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BOTT-CHERN COHOMOLOGY OF SOLVMANIFOLDS

DANIELE ANGELLA AND HISASHI KASUYA

ABSTRACT. We study conditions under which sub-complexes of a double complex of vector spaces
allow to compute the Bott-Chern cohomology. We are especially aimed at studying the Bott-Chern
cohomology of a special class of solvmanifolds.

INTRODUCTION

Given a double complex (A‘*‘, a, 5) of vector spaces, both the cohomology of the associated total
complex (®p+q:. AP4 0 + 5) and the cohomologies of the rows (A*4, 9) and of the columns (AP:*, 5)

have been widely studied. Two other interesting cohomologies are the Bott-Chern cohomology, namely,
the cohomology of the complex

—1,q-1 99 .q 049 1, ,q+1
AP q s AP4 )AP"F QEBAPQ"F ,

and the Aeppli cohomology, namely, the cohomology of the complex
AP~La g APa—1 (ﬁ)) AP4 ) Aptaatl

For a compact complex manifold X, the Bott-Chern and the Aeppli cohomologies of the double
complex (/\‘*‘X, 0, 5) have been studied by many authors in several contexts, see, e.g., [1l 19 [16] 29|
[69] 2] [64] (47, 17, [68], 4, [T0]. They appear to be a completing useful tool besides the de Rham and the
Dolbeault cohomologies. In this spirit, in [10], it is shown that an inequality & la Frélicher, involving
just the dimensions of the Bott-Chern cohomology and of the de Rham cohomology, holds true on any
compact complex manifold, and further allows to characterize the validity of the d9-Lemma (namely,
the very special cohomological property that every d-closed O-closed d-exact form is d0-exact too, see,
e.g., [29]). 3

A compact manifold satisfies the 00-Lemma if and only if the Bott-Chern cohomology is naturally
isomorphic to the Dolbeault cohomology, [29] Remark 5.16]. Therefore, since compact Kédhler manifolds
satisfy the 09-Lemma because of the Kihler identities, [29, Lemma 5.11], the Bott-Chern cohomology is
particularly interesting in studying complex non-Kéhler manifolds.

In non-Kéhler geometry, a very fruitful source of counter-examples is provided by the class of nilmani-
folds and solvmanifolds, namely, compact quotients of connected simply-connected nilpotent, respectively
solvable, Lie groups by co-compact discrete subgroups. For instance, the geometry of nilmanifolds can be
often reduced to the study of the associated Lie algebras, [21 [60 [14]. On the other hand, nilmanifolds
do not admit too strong geometric structures, [I5, B5]. More precisely, on a nilmanifold, the finite-
dimensional sub-complex of left-invariant forms (namely, the forms being invariant for the action of the
Lie group on itself given by left-translations) suffices in computing the de Rham cohomology, [55, B7].
Whenever the nilmanifold is endowed with a suitable left-invariant complex structure, also the Dolbeault
cohomology, [61], 25] 22 59, [60], and the Bott-Chern cohomology, [4], can be computed by means of just
left-invariant forms.

Instead, for solvmanifolds, the left-invariant forms are usually not enough to recover the whole de
Rham cohomology: an example is the non-completely-solvable solvmanifold provided in [27, Corollary
4.2]. The de Rham cohomology of solvmanifolds has been studied by several authors, e.g., A. Hattori
37, G. D. Mostow [53], S. Console and A. Fino [23], and the second author [39] [43]. Several results
concerning the Dolbeault cohomology have been proven by the second author, [40, [43]; such results
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allow to study Hodge symmetry, Hodge decomposition, formality, and the Hodge and Frolicher spectral
sequence on solvmanifolds, [41] 42] [44].

In this note, we study the Bott-Chern cohomology of a certain class of solvmanifolds. This is done
with the scope to further investigate the complex geometry of non-K&ahler manifolds and especially its
cohomological aspects. More precisely, we start by studying conditions under which the Bott-Chern
cohomology of a double complex can be completely recovered by a suitable sub-complex; see Theorem
and Theorem As an application, we get the following result. (For further applications to the
study of the symplectic cohomologies studied by L.-S. Tseng and S.-T. Yau in [66] [67], see [§].)
Theorem (see Theorem [2.16] and Theorem 2.25]). Let G be a connected simply-connected solvable
Lie group admitting a co-compact discrete subgroup I' and endowed with a G-left-invariant complex
structure. If

o cither G is a semidirect product C" x4 N of C" and a connected simply-connected nilpotent Lie
group N endowed with an N -left-invariant complex structure satisfying some conditions (see
Assumption [211]),

e or G is a complex Lie group,

then there is an explicit finite-dimensional sub-complex C** of the double complex (/\'*' NG, o, 3)
which computes the Bott-Chern cohomology of the solvmanifold T\G .

As an application, we explicitly compute the Bott-Chern cohomology of the completely-solvable Naka-
mura manifold and of the complex parallelizable Nakamura manifold. This gives us, as a corollary, the
following result.

Theorem (see Theorem Z20). Satisfying the 00-Lemma is not a strongly-closed property under
small deformations of the complex structure.

In fact, in [7], we prove that satisfying the 0-Lemma is not a (Zariski-)closed property.
Acknowledgments. The first author would like to warmly thank Adriano Tomassini for his constant
support and encouragement, for his several advices, and for many inspiring conversations. The second
author would like to express his gratitude to Toshitake Kohno for helpful suggestions and stimulating
discussions. The authors would like also to thank Luis Ugarte for suggestions and remarks. Thanks also

to Maria Beatrice Pozzetti and to the anonymous Referee, whose suggestions improved the presentation
of the paper.

1. COMPUTING THE COHOMOLOGIES OF DOUBLE COMPLEXES BY MEANS OF SUB-COMPLEXES

In this section, we study several cohomologies associated to a bounded double complex of C-vector
spaces; in particular, we are interested in studying when such cohomologies can be recovered by means
of a suitable (possibly finite-dimensional) sub-complex.

1.1. The cohomology of the associated total complex. Let (A"', 0, 5) be a bounded double

complex of C-vector spaces, namely, & € End"? (A4**) and & € End®! (A**) are such that 9% = 9 =
[0,0] =0, and AP*? = {0} but for finitely-many (p,q) € Z?. Denote by

<Tot' (A*°) = @ AP d = 8+5>

ptqg=e

the total complex associated to (A‘*‘, 0, 5). The bi-grading of (A’V’, 0, 5) induces two natural bounded
filtrations of (Tot® (A**®), d), namely,

"FPTot® (A%*) := €D A", d|ipr tore(aee) | < (Tot* (A%°), d)

r+s=e

r>p PEZL
and
"FTTot® (A**) := @ A" d[npaote(asey | <> (Tot® (A*°), d)
r+s—e
s>q qEZ
Such filtrations induce naturally two spectral sequences, respectively,
(B (00,0,9), " 0)) 0 and (B (40,0,8), ")},
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such that

"Bt (A"', a, 5) ~ H*? (A'l", 5) = H*'"*2(Tot* (A**), d) ,
and

"Ey*? (A"', 0, 5) ~ H*' (A%*2 0) = H*'"*2(Tot® (4*°),d) ,

see, e.g., [01l §2.4], see also [34], §3.5], [24, Theorem 1, Theorem 3].
One gets straightforwardly the following result, providing a sufficient condition under which a sub-
complex (C””, 0, 8) — (A”’, 0, 8) allows to recover the cohomology of (Tot® (A®*®), d).

Proposition 1.1. Let (A"', 0, 5) be a bounded double complex of C-vector spaces, and let
(C"', 0, 5) — (A'*', 0, 5) be a sub-complex. If, for everyp € 7Z, the induced map (C’p”, 3) — (Ap", 3)

of complexes is a quasi-isomorphism, then the induced map

(Tot® (C*°), d) < (Tot® (A**®), d)
of complexes is a quasi-isomorphism.
Proof. The inclusion (C””, 0, 5) — (A”’, 0, 3) induces a morphism

{('F"Tot* (C**), d)} __ — {('"F"Tot* (4**), d)}

PEZL pEZL

of the associated bounded filtrations, and hence in particular a morphism

(B2 (0™, 0.9). "0}, o, — {(BF" (4%, 0.3) "4}

rez rez
of the associated spectral sequences.
By the hypothesis, the inclusion induces an isomorphism at the first level,
By (O, 0,0) — = 'EY* (4%*, 0, D)
ﬂ ﬂ
H* (Tot® (C**), d) ——= H* (Tot® (A**), d)

and hence, A**® being bounded, also an isomorphism

H® (Tot® (C**), d) = H® (Tot® (A**), d)
see, e.g., [51l Theorem 3.5]; in particular, the induced map

(Tot® (C*°), d) <= (Tot® (A**®), d)

is a quasi-isomorphism. O

1.2. The Bott-Chern cohomology. For any (p,q) € 7% other than the cohomologies of
(Tot® (A*%*), d), of (A%9, 9), and of (Ap”, 8), one can consider also the Bott-Chern cohomology, [19],
namely, the cohomology of the complex

AP—La—1 90, Ap.g 949 4p+1q g gpa+l ,
and the Aeppli cohomology, [1], namely, the cohomology of the complex

(o

;0 ]
AP—14 gy APa—1 >) Apa 99, Ap+lg+l

1.2.1. Conditions yielding a surjective map in Bott-Chern cohomology. In order to study conditions
under which the Bott-Chern cohomology of a double complex can be recovered by means of a suitable
sub-complex, we provide the following lemma.

Lemma 1.2. Let (A”', 0, 5) be a bounded double complex of C-vector spaces, and let (C"', 0, 5) —
(A”’, 0, 3) be a sub-complex. Suppose that, for every p € Z, the induced map (Cp*', 3) — (Ap*', 3) of
complexes is a quasi-isomorphism. If ¢ € AP9 is such that O¢p € CP91, then there exist qg € CP9 and
qg € AP9=1 such that ¢ = ¢ + 5{5.



Proof. One has
HI(CP*,0) 5> (0¢ mod imd) — (0 mod imd) € HIT' (AP*, 9) ;
since the map H?™! (CP*, 9) = Hotl (AP, ) is injective, one gets that d¢ € im (9: CP7 — CP+1):
let (231 € CP 1 be such that .
op = 0oy .
Therefore,
((qﬁ— qgl) mod img) € H1 (Ap", 5) ;
since the map HY (Cp*‘, 3) 5 He (Ap”, 5) is surjective, one gets that there exist (52 €
ker (9: CP4 — CP4+1) and ® € AP9=1 such that
$— 1 = do+ 00,

that is, ¢ = ¢ + 0p where ¢ := ¢; + ¢o € CP? and ¢ € AP~14. O

The following result gives a first partial answer concerning the relation between the Bott-Chern coho-

mology of a double complex and the Bott-Chern cohomology of a suitable sub-complex; compare it with
[4, Theorem 3.7], which is in turn inspired by M. Schweitzer’s computations on the Iwasawa manifold in

62 §1.0|.
Theorem 1.3. Let (A”’, a, 3) be a bounded double complex of C-vector spaces, and let (C’”’, 0, 5) —
(A”’, 0, 3) be a sub-complex. Fiz (p,q) € Z*. Suppose that:
(i) for every r € Z, the induced map (C’T*', 3) — (AT*', 5) of complexes is a quasi-isomorphism,
(ii) for every s € Z, the induced map (C**, 9) — (A**, J) of complezes is a quasi-isomorphism,
and
(iii) the induced map
ker (d: Tot?*? (C**) — TotPT*H (C**))NCP?  ker (d: Tot?T (A**) — TotPT9H! (A%*)) N AP
im (d: TotPT4=1 (C**) — TotP 14 (C**)) im (d: TotPT2=1 (A®®) — TotP™4 (A**))

18 surjective.

Then the induced map
(Cp11q1 99 opa 919 optla g Cp,q+1> BN (Ap17q1 99 Ap.a 99 gptla g Ap,q+1>

of complexes induces a surjective map in cohomology.
Proof. Up to shifting, assume that A™* = {0} whenever (r,s) ¢ N2
Step 1 — Firstly, we prove that, under the hypotheses and the inclusion (C'*', 0, 5) —
(A"', 0, 5) induces, for every (r,s) € Z2, a surjective map
im (d: Tot"™*~! (C**) — Tot"** (C**)) N C™* . im (d: Tot""*7! (A%*) — Tot" ™ (4%*)) N A"
im (90: Cr—1s=1 — C9) im (00: Ar=1s=1 — Ars) '

Indeed, let
(wT’S mod im (85: Ar—hs=1 AT’S))

(dn mod im (83: Ar—hs=l AT’S))

im (d: Tot" 571 (A**) — Tot"** (A”')) N A"
im (85: Ar—Lls—1 A’“*S) -

Consider the bi-degree decomposition n =: 37, byez? n®® where n®* € A%’ for (a,b) € Z>. Hence,
consider the system

G KU
onrts=bt=1 4 gyrts—t=1Lt — for Ce{l,...,s—1}
A T — s mod im (83 AT~1s=1 5 A7)
onbrts—t=1 4 pgpt-Lrts=t — for (e{l,...,r—1}
Goorts—1 —




Set n"t=2~1 := 0, and consider the equation
Ottt L gprts=-1f — 0 mod im (00: Arts—i-Li-l ATJFS*“) for £€{0,...,s—1} .

