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ABSTRACT

Recent malicious attempts are intended to obtain financial benefits
using a botnet which has become one of the major Internet security
problems. Botnets can cause severe Internet threats such as DDoS
attacks, identity theft, spamming, click fraud. In this paper, we de-
fine a group activity as an inherent property of the botnet. Based
on the group activity model and metric, we develop a botnet detec-
tion mechanism, called BotGAD (Botnet Group Activity Detector).
BotGAD enables to detect unknown botnets from large scale net-
works in real-time. Botnets frequently use DNS to rally infected
hosts, launch attacks and update their codes. We implemented Bot-
GAD using DNS traffic and showed the effectiveness by experi-
ments on real-life network traces. BotGAD captured 20 unknown
and 10 known botnets from two day campus network traces.

1. INTRODUCTION

A Botnet is a network of compromised machines controlled by
an attacker to carry out online criminal activities including identity
theft, e-mail spam, click fraud and DDoS attack. All of these in-
fected PCs are unwilling victims, doing malicious tasks unbeknown
to their owners. Numerous automated botnet detection studies have
been proposed. Even the studies are helpful, they have difficulties
which fall into three categories.

1. Botnet traffic is hard to detect because it is similar to normal
traffic. What is worse, it may contain encrypted commu-
nication. Since many detection approaches need to analyze
contents of botnet traffic (e.g., signature matching to capture
IRC [24] traffic), they fail to detect the botnet.

2. Botnets evolve quickly as more users fail to protect their
computers, helping the attackers evade existing protection
mechanisms. For example, hackers adopt rootkit and pack-
ing techniques as a means for circumventing anti-virus soft-
wares. Hackers also use fast-flux hosting [15] to hide origins
of their botnets and stay active for longer.

3. Even botnet detections method can capture botnets which use
the evasion techniques, most usually need huge amount of
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data which cannot be analyzed in real-time. For example, if
a detection method requires whole TCP/UDP traffic, it may
not be practical to detect botnet in a large scale of network.

We find a common property of botnets, called group activity.
Most botnets, irrespective of type and protocol, act as a group.
Bots receive/send control traffic, download new codes, migrate the
communication channel, and perform malicious behaviors. Most
of these behaviors can be regarded as the group activity.

We define a group activity as a key feature of botnets and pro-
vide a metric to measure the feature. Using the feature, we develop
a botnet detection mechanism, BotGAD. BotGAD focuses on the
behavior property of the botnet, not their traffic content or signa-
ture. Therefore, BotGAD is robust against the channel encryption
technique. We evaluate BotGAD with network traffic data includ-
ing real-world botnet traces as well as normal traces. BotGAD can
detect botnets in large scale networks efficiently, since it works in
real-time with a small amount of data.

We developed a primitive botnet detection algorithm in our pre-
vious work [3]. In this study, unlike our previous work, we devise a
generic metric model to measure group activities. We also analyze
related parameters using a stochastic method to improve the detec-
tion algorithm in respect of detection accuracy and false positive
rates. In addition, we demonstrate a feasibility of BotGAD with
real-life network traces.

The rest of this paper is organized as follows. Section 2 reviews
related works. We describe a botnet group activity and a BotGAD
framework in Section 3. We develop group activity model, ob-
served from different stages of the botnet life cycle and propose a
metric to detect the group activity. In Section 4, we introduce DNS-
based BotGAD as a case study to verify the research effectiveness.
Evaluation results and meaningful analysis are discussed as well.
We also illustrate possible evasion techniques.

2. RELATED WORK

In spite of botnet’s relatively long presence in the Internet, few
botnet detection researches have been proposed. In this section, we
review several network based approaches among the researches.

Dagon presents a botnet detection and response approach [6]. It
measures canonical DNS request rate and DNS density comparison
of botnet rallying DNS traffic. However, the approach is inefficient
since it generates many false alarms.

Jones [18] describes the botnet background. He made recom-
mendations so that network and system security administrators can
recognize and defend against botnet activity.

