacks. In USENIX Security, 2006.

[11] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An Inquiry

into the Nature and Causes of the Wealth of Internet

Miscreants. In ACM CCS, 2007.

J. Franifjois, S. Wang, R. State, and T. Engel. Bottrack:

Tracking botnets using netflow and pagerank. In IFIP

Networking. 2011.

F. Freiling, T. Holz, and G. Wicherski. Botnet tracking:

Exploring a root-cause methodology to prevent distributed

denial-of-service attacks. In ESORICS, 2005.

F. Giroire, J. Chandrashekar, N. Taft, E. M. Schooler, and

D. Papagiannaki. Exploiting Temporal Persistence to Detect

Covert Botnet Channels. In RAID, 2009.

J. Goebel and T. Holz. Rishi: Identify Bot Contaminated

Hosts by IRC Nickname Evaluation. In USENIX HotBots,

2007.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:

Clustering Analysis of Network Traffic for Protocol- and

Structure-Independent Botnet Detection. In USENIX

Security, 2008.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.

BotHunter: Detecting Malware Infection Through

IDS-Driven Dialog Correlation. In USENIX Security, 2007.

[18] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet

(5]

(6]

(7]

(8]

(9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

360

Command and Control Channels in Network Traffic. In
NDSS, 2008.

[19] P. Gutmann. The Commercial Malware Industry. In
Proceedings of the DEFCON conference, 2007.

[20] J. A. Hartigan and M. A. Wong. A k-means clustering
algorithm. JSTOR: Applied Statistics, 28(1), 1979.

[21] G. Jacob, R. Hund, C. Kruegel, and T. Holz. Jackstraws:
Picking Command and Control Connections from Bot
Traffic. USENIX Security, 2011.

[22] L. Kaufman and P. Rousseeuw. Finding Groups in Data An
Introduction to Cluster Analysis. Wiley Interscience, New
York, 1990.

[23] S. Kundu. Gravitational clustering: a new approach based on
the spatial distribution of the points. Pattern Recognition,
32(7):1149 — 1160, 1999.

[24] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and
N. Borisov. Botgrep: finding p2p bots with structured graph
analysis. In USENIX Security, 2010.

[25] V. Paxson. Bro: a System for Detecting Network Intruders in
Real-Time. Computer Networks, 31(23-24):2435-2463,
1999.

[26] R. Perdisci, D. Dagon, P. Fogla, and M. Sharif. Misleading
worm signature generators using deliberate noise injection.
In IEEE S&P, 2006.

[27] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering

of http-based malware and signature generation using

malicious network traces. In USENIX NSDI, 2010.

R Development Core Team. R: A Language and Environment

for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria, 2010.

M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A

Multifaceted Approach to Understanding the Botnet

Phenomenon. In ACM IMC, 2006.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.

BitBlaze: A New Approach to Computer Security via Binary

Analysis. In ICISS. 2008.

E. Stinson and J. C. Mitchell. Towards systematic evaluation

of the evadability of bot/botnet detection methods. In

USENIX WOOT, 2008.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,

M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna.

Your Botnet is My Botnet: Analysis of a Botnet Takeover. In

ACM CCS, 2009.

W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley.

Detecting botnets with tight command and control. In

Proceedings of the 31st IEEE Conference on Local

Computer Networks, pages 195-202, 2006.

X. Wang, W. Qiu, and R. H. Zamar. Clues: A non-parametric

clustering method based on local shrinking. Computational

Statistics and Data Analysis, 52(1):286 — 298, 2007.

[35] C. Willems, T. Holz, and F. Freiling. Toward Automated
Dynamic Malware Analysis Using CWSandbox. IEEE S&P,
2007.

[36] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and
E. Kirda. Automatically Generating Models for Botnet
Detection. In ESORICS, 2009.

[37] T.-F. Yen and M. K. Reiter. Traffic Aggregation for Malware
Detection. In DIMVA, 2008.

(28]

[29]

[30]

(31]

(32]

(33]

[34]