If g ts—0i-1 ¢ or+s—0i=1 for some @ € {0,...,s — 1}, then, by applying Lemma [[2] to the double

S

complex (A**®, 8, 9), one gets that there exist 7" Ts~¢~16 € Crrs—(=LE apd fris—=24 ¢ grrs—t=2L
such that

rrl’l“Jrngfl,g — ﬁrJrsfgflj + aﬁrJrsfng,g :
therefore, when /<s— 2, one gets the system
anr-i-s—l,O =0
Onrts—bt=1 L gprts—t=1.t — for Led{l,.. - 1}
gnrJrsfg,Zfl + aﬁrJrsfgfl,g =0
5,”;]’7‘-'1-8—2—1,2 T o (nr+s—l7—2,l7+1 _ 57?7"—1-3—(7—2,[7) =0

3 (nr+sfl772,g+l o 5ﬁr+57l772,é) + anr+576773,l7+2 =0 R

Onrrs—Hi=1 g gprts—t=Lt =g for £e{l+3,...,s—1}
By 4 O = W™ mod im (99 ATISTL 5 A7)

3nl,r+57€71 + anl—l,wrs—l =0 for = {1, T — 1}
sl —

where 77 +s—f=1.0 ¢ Or+s=i=LI and when { = s — 1, one gets the system

anrJrsfl,O =0

Onrrs—bi-1l L gprts—t=1t — for (e{l,...,5s—2}
37]T+11572 4 aﬁr,sfl =0

o™~ 4+ 0"~ = w™* mod im (85: Ar—Ls—1 A“s)

onbrts—t=1 4 gpf-Lrts=t = for (e{1,...,r—1}
5770,7‘-'1-8—1 =0

where 7771 € O™~

In particular, since 7”572~ =0 € C"**72~1 we may assume that n™*~1 € C™5~ 1,

Analogously, by applying Lemma[[.2]to the double complex (A"', 0, 6), we may assume that "~ €
Crfl,s'

Therefore

w™® mod im (83: Ar—hs=l AT’S) = (577“571 + 877T71’S) mod im (85: Ar—bs=l AT’S)

im (d: Tot"™*~' (C**) — Tot"** (C**)) N C™*

< im (85: Ar—Lls—1 A’“*S)

)

that is, the induced map

im (d: Tot"™*~! (C**) — Tot"** (C**)) N C™* . im (d: Tot"™*~' (A%*) — Tot" ™ (A%*)) N A"
im (99: Cr=1s=1 — Cms) im (99: Ar—1s=1 — Ars)

is surjective.
Step 2 — Now, we prove that, under the additional assumption the induced map

ker (9: CP7 — CPT19) Nker (9: CP7 — CPatL) N ker (9: AP7 — APHL9) Nker (9: APT — APatl)
im (55: Cr—Lla-1 Cp’q) im (65: Ap—La—1 AP"J)




18 surjective.
Indeed, consider the commutative diagram

0 0
im(d: Totp+q’1(C"')%Totp*q(C"'))OCTJ'(’ im(d: Totp+q’1(A"')%Tothrq(A"'))ﬂAp’q 0
im(99: Cr=1.a-1Cr.a) im(99: Ap—1.a-1Ap.q)
ker(a: Cp‘q%Cerl’q)ﬂker(g: Cp’q%Cp’q+l) ker(az Ap’q%Ap+1’q)ﬁker(5: Ap’q%Ap’qul)
im(aé: Cr=—la=1_Cra) im(65: Ap—1a—1_ Ap.a)
ker(d: TotP*7(C**)=Tot? 9+ (C*®))NCP1 ker(d: TotPT7(A®®*)—Tot?FIT1(A4%*))n AP 0
im(d: Totp“?*l(C‘v‘)%Tothrq(C'v')) im(d: Totp“?*l(A'v')%Tothrq(A'v'))
0 0

whose rows and columns are exact. By the Five Lemma, see, e.g., [51] page 26], the map
ker (9: CP? — CPT14) Nker (9: CP7 — CPatl) . ker (9: AP? — APFTL9) Nker (9: A7 — APatl)
im (89: Cr—1a=1 — CPa) im (89: Ap—La—1 — Ap.a)

is surjective, completing the proof. O

1.2.2. Conditions yielding an injective map in Bott-Chern cohomology. In order to provide conditions
under which the inclusion of a suitable sub-complex induces an injective map in Bott-Chern cohomology,
we consider a further structure of Hilbert space on the double complex. (For similar results in the case
of solvmanifolds, see [22, Lemma 9], [4l Lemma 3.6].)

Let A be a Hilbert space, with inner product {-|-): A x A — C. Denote by ||| := (-] ~>1/2 the
associated norm.
Given a densely-defined linear operator L: A O dom(L) — A on A, denote by

Ly dom (Ly) ) =4
its (-] --)-adjoint operator, that is, the unique linear operator with domain
dom (L*{ | __>) ={yeA: (L-]y): dom(L) — C is continuous}
and defined by
Vz € dom(L), Vy € dom (L’Z | H>) , (Lx|y) = <x ‘ Ly, H>y> .

Given a closed sub-space C of A, denote the induced inner product on C' by (-|--) := (- | ) [cxc: C%
C — C, and the orthogonal projection onto C' by ﬂg| oy A — C C A. One has that

WE|..>LC = ide and <C‘ (idA —Fg|__>) (A)> = {0} .

(To simplify notations, we do not specify the inner product (-|--) in writing the projection or the
adjoint, whenever it is clear from the context.)

We firstly record the following lemma, stating that, if L commutes with 7€, then also L* does.

Lemma 1.4. Let A be a Hilbert space, with inner product {-|--). Let L: A D dom(L) — A be a densely-
defined linear operator on A. Let C be a closed sub-space of A contained in dom(L) and in dom (L? | >)
Suppose that
W?l‘) oL =1Lo 7r<c"|“>: dom(L) — C'.
Then
71y © Ll = Lij.y o mf).y: dom (L7).,) = C;
in particular, L’<‘, i lc: C — C, and hence (L Lc)? oy, = L’<“ - le.

c
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Proof. Tt suffices to note that 7¢: A — C' C A is self-(- | --)-adjoint: for any o, 3 € A,

(ma|B) = (n%a|8—(8=798)) = (r%a|7°B) = (ra+(a=na)[n9) = (a|n"B) .
It follows straightforwardly that 7€ o L* = L* o 7¢: dom (L*) — C. In particular, since 7¢|c= idc
and C' C dom (L*), it follows that L* (C) = (L* on%) (C) = (7% o L*) (C) C C, and hence L*|[c=
(Lle)].y, 1 C = C. O

Now, let A*® be a bounded Z2-graded vector space with a structure of Hilbert space, with inner
product (- |--) such that <Ap’q ‘ Ap,’ql> = {0} for every (p,q) # (¢, ¢’). Let
0: A** O dom(9)*°* — Aetle and d: A®* D dom(5)°’° — A%t
be densely-defined linear operators yielding a structure ( (dom(d) N dom(é)) ;) 5) of bounded double

complex of C-vector spaces. Denote by
O 1= 01 A 2 dom (9) 5 AT and 9 = 9y A Ddom (97) T > AT

the (-|--)-adjoint operators of 9 and, respectively, 0.
Following [46, Proposition 5], see also [64, §2.b, §2.c|, define the (densely-defined) self-{-|--)-adjoint
operator

ABC = AFC, = (09)(99)"+(90) (90) + (370) (3°0) +(3'0) (3°0)+0'T+070
€  Hom"° (dom (Af‘ ”>).V.; A”’) .

The following lemma states that, under a suitable decomposition hypothesis, the Bott-Chern coho-
mology of (A**, 9, 9) is isomorphic to ker ABC.

Lemma 1.5. Let A*® be a bounded Z?-graded vector space with a structure of Hilbert space, with inner
product (-|-) such that <Ap’q ‘ Ap,*ql> = {0} for every (p,q) # (p',¢'). Let 9: A*>* O dom(9)** —
AL gnd 9: A** D dom(0)** — A®*t! be densely-defined linear operators yielding a structure
((dom(a) N dom(g)).’., 0, 3) of bounded double complex of C-vector spaces. Suppose that the oper-

ator A??) € Hom"’ (dom (A?‘CJ 7 ; A'*') induces the decomposition
AB _ A BC . ABC
Then, for every (p,q) € Z?, the induced map
(0 — ker Af‘ 3N AP9 — O) — (Ap_l’q_l 6—5> AP4 ai? APtLa g Ap’q"H)
is a quasi-isomorphism.

Proof. Note that, for every n € dom (ABC), one has

(8|0} = (@) a| + i3] + 5 on|| + 7] + lonl? .

0" on||” + |

hence .
ker ABC = kerdNkerd N ker (85)* .

On the other hand, since im ABC C im 99 @ (im o + img*) and (im o* + img*) N (ker@ N ker 5) =

{0}, one has
im APC N (kera N kerg) = imdo .
It follows that
Ker ABC A AP1 5 ker ABC_O AP 4 im 90 N AP+ o ker (8 + 3:_Ap’q — APTLa @ Ap*‘”l)
im (99: Ap—1.a—1 — Ap.a) im (99: Ap—1.a—1 — Ar.a)

completing the proof. O

)

We have now the following result.



Theorem 1.6. Let A®® be a bounded Z2-graded vector space with a structure of Hilbert space, with
inner product (-|-) such that <Ap’q ‘ Ap,*ql> = {0} for every (p,q) # (', ¢'). Let 9: A** D dom(9)** —
At and 9: A%* D dom(9)** — A®*T! be densely-defined linear operators yielding a structure
((dom(@) N dom(é)).’. , 0, 5) of bounded double complex of C-vector spaces. Let
E (C"', 0, 5) — ((dom(@) N dom@)).’. , 0, 5)
be a sub-complex. Suppose that:
(i) the operator Afﬁ> € Hom"’ (dom (A?I(J)) 7 ; A'") induces the decomposition

A B _ A BC : ABC .
dom (AH“)) = kerA<_|__> @1mA<_|_> 5

(i) it holds that

I jylese = (Olese); : dom (82*"“) LC"') T oL

‘|“>Cu,u
and e
8<‘> I_Cu,u = (8[0.,.)““)0” : dom (a<‘> \_Co,.) — C"‘il s

in particular, it follows that
ACfyless = ALT, .. € Hom”" (dom (ABC Lc-,-) ; C) ;
(iii) the operator A?lc> | oo € Hom"? (dom (Aflc> LC"') i C’"') induces the decomposition
dom (AFS Lowe) = ker APC, |cos@im AFS lone .
Then, for every (p,q) € Z2, the induced map
'E (Cplﬁql 98 ora 219 orita g CM“) < (Aplvql 08 gpa 019 pr+ia g AM“)
of complexes induces an injective map j* in cohomology.
Proof. By Lemma and under the hypotheses and one gets that both
(0 — ker ABC nAPa O) — (Ap_l’q_1 6—5> AP ai? APTLa g Ap’q'H)
and
(0 s ker ABC | e.eNCP*Y = ker Afﬁ)c. N cPa s 0) <y <Cp—17¢Z—1 @ P 636 Ccrtha g Cp7q+1>

are quasi-isomorphisms.
Hence, one has the commutative diagram

~ ker(9+48: CPI—CPThIgoPatt)
im(85: Cpflvqfl—)cpvq)

j |

~ ~ ker(0+8: AP-4—5APTLag AP atl
ker ABC () AP (CAR )
lm(aa; Ap—1a=1 Ap.a)

ker ABC I_C-,- ﬂcp’q

getting that j* is injective. 0
By using Lemmal[l:4] one gets the following corollary of Theorem[I.6] concerning closed sub-complexes.

Corollary 1.7. Let A®® be a bounded Z?-graded vector space with a structure of Hilbert space, with
inner product (-|-) such that <Ap’q Ap/’q/> = {0} for every (p,q) # (', q'). Let 9: A** D dom(9)** —
At and 9: A%* D dom(9)** — A®*T! be densely-defined linear operators yielding a structure
((dom(@) N dom(é)).’., 0, 5) of bounded double complex of C-vector spaces. Let j: (C**®, 0, 9) —
((dom(a) N dom(g)).’., 0, 3) be a closed sub-complex. Suppose that:

8




(i) the operator Afc € Hom" (dom( ) i A'") induces the decomposition

dom (A o ) kerA @unA

1) C**® C dom(0 ﬂdom )Ndom Ndom 5*‘ ), and €7 08 = 9onC"": dom(9)** —
()

C*th and 1€ 0@ = Do " dom(@)"' — C%* T

Then, for every (p,q) € Z?, the induced map
j: (C;D—l,q—l 6_5> o ai? CPtha g Cp,q-i-l) SN (Ap—Lq—l @ AP4 ai? APtLa g Ap,q+1)

of complexes induces an injective map j* in cohomology.
Proof. By Lemmam one has 7" 0 9* = §* o 7¢"": dom (0*)** — C*~1* and 7¢"" o 9 =0 o
77" dom (0*) — C**~! and hence in particular 9*[ce.e= (GLC.,.)?_|_>C. LC0t = C*—1* and
0 lowe= Olowe) (g, OV 2 OV .

Furthermore, it follows that 7€ o ABC = ABC 6 zC*": dom (ABC) T C** In particular, it
follows that

P (kerABc) = kerABCLC-,- and Al (imABC) = imABCLCNa

and hence one gets the decomposition

dom (37 cxe)™ = 7€ (dom (376)"7) = 2" (ker A7) 4 77" (1m A7)

= kerABC I_C-,-@imABC I_C-,- .

Hence the hypotheses of Theorem are satisfied, completing the proof. O

Note that hypothesis in Theorem is satisfied whenever the sub-complex C**® is finite-
dimensional.