Cooke et al. [4] outline the origins and structure of botnets. They
study the effectiveness of detecting botnets by directly monitoring
IRC communication or other command and control activity.

Barford et al. [1] present an in-depth analysis of bot software



source code. They reveal the complexity of botnet software, and
discuss implications for defense strategies based on the analysis.

BotTracer [21] detects three phases of botnets with the assistance
of virtual machine techniques. Three phases include the automatic
startup of a bot without requiring any user actions, a command and
control channel establish with its botmaster, and local or remote
attacks.

Binkley et al. [2] propose an anomaly-based algorithm for de-
tecting IRC-based botnet meshes. Using an algorithm, which com-
bines an IRC mesh detection component with a TCP scan detection,
they can detect IRC botnet channel with high work weight hosts.

Ramachandran et al. [25] develop techniques and heuristics for
detecting DNSBL reconnaissance activity, whereby botmasters per-
form lookups against the DNSBL to determine whether their spam-
ming bots have been blacklisted. This approach is derived from an
idea that detects DNSBL reconnaissance activity of the botmaster
but it is easy to design evasion strategies.

Husna et al. [17] investigate the behavior patterns of spammers
based on their underlying similarities in spamming. Principal Com-
ponent Analysis (PCA) is set to identify the features which account
for the maximum variance in the spamming patterns. They calcu-
late the proximity between different spammers and classify them
into various groups which represent similar proximity.

Zhuang et al. [31] develop techniques to map botnet membership
using traces of spam email. To group bots into botnets they look for
multiple bots participating in the same spam email campaign. They
apply the technique against a trace of spam email from Hotmail
web mail services.

Karasaridis et al. [19] propose an approach using IDS-driven di-
alog correlation according to a defined bot infection dialog model.
They combine heuristics that assume the network flow of IRC com-
munication, scanning behavior, and known models of botnet com-
munication for backbone networks.

Rishi [9] uses the similarity of nicknames to detect botnet chan-
nels.

BotHunter [12] models the botnet infection life cycle as sharing
common steps: target scanning, infection exploit, binary download
and execution, command-and-control channel establishment, and
outbound scanning. It then detects botnets employing IDS-driven
dialog correlation according to the bot infection life-cycle model.
Malwares not conforming to this model would seemingly go unde-
tected.

BotSniffer [13] is designed to detect botnets using either IRC or
HTTP protocols. BotSniffer uses a detection method referred to
as spatial-temporal correlation. It relies on the assumption that all
botnets, unlike humans, tend to communicate in a highly synchro-
nized fashion. BotSniffer has a similar concept with BotGAD in
respect of capturing the synchronized botnet communication. Dif-
ferent from BotGAD, BotSniffer performs string matching to detect
similar responses from botnets. Botnet can encrypt their communi-
cation traffic or inject random noise packets to evade.

BotMiner [11] presents a botnet detection method which clus-
ters botnet’s communication traffic and activity traffic. Commu-
nication traffic flow contains all of the flows over a given epoch
including flows per hour (fph), packets per flow (ppf), bytes per
packet (bpp), and bytes per second (bps). The activity traffic iden-
tifies hosts which are scanning, spamming, and downloading any
Portable Executable binary. Clustering algorithms are applied and
performed cross-plane correlation to detect botnets.

As we mentioned above, several network-based approaches have
been proposed to detect the botnets. Even though they are useful,
they may suffer from several tactics to evade the detection methods.
Stinson et al. [26] propose a systematic framework for evaluating

an evadability of a detection method to assess the fitness of a detec-
tion method. We discuss possible evasion tactics of our mechanism
in respect of implementation complexity and effects on a botnet
utility in Section 4.3.

