BOTT-CHERN COHOMOLOGY OF SOLVMANIFOLDS

DANIELE ANGELLA AND HISASHI KASUYA

ABSTRACT. We study conditions under which sub-complexes of a double complex of vector spaces allow to compute the Bott-Chern cohomology. We are especially aimed at studying the Bott-Chern cohomology of a special class of solvmanifolds.

INTRODUCTION

Given a double complex $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ of vector spaces, both the cohomology of the associated total complex $\left(\bigoplus_{p+q=\bullet} A^{p,q}, \partial + \overline{\partial}\right)$ and the cohomologies of the rows $(A^{\bullet,q}, \partial)$ and of the columns $(A^{p,\bullet}, \overline{\partial})$ have been widely studied. Two other interesting cohomologies are the *Bott-Chern cohomology*, namely, the cohomology of the complex

$$A^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} A^{p,q} \xrightarrow{\partial + \overline{\partial}} A^{p+1,q} \oplus A^{p,q+1}$$

and the Aeppli cohomology, namely, the cohomology of the complex

$$A^{p-1,q} \oplus A^{p,q-1} \xrightarrow{(\partial,\partial)} A^{p,q} \xrightarrow{\partial\overline{\partial}} A^{p+q,q+1}$$

For a compact complex manifold X, the Bott-Chern and the Aeppli cohomologies of the double complex $(\wedge^{\bullet,\bullet}X, \partial, \overline{\partial})$ have been studied by many authors in several contexts, see, e.g., [1, 19, 16, 29, 69, 2, 64, 47, 17, 68, 4, 10]. They appear to be a completing useful tool besides the de Rham and the Dolbeault cohomologies. In this spirit, in [10], it is shown that an inequality à *la* Frölicher, involving just the dimensions of the Bott-Chern cohomology and of the de Rham cohomology, holds true on any compact complex manifold, and further allows to characterize the validity of the $\partial\overline{\partial}$ -Lemma (namely, the very special cohomological property that every ∂ -closed $\overline{\partial}$ -closed d-exact form is $\partial\overline{\partial}$ -exact too, see, e.g., [29]).

A compact manifold satisfies the $\partial \overline{\partial}$ -Lemma if and only if the Bott-Chern cohomology is naturally isomorphic to the Dolbeault cohomology, [29, Remark 5.16]. Therefore, since compact Kähler manifolds satisfy the $\partial \overline{\partial}$ -Lemma because of the Kähler identities, [29, Lemma 5.11], the Bott-Chern cohomology is particularly interesting in studying complex non-Kähler manifolds.

In non-Kähler geometry, a very fruitful source of counter-examples is provided by the class of nilmanifolds and solvmanifolds, namely, compact quotients of connected simply-connected nilpotent, respectively solvable, Lie groups by co-compact discrete subgroups. For instance, the geometry of nilmanifolds can be often reduced to the study of the associated Lie algebras, [21, 60, 14]. On the other hand, nilmanifolds do not admit too strong geometric structures, [15, 35]. More precisely, on a nilmanifold, the finitedimensional sub-complex of left-invariant forms (namely, the forms being invariant for the action of the Lie group on itself given by left-translations) suffices in computing the de Rham cohomology, [55, 37]. Whenever the nilmanifold is endowed with a suitable left-invariant complex structure, also the Dolbeault cohomology, [61, 25, 22, 59, 60], and the Bott-Chern cohomology, [4], can be computed by means of just left-invariant forms.

Instead, for solvmanifolds, the left-invariant forms are usually not enough to recover the whole de Rham cohomology: an example is the non-completely-solvable solvmanifold provided in [27, Corollary 4.2]. The de Rham cohomology of solvmanifolds has been studied by several authors, e.g., A. Hattori [37], G. D. Mostow [53], S. Console and A. Fino [23], and the second author [39, 43]. Several results concerning the Dolbeault cohomology have been proven by the second author, [40, 43]; such results

²⁰¹⁰ Mathematics Subject Classification. 22E25; 53C30; 57T15; 53C55; 53D05.

Key words and phrases. Dolbeault cohomology, Bott-Chern cohomology, solvmanifolds, invariant complex structure, invariant symplectic structure.

The first author is supported by the Project PRIN "Varietà reali e complesse: geometria, topologia e analisi armonica", by the Project FIRB "Geometria Differenziale e Teoria Geometrica delle Funzioni", and by GNSAGA of INdAM. The second author is supported by JSPS Research Fellowships for Young Scientists.

allow to study Hodge symmetry, Hodge decomposition, formality, and the Hodge and Frölicher spectral sequence on solvmanifolds, [41, 42, 44].