Corollary 1.8. Let A®® be a bounded Z?-graded vector space with a structure of Hilbert space, with
inner product (-|-) such that <Ap’q ‘ Ap,*ql> = {0} for every (p,q) # (', ¢'). Let 9: A** D dom(9)** —
AL gnd 9: A** D dom(0)** — A®*t! be densely-defined linear operators yielding a structure
((dom(@) N dom@)).’., 0, 5) of bounded double complex of C-vector spaces. Let j: (C**®, 0, 9) —
((dom(@) N dom@)).’. , 0, 5) be a sub-complex. Suppose that:

(i) the operator A .y € Hom"" (dom (Aflc>) 7 ; A”’) induces the decomposition

ABc \*°
(i) C** is finite-dimensional;

(#i) it holds that
(9? ‘> LC-,- = (aLC"')?. ‘ ")ch' . C.,O N C._L.

and

5?|~>LC~' = (5\_0*')?_| SN Chiat ot

) oo

Then, for every (p,q) € Z?, the induced map
'E (Cplﬁql 9 ora 059 orita g CM“) < (Aplvql 08 gpa 050 pr+ia g AM“)

of complexes induces an injective map j* in cohomology.

Proof. Note that, if C'** C (doma N domg).’. is finite-dimensional, as in then the C-linear opera-

tors 0| ge.s: C** — C*1* and 0| ge.e : C** — C**F! are continuous, and hence dom (GLC-,-)? P

dom (9*[¢e.s) = C'** and dom (3{0.,.)* = dom (3* LC.,.) = C**. By hypothesis|[(iii)] it follows
<‘ | “>c','

that ABC [coe= Af?__)m . € End®’ (C**). In particular, dom AJ(?'C__)C. = dom ABC [ge.e= C*°.
9



Hence, in order to apply Theorem [[G] it suffices to show that, given a finite-dimensional C-vector
space C endowed with an inner product (-|-), any self-(- | --)-adjoint endomorphism L € Hom(C) yields
a decomposition

C = kerL@imL.
Indeed, take ker L C C' and let V' C C be the C-vector sub-space of C being (- | --)-orthogonal to ker L;
i
in particular, C' = ker L & V. It suffices to show that V' = im L. Since L is self-(- | --)-adjoint, then

(im L | ker L) = {0}, and hence im L C V. Since dim¢ C' = dimc im L + dim¢ ker L < 400, it follows that
V=imL. 0

Remark 1.9. Obviously, Theorem [[LG as well as its corollaries, holds, with straightforward modifica-
tions, also for the cohomologies associated to the operators A. ..y := [d, d*], and O(.|..y := [0, 0*], and

Ocpy = [0,97], and Af| ) i= 00"+ 80" + (99)" (69) + (aél)uéaé)* + (907) (907 + (90%) (90*)".

2. APPLICATIONS

We are now interested in applying the general results of the previous section to suitable sub-complexes
of the double complex (/\"'X , 0, 8), where X is a compact complex manifold. We are especially inter-
ested in the case when X is a solvmanifold.

2.1. Complexes of PD-type. Let (A"', 0, 5) be a double complex of C-vector spaces. Suppose that
A** have a structure A of C-algebra being compatible with the Z2-grading (namely, AP*¢ A APd C

APHPhatd for every (p,q), (¢, q') € Z2), and with respect to which d := 8 + 0 satisfies the Leibniz rule,
namely,

for every a € Tot® A** [d,aA-] = dan- € End**! (Tot® A%*) .
Following the notation introduced in [44] §2] by the second author, (A"', 0, 5) is said to be a bi-
differential Z?-graded algebra of PD-type if
(i) whenever p < 0 or ¢ < 0, then AP? = {0}, and A%° = C (1);
(i) there exists n € N such that, whenever p > n or ¢ > n, then A?? = {0}, and A™" = C (v); (call
n the PD-dimension of A®*®;)

(iii) for every (h,k) € {0,...,n}?, the bi-C-linear map A™* x An—hn=k _y Ann 5 C induced by A
is non-degenerate;
(iv) dTot’ A** = {0} and d Tot>"~* A** = {0}.
Given a bi-differential Z2-graded algebra (A‘*‘, 0, 5) of PD-type, let (-|--) be an inner product on
Ap/’ql> = {0} whenever (p,q) # (p',¢'), and
being compatible with the PD-type structure, namely, (v|v) = 1. Define the C-anti-linear map

Kooy ASTO2 o AN T e such that for every o, B € A**, aAx. .40 = (a|f) v

A®* being compatible with the Z2?-grading, namely, <Ap7q

(as above, we will understand the scalar product (-|--) whenever it is clear from the context).
By considering the Hilbert space given by the (-|--)-completion of A®*®, one has that the operators

0" = —H( ] 5¥<. [ A% 5 A Lbe and 9 = —k( ] 51(. |-y A% — A%
are in fact the (-|--)-adjoint operators agiw, respectively 5?‘,,>, of 9: A®* — A°*tLe respectively
0: A** — A**t1 and the operator

d* == —Fp |y dF.|.y = 0" +D : Tot® A>* — Tot* ' A%*

is in fact the (-|--)-adjoint operator d7.,.., of d := 9 +0: Tot® A®* — Tot*™! A% [A4] Lemma 2.4].
The following result is an application of Corollary [L8lto the case of bi-differential Z2-graded algebras
of PD-type.

Proposition 2.1. Let (A'*', a, 3) be a bi-differential Z?-graded algebra of PD-type of PD-dimension
n. Let {-|-) be an inner product on A** being compatible with the Z*-grading and with the PD-type
structure. Consider the Hilbert space given by the (- | --)-completion of A®*®, and suppose that the operator
Afﬁ> € End”? (A**) induces the decomposition

A®® = kerAfF_) @imﬁf€_> .
10



Let (C'*', 0, 3) — (A'*', 0, 5) be a finite-dimensional sub-complex of (A'*', 0, 5) having a structure of
bi-differential Z2-graded algebra of PD-type of PD-dimension n induced by A®*®. Suppose that

Rl |y loee: OB = gnmon=e
Then, for any (p,q) € Z2, the induced inclusions
(Tot® (C**), 0+ 9) — (Tot® A**, 9 +0) , (C*9,0) — (A4, 0) , (CP*,0) — (AP*, 9) ,
and
(C;D—l,q—l 99 CPa 049 ortla g Cp,q+1> s (Ap—Lq—l 99 pp.a %9 gpt1 ® Ap,q+1>
and

(Cplyq o opal (é);@ P 6_5> Cp+1,q+1) N (Aplyq @ APl (a;?) AP 6_5> Ap+17q+1)

induce injective maps in cohomology.
Proof. By the hypothesis that *..|.y[ges: C*® = C"7*"~*, one gets that

Rl lose = F e
(indeed, let @ € C**; then, for any 8 € C**, it holds that (>T<<,‘.
8 = (.1 (§<<“,,>C.V.a — ¥<,‘,,>a) € C**, one gets hence that */(.
follows that

o — %H,,)a) A B = 0; by taking

'>Ca,a

| )o@ = ¥( | ya). In particular, it

8Z<|> Lcu,u = (7>T<<|>8¥<|>) LC"' = 7>T<<‘|“>c',' 8LC"' >T<<““>c'm = (aLC"')? : C‘,‘ N 007170

‘|“>Ca,u

and

O poglome = (=F(19 0% ) love = = pen Olome %y = @lowe) .y, 1 CF° = O 70

ce.e

Hence Corollary [[L8 see also Remark [.9] applies. O

2.2. Compact complex manifolds. Let X be a compact complex manifold of complex dimension n
endowed with a Hermitian metric g. (Note that all manifolds are assumed to have no boundary.)
By considering the (C-anti-linear) Hodge-*-operator

kgr A0 X 5 ATTOLRTR2 X

(1= [ gl

one gets that the double complex (/\’”X , 0, 5) has a structure of bi-differential Z2?-graded algebra of
PD-type of PD-dimension n, such that (-|--) is compatible with the Z?-grading and with the PD-type
structure of A®*X.

The 2" order self-(- | --)-adjoint elliptic differential operators

Ay = [d,d*] € End’ (A°X ®C) ,

and the inner product

and
O, := [0, 9] € End®® (A**X), O, := [5, 5*} € End®® (A**X) |

and the 4" order self-(- | --)-adjoint elliptic differential operators, [46, Proposition 5], [64, §2.b, §2.c],
ABC .= (90) (99)" + (90)" (99) + (370) (3°0) + (3'0) (3°0) +TT+0"0 € Bnd (A**X)
and
AL = 90" + 09 + (99)" (99) + (99) (99)" + (90*)" (99") + (99*) (99%)" € End™® (A**X) ,

(from now on, the metric g will be understood whenever it is clear from the context,) induce the (-|--)-
orthogonal decompositions, [45, page 450],

A°X rC = ker A@imA = ker A ®imd®imd*
and
A**X = kerO@® im0 = kerOPim I @ imO*
= kerJ®im0 = kerﬁ@img@img*,
11



and, [64, Théoreme 2.2, §2.c],
A*X = kerABC @imABC — kerABC ¢imdd @ (im o + imé*)

= kerAY@®imA4 = kerAd @ (im@ + img) @ im (85)* .
In particular, by arguing as in Lemma [0 it follows that

. kerd . _ kero oo _ kero —
Hip(X;C) = g = ker A, H*(X) = =5 = kerJ, H (X) = - ker (],
and, [64, Corollaire 2.3, §2.c],

k ker 0 < ker 90 .
HEL(X) = M ~ ker ABC HY*(X) = i@_ ~ ker A% .
im 00 im0+ 1imad

Note that x4 o ABC = A4 o x4, and hence the Hodge-*-operator induces the isomorphism
HEe(X) = HY " H(X)
In particular, by Proposition 21l one gets straightforwardly the following result, which provides a
condition under which the Bott-Chern cohomology of a finite-dimensional sub-complex of A®*X is a

subgroup of H32(X). Such a result will be applied in the next section with the aim to study the
Bott-Chern cohomology of a certain class of solvmanifolds.

Proposition 2.2. Let X be a compact complex manifold of complex dimension n endowed with a Her-
mitian metric g. Let (C’”’, 0, 8) — (/\”’X, 0, 8) be a finite-dimensional sub-complex of (/\'*'X, 0, 8)
having a structure of bi-differential Z2-graded algebra of PD-type of PD-dimension n induced by N*°*X.
Suppose that
ig I_C-,-: 0.7. — Cni.ﬁni. .

Then, for any (p,q) € Z?, the induced inclusions

(Tot* (C**), 04 0) = (N*X ®r C, d) , (C*1,0) — (A®1X, 9) , (CP*,9) = (AP X, 9) ,
and
<Cp1’q1 § crA 635 crthag C’p’qﬂ) — </\p1’q1X [g AP X 6$5 APTLIX @ /\p’q“X)

and

(0.9)

(Cp—l,q D a1 (6;?) CPra 6_5> CP+17‘1+1) SN (/\p—LqX D APa—1x 6‘;? AP4 X 6_5> /\p+1,q+1X)

induce injective maps in cohomology.

Proof. The proof follows straightforwardly by [64, Théoreme 2.2, §2.c] and [45], page 450], and by Propo-
sition 211 O

Remark 2.3. By applying Corollary [[7 to the (-|--)-completion of A®**X, the same conclusion of

Proposition holds true for a (possibly non-finite-dimensional) closed sub-complex (C'*‘, 0, 5) —
(/\"'X, 0, 5) such that 7€°" 00 =007 : A®* X - C** and 7" " 00 =007 : A®* X — C*°.

In order to study cohomologies of solvmanifolds, we need also the following result.

To simplify the notation, we say that a sub-complex (C'*‘, 0, 8) — (/\‘*‘X, 0, 8) suffices in com-
puting the de Rham, respectively conjugate Dolbeault, respectively Dolbeault, respectively Bott-Chern,
respectively Aeppli cohomology of X if the induced inclusion

(Tot* C**, 04 0) — (AN°X ®r C, d) ,
respectively, for any ¢ € N,
(€%, 09) = (A%, 9) ,
respectively, for any p € N,
(CP*, ) = (A, )
respectively, for any (p, q) € Z2,

(Cp—Lq—l éﬁ P ai? crtha g Cp7q+1) SN (/\p—Lq—lX 3_5> APAX ai? APHLOX @ /\p7q+1X)
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respectively, for any (p,q) € Z2,

(.9)

(Cplﬁq o ori-1 ) opa 63 Cp+17q+1) N </\p17qX DAPITLY (63)

arax 2 APqu“X)

is a quasi-isomorphism.

Proposition 2.4. Let X be a compact complex manifold of complex dimension n endowed with a Her-
mitian metric g. Let (C’”’, 0, 3) — (/\”’X, 0, 5) be a finite-dimensional sub-complex of (/\'*'X, 0, 3)
having a structure of bi-differential Z?-graded algebra of PD-type of PD-dimension n induced by N*°*X
and such that

;g LC'*': C.’. N Cn—o,n—o )

Let (B'*', a, 5) — (C’”’, 0, 3) be a sub-complex of (C’”’, 0, 3) having a structure of bi-differential
Z2-graded algebra of PD-type of PD-dimension n induced by C** and such that

;g I_B"': B.’. — Bn7.7n7. .

If (B"', 0, 5) suffices in computing the cohomologies of X, then also (C"', 0, 5) suffices in computing
the corresponding cohomologies of X .