3. GROUP ACTIVITY OF BOTNET AND DE-
TECTION SCHEME

3.1 Botnet Group Activity

An inherent property of the botnet, we define a group activity.
If bots act as independent hosts, the botnet becomes meaningless
from the definition of the botnet. Figure 1 shows an example of
group activity from a centralized botnet architecture. We desire

L]
= Tar_get
[ ——\ = (Object)

DNS Ser ver C& C Server

++++++++++++++++++++ SIS

Group
Activity

Botnet
(Group)

Figure 1: Group activity of centralized botnet

the group activity representation to be generic and intuitive so that
models can be understood and explained. Suppose that we monitor
incoming and outgoing traffic at a network gateway. Then, two
cases of group activities will be observed.

e (Qutgoing group activity: clients in a network construct an
internal group and the group performs an activity to a remote
target.

e [ncoming group activity: clients out of a network construct
an external group and the group performs an activity to a
target in the network.

Let ¢; and t. denote an internal target and an external target, re-
spectively. Then, an internal and an external group (G;, G¢) which
perform activity a to external/internal target within a time window
wy, represented as follows.

Gi = {a7 tﬁ: w”}

Ge = {CL, ti, wn}

Consequently, the group activity consist of four factors: group, ac-
tivity, target, and time.

IRC, HTTP, and P2P are widely used as botnet protocols. The
botnet performs group activities irrespective of its protocol. Espe-
cially, centralized (IRC/HTTP) botnets frequently perform group
communication with a control server. Therefore, group activities
can be shown in the centralized botnet more often than decentral-
ized (P2P) botnets. However, group activities can be observed in
P2P botnets during upgrading/synchronizing [10]. For example,
Storm P2P botnet frequently synchronizes the infected machines
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Figure 2: Botnet life cycle

with the Network Time Protocol (NTP) server. This synchroniza-
tion behavior will be shown as a group activity.

We describe a botnet life cycle in Figure 2. Exploiting a vulnera-
bility (infection) is the first step in the botnet life cycle. Once a vul-
nerability has been exploited, an infected machine usually down-
loads a malicious binary from the Internet and executes it. Then,
the machine connects to C&C channel(s) to receive orders from
a botmaster. Centralized botnets use DNS to look up the channel
server. Bots send periodic DNS queries [7] and join the channel.
The DNS lookups can be regarded as a group activity. The infected
hosts (group) send queries (activity) to the DNS server (target).

After bots are initialized, IRC bots usually keep their connec-
tion with the channel using PING/PONG messages of IRC proto-
col. HTTP bots periodically/sporadically perform channel access
by sending HTTP request to take orders from a botmaster [21].
Sending PONG message or HTTP request can be considered as a
group activity. Bots (group) send PONG message or HTTP request
(activity) to the C&C server (target). We found an actual botnet
C&C server in our monitored network. The server sends/receives
PING/PONG messages with 104 infected hosts every 205 seconds.

The botnets also perform an array of malicious behaviors in-
cluding DDoS attack, spamming and click fraud. Especially, cen-
tralized botnets move their C&C repeatedly. The botnet malicious
behaviors and the C&C migration will be also observed as botnet
group activities.

3.2 Characteristics of Botnet Group Activity

As mentioned, group activities can be observed in a botnet life
cycle. However, group activities can be appeared in normal com-
munication as well (e.g., flash crowds). Therefore, we find char-
acteristics of botnet group activity to distinguish them from nor-
mal group activities as shown in Table 1. When a botnet group

Table 1: Differences between botnet and normal group activi-
ties

Group Activity Activity
Uniformity Periodicity | Intensity
Botnet Consistent Periodic/ | Intensive
group | (conditionally) | Sporadic
Normal Fluctuate Random | Moderate
group (random)

performs activity within a period of time, the group is condition-
ally unchangeable. Here, ‘conditionally’ means that there could

be trivial changes in groups because of temporally deviated mem-
ber(s), removed member(s), and recruited member(s). Although
these changes have effects on the botnet group, they can be ignored
within a short time period [7]. The dynamics of IP addresses can
also affect the consistency of the botnet group, but the dynamics
are ignorable within a short period, as well. The changes in a bot-
net group and the IP address dynamics will be discussed in Sec-
tion 4.2. Using the uniformity feature, we can differentiate botnet
groups from legitimate groups. We also find temporal properties
of botnet group activities. The botnet group activities usually show
periodic/sporadic and intensive occurrence.