In this note, we study the Bott-Chern cohomology of a certain class of solvmanifolds. This is done with the scope to further investigate the complex geometry of non-Kähler manifolds and especially its cohomological aspects. More precisely, we start by studying conditions under which the Bott-Chern cohomology of a double complex can be completely recovered by a suitable sub-complex; see Theorem 1.3 and Theorem 1.6. As an application, we get the following result. (For further applications to the study of the symplectic cohomologies studied by L.-S. Tseng and S.-T. Yau in [66, 67], see [8].)

Theorem (see Theorem 2.16 and Theorem 2.25). Let G be a connected simply-connected solvable Lie group admitting a co-compact discrete subgroup Γ and endowed with a G-left-invariant complex structure. If

- either G is a semidirect product $\mathbb{C}^n \ltimes_{\phi} N$ of \mathbb{C}^n and a connected simply-connected nilpotent Lie group N endowed with an N-left-invariant complex structure satisfying some conditions (see Assumption 2.11),
- or G is a complex Lie group,

then there is an explicit finite-dimensional sub-complex $C^{\bullet,\bullet}$ of the double complex $(\wedge^{\bullet,\bullet} \Gamma \backslash G, \partial, \overline{\partial})$ which computes the Bott-Chern cohomology of the solvmanifold $\Gamma \backslash G$.

As an application, we explicitly compute the Bott-Chern cohomology of the completely-solvable Nakamura manifold and of the complex parallelizable Nakamura manifold. This gives us, as a corollary, the following result.

Theorem (see Theorem 2.20). Satisfying the $\partial \overline{\partial}$ -Lemma is not a strongly-closed property under small deformations of the complex structure.

In fact, in [7], we prove that satisfying the $\partial \overline{\partial}$ -Lemma is not a (Zariski-)closed property.

Acknowledgments. The first author would like to warmly thank Adriano Tomassini for his constant support and encouragement, for his several advices, and for many inspiring conversations. The second author would like to express his gratitude to Toshitake Kohno for helpful suggestions and stimulating discussions. The authors would like also to thank Luis Ugarte for suggestions and remarks. Thanks also to Maria Beatrice Pozzetti and to the anonymous Referee, whose suggestions improved the presentation of the paper.

1. Computing the cohomologies of double complexes by means of sub-complexes

In this section, we study several cohomologies associated to a bounded double complex of \mathbb{C} -vector spaces; in particular, we are interested in studying when such cohomologies can be recovered by means of a suitable (possibly finite-dimensional) sub-complex.

1.1. The cohomology of the associated total complex. Let $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a bounded double complex of \mathbb{C} -vector spaces, namely, $\partial \in \operatorname{End}^{1,0}(A^{\bullet,\bullet})$ and $\overline{\partial} \in \operatorname{End}^{0,1}(A^{\bullet,\bullet})$ are such that $\partial^2 = \overline{\partial}^2 = \overline{\partial}^2$ $[\partial, \overline{\partial}] = 0$, and $A^{p,q} = \{0\}$ but for finitely-many $(p,q) \in \mathbb{Z}^2$. Denote by

$$\left(\operatorname{Tot}^{\bullet}(A^{\bullet,\bullet}) := \bigoplus_{p+q=\bullet} A^{p,q}, \, \mathrm{d} := \partial + \overline{\partial}\right)$$

the total complex associated to $(A^{\bullet,\bullet}, \partial, \overline{\partial})$. The bi-grading of $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ induces two natural bounded filtrations of $(Tot^{\bullet}(A^{\bullet,\bullet}), d)$, namely,

$$\left\{ \left({}'F^{p} \operatorname{Tot}^{\bullet} (A^{\bullet, \bullet}) := \bigoplus_{\substack{r+s=\bullet\\r \ge p}} A^{r,s}, \ \mathrm{d} \lfloor_{F^{p} \operatorname{Tot}^{\bullet} (A^{\bullet, \bullet})} \right) \hookrightarrow (\operatorname{Tot}^{\bullet} (A^{\bullet, \bullet}), \ \mathrm{d}) \right\}_{p \in \mathbb{Z}}$$

and

$$\left(\left({}^{''}F^{q} \operatorname{Tot}^{\bullet} \left(A^{\bullet, \bullet} \right) := \bigoplus_{\substack{r+s=\bullet\\s \ge q}} A^{r,s}, \ \mathrm{d} \lfloor_{{}^{''}F^{q} \operatorname{Tot}^{\bullet} \left(A^{\bullet, \bullet} \right)} \right) \hookrightarrow \left(\operatorname{Tot}^{\bullet} \left(A^{\bullet, \bullet} \right), \ \mathrm{d} \right) \right\}_{q \in \mathbb{Z}}$$