Proof. By Proposition 2] and Proposition 2:2] both the inclusions B®*® < C*® and C*°® — A®°X
induce injective maps in cohomology, whose composition is an isomorphism by the hypothesis. O

2.3. Complex nilmanifolds. Let X = T'\ G be a solvmanifold (respectively, a nilmanifold), namely,
a compact quotient of a connected simply-connected solvable (respectively, nilpotent) Lie group G by
a co-compact discrete subgroup I', endowed with a G-left-invariant (almost-)complex structure J. We
recall that a solvmanifold is called completely-solvable if, for any g € G, all the eigenvalues of Ad, :=
d (1py), € Aut(g) are real, equivalently, for any X € g, all the eigenvalues of adx := [X,-] € End(g) are
real, where ¢: G > g — (1/)9: h— ghg’l) € Aut(G@) and e is the identity element of G.

Recall that, by J. Milnor’s Lemma [52] Lemma 6.2], G is unimodular (that is, det(Ady) = 1 for any
g € G), and hence, in particular, there exists a G-bi-invariant volume form n on X such that f wn=1
Therefore, consider the F. A. Belgun symmetrization map in [14, Theorem 7], namely,

p: A X @ C— A (gerC)* pla) = /XaLmn(ac).

Note, [I4, Theorem 7], that ;1 commutes with d and with J, and hence also with 9 and 0, and that
#lre (gex0)* = 1dae (gesc) -

Lemma 2.5. Let T\G be a solvmanifold, and consider the F. A. Belgun symmetrization map p: A°®
X ®@g C— A®(g®@g C)* in [14, Theorem 7]. For a G-left-invariant differential form 0 on T\G and for
a differential form w on T\G, we have

@ Aw) =0 A p(w).

Proof. Suppose that 0 is a G-left-invariant 1-form on T'\G. Let w be a p-form on T'\G. Then for
Xi1,...,Xpy1 € g, since 0(X;) is constant for every j € {1,...,p+ 1}, we have

pOAw) (X1, Xpr1) = /F\G > 0. (Xo) - w (Xog@)s s Xoen) 1)

c€GS, 1

> G(Xau))'/ wa (Xo(2), - Xo(pr1)) n(2)

€S, 11 e

= (0Apw)) (Xy,... , Xpt1)
where 6,41 is the set of permutations of p 4 1 elements. Hence, in this case, the lemma holds. We can

easily check that the lemma holds in the general case. (|

Lemma 2.6 (see [I1, Proposition 5.4]). Let X = T\ G be a completely-solvable solvmanifold endowed
with a G-left-invariant complex structure J. Consider the sub-complex

j: (A (g®@rC)",d) = (N°X @rC, d) ,
13



which is a quasi-isomorphism by A. Hattori’s theorem [31, Corollary 4.2]. The induced map
_ker (d: AT (g@g C)" — AP (g @R C)F) N APIg*
I im (d: APta—1 (g@g C)* — AP+ (g @R C)7)

ker (d: APT? X @p C — APTITLX ®@p C) N APYX
im (d: APT—1 X @p C = APHIX @R C)

s an wsomorphism.

Proof. For the sake of completeness, we recall here the argument of the proof (note that the statement
holds, more in general, in the almost-complex setting).
The F. A. Belgun symmetrization map pu: A®* X ®r C — A® (g ®r C)”" induces the map
Cker (d: APT?X @ C — APTITLX @ C) NAPIX
e im (d: APTa=1 X @p C — APTIX ®p C)

ker (d: APt (g R (C)* —y APFat+1 (g QR (C)*) N APdg*
im (d: APTo-1(g®g C)” — AP (g)" @x C)

Hence, one gets the commutative diagram

ker(d: APT(g@aC)* >APTIT! (g@C)* )NAP I (g@RC)"
im(d: APTa—1(gRrC)* = APTI(gRRC)") ’

J

ker(d: APTIX@zC—APTIT X @:C)NAPIX
im(d: APTI-IX@pC—APTIX®RC)

m

ker(d: APT(g@aC)* >APTIT! (g@pC)* )NAP 9 (g@RC)"
im(d: APTa—1(gRRC)” > APTI(gRrC)")

from which one gets that
_ker (d: APT (g C)" — APTIT (g @R C)") N AP (g @R C)
I im (d: APte=1 (g@g C)" — APt (g @ C)¥)

ker (d: APT? X ®@g C — APTIHLX @ C) NAPIX
im (d: APH—1 X ®@p C — APT9X ®p C)

is injective, and that
ker (d: APT? X ®g C — APTITLX @ C) NAPYX
P27 im (@ A1 X @ C — APFIX @g C)

ker (d: APT? (g @ C)" — APTITL (g @R C)") N AP (g @r C)
im (d: NP1 (g @k C)" — APT (g @R (C)*)

is surjective.

Moreover, since j: (A®(g®r C)*, d) < (A*X ®r C, d) is a quasi-isomorphism by A. Hattori’s theo-
rem [37, Theorem 4.2], one gets that p: H3,(X;C) — H®* (A® (g ®r C)", d) is in fact the identity map,
and hence

Cker (d: AP X @ C — APTITLX @p C) NAPIX
e im (d: APTa=1 X @p C — APTIX ®p C)

ker (d: APT? (g @ C)" — APTITL (g @R C)") N AP (g @r C)
im (d: APte—1 (g@g C)*" — AP+ (g @R C)7)

is also injective.
Since X is compact, the dimension of H3,(X;C) is finite, and hence p is in fact an isomorphism. [

As an application of Theorem and Proposition 2.2 one recovers the following results, concerning
the Bott-Chern cohomology of nilmanifolds. (We refer to [71} 54 13} [3] 25} 22} [59] [62] for definitions and
notation.)
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Corollary 2.7 ([4, Theorem 3.8]). Let X = T\ G be a nilmanifold endowed with a G-left-invariant
complex structure J, and denote the Lie algebra naturally associated to G by g. Suppose that one of the
following conditions holds:

e X is complex parallelizable;
J is an Abelian complex structure;
J is a nilpotent complex structure;
J is a rational complex structure;
g admits a torus-bundle series compatible with J and with the rational structure induced by I';
dimg g = 6 and g is not isomorphic to hy := (03, 12, 13, 23).
Then the inclusion j: (/\"' (ger C)*, 0, 5) — (/\"'X, 0, 5) induces the isomorphisms
ker (d: A®® (g@gr C)" — A*T*T! (g @R C)7)
im (90: A1l (g@rC)" — A** (g@r C)")

Hpe(X) =~

and
ker (90: A**® (g®r C)" — A*TLeF1 (@R C)")

H.7. X ~ _ .
A% im (9: A*=Le (gr C)" = A®* (g®r C)") +im (0: A**~1 (g@r C)" = A%* (g ®r C)")

Proof. Choose a G-left-invariant Hermitian metric g on X. The sub-complex (A**(g®r C)", 0, 0)
being finite-dimensional, the induced maps in Bott-Chern, respectively Aeppli cohomologies are injective
by Proposition

Under the hypothesis, by [61, Theorem 1], [25] Main Theorem]|, [22] Theorem 2, Remark 4], [59]
Theorem 1.10], and [60, Corollary 3.10], one has that, for any fixed p € N, the induced map

it (AP (gerC)", d) = (AP*X, 9)
is a quasi-isomorphism. By conjugation, one has also that, for any fixed ¢ € N, the induced map
ji (A% (ger C)", 8) < (A"1X, 9)

is a quasi-isomorphism. Lastly, condition in Theorem is satisfied by Lemma Hence, by
Theorem [[3] the induced map in Bott-Chern cohomology is surjective.

As regards Aeppli cohomologies, it suffices to note that the Hodge-*-operator %, induces the isomor-

~ kerd| ,e,e « ~ kerdd| n—en—e *

phisms Hpe (X) = Hi™*"%(X) and L?ma(g&w) - L/i\m8+im5(g®RC)

dimension of X. O

, where n is the complex

The previous result can be used to compute the cohomology of the left-invariant complex structures
classified by M. Ceballos, A. Otal, L. Ugarte, and R. Villacampa in [20], as in [6] and [48].

2.4. Complex solvmanifolds. Let G be a connected simply-connected n-dimensional solvable Lie
group admitting a discrete co-compact subgroup I', and denote by g the (solvable) Lie algebra of G.
Set gc := g ®r C.

Consider the adjoint action

ad: g %g[(g) ’ adx := [Xv ] 5

by denoting by Der(g) :={D € gl(g) : VX € g, [D,adx] = adpx} the R-vector space of derivations on
g, one has that ad(g) C Der(g). One has that every derivation adx, for X € g, admits a unique Jordan
decomposition, see, e.g., [32, I1.1.10], namely,

adx = (adx)s+(adx)n s

where (adx), € gl(g) is semi-simple (that is, each (adx ). -invariant sub-space of g admits an (adx ). -
invariant complementary sub-space in g), and (adx), € gl(g) is nilpotent (that is, there exists N € N
such that (ady)Y = 0).

Let n be the nilradical of g, that is, the maximal nilpotent ideal in g. Since g is solvable, there exists an
R-vector sub-space V' (which is not necessarily a Lie algebra) of g so that (i) g = V @ n as the direct sum
of R-vector spaces, and, (i) for any A, B € V, it holds that (ada), (B) = 0, see, e.g., [32] Proposition II

I.1.1]. Hence, one can define the map
ads: g — Der(g) , g=Von>s (A X)— (ads) 4, x := (ada)s € Der(g) .

Moreover, one has that (i) [ads(g),ads(g)] = {0}, and (iv) ads: g — gl(g) is R-linear, see, e.g., [32]
Proposition TI.1.1].
15



Since we have [g,g] C n, see, e.g., [32, I.1.9], and ads(n) = {0}, the map ads: g — gl(g) is a

representation of g, whose image ads(g) is Abelian and consists of semi-simple elements. Hence, denote
by

Adg: G — Aut(g) , respectively Ads: G — Aut (gc)
the unique representation which lifts ads: g — gl(g), see, e.g., [72, Theorem 3.27], respectively the natural
C-linear extension.

Let T be the Zariski-closure of Ads(G) in Aut(gc). Denote by Char(7T') := Hom(7T; C*) the set of all
1-dimensional algebraic group representations of 7. Set
Cr := {foAds € Hom (G;C*) : 8 € Char(T), (BoAds) [r=1} .
We consider the differential graded sub-algebra
B o-ree
aeCr

of A®*T\G ®r C. (Note that we have used left-translations on G to identify the elements of A®gf with
the G-left-invariant complex forms in A®* T'\G ®g C, namely, the complex forms being invariant for the
action of the Lie group G on T'\G given by left-translations.) By Ads(G) C Aut(gc) we have the Ady(G)-
action on the differential graded algebra ®OCECF a - A°g¢. We denote by Ap the space consisting of the

Ads(G)-invariant elements of P, ¢, o - A®gg, namely,

(1) AP

= {ga € @ a-A*ge ¢ (Ads), (p) = ¢ for every g € G} .
aeCr

Now we consider the inclusion

AR CA*T\G @r C

of differential graded algebras. We have the following result.
Theorem 2.8 ([39, Corollary 7.6]). Let T\G be a solvmanifold, and consider Ay as defined in ().
Then the inclusion
(A, d) = (A°*T\G ®r C, d)
of differential graded algebras induces an isomorphism in cohomology.
Note that Ads(G) C Aut(ge) consists of simultaneously diagonalizable elements. Let {Xy,..., X}

be a basis of g¢ with respect to which

Ady = diag(ai,...,a,) : G — Aut(ge)
for some characters

ay € Hom(G;C*),. .., a, € Hom(G;C*) .
Let {x1,...,2,} be the dual basis of g¢ of {X1,..., X, }. For the basis {xil NNy,
of A®gg, for a € Cr, we have

}1§i1<z’2<-~<ip§n

(Ads)g (a Tig Ao A xip) = a(g) a;,l”ip (9)axiy NNy,
where we have shortened a,...;, := oy, - -+ - a;, € Hom (G;C*). Then the basis
{a:cil/\---/\xip ‘ 1< <i2<---<ip§nandaecp}
of @ ee,. @ - A*g¢ diagonalizes the Ads(G)-action, and avzy, A -+ Az, € Ap if and only if o = ..,
and g, ...q, [r= 1. Hence the differential graded algebra A} is written as
(2) APl = (C<ai1...ip Ty N AN, ‘ 1 <iy <idp <---<ip <n such that a;.., [r= 1> .
In fact, the following result holds.

Theorem 2.9. Let T\G be a solvmanifold. Let {X1,...,X,} be a basis of the C-vector space gc with
respect to which Ads = diag (a1,...,a,) for some characters as,...,a, € Hom(G;C*). Consider the
finite set of characters

Ar = {Oén...ip € Hom(G;C*) @ 1<y <idp <--- <ip <n such that oy, ..;, [r= 1} )
Then the sub-complex
L < P a-rvg, d) — (A*T\G ®g C, d)

acAr
16



induces an isomorphism in cohomology.
Suppose furthermore that G is endowed with a G-left-invariant complex structure. Consider the bi-
graded C-vector sub-space

P o Agr = AT TG ;
acAr
then ¢ induces, for any (p,q) € Z2, the isomorphism
kerdL®aEAF AP dge =, kerd| ar.q G
d(Baeq, - APHI-1gy) d (APTe-1 T\G @g C)

e
Proof. Consider the G-left-invariant Hermitian metric
n
= Z r; Ox;
j=1

on I'\G, and the associated C-anti-linear Hodge-*-operator %,: A®* I'\G ®r C — A""° I'\G ®g C, where
n is the dimension of T'\G. If the restriction of a character o of G on T' is trivial, then « induces
a function on F\G and the image «(G) is a compact subgroup of C*, and hence « is unitary. For
Qg .oy 2= Qi oo -0 € Ap, since G is unimodular, [52, Lemma 6.2], for the complement {j1, ..., jn—p} =
{1, n}\{zl,...,ip} we have

Qi iy = Qo = Oy

11 lp In—p
By this, we have
= o k) __ . . L A—e
*g (ail---ip A QC) = Qi g, N 8C
and, for o, i, vy, N--- Ay, € AR, we have
* — . . . “e . n—e
*g (ail...ip Ty A A Z'Z'p) = ajl---]nfp SCJI A N 1']n7p S AF .