We measure a similarity coefficient to check a uniformity of
groups to detect botnet groups. Assume that a group is observed
G within w,, and G’ within Wy 41. To measure the group unifor-
mity, we compute a similarity between G and G’, a real number in
[0, 1]. The similarity tends to 1 when the group is a botnet.

Numerous similarity measures in use, differ primarily in the way
they normalize the intersection value. We describe three of them:
Kulczynski, Cosine and Jaccard similarity coefficients. Kulczynski
similarity is represented to be:

1(|GOG/\ |GmG/|)
2\ G| |G|

SK'U,ZC(G7 G/) =
and Cosine similarity is represented to be:

!
Seos(G, ') = 2IGNG
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Jaccard similarity is represented to be:

/ |GNG|

Siace(G,G") = GUG
A group is represented by a vector, with components along exactly
those dimensions corresponding to the elements in the group. The
similarity measures are based on the binary term vectors and nor-
malize the similarity value between O and 1. If both vectors are
all zeros, we declare the similarity measure to be one. If only one
of the vectors is all zeros, the similarity measure is declared to be
zero. Kulczynski similarity yields the average conditional prob-
ability that a characteristic is present in one group given that the
characteristic is present in the other group. Different from Kul-
czynski similarity, cosine similarity is length invariant, that is only
the direction of the vectors is compared and the magnitude of the
vectors is ignored.

3.3 BotGAD Detection Framework

In this section, we illustrate the framework of BotGAD. Bot-
GAD consists of four parts: (1) Data collector, (2) Group classi-
fier, (3) Similarity analyzer and (4) Botnet reporter (Figure 3).
The sensors gather network traffic of monitored networks. Incom-
ing/outgoing traffic is aggregated to the data collector. The group
classifier makes groups from the traffic using a predefined group
size threshold. The similarity analyzer estimates group similarities
and the botnet reporter summarizes/reports results.

As shown in Figure 4, groups are generated within each time
window w,,. To make the group as a vector and compute the simi-
larity among vectors, we employ a matrix of the groups. The rows
of the matrix represent IP addresses of group members and the
columns correspond to time windows. We mark 1 when a mem-
ber perform the group activity within w,, and O if it does not. Af-
ter marking all elements in the matrix, we compute the similar-
ity of each neighbor column vector. The similarity coefficient be-
tween column vector w; and we indicates measured similarity of
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the group between w; and we. We estimate the Kulczynski, Co-
sine, and extended Jaccard similarity(Tanimoto) for a vector calcu-
lation, represented Sk uic, Scos, and S.yace, respectively.
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We calculate an average similarity value within a given monitoring
time ¢ considering relative errors. Assume that there are n columns
(t = nw). Some botnet groups can be seen in w;, not in w;41
due to the relatively small value of w choice. Therefore, we delete
deficient column vectors which satisfy || ||> < 0.1 - m to reduce

relative errors. (m is the number of hosts in the group.)

We also calculate the periodicity P and intensity I for every groups.
The periodicity and intensity imply how periodically and inten-
sively the group appears at every time windows. t; ; is a times-
tamp of entry in row i and column j. We use Euclidean distance
to measure the periodicity. If the periodicity P is equal to zero,
the group entries occurred periodically at each time window. Us-
ing the periodicity, we can detect periodic bots. We measure an
occupancy rate of contributor columns out of all columns (delete
deficient columns) and calculate the intensity of the group. If the
intensity is equal to one, the group entries appear intensively. A
lot of groups founded in normal communication patterns, do not
appear intensively. Thus, the intensity is useful for deleting false
alarms.

With the combination of average similarity, periodicity and in-
tensity, BotGAD decides whether a groups is a botnet or not.

1. If an average similarity of a certain group exceeds Ap, the
group is listed on a suspicious group list. Using the similar-
ity estimation, suspicious group including periodic/sporadic
botnets and some normal groups are collected.