Such filtrations induce naturally two spectral sequences, respectively,

$$\left\{ \left(E_r^{\bullet,\bullet} \left(A^{\bullet,\bullet}, \partial, \overline{\partial} \right), d_r \right) \right\}_{r \in \mathbb{Z}} \quad \text{and} \quad \left\{ \left(E_r^{\bullet,\bullet} \left(A^{\bullet,\bullet}, \partial, \overline{\partial} \right), d_r \right) \right\}_{r \in \mathbb{Z}},$$

such that

$$E_{1}^{\bullet_{1},\bullet_{2}}\left(A^{\bullet,\bullet},\,\partial,\,\overline{\partial}\right) \simeq H^{\bullet_{2}}\left(A^{\bullet_{1},\bullet},\,\overline{\partial}\right) \Rightarrow H^{\bullet_{1}+\bullet_{2}}\left(\operatorname{Tot}^{\bullet}\left(A^{\bullet,\bullet}\right),\,\mathrm{d}\right) \,,$$

and

$${}^{\prime\prime}E_{1}^{\bullet_{1},\bullet_{2}}\left(A^{\bullet,\bullet},\,\partial,\,\overline{\partial}\right) \simeq H^{\bullet_{1}}\left(A^{\bullet,\bullet_{2}},\,\partial\right) \Rightarrow H^{\bullet_{1}+\bullet_{2}}\left(\operatorname{Tot}^{\bullet}\left(A^{\bullet,\bullet}\right),\,\mathrm{d}\right) + H^{\bullet_$$

see, e.g., [51, §2.4], see also [34, §3.5], [24, Theorem 1, Theorem 3].

One gets straightforwardly the following result, providing a sufficient condition under which a subcomplex $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (A^{\bullet,\bullet}, \partial, \overline{\partial})$ allows to recover the cohomology of $(\text{Tot}^{\bullet}(A^{\bullet,\bullet}), d)$.

Proposition 1.1. Let $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a bounded double complex of \mathbb{C} -vector spaces, and let $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a sub-complex. If, for every $p \in \mathbb{Z}$, the induced map $(C^{p,\bullet}, \overline{\partial}) \hookrightarrow (A^{p,\bullet}, \overline{\partial})$ of complexes is a quasi-isomorphism, then the induced map

$$(\mathrm{Tot}^{\bullet}(C^{\bullet,\bullet}), \mathrm{d}) \hookrightarrow (\mathrm{Tot}^{\bullet}(A^{\bullet,\bullet}), \mathrm{d})$$

of complexes is a quasi-isomorphism.

Proof. The inclusion $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (A^{\bullet,\bullet}, \partial, \overline{\partial})$ induces a morphism

$$\left\{\left('F^{p}\operatorname{Tot}^{\bullet}(C^{\bullet,\bullet}), \mathrm{d}\right)\right\}_{p\in\mathbb{Z}} \to \left\{\left('F^{p}\operatorname{Tot}^{\bullet}(A^{\bullet,\bullet}), \mathrm{d}\right)\right\}_{p\in\mathbb{Z}}$$

of the associated bounded filtrations, and hence in particular a morphism

$$\left\{ \left('E_{r}^{\bullet,\bullet}\left(C^{\bullet,\bullet},\,\partial,\,\overline{\partial}\right),\,'\,\mathrm{d}_{r}\right)\right\}_{r\in\mathbb{Z}}\rightarrow\left\{ \left('E_{r}^{\bullet,\bullet}\left(A^{\bullet,\bullet},\,\partial,\,\overline{\partial}\right),\,'\,\mathrm{d}_{r}\right)\right\}_{r\in\mathbb{Z}}\right\}$$

of the associated spectral sequences.

By the hypothesis, the inclusion induces an isomorphism at the first level,

and hence, $A^{\bullet,\bullet}$ being bounded, also an isomorphism

$$H^{\bullet}(\mathrm{Tot}^{\bullet}(C^{\bullet,\bullet}), \mathrm{d}) \xrightarrow{\simeq} H^{\bullet}(\mathrm{Tot}^{\bullet}(A^{\bullet,\bullet}), \mathrm{d})$$

see, e.g., [51, Theorem 3.5]; in particular, the induced map

$$(\operatorname{Tot}^{\bullet}(C^{\bullet,\bullet}), \mathrm{d}) \hookrightarrow (\operatorname{Tot}^{\bullet}(A^{\bullet,\bullet}), \mathrm{d})$$

is a quasi-isomorphism.