Hence the sub-complexes

(A, d <@ - A°gE, ) < (A*T\G ®r C, d)

acAr

are such that

= . Ae n—e - . o _x n—e _x
*glas s AR — AT and *QL@QGAFQ'A.BE- @ a-Nge — @ a-N""%g¢,
acAr acAr

therefore the first assertion follows from Theorem and Proposition 241
Consider the F. A. Belgun symmetrization map p: A®* X ®r C — A®gf, [I4, Theorem 7]. For o € Ar,
we define the map

w
Ya: N T\G @rC — a-A°gr, Ya(w) = a~u(a) .

By the definition of p, for a G-left-invariant differential form 6 on T\G and for a differential form w on
I'\G, we have u(6 Aw) = 0 A p(w), see Lemma [Z5 By this we have, for any o € Ar,

Paldw) = Oé~u<%u) Owu(d(Z)nL%/\a)
coan () raena®) = o (2)

= d(Poz(W) )

and hence ¢, is a morphism of cochain complexes. Furthermore, for o € Ar, by considering the inclusion

lo: - A%ge = A*T\G @r C,

we have that
sﬁa Olg = ida-/\'g(*:

’
o

For distinct characters a, o’ € Ar, for the G-left-invariant form < d ( <

o’

), since 7 is a G-left-invariant
volume form, we can choose \ € /\dimG*lgj& such that %/ d (%) A X =mn. Then we have

1(59) = BLa(Z)an = .

«
17



By this, using Stokes’ theorem, for aw € o - APgg and for Xq,..., X, € g®r C, we have

p(Zw) (XieX,) = /F @) | (Kilese s Xpla) n(a) :w(xl,...xp)/F

\¢ o(r)

= w(Xi,...X,) /F\Gd(%)\) ~0

a(x)
\¢ ()

n(z)

and hence we have
(Pa/ Olg = 0 .
By the definition and since the complex structure on I'\G is G-left-invariant, we have that, for any
a € Ar, for any (p,q) € Z2,
Vo (/\P#Z F\G) Ca- /\Paqg(’é .
By noting that the set Ap is finite, we define the map
o = Z Ya: AO*T\G — @ o N°g0
acAr acAr
note that @ is a morphism of cochain complexes and we have, for any (p, q) € Z2,
O (APIT\G) C @ a - AP gl and Por = idg, _, a-nvag:
acAr

where ¢ denotes the inclusion ¢: € a-A**gs — A% I'\G. Consider the induced maps

acAr

o H® (Tot' P a- A, d) — H3, (I\G ;C)

acAr
and
®*: H3, (T\G ;C) — H* (Tot' P o rcg, d) :
acAr

Since ¢* is an isomorphism by the first assertion and ®* o t* = id, then ®* is the inverse of /*. By
© (APIT\G) € D e, @ APIgE, we have

(I)* ( kerdLAp,q F\G ) C kerdt@aeAF a»/\PvflgE
d(APHe—1T\G @z C)) ~ d (@QGAF a- APta-lgr)

kerd\_EBaEAF AP g
d(®a€AF a-/\PJrq*lgE)

.. ker , . . C .
Hence the restriction of ®* to % is the inverse of the restriction of .* to

)
which is hence an isomorphism. Therefore the second assertion follows.

Corollary 2.10. Let T\G be a solvmanifold. Let J be a G-left-invariant complex structure on G
satisfying, for all g € G,

Jo(Ady), = (Ady),oJ.

Then, by setting ALY .= Ap N APYT\G for any (p,q) € Z*, we have that the differential graded sub-
algebra (Af, d) — (A* T\G ®g C, d) defined in (@) is actually Z*-graded,

- @
ptqg=e
and the inclusion Ay® C AP4 T\G induces the isomorphism

kerd|[ 4p.a = kerd| apar\@
a(art) T AWEITG @0

Proof. Consider the Ady(G)-action on @, 4, - A**gt. Then AY® is the sub-complex that consists
of the elements of P, 4. - A**g¢ fixed by this action. Since Ads is diagonalizable, we have the
decomposition
P a-rg = AbeD?
acAr
18



such that D® is a sub-complex and this decomposition is a direct sum of cochain complexes. By the
assumption J o (Ads), = (Ady), o J for any g € G, the Ads(G)-action is compatible with the bi-grading

*

Daca, @ A*°ge. Hence we have in fact
P o rtgr = ARt oD
a€Ar

Consider the projection p: @, 4. @ - A**gE — AY® and the inclusion ¢: AR < Doca. - A9E
Then we have por = id A As similar to the proof of Theorem 2.9, we have that ¢ induces, for any
(p,q) € Z*, the isomorphism

kerdLA’F”’ ~ kerdt@a&tr a-APdgk
— 1%\
d (AZI)‘-HZ_l) d (®O¢EAF o - APTd gC)

Hence the corollary follows from Theorem 2.9 O

Lo

2.4.1. Complex solvmanifolds of splitting type. We consider now solvmanifolds of the following type.

Assumption 2.11. Consider a solvmanifold X = T\G endowed with a G-left-invariant complex struc-
ture J. Assume that G is the semi-direct product C* x4 N so that:

(i) N is a connected simply-connected 2m-dimensional nilpotent Lie group endowed with an N -left-
invariant complex structure Jy; (denote the Lie algebras of C* and N by a and, respectively,
n;)
(i) for any t € C", it holds that ¢(t) € GL(N) is a holomorphic automorphism of N with respect
to JN,'
(iii) ¢ induces a semi-simple action on n;
(tv) G has a lattice T'; (then T' can be written as I' =T'cn X 'y such that T'en and Ty are lattices
of C™ and, respectively, N, and, for anyt € I, it holds ¢(t) (T'n) CT'n;)
(v) the inclusion A** (n@g C)* < A®* (I'y\ N) induces the isomorphism

H* (7A** (n@rC)",0) = Hy* (TN\N) .

Consider the standard basis { X7, ..., X,,} of C*. Consider the decomposition n ®g C = n':? @ n%?
induced by Jy. By the condition this decomposition is a direct sum of C™-modules. By the
condition we have a basis {Y1, ..., Y, } of n1% and characters ay, . .., a,, € Hom(C";C*) such that
the induced action ¢ on n'? is represented by

C" >t ¢(t) = diag (a1 (t), ..., am(t)) € GL(n"0) .

For any j € {1,...,m}, since Y; is an N-left-invariant (1,0)-vector field on N, the (1,0)-vector field
a;Y; on C" x4 N is (C" x4 N)-left-invariant. Consider the Lie algebra g of G and the decomposition

gc = g®r C = gh%® g”! induced by J. Hence we have a basis {X71, ..., X,,, a1Y1, ..., @Y} of gb?,
and let {xl, e, Ty, aflyl, R a;lym} be its dual basis of /\1’09(’&. Then we have
APIGE = AP (21, ooy Ty 07 Y1y ey 0 Y ) @ AT, oy Ty O T e @ T )

The following lemma holds.

Lemma 2.12 ([0, Lemma 2.2]). Let X = I'\G be a solvmanifold endowed with a G-left-invariant
complex structure J as in Assumption 211 Consider a basis {Y1, ..., Y} of b0 such that the in-
duced action ¢ on nb0 is represented by ¢(t) = diag (a1 (t), ..., am(t)) for ai,...,a, € Hom(C";C*)
characters of C". For any j € {1,...,m}, there exist unique unitary characters 3; € Hom(C";C*) and
~; € Hom(C™; C*) on C™ such that ajﬁfl and o’cjvjfl are holomorphic.

We recall the following result by the second author.

Theorem 2.13. ([40, Corollary 4.2]) Let X = T\G be a solvmanifold endowed with a G-left-

invariant complex structure J as in Assumption [ZI11. Consider the standard basis {Xi, ..., X,}

of C*. Consider a basis {Y1, ..., Y} of nb'® such that the induced action ¢ on n'C is repre-

sented by ¢(t) = diag(ai(t), ..., am(t)) for a1,...,am € Hom(C™;C*) characters of C". Let

{:cl, ey Ty QYL a;llym} be the basis of N*0g which is dual to {X1, ..., Xn, a1Y1, ..., &mYm}.

Forany j € {1,...,m}, let B; and ~y; be the unique unitary characters on C" such that ogﬂfl and &j’y;l
19



are holomorphic, as in Lemma[ZI2. Define the differential bi-graded sub-algebra By* C A** T\G, for

) BR = Clarn(a3'8s) ys Ak A (ag'v) o | M+ 1J) = p and K|+ L] = g
such that (ByvL) lr=1) .
Then the inclusion Byr'® C A*® T\G induces the cohomology isomorphism

H** (B}*, 9) = HY® (T\G) .

As a straightforward consequence, by means of conjugation, we get the following result.

Corollary 2.14. Let X = T'\G be a solvmanifold endowed with a G-left-invariant complex structure J
as in Assumption 211l Consider Br® as in @), and let

(4) Bl = {we A T\G : we B} .
The inclusion Bl:" — A®* I'\G induces the cohomology isomorphism
H** (B*, 0) = Hy® (I\G) .
Hence we get the following result.

Corollary 2.15. Let T\G be a solvmanifold endowed with a G-left-invariant complex structure J as in
Assumption 211 Consider By'® as in @), and B* as in @). Let

(5) Cfﬁ' = Bl:" + Bfﬁ' .
Then we have

(i) the inclusion C* < A®* T\G induces the cohomology isomorphism
H** (Cr, 0) = Hy® (T\G) ;
(ii) the inclusion C3* < A®* T\G induces the cohomology isomorphism
H** (Cp*,0) = HY* (T\G) ;
(iii) for any (p,q) € Z2, the inclusion C'® < A** T\G induces the surjective map

kerdtclg,q N kerdLAp,q F\G
d(Tot?Tr=tCp®) " d(A\wHa-IT\G @ C)

Proof. Let g be the G-left-invariant Hermitian metric on G defined by

n m

g =Y 2,08+ ota yr Ok
j=1 k=1
and consider its associated C-anti-linear Hodge-+-operator ¥,: A®* I'\G — A*N7* T'\G, where 2N :=
2n + 2m = dimg I'\G. Then for multi-indices I,J C {1,...,n} and K,L C {1,...,m}, and their
complements I',J" C {1,...,n} and K', L’ C {1,...,m}, we have
%9 (z1 A (o) Br) o ANaEx A (ag ) go) = 2o A (gt Br) yor A A (63 L) Grr-
Since G is unimodular by the existence of a lattice, [52] Lemma 6.2], we have ajaarar = 1 and so
we have Sy = 6;1721 = BJﬁL_l. This implies
rr N\ (Oé;,lﬁ_‘]) Yy NTrr N\ (0742,1’7[1) Yy = xp N (Ck}lﬁ‘]/) Yy NTrr N\ (dz,l’)/L’) YL € BI:’..

Then we have %, (BI:") C BfﬂV*"Nf' and so also

W (GF7) € G

Hence respectively follows from Theorem [ZT3] respectively Corollary 22T4] and Proposition 241

We consider the sub-complex A} C A® T'\G ®g C defined in (). Consider the standard basis

{X1, ..., X,,} of C". Consider a basis {Y1, ..., Y;,} of n1:¥ such that the induced action ¢ on n':? is rep-

resented by ¢(t) = diag (a1 (t), ..., am(t)) for aq,...,am, € Hom(C™; C*) characters of C™. Then, with
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respect to the basis { X1, ..., Xn, X1, ..., Xn, aaY1, .., Vi, @11, o0, G Vi } of go = g*0 @ g%,
we have, for (t,n) € G =C" x4 N,

ld n)1,0 n)0,1 | 0
Ad, _ (€m)10p(cn)o >
(Ads) (¢ ) ( 0 6 Lo oamor (D
= diag [ 1, ..., 1, a1(t), ..., am(t), @1(t), )
——
2n times
Hence we have J o (Ads)(, ,) = (Ads)(,,) © J, and we can easily see that A}® C CR® C A% I'\G. Since
the composition
ker dl_Alli’q ker dLCp,q ker dL/\p,q n\a
— —
d (A;;J,-q—l) d (TOtPJr'I*l Cl:a') d(Ar—2—1 T\G ®g C)
is an isomorphism, then of the corollary follows. O

Finally we get the following theorem.

Theorem 2.16. Let T\G be a solvmanifold endowed with a G-left-invariant complex structure J as in
Assumption [Z11. Consider C° as in [@). For any (p,q) € Z?, the inclusion Cp'* C A*®* T\G induces
the isomorphism

H (c{?lﬂql B ope 2K crtta g C{qu“) 5 HEL(T\G) .

Proof. By Corollary 215 the surjectivity follows from Theorem[[.3l The injectivity follows from Propo-
sition O

Example 2.17 (The completely-solvable Nakamura manifold, [40, Example 1]). The completely-solvable
Nakamura manifold, firstly studied by I. Nakamura in [54], page 90], is an example of a cohomologically
Kéhler non-Kéahler solvmanifold, [26], [33] Example 3.1], [27, §3].