2. We delete false positives which have T lower than \ 7(athresh-
old for intensity)

3. Among remainder groups, we detect periodic bots using P.
If P is smaller than A p(a threshold for periodicity), we judge
the groups are periodic bots.

As a result, BotGAD reports periodic/sporadic botnet groups, sus-
picious groups (which need further investigation), and false posi-
tives such as update related group activities.

4. CASE STUDY: BOTGAD USING DNS

4.1 Experiment and Evaluation Result

This section describes how we implement a prototype of Bot-
GAD. Generally, botnets utilize DNS for many cases. Central-
ized botnets perform DNS queries [7] and join to the communi-
cation channels. It is possible to use a hard-coded IP address of
a C&C server, but it can be perilous to reverse engineering tech-
niques. Therefore, a botmaster arranges several C&C servers in the
bot binary. Botnets adopt a dynamic DNS (DDNS) [28] which is
a resolution service that automatically perceives a change of the IP
address of a server and substitutes the DNS record by frequent up-
dates and changes. By using the DDNS service the bots can always
keep there communication channel opened to the controller. The
following six cases show the DNS used in botnets:

e Rally: If a host infection succeeds, the host send DNS query
to know the name of a C&C server.

e Update: Botnets usually update their codes with the latest
one by downloading it from their web repository. the botnets
find the repository using DNS.



o Synchronization: Some botnets synchronize the system time
of infected machines with the Network Time Protocol (NTP)
using time server DNS (e.g., Storm worm botnet [16]).

e Cloning and Reconnection: Bots frequently do cloning and
reconnecting to be undetectable. At the moment, bots find
their new/old channel servers using DNS.

e Migration: Botnets migrate C&C servers using DNS.

e Attack: Spamming, DDoS attack and click fraud attacks may
use DNS to find victims.

We also implement BotGAD using group activities observed in
TCP/UDP traffic. However, they generate many false positives
and it is a complicated work to inspect the results automatically.
Therefore, we evaluate only DNS-based BotGAD in this paper. The
DNS-based BotGAD cannot detect botnets which do not use DNS.

We obtained DNS traces tapped from the gateway router of /16
campus network on May 19th, 2008 (Experiment #1). From 1Gb/s
line, 6.28GB of DNS traffic was captured (0.58Mbps) 2. 19.52 mil-
lion DNS queries were captured and 81% were A and MX query
types (qType) with which BotGAD only deals. We observed av-
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erage 640,000 domain groups. Among them, about 80% of the
groups have a single host. Only 8% of the groups (51,200) have
more than 3 hosts. The largest group was Microsoft Windows up-
date (www.update.microsoft.com) which has 8001 hosts. In the ex-
periment, we decided a group size threshold, \s to be 3. Therefore,

BotGAD delete groups which have smaller size than 3. A relation-
ship between the group size and a similarity is shown in Figure 5.
When the group size is small, the similarity of the group tends to
be high. Because, as the group size gets smaller, hosts of the group
have high probability of behaving similar actions, by accident.

We estimated the Kulczynski, Cosine and Jaccard similarities
(w: 10 minute, ¢: 1 hour). Figure 6 shows measured average simi-
larities. 72% of groups’ average similarity are estimated to 0. The
three methods always follow the order, S Jace < Scos < S Kulc-
When detection threshold Ap is 0.8, Skuic, Scos and S jacc report
121, 109 and 51 suspicious domains respectively. However, only
22 domains are truly botnet domains. With the measured inten-
sity of each group, we delete 71, 66 and 33 false positives domains.
However, 28, 21 and 7 false positives still remains. Most are update
related domains, such as an antivirus software update, installshield
update and toolbar update. The update related domain groups occur
frequently and periodically, similar with botnets. These domains
can be removed using whitelist (we made whitelist using known
popular web, software domains).