Let G := C x4 C?, where

¢ (v+V-1y) = (eg eOI)EGL((CQ) .

0 e™*
I':= (aZ+by/—17Z)x4I" such that I'” is a lattice of C?. Consider the completely-solvable solvmanifold
NG.
(As a matter of notation, we consider holomorphic coordinates {z1, za, 23}, where {zl =x++v-1 y}
is the holomorphic coordinate on C, and we shorten, for example, e ** d 2197 := e 1 d 21 Ad 22 Ad Z1.)
By A. Hattori’s theorem, [37, Corollary 4.2], the de Rham cohomology of T'\G does not depend on I"
and can be computed using just G-left-invariant forms on I'\G; more precisely, one gets

Hgp(T\G;R) = R(1),

Then for some a € R the matrix ( ¢ ) is conjugate to an element of SL(2;7Z). We have a lattice

Hin(T\G;R) = R{dz,dz),

Hip(T\G;R) = R(dz23, dzy1, dzos, dzgs, dzgg)

HgR(F\G ;R) = R(dzi23, d2g31, dzi23, d2133, d 2123, d2o13, d 2312, d2123) ,
Hip(T\G;R) = R(dz1931, d 21213, d 22333, d 21313, d21123)

Hip(T\G;R) = R (dz13, d223723) ,

HSR(F\G ;R) = R(dziz3133) »

where we have listed the harmonic representatives with respect to the G-left-invariant Hermitian metric
gi=dz ©dz +e 7" dzy ©®d Zy +e* T3 d 23 ® d Z3 instead of their cohomology classes.
We consider Cp® as in (B). The bi-differential bi-graded algebra By’® varies for a choice of b. By using
Theorem 216, we compute Hp2(D\G) ~ Hy 2 (CR®), case by case:
(i) b = 2mm for some integer m € Z;
(ii) b= (2m + 1)x for some integer m € Z;
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(iii) b # mm for any integer m € Z.
Firstly, we write down C{’* case by case in Table[I] Table 2] and Table

case|(1) || C’l:”

0.0 [

(1,0) C(dz, e "t dzg, €1 dzs, e **d2g, et d23)

(0,1) C(dz1, e *tdz3, et dzs, e "1 dzs, e dzg)

(2, O) C (e_zl d z19, €**d z13, d 293, e %1 d 219, e’ d213>

(1,1) C(dz1, e * d 23, € dzy3, e dzpy, € 2 d 293, d 203, € d 231, d 233, €21 d 233,
e " d 21, e d2ys, €™ dzy3, e dagy, € 27 dzgs, €27 d2sg)

(0,2) C(e "t d 213, €** d 213, d 233, e~ d 213, €** d 213)
(C <d 2’123>

2,1) C <efz1 d 2101, € %1 d 2193, d 2103, € d 2137, d 2133, € d 2133, d 2937, €7 d 2933, €' d 2033,
e "1 d 2197, €1 d 2137, € 2*1 d 2193, € 1 d 2933, €271 d 2153, €7 dz233>

(1,2) || C(e ™ dzi13, e *" dzp13, d 2313, € d 2113, dzo13, €2 d 2313, d 2133, €77 d 2033, €7 d 2333,
e "1 dz13, 7! dzﬂg, e 2% d 2575, €771 dZQQg, e?#1 ngig, e*t d2’3§3>

(0, C(d 2133)

(3, C(d 21031, € 7?1 d 21933, €™ d 21933, €77 d 21933, €™ d 21933)

2,2 C <672Zl d 21913, d 21913, €% d 21933, d 21313, €2 d 21313, €' d 21353, € "' d 2375, €' d 29373,
d z353, € 2" d 21513, € ' d 29373, € 7 d 21933, €' d 21333, €**' d 2373, €*' d 22313>

(1,3) || C(d 2123, e dzo123, € d 23123, € 7 d 2123, €' d 23123)

(3,2) C(e™? d 219313, €™ d 212313, d 212333, € 7' d 219313, €™ d 212313)

(2,3) || Cle™* d 212123, €' d2y3123, d2as123, € 7 d 219133, € d 213123)

(3,3)

|| C(d z123123)

TABLE 1. The double complex C}'® for the completely-solvable Nakamura manifold in

case

Note that, since 99 (Cl:a') = {0} for each case, we have, by using Theorem 216}
Hyg(T\G) ~ Hyg (CP®) = kerd[gse .

Hence, we compute the Bott-Chern cohomology of the Nakamura manifold case by case in Table ] and
Table [l note that, in the case simply we have:

(6) HEL(D\G) =~ CP* in case :

We summarize in Table [6] the results of the computations of the Bott-Chern cohomology as done in
Table @ and Table Bl and (@), and of the Dolbeault cohomology, as done in [40, Example 1].

Remark 2.18. Note that in any case the canonical map Tot* Hy (I\G) — H3, (T\G) is surjective.

(With the notation of [49] [], this means that, in any case, T\G is complez-C*°-pure-and-full at every

stage, namely, the de Rham cohomology admits a decomposition in pure-type subgroups with respect to

the complex structure.) In the case by Proposition [T} we have Hj, (I\G) ~ H*® (Tot* C1°) =
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case [ | 3"
e

lej, e 2 dz??v em 27 szQa %1 ngg, e ngg, d2’23, d23§>

2 -2z 2z 2z _ i} _
d 2931, €727 d 2193, €721 d 2193, €**1 d 2133, €** d 2133, d 2103, d 2133)

__ —2z __ —2z __ 2z __ 2z __ __ __
d 2133, € "t d 2913, € “*' d 2973, €**' d 2313, e°* d 2313, d 2913, d2312>

22 2z 2z 2z - _ .
e **1d 21013, € “*' d 21013, 7 d 21313, €“*' d 21373, d 22323, d21312>

—_— — [ — Y [— Y — [ — — [ — — | ~—

WV W EF N wo R v wom vo Vo
Wl W N W N RHIW N = ON = O O

) || C(d 2123153>
TABLE 2. The double complex Cp® for the completely-solvable Nakamura manifold in

case

Tot® C* and hence the canonical map Tot® Hyl (I'\G) — H3, (I\G) induced by the identity is in
fact an isomorphism: this implies that I'\G in case satisfies the 90-Lemma (namely, every 0-closed
0-closed d-exact form is dd-exact too, see [29]). In [40], it is shown that for some left-invariant Hermitian
metric the space of harmonic forms admits the Hodge decomposition and symmetry (see also [4I] for
higher dimensional examples with the Hodge decomposition and symmetry).

Remark 2.19. In view of [I0, Theorem A, Theorem B], stating that, for every compact complex manifold
X, for any k € Z, the inequality

Y (dime HEL(X) + dime HYY(X)) > > (dimc HY9(X) + dime Hg‘Z(X)) > 2 dime H,(X;C)
p+q=k p+q=k

holds, and that equalities hold for any k € Z if and only if X satisfies the 9-Lemma, one gets that
the non-negative integer numbers -, _, (dimgc H3A(X) + dime HYY(X)) — 2 dime Hk(X;C) € N,
varying k € Z, provide a “measure” of the non-Kéahlerianity of X.

Note that, for the completely-solvable Nakamura manifold, in any case, one has

dim¢ Hg’g (X) + dim¢ HZ’q(X) = dimc Hg’q(X) + dim¢ Hg’q(X)
for any (p,q) € Z%. On the other hand,

8 forke{l,5}

d. Hp7q X d. Hp’q X))—2 d' Hk XC _ 20 fOr k € {27 4} .
Z (dime HEA(X) + dime HZ (X)) ime Hjp(X;C) in case (i),
pt+q=k 24 fork=3
0 otherwise
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case (i) || CP°

(0,0) [ C(1)
(1,0) C(d z1)
(0,1) C(da)
(2,0) C (d 2z23)
(1,1) C(d 211, d2o3, d2s3)
(0,2) C(d 223)
(3,0) C (d z123)
(2,1) C(d 2931, d 2123, d213)
(1,2) C(d 2133, d 2213, dz313)
(0,3) C (d 2123)
(3,1) C(d 21231)
(2,2) C(d 21213, d 20323, d21312)
(1,3) C(d z1133)
(3,2) C (d z12323)
(2,3) C (d z23123)
(3,3) || C d2123i§3>
TABLE 3. The double complex C'® for the completely-solvable Nakamura manifold in
case
and
0 forke{l,5}
4 for k € {2, 4}
> (dime HEE(X) + dime HY (X)) —2 dime Hjp(X;C) = in case [(@)],
o=k 8§ fork=3
0 otherwise
and
0 forke{l,5}
0 for ke {2, 4}
> (dime HEE(X) + dime HY?(X))—2 dime Hjz(X;C) = 0 k3 in case :

p+q=k
0 otherwise

In particular, by [10, Theorem B], one gets that I'\G in case satisfies the 90-Lemma, as noticed
also in Remark [2.1§]

Given a property depending on the complex structure, one says that it is open under small defor-
mations (respectively, strongly-closed under small deformations) if, for any complex-analytic families of
compact complex manifolds parametrized by B, the set of parameters for which the property holds is
open (respectively, closed) in the strong topology of B.

We recall that satisfying the 99-Lemma is an open property under small deformations, see [70], Propo-
sition 9.21], [73] Theorem 5.12], [65, §B], [10, Corollary 2.7]. On the other hand, as pointed out by
Luis Ugarte, the completely-solvable Nakamura manifold provides a counterexample to the strongly-
closedness of the property of satisfying the 9-Lemma: indeed, complex structures in class satisfy
the 99-Lemma while complex structures in classes and do not. We have hence the following
theorem.

Theorem 2.20. Satisfying the 00-Lemma is not a strongly-closed property under small deformations of
the complex structure.
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case[(@)] || Hyo(T\G)

[e™* d z101], [e72 d 2105, [d z103], [€** d z137], [d 2133, [€**" d 2133, [d 2031,

[e™*t d z101], [€** d 2151])

(0,0) |l C(1)

(1,0) || C([dz])

(0,1) || C([dz])

(2,0) C([e ** d z12], [e** d z13], [d 2a3])

(1,1) || C([dz11], [e7* d21a], [e* dzig], [d 2], [dzsa], [e7 d 2o, [€* d zs1])
(0,2) || C([dzs3], [e™* dzia], [e* d2i3])

(3,0) || C(]

(2,1) || C(

(1,2) || C([e™* dz113], [e™?*" dzo13], [d 2313), [€* dz13), [d2o13], [€** d z373], [d 2133],
[e™* d z112], [e** d 2113])
C([d 2123])

(3,1) C([d z1231], [e77* d 21233], [€** d z1933])

2,2) C([e™?* d z1913], [dz1013), [e7 d 21933], [d 21313), [ d 21313], [€* d 21333], [d 20333],
[e™* d z1o13), [e77 d29313), [€¥* d21313), [0 d 20373])

(1,8) || C([dz1123], [e77 d za103], [e* d 23123])

(3,2) C([e™" d 219313, [€** d z12313], [d 212323, [67*" d 210313, [€*' d 212313])

(2,8) || C(le™*" dz1a133], [€* dz13103], [dzo3123], [e7* d 219193], [€7 d z13123])

(3,3) || (C dZ123 123 ]>

TABLE 4. The Bott-Chern cohomology of the completely-solvable Nakamura manifold

in case|(1)

Remark 2.21. Actually, as remarked by Luis Ugarte, in defining closedness for deformations, one
usually considers the Zariski topology, see, e.g., [56]: namely, a property P is said to be (Zariski-)closed
if, for any family {X;},. of compact complex manifolds such that P holds for any ¢t € A\ {0} in the
punctured-disk, then P holds also for Xg. In [7], a family of deformations of the complex parallelizable
Nakamura manifold is studied in order to prove that satisfying the 90-Lemma is also non-(Zariski-)closed.

2.4.2. Complex parallelizable solvmanifolds. Let G be a connected simply-connected complex solvable
Lie group admitting a lattice I', and denote by 2n the real dimension of G. Denote the Lie algebra
naturally associated to G' by g. We use the following lemma.

Lemma 2.22. Let o, 3 be holomorphic characters of a connected simply-connected complex solvable Lie
group G. If aB is a unitary character, then o = B~1.