We tested BotGAD again, with the same campus network traf-
fic on Dec 24th, 2008 (Experiment #2). Captured traces include
1.48GB of DNS traffic estimated at 0.14Mbps and 4.6 million DNS
queries (Table 2). DNS queries are decreased remarkably because
the NAC (Network Access Control) [29] solution was installed in
the network during June, 2008. 10,850 domain groups were cap-
tured and BotGAD reports 30 domains as suspicious groups includ-
ing 14 false positives and 16 botnets. The DNS queries and false
positives are decreased because normal traffic is decreased by the
NAC solution. The comparison infer that the NAC solution affects
positively to BotGAD.

Table 2: Comparison of experiment results

Experiment #1  Experiment #2 (NAC)
DNS Queries 19.52M 4.6M

Domain Groups 51,200 10,850
Suspicious Groups 43 30
Detected Botnets 22 16
Unknown Botnets 14 12
Known Botnets 8 4
False Positives 21 14

Table 3: Detected botnet domains and false positives (time win-
dow w=10 min).

Result Domain Group  Average
Type Name Size  Similarity
bosam.gnway.net 13 0.99
Unknown | shiyansend.zyns.com 33 0.98
Botnets | shiyansend.solaris.nu 33 0.97
shiyansend.servebbs.org 29 0.87
tzhen.3322.org 14 0.92
Known | proxima.ircgalaxy.pl 33 0.87
Botnets | proxim.ntkrnlpa.info 4 0.85
roon.shannen.cc 11 0.83
time.nist.gov* 50 0.91
updates.installshield.com 22 0.94
False us.update2.toolbar.yahoo.com 33 0.93
Alarms | asp.ircdevilz.net** 1 0

We classify the detected result into known botnets, unknown bot-



nets and false positives with our manual inspection steps as follows.

1. Check blacklist: Compare with exist blacklists acquired from
KISA (Korea Information Security Agency) [20] and Cyber-
TA [5]. If the domain is in the blacklist, we regard the domain
as known botnet.

2. Ascertain resolved IP address of the domain: Look up the
domain whether the resolved IP address is abnormal or un-
accessible.

3. Domain name keyword matching: Extract all keywords from
the second and third level domain name from the blacklists,
and find the keywords from the result domain names.

4. Investigate the domain information from the domain crawler [8]:

Look up the domain whether it acts as a name server, mail
server, or web server and check the domain is listed on RBLs
such as Spamhaus SBL.

5. Google based inspection: Use approach similar with Google-
based profiling method [27] to verify the result domain.

6. Nmap portscans: Access the domain and explore what ser-
vices (application name and version) are offered by the do-
main using an nmap [23] portscans.

The known botnets are revealed at step 1. We distinguish unknown
botnets from step 2 to 6. If a domain satisfies more than three
suspicious condition among step 2~6, we regard the domain as a
unknown botnet. For example, if a domain is resolved abnormal
IP address listed on RBL and have third level domain listed in the
blacklist, the domain is classified into the unknown botnet. Re-
mainders are considered as the false positives.

From experiments, 20 unknown botnets and 10 known botnets
are detected. We list some detected botnet domains and false pos-
itives in Table 3. BotGAD cannot detect a single infected client
since they do not conform to a group such as asp.ircdevilz.net** in
Table 3. Therefore, a single client C&C remains as inevitable false
negatives.

BotGAD reports time.nist.gov* used by the NIST Internet Time
Service (ITS) as a botnet domain. We find that 20 hosts among
overall 89 hosts who send queries of NIST domain, generate exces-
sive queries estimated 4.2 queries/sec. Obviously, they are abnor-
mal because NIST does not allow to send queries more frequently
than once every 4 seconds. Moreover, normal system queries the
NIST domain at every polling interval set in the Windows registry
(usually couple of minutes or hours). Digging deeper inspection
to the 20 abnormal hosts, we find that they are infected by Storm
botnet, the largest known P2P botnet. Storm synchronizes the sys-
tem time of the infected machine with the help of the Network
Time Protocol (NTP) using time server domains (time.nist.gov and
time.windows.com) [16]. Consequently, BotGAD captures not only
IRC and HTTP botnets but also P2P botnet (Storm) synchroniza-
tion activity.