Proof. Since we have a([G,G]) = [a(G),a(G)] = 1 and B(|G,G]) = [B(G),B(G)] = 1, we can re-
gard « and S as characters of G/[G,G]. Since G is connected simply-connected, G/[G,G] is also
connected simply-connected, see [28 Theorem 3.5]. Since G/[G,G] is Abelian, it is sufficient to show

the lemma in the case G = C™. For the coordinate set (z1,...,z,) of C", we write o = exp (2?21 ajzj)
and f = exp (2?21 bjzj), for some ay,...,an,b1,...,bp, € C. If af is unitary, then we have

R (Z?Zl (a;z; +Bj2j)) = 0. By simple computations, we have a; = —b; for any j € {1,...,n}.
Hence the lemma follows. O

Denote by g4 (respectively, g—) the Lie algebra of the G-left-invariant holomorphic (respectively, anti-
holomorphic) vector fields on G. As a (real) Lie algebra, we have an isomorphism g4 ~ g_ by means of
the complex conjugation.
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case[(i)] || Hy2(P\G)
0,0) | C(1)

d z931], [e72%* d 2195, [€2** d z133], [d 2103, [d2133])

]
]

dz133), [e727 d zo13], [€° d 2373], [d za13), [d 2513))
]

]
[d z1013], [e727* d 21013), [€7%% d 21013], [€**" d z1313], [€*** d z1313), [d 20333], [d Z1313])
]

—_~ o~~~ o~~~ o~ o~ o~~~ ~ ]~ ~ |~
— [— Y [— Y — [~ — — — [~ ~— — [~ ~— | ~—

WIN W N WO N WO - NMNOo -
WRIW N W N HEFIWN R ON = O O

TABLE 5. The Bott-Chern cohomology of the completely-solvable Nakamura manifold

in case

Let NV be the nilradical of G. We can take a connected simply-connected complex nilpotent subgroup
C C G such that G = C - N, see, e.g., [28, Proposition 3.3]. Since C' is nilpotent, the map

C3cr (Ade)s € Aut(gy)

is a homomorphism, where (Ad.)s is the semi-simple part of the Jordan decomposition of Ad.. Let ¢
be the Lie algebra of C; we take a subspace V' C ¢ such that g = V @& n. Then the diagonalizable
representation Adg constructed above, §2.4 is identified with the map

G=C-N>3c-n— (Ad.)s € Aut(g),
see [43, Remark 4].
We have a basis {X1,...,X,} of g4 such that, for c € C,
(Ad.)s = diag(ai(c),...,an(c)) ,

for some characters a1, ...,a, of C. By G=C-N, we have G/N = C/C N N and regard a,...,a, as
characters of G. Let {x1,...,2,} be the basis of g% which is dual to {X1,..., X, }.

Theorem 2.23. ([43, Corollary 6.2 and its proof]) Let G be a connected simply-connected complex
solvable Lie group admitting a lattice I'. Denote the Lie algebra naturally associated to G by g. Consider
a basis {X1,...,X,} of the Lie algebra gy of the G-left-invariant holomorphic vector fields on G with
respect to which (Ad.)s = diag (a1 (c),...,an(c)) for some characters ay, ..., of C. Regard aq, ..., ap
as characters of G. Let B} be the sub-complex of (/\0*' NG, 3) defined as

IC{1,...,n} such that <%)L 1> ,
(65} r

(where we shorten, e.g., ar = oy, - -+ - «;, for a multi-index I = (i1,...,i)). Then the inclusion
By < A% T'\G induces the isomorphism

o agy _
(7) By = <a—1z[

H* (BP,9) = Hy*(T\G) .

26



Sase Sase Sase

dR|® BC|d BC |3 BC
©o | 11 11 1 |1 1
woy|[ , I3 1t [t 1 |1 1
(0,1) 3 1 (1 1 |1 1
(2,0) 3 3|1 1 |1 1
@yl o 7|5 3 |3 3
(0,2) 3 3|1 1 |1 1
(3,0) 11 |1 1 |1 1
eyl sllo 9|5 5 |3 3
(1,2) 9 9 |5 5 |3 3
(0,3) 11 |1 1|11
(3,1) 3 3|1 1 |1 1
22| %o 11|55 7 [3 3
(1,3) 3 3|1 1 |1 1
@2 , |3 5 [t 1 [1 1
(2,3) 3 5|1 1 |1 1
33) ] 1|t 1|1 1 |1 1

TABLE 6. The dimensions of the de Rham, Dolbeault, and Bott-Chern cohomologies of
the completely-solvable Nakamura manifold.

By this theorem, since I'\G' is complex parallelizable, for the differential bi-graded algebra
(A*gh @c B, 0), the inclusion A®' g% ®@c Bf? < A®0*2 I'\G induces the isomorphism

A*gh @c H3*(BR) = H3V**(I\G) .

Consider the G-left-invariant Hermitian metric
n
g = ij Ox;.
j=1

Then, for x; A z—’; Ti € /\|I|gi ®c BILK‘, since G is unimodular, [52] Lemma 6.2], we have

_ K _ oK _ QK _ _ —|K
*gl eI N—2Zr | = xp N—Zgr = xp N\ T € A" mgi ®c B; K] ,
[(675:¢ aK 05:¢

where I’ := {1,...,n}\ I and K’ :={1,...,n}\ K are the complements of I and K respectively. Hence
we have %, (A®g} ®c Bp) € A""*gh ®c By~ °.

We consider the space
ar
I C{1,...,n} such that <—) { = 1> .
(63} T

Bfw = <% xrr
Then the inclusion B! ®@c A®2g* C A**2 T'\G induces the isomorphism in d-cohomology

Qag

H* (Bp®c A*?g*, 0) = Hy»** (I\G) .
Consider
(8) C*1*2 = A*'gh ®c Br2 + B @c A%gt .

Then we have %, (C*1*2) C Cn—*1n—%2,
As similar to Corollary 2215, we can show the following result.
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Corollary 2.24. Let G be a connected simply-connected complex solvable Lie group admitting a lattice
I'. Denote the Lie algebra naturally associated to G by g. Consider the sub-complex C'® C A** T\G as

defined in (8).
(i) The inclusion Cp'* < A** I\G induces the 8-cohomology isomorphism
H**(Cy*, 0) > Hy*(T\G) .
(ii) The inclusion Cp'® — A®* T'\G induces the -cohomology isomorphism
H**(Cp*,9) = HY*(T\G) .
(iii) The inclusion C'® < A*® T\G induces, for any (p,q) € Z?, the surjection

keI’d\_Cp,q - kerdl_/\P’q NG
d (TotPT= 1 Cp®)  ~ d(APFa—I T\G @R C)

Proof. By %4 (C®*2) C C"~*t"~*2 the first and second assertions follow as similar to the proof of
Corollary 2151

By denoting the complex structure by J, for any ¢ € C, since we have Ad. o J = J o Ad,., we have
(Adc)s o J = J o (Adc)s, and hence we have (Ads), o J = J o (Ady), for any g € G. We consider
the sub-complex A} C A®* T\G ®gr C as in (), see Theorem By Corollary 210 the inclusion
AY® < AP4T\G induces the isomorphism

ker d|[ 4».a = kerd| arar\@
a(ap) AW TG e )

We have

Ay = (ajayxer ATy | I,J C{1,...,n} such that (ayay)|[r=1) .
For (aya@y) |[r= 1, since we can regard oy @y as a function on I'\G, the image of ay &, is compact
and hence it is unitary. By Lemma 222 we have ayay = 5£. Hence we have the inclusion Ap C
Tot® A®g% ® Bp and so we have the inclusion A}® C CP'® € A®* I'\G. Since the composition

kerd \_A{Z’q kerd LCp,q kerd L/\p,q n\a
- -
G T TR

is an isomorphism, then the third assertion of the corollary follows. O

By this, we get the following result.

Theorem 2.25. Let G be a connected simply-connected complex solvable Lie group admitting a lattice T'.
Consider the sub-complex C3'® C A** T\G as defined in @). The inclusion C3° < A®®* T\G induces
the isomorphism

H (c;—“—l 2 et S optte g c;'“) S HR(T\G) .

Example 2.26 (The complex parallelizable Nakamura manifold). Let G = C x, C? be such that

Then there exist a + +/—1b € C and ¢ + /—1d € C such that Z(a + v/—1b) + Z(c + vV—1d) is a
lattice in C and ¢(a + /—10) and ¢(c ++/—1d) are conjugate to elements of SL(4;Z), where we regard
SL(2;C) C SL(4;R), see [36]. Hence we have a lattice I' := (Z (a + v/=1b) + Z (c + v/—1d)) x4 I of
G such that ' is a lattice of C2. Let X := I'\G be the complex parallelizable Nakamura manifold, [54)
§2].

We take the connected simply-connected complex nilpotent subgroup C' := C C G such that G = C- N,
where N is the nilradical of G. Recall that g denotes the Lie algebra of the G-left-invariant holomorphic
vector fields on G. For a coordinate set (21, 22, 23) of Cix,C?, we have the basis {6%, e*1 6%2, e 6%3}
of g4+ such that

(Ad(ZhZ%ZB.))S = diag (1, €™, e ) € Aut(g4) .
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(a) If b € 7 Z and d € 7w Z, then, for z € (a + /—1b) Z+ (c+ v/—1d) Z, we have ¢(z) € SL(2;R). Since
(22 )r = (e27)[r =1, we have
By = A°C(dzi, e dzs, e dzs) .

Hence the double complex CP° in case (E) is the one in Table [l (We recall that, in order to
shorten the notation, we write, for example, e d 213 := e*' d 21 A d z3.)

case () | C7°

| C(1)

dzy, e dzg, e dzs, e " dzg, € dzs)

)

dzi, e " dzz, e dzz, e " dzg, e dzg)

(0,0)
(1,0) || €
(0,1) || €
(2,0) C(e ™t d 212, €t d 213, dza3, e "1 d 212, € d 213)
ay e

) dzlia e * dzlia e leg, e dz2ia e 27 szQa d22§, et dZ3i, ngg, e dZ3g,

e " dzyg, e " dzs, € dzg, € dzgy, e 2 d 2y, €27 d2gg)

(0,2) C(e™**d 213, e* d 213, d2g3, e " d 213, €™ d 213)

C(d z123)

—z _ —2z _ _ z _ _ 2z _ _ —z _ z _
2,1) C(e™™ dzo1, e 2" d 2193, d21o3, € d 2131, d 2133, €2 d 2133, d 2937, € %' d 2933, €' d 2933,
e dzpo1, € dzisr, € 2 d 2103, € 7 d 2ags, €7 d 2153, €7 d2ag3)

—z - _ E - oz - I .z __
(1,2) (C<e td 213, 7% d 2913, d 2313, €t d 2173, d 2913, €“* d 2313, d 2133, €7 d 2933, €*' d 2333,

e " d 213, € d 213, € 2" d 2973, € *' d 2933, €** d 2373, €*! d 2333)

_ —z _ z _ —Z _ z _
(d 21231, €77 d 21233, €* d 2933, € 7 d 21933, €71 d 21933)
—2z __ __ —z __ __ 2z __ z __ —z __ z __
<e td 21212, d 21913, €%t d 21933, d 21312, € d 21313, €™ d 21333, € ** d 29313, €' d 29313,
-2z -z -z oz 2z = _
29393, € ' d 21013, € ' d 2313, € ' d 21933, €t d 21333, € d 24373, €7 d22313>

_ —Z _ z _ —z _ z _
d 21123, €77 d 29133, €7 d 23133, € *' d 29133, €' d 23133)

(e7% d 212313, €** d 212313, d 212333, € 7' d 219313, €' d 219373)

—z o z o o —z _ z R
C(e™? d 212123, €™ d 213123, d 223723, € *' d 212733, €™ d 213723)

~ |~ —~ |
WiN W=
Wl w N W
~— [~ ~— [ ~—

|| C(d 2123153>

TABLE 7. The double complex C'® in (B) for the complex parallelizable Nakamura
manifold in case (@).

We compute the Bott-Chern cohomology for the complex parallelizable Nakamura manifold in
case (@) in Table

The differential algebra A for the complex parallelizable Nakamura manifold in case (@) is sum-
marized in Table

Remark 2.27. Suppose b € 27 Z and d € 27 Z. Considering another Lie group H := C x4 C? such

that ( )
e% z1+21 0
Y(z) = < 0 e~ 3 (z1+21) ) ’

the correspondence G' € (z1, 22, 23) +— (21, 22, 23) € H gives an embedding I' — H as a lattice

and hence we can identify T\G with T'\H, see [74, Section 3|. Since H is equal to the solvable

completely-solvable Lie group in Example 217 this case is identified with case in Example 2217

Note that Ap. is not G-left-invariant in this case (for example the 2-form d 2,3 is not G-left-invariant)
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case (@ || Hye(D\C)
| cm

)

3

dzli]v [67Z1dzli]7 [eZIdzlg]v [dz2§]a [dZSQ]v [6*51d221]7 [egld'zSiD
d 23], [e7* d 212], [e* d 213])
d

(0,0)
(1,0)
(0,1)
(2,0)
(1,1)
(0,2)
(3,0)
(2,1)

v wlo R vio w
R ol B OlRk O

[e™*1 d 2101, [672*" d 2193), [d 2103, [€* d 2131], [d 2133], [€*** d 2133],
[d 2931], [e7%* d 2101, [e* d 2y31])
(1,2) || C(le™™ di1a), [e7% d 2o13), [d 2512), [7 d 2113), [d 2013), [7' d 2a13],
[d2133], [e7*1 d 2112, [e* d 2113])

C([d 2123])
(3,1) C([d z1931], [e77* d z1932], [€** d 21933])
(2,2) C (e d 21913], [d21213), [e7 d21933), [d21313], [€**' d z1313], [€* d 21333),

[d z2333], [e7%%" d 21013, [e7 7" d 2a373], [€** d z1313], [e™ dZ231§]>

) |l C([dz1123], [e** dzo133], [€* d z3123])

) C([e7* d 219313, [€** d 219313, [d 212323, [677* d 219313, [€** d 219313])
) || C(le™* d2ia1a3], [6" dz13133], [dz03193], [e7 d 219133, [ d 213123])

) || C <[d 2123123]>
TABLE 8. The Bott-Chern cohomology of the complex parallelizable Nakamura manifold

in case (@m).

)

1
3,
2

w N W

)

(
(
(
(3,

case (@) || A}

0 | C(1)

1 || C(dz, dz1)

2 || C(d 211, d 223, d 203, d 233, d 233)

3 || C(d 2123, dz13, d2133, d 2313, d 2013, d 2133, d 2123, d2133)
4 || C(dz1231, d 21313, d 22333, d 21213, d21133)

5 || C (d 293723, d 212323)

6 || C<d2123123>
TABLE 9. The cochain complex Af in (1) for the complex parallelizable Nakamura
manifold in case (@).

and hence H® (A°g*, d) # HJ, (I'\G ;R), see also [27, Corollary 4.2]. On the other hand, we have
H* (A*h*, d) ~ H3, (T\H ;R), where b is the Lie algebra of H. In [23, Main Theorem], it is proven
that, for any solvmanifold T'\G, there exist a connected simply-connected solvable Lie group G and
a finite index subgroup [ C T such that H® (A°g*, d) ~ HYp (f‘\G ;R), where g is the Lie algebra
of G.
(b) fb wZ or d ¢ wZ, then the sub-complex Bp defined in (7)) is
Bt = C{dz),

By

C(dza ANdZ3) ,
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B = C{dzAndzmAadz) .
Then the double complex Cf® is given in Table

case (b) || Cp*

| )

dzi, et d 23, e d z3)

e "t dz1a, € dzig, dzas)

dzy1, €77 d 291, €7 dz?)ia e d 23, e®

tdz3)

P —Z o V4 o
d 21123 € 7' d 29133, €™ d 23133)

_z _ z ,, ,,
e 1 d 219373, €™ d 212313, d 212333)

(3,3) || C(dz123133)

TABLE 10. The double complex C* in (B) for the complex parallelizable Nakamura

manifold in case (@).

We compute Hp;2(I'\G) in case (@), summarizing the results in Table [[T]

The cochain complex AP in () in case (B is given in Table

Finally, we summarize the results of the computations of the dimensions of the de Rham, the Dolbeault,
and the Bott-Chern cohomologies in Table [[3] (see [40, Example 2] for the Dolbeault cohomology).

Remark 2.28. Note that, for any (p,q) € Z2,

dime HEE(X) + dime H}*(X) = dime H}(X) + dime H2(X)

in both case (@) and case (B); note also that

8
. . . k 20
Z (dime HZA(X) + dime HYY(X))—2 dime Hjp(X;C) =
= 24
0
and
4
) . . k 8
Z (dime HZL(X) + dime HY (X)) — 2 dime Hjp(X;C) =
pta=k 8
0
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for k € {1, 5}
for k € {2, 4}
for k=3

otherwise

for k e {1, 5}
for k € {2, 4}
for k=3

otherwise

in case (@),

in case (@) .



case (b) || Hye(T\G)
0,0) | C(1)

W N W N =W N = ON = O|= O
R s N N e N N el BN B

e~ "t d z13), [€* d z13], [d233])

e "1 d z191), [€ d2y31], [d2931))

[
[
[
[
[
[
[e™* d z113), [€** d 2113], [d 2133, )
[
[
[
[
[
[

e " d z19373), (€ d 219313, [d 212333])
C(le™* d z12123), [€** d 213123, [d 223123])

|| C <[d 2123123]>
TABLE 11. The Bott-Chern cohomology of the complex parallelizable Nakamura mani-
fold in case ().

~~ ~~ ~ ~]| = ~ ~ —~ | ~ ~| = —~ |
N W= N WO = N WO = NO =

—
o
w

case (@) || Ap

0 | C(1)

1 | C(dz1, dz)

2 || C(d 211, d 223, d 233)

3 || C(d 2123, dzi33, dzias, dz133)
4 || C(d 21931, d 20323, dz1123)

5 || (C<d 223123 d212323>

6 || (C<d 2123123>
TABLE 12. The cochain complex Ap in ({0 for the complex parallelizable Nakamura
manifold in case (@).

2.5. Currents. Let X be a compact complex manifold, of complex dimension n. Denote the space of
currents on X by D**X := D,,_, ,—eX, namely, the topological dual space of A"~*"7°X; endow D**X
with a structure of double complex, by defining 9: D**X — D*t1*X and 0: D**X — D**t1X by
duality.

By means of the injective operator

T: A** X - D*°X , T, = /77/\-7
X

which satisfies Tod =00 T and T 0o = d o T, consider the de Rham double complex (/\‘*‘X, 0, 3) as
a double sub-complex of (D'v', 0, 5).

For (p, q) € Z?, denote the sheaf of p-holomorphic forms on X by QF, denote the sheaf of (p, ¢)-forms
on X by AR? and denote the sheaf of bi-degree (p, g)-currents by DY?. Recall that, for any fixed p € Z,
both

0— OF — (A5°, 0) and 0— QF — (DE°, 0)
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dimc H}* (T\G) case (@) case ()

dR|0 BC|dR|9d BC
(0,0) |1 ]1 1|11 1
(1,0) S |3 1|43 1
(0,1) 31 11
(2,0) 3 3 3 3
(1,1) Slg 733 1
(0,2) 3 3 1 3
(3,0) 11 11
(2,1) 819 9 |43 3
(1,2) 9 9 3 3
(0,3) 11 11
(3,1) 3 3 11
(2,2) Slg 11|33 5
(1,3) 3 3 31
(3,2) o |3 5], |1 3
(2,3) 3 5 3 3
(3,3) 1|t 111 1

TABLE 13. Summary of the dimensions of the cohomologies of the complex parallelizable
Nakamura manifold.

are fine (and hence acyclic, see, e.g., [30, IV.4.19]) resolutions of Q% , and hence
ker (9: AP* X — APTLY) ker (9: DP*X — DP*t1X)
im (9: APt X — AP X) im (9: DP*~1X — DreX)
see, e.g., [30, TV.6.4].

)

~ H*(X;05) ~

Remark 2.29. More precisely, given X a compact complex manifold, for any p € Z and for any ¢ € Z,
the maps 7.: (A®?X, 0) — (D*9X, 9) and T.: (AP*X, 9) — (DP*X, 9) are quasi-isomorphisms.

Indeed, firstly, we show that T': (/\p=‘X , 5) — (DPV’X , 3) induces an injective map in cohomol-
ogy. Fix g a Hermitian metric on X. If T, = [9S] = [0] € H* (DP*X, d) with o the Oy-
harmonic representative of [« € H*® (/\p=‘X, 5) and S € DP*71X, then in particular T,[,. 5= 0.
Since *¥,a € kerd, it follows that 0 = T, (¥,a) = Jx @ A *ga and hence o = 0. Now, since
ker(@: AP X AP T1X) ker(9: DP*X—DP*T1X)
im(g: /\P”*1X~>/\P”X) and im(5: Dr.e—1X— correnti?*X
sion, it follows that T': (/\p=‘X , 5) — (DPV’X , 3) is actually a quasi-isomorphism. By conjugation, also
T.: (A*1X, 0) = (D*1X, 9) is a quasi-isomorphism.

) are isomorphic C-vector spaces of finite dimen-

By applying Proposition [T to (/\“'X, 3) — (Dp"X, 5), or by noting that both 0 — Cyx —
(A% ®C,d) and 0 - Cy — (D% ®C, d) are acyclic resolutions of the constant sheaf Cy over X
(where, for k € Z, the sheaf of k-forms on X is denoted by A%, and the sheaf of degree k-currents is
denoted by D% ), one gets that

ker (d: A®* X ®@r C = A®T1X @g C)
im (5 A1 X @r C = A*X Qp (C)

ker (d: D*X @r C — D**'X ®g C)

= H(XCy) = i D X @ C 5 D X @ C)

Lemma 2.30. Let X be a compact complex manifold. For any (p,q) € Z2, the map T.: A\** X — D**X
induces the isomorphism

ker (d: AP? X — APTITLX @p C) ker (d: DPX — DPHITLX @p C)
: — .
im (d APTI—1 X @p C — APTIX Qp (C) im (d DPte-1X @r C — DPHIX @p (C)
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Proof. Consider the regularization process in [31, Theorem III.12]: there exist R: D**X — A®*X and
A: D*X ®r C = D*T1X ®g C linear operators such that
idpeex = R+dA+Ad, and RL/\-,-X: idpe.ex and AL/\'*'X: 0.

ker(d: DP 71X —DPTIT! X @,C . . - .
Take S € im(d:(DP+G*1X®WC%DP+LIXR®£(C)' Since the map T': A®®* X — D®*°X is a quasi-isomorphism,

then there exist n € kerd N AP?? X and U € DPti-1 X @i C such that

S =1,+dU;
hence one gets
RS =T, +d(U - AS) ,
and hence the lemma follows. (I
As a consequence, by using Theorem[LL3] we get another proof of the following result by M. Schweitzer:

see [64], and also [47), §3.4], where it is noticed as a consequence of the hypercohomological interpretation
of the Bott-Chern cohomology, see also [30, IV.12.1].

Corollary 2.31 (see [64, §4.d]). Let X be a compact complex manifold. Then, for any (p,q) € Z2, the
natural map
o ker (0+0: APTX — NPTLIX @ APITLX) ker (0 + 0: DP4X — DPFLaX @ DPatlX)

— — —
im (00: AP=La=1 X — APaX) im (90: DP—1a-1X — DPaX)

induced by T.: N** X 50— T, := [ nA-€D* X is an isomorphism.
Proof. We firstly prove that T. induces an injective map in Bott-Chern cohomology. Indeed, let a =

ker(8+0: DP9 X —»DPThIXa@DP It X
[a] € HZA(X) be such that [T,] =0 € ( (90 Dr T XD 1X) )

. Choose ¢g a Hermitian metric

on X, and let a € AP2X be the ABC-harmonic representative of a with respect to g. Therefore, there
exists S € DP~1471X such that T, = §95. In particular, T, |, ;5= 0. Since %, € ker 99, it follows
that 0 = T, (%4a) = [ & A%ga, and hence a = [a] = 0.

We prove now that T’ induces a surjective map in Bott-Chern cohomology. Firstly, by Remark 229 for
any p € Z and for any ¢ € Z, the maps T': (A*9X, 9) — (D*1X, 9) and T': (/\“'X, 5) — (Dp"X, 5)
are quasi-isomorphisms. Furthermore, by Lemma 230, the induced map

o ker (d: A*X®C = A*TLX ®C) NAPIX |, ker (d: D*X ® C — D**1X ® C) N DP9X
. im(d: A1 X®C—A*X®C) im(d: D*~'X ®C - D*X ®C)

is surjective. Hence, Theorem applies, yielding that the map 7. induces a surjective map in Bott-
Chern cohomology. 0

Remark 2.32. Given X a compact complex manifold of complex dimension n and G a finite group
of biholomorphisms of X, consider the compact complex orbifold X := X /G of complex dimension n
(namely, [63, Definition 2], X is a singular complex space whose singularities are locally isomorphic to
quotient singularities C"/G with G C GL (C") finite; see [I8 Theorem 1], see also [57, Theorem 1.7.2]).

By extending the action of G on X to A®X, respectively A®*X, set A*X the space of G-invariant
forms in A*X, respectively A®*X the space of G-invariant forms in A®*X. Analogously, consider D*X
the space of G-invariant currents in D* X, respectively D** X the space of G-invariant currents in D**X .

Consider the sub-complex 7' : (/\‘*‘X, 0, 5) — (D’V’X, 0, 3). By W. L. Baily’s result [12] page
807], and arguing as in Remark by means of a Hermitian metric on X, namely, a G-invariant Her-
mitian metric on X, it follows that, for any p € Z, the induced inclusion 7' : (/\p"f(, 5) — (Dpv'f(, 5)
is a quasi-isomorphism; by conjugation, it follows also that, for any ¢ € 7Z, the induced inclusion
T.: (/\"qf(, 8) — (D”qf(, 0) is a quasi-isomorphism. In particular, by using Proposition [Tl one

recovers that the induced inclusion 7' : (/\’f( , d) — (D’f( , d) is a quasi-isomorphism, as proved also

by I. Satake, [63] Theorem 1].
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We note that the inclusion T: A®® X — D**X induces the surjective map

ker (d: APTE X @p C — APHITLY @p (C) N APYX
T :

im (d: APTE=1 X @p C — AP X @p (C)

ker (d: DPaX @p C — DPFHL X @p (C) ADPaX
4)

im (d; Drta-1X @p C — DPHaX @ (C)

indeed, since g* oT o g* =T for any g € G, the regularization (see [31, Theorem III.12]) of a G-invariant
current of bidegree (p, q) gives a G-invariant (p, ¢)-form.
Hence, Theorem [[.3 applies, yielding that, for any (p, ¢) € Z?, the inclusion 7' induces an isomorphism

ker (d: AP X s ALY @ /\T’*q“f() ke (d: DPaX — DPHLOX @ Dmﬂf()
T : =

d

)

im (05: Ap—La—1 X _y Amf() im (55; Dr-La-1% DMX)

as proved also in [5], Theorem 1].
Note that one can argue also by means of the sheaf-theoretic interpretation of the Bott-Chern and
Aeppli cohomologies, developed by J.-P. Demailly, [30, §V 1.12.1] and M. Schweitzer, [64, §4], see also

7, §3.2].

Remark 2.33 ([8]). We note that the results in Section [[l can be used also to investigate the symplectic
Bott-Chern and Aeppli cohomologies, as introduced and studied by L.-S. Tseng and S.-T. Yau in [66]
[67, 68], for solvmanifolds endowed with left-invariant symplectic structures. In particular, one gets
a different proof of the result in [50, Theorem 3] by M. Macri for completely-solvable solvmanifolds,
and a generalization for (non-necessarily completely-solvable) solvmanifolds. The complex parallelizable
Nakamura manifold T\G can be investigated explicitly, also in relation with the validity of the ddh-
lemma, equivalently, the Hard Lefschetz Condition; see also [38]. We refer to []] for more details.
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