Figure 7 shows false positive rates (false positives out of all mea-
sured groups). We estimate the false positive rates within a given
monitoring time ¢ from 1 to 6 hours. Jaccard produces lower false
positives than the others.

4.2 Parameters and Analysis

We now describe parameters of BotGAD. We divide the parame-
ters into two types, parameters from the group property and param-
eters from the detection mechanism (DNS based BotGAD) (Ta-
ble 4). If An = 0, it is clear that we can detect a botnet domain
group when we choose ¢ that satisfies a- ¢ > 0. Suppose the worst
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Table 4: Parameters related with BotGAD
Parameter Description Variable
Parameters | TTL in DNS resource record Ty,
from The | DNS querying ratio @
Group Botnet querying delay Tp
Property Group size and change in the group size | n,An
Parameters | Monitoring time t
from The Time window w
Detection Group size threshold As
Mechanism | Detection threshold AD

case that the botnet are groups appeared randomly. We derive a
similarity equation using Poisson distribution.

g— n 1_ 1 A T w>Tr
~ n+ |Ant| eatt=a) )77 | T, w<TL

The derived equation consists of four parts: TTL in DNS resource
record T, group size parameter n and Ant, parameters from the
detection mechanism ¢ and w, and DNS querying ratio a.

e TTL in DNS resource record Tr,: Most operating systems
including Windows have DNS resolver cache. For example,
when the Windows resolver receives a positive or negative re-
sponse to a query, it adds that positive or negative response to
its cache, and as a result, creates a DNS resource record [22].
If a DNS resource record is in the cache, the resolver uses the
record from the cache instead of querying a server. After a
time period specified in TTL in the DNS resource record,
the resolver discards the record from the cache. The cache
can decrease botnet DNS queries as well as normal queries.
However, botnets commonly use DDNS [14], so we can es-
timate the value of TTL applied in botnet domains. Errors
from the 77, will be reduced when we choose time window
w larger than 77, of botnet domains.

e Change in the group size An: We can estimate An from
the botnet propagation model [7]. When considering IP ad-
dress dynamics, the authors in [30] address that more than
half (61.4%) of the IP addresses were observed as dynamic
IP addresses. However, over 95% of IP addresses have inter-
user durations longer than a hour. Errors derived from dy-
namics of IP addresses can be ignored when we choose the
value of w within an hour.



o Time window w and monitoring time t: The time window w
should be decided with 77, of botnet domains, « based on an
existing bot implementation, and 7p. If we choose too small
value of ¢, botnet queries will be decreased by the DNS re-
solver cache. And asynchronous botnets will not be shown
because of a botnet DNS querying delay T'p. Therefore, we
should select w which follows min(Tr,Tp) < w. A large
value of w will increase false positives because many normal
groups will be selected as a suspicious group. Therefore, we
choose the time window considering the overall related pa-
rameters and false positive rates.It is obvious that false pos-
itives decreases when the monitoring time ¢ increases (Fig-
ure 7).

o DNS querying ratio o: We set w to 10 minute (< lhour)
in our experiment, so we can consider An = 0. T, < w.
Then, the derived equation can be approximated to

1

ea(t—w)’

S~1-—

If t = 5w, similarity S will be approximated as shown in
Figure 8. The graph implies that « is the most important
parameter of BotGAD.

Similairty

0.1
0.01

DNS Quering Ratio of Group
100 0.001

1
Time Windows Size

Figure 8: Relationship among similarity S, time window w, and
DNS querying ratio «

4.3 Evadability of BotGAD

Even though several automated botnet detection methods have
been proposed, botnets can evade them with a high level of at-
tacker power. To evaluate the evadability of BotGAD, we refer
Stinson’s [26] systematic evaluation which demonstrates an eva-
sion tactic in respect of two associated costs: implementation com-
plexity and effect on botnet utility. An evasion tactic’s implemen-
tation complexity is based on the ease with which bot writers can
incrementally modify current bots to evade detection. If it takes
high implementation cost, the evasion tactic results in less useful.
An effect on botnet utility is also important cost to the adversaries.
If an evasion tactic restricts the botnet utility, the tactic is less ef-
fective. Stinson et al. list the botnet utility: diversity of attacks,
lead time required to launch an attack, botnet size, attack rate, and
synchronization level. We now address likely evasion techniques
of BotGAD and evaluate the evadability (Table 5).

1. Evasion by restricting attack targets: We define a group ac-
tivity model assuming that the detection system monitors a
network gateway (inbound or outbound). Therefore, botmas-
ter can restrict botnet communications or attacks to target
hosts on the same internal or external network for the eva-
sion. The evasion tactic has low complexity and results in
decreased botnet size for any given attacks.

Table 5: Evasion tactics used to defeat BotGAD, the tactic’s
implementation complexity and effects on botnet utility

Evasion Implementation Effects on
Tactic Complexity Botnet Utility
1. Restrict attack targets Low | Attack diversity
2. Induce IP churn Unknown None

3. Threshold attacks High | Attack rate
4. Botnet subgrouping Low | Botnet size
5. Minimize the synchronicity High | Attack diversity

2. Evasion by inducing IP churn: BotGAD use IP addresses
to detect a botnet. Therefore, bots can obtain a different IP
address on demand will defeat the BotGAD. An implemen-
tation complexity of this technique is unknown.

3. Evasion by threshold attacks: BotGAD relies on time related
variables, time window and monitoring time. A botmaster
can control a botnet behavior frequency to decrease the group
similarity. The implementation complexity is high and ap-
plying this tactic reduces attack rates of the botnet.

4. Evasion by the botnet subgrouping: A botmaster can apply
multi-purpose time sharing botnets where a subset of bots are
used for one purpose (DDoS) and others for another purpose
(spamming). If the botnet subsets are static, BotGAD can
detect each subset independently. However, if the botmas-
ter randomly changes the subsets, BotGAD can detect each
subsets only when the monitoring time is shorter than the
changing frequency.

5. Evasion by minimizing the synchronicity: Bots can delay
communication time and do not perform any synchronized
attacks to evade BotGAD. For example, many new botnets
have adopted P2P architecture, where bots are coordinated in
distributed fashion. The proposed detection system can not
capture the P2P bots if more than (1 — Ap)n bots have com-
munication delay time larger than w, and do not perform any
synchronized attacks. In this case, botnet utilities including
botnet’s synchronization level and diversity of attacks will be
decreased.

The implemented BotGAD use DNS traffic to detect botnet, eva-
sion tactics using DNS is possible. If bots avoid using DNS, Bot-
GAD cannot detect the bots. However, using the IP address instead
of DNS can be perilous to reverse engineering techniques The bots
will lose their mobility and robustness. If bots intentionally gen-
erate fake DNS queries using source address spoofing, the fake
queries can poison BotGAD. We can check follow-up TCP con-
nections of DNS queries to delete the fake queries.

From the analysis of the evasion tactics, we recognize that the
botnet random subgrouping would be the most effective tactic to
evade the BotGAD. We have a plan to improve BotGAD to be ro-
bust against the botnet subgrouping.

5. CONCLUSION

It is necessary to provide appropriate countermeasures to botnets
which represent the major threats to network security and major
contributors to unwanted network traffic. Therefore, we proposed
BotGAD to reveal both unknown domain names of C&C server
and IP addresses of hidden infected hosts. We define an inherent
property of botnets, called group activity. We develop metric model
to measure the property and detection mechanism which can detect



botnets from large scale networks in real-time. Botnets frequently
use DNS to rally infected hosts, launch attacks, update their codes.
Therefore, we implemented BotGAD using DNS traffic as a case
study. We showed the effectiveness of the implemented system by
the experiments on real-life campus network trace. Consequently,
BotGAD captured 20 unknown and 10 known botnets from two day
campus network trace.
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