1.2. The Bott-Chern cohomology. For any $(p,q) \in \mathbb{Z}^2$, other than the cohomologies of $(\text{Tot}^{\bullet}(A^{\bullet,\bullet}), d)$, of $(A^{\bullet,q}, \partial)$, and of $(A^{p,\bullet}, \overline{\partial})$, one can consider also the *Bott-Chern cohomology*, [19], namely, the cohomology of the complex

$$A^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} A^{p,q} \xrightarrow{\partial + \overline{\partial}} A^{p+1,q} \oplus A^{p,q+1} ,$$

and the Aeppli cohomology, [1], namely, the cohomology of the complex

$$A^{p-1,q} \oplus A^{p,q-1} \xrightarrow{\left(\partial,\overline{\partial}\right)} A^{p,q} \xrightarrow{\partial\overline{\partial}} A^{p+1,q+1}$$

1.2.1. Conditions yielding a surjective map in Bott-Chern cohomology. In order to study conditions under which the Bott-Chern cohomology of a double complex can be recovered by means of a suitable sub-complex, we provide the following lemma.

Lemma 1.2. Let $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a bounded double complex of \mathbb{C} -vector spaces, and let $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a sub-complex. Suppose that, for every $p \in \mathbb{Z}$, the induced map $(C^{p,\bullet}, \overline{\partial}) \hookrightarrow (A^{p,\bullet}, \overline{\partial})$ of complexes is a quasi-isomorphism. If $\phi \in A^{p,q}$ is such that $\overline{\partial}\phi \in C^{p,q+1}$, then there exist $\tilde{\phi} \in C^{p,q}$ and $\hat{\phi} \in A^{p,q-1}$ such that $\phi = \tilde{\phi} + \overline{\partial}\hat{\phi}$.

Proof. One has

 $H^{q+1}\left(C^{p,\bullet},\,\overline{\partial}\right) \;\ni\; \left(\overline{\partial}\phi \mod \operatorname{im}\overline{\partial}\right)\;\mapsto\; \left(0 \mod \operatorname{im}\overline{\partial}\right)\;\in\; H^{q+1}\left(A^{p,\bullet},\,\overline{\partial}\right)\;;$

since the map $H^{q+1}(C^{p,\bullet},\overline{\partial}) \xrightarrow{\simeq} H^{q+1}(A^{p,\bullet},\overline{\partial})$ is injective, one gets that $\overline{\partial}\phi \in \operatorname{im}(\overline{\partial}: C^{p,q} \to C^{p,q+1})$: let $\tilde{\phi}_1 \in C^{p,q}$ be such that

$$\overline{\partial}\phi = \overline{\partial}\widetilde{\phi}_1$$

Therefore,

$$\left(\left(\phi - \tilde{\phi}_1\right) \mod \operatorname{im} \overline{\partial}\right) \in H^q\left(A^{p,\bullet}, \overline{\partial}\right);$$

since the map $H^q(C^{p,\bullet},\overline{\partial}) \xrightarrow{\simeq} H^q(A^{p,\bullet},\overline{\partial})$ is surjective, one gets that there exist $\tilde{\phi}_2 \in$ $\ker\left(\overline{\partial}\colon C^{p,q}\to C^{p,q+1}\right)$ and $\hat{\phi}\in A^{p,q-1}$ such that

 $\phi - \tilde{\phi}_1 = \tilde{\phi}_2 + \overline{\partial}\hat{\phi} ,$ that is, $\phi = \tilde{\phi} + \overline{\partial} \hat{\phi}$ where $\tilde{\phi} := \tilde{\phi}_1 + \tilde{\phi}_2 \in C^{p,q}$ and $\hat{\phi} \in A^{p-1,q}$.

The following result gives a first partial answer concerning the relation between the Bott-Chern cohomology of a double complex and the Bott-Chern cohomology of a suitable sub-complex; compare it with [4, Theorem 3.7], which is in turn inspired by M. Schweitzer's computations on the Iwasawa manifold in $[64, \S1.c].$

Theorem 1.3. Let $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a bounded double complex of \mathbb{C} -vector spaces, and let $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow$ $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a sub-complex. Fix $(p,q) \in \mathbb{Z}^2$. Suppose that:

- (i) for every $r \in \mathbb{Z}$, the induced map $(C^{r,\bullet}, \overline{\partial}) \hookrightarrow (A^{r,\bullet}, \overline{\partial})$ of complexes is a quasi-isomorphism, (ii) for every $s \in \mathbb{Z}$, the induced map $(C^{\bullet,s}, \partial) \hookrightarrow (A^{\bullet,s}, \partial)$ of complexes is a quasi-isomorphism, and
- (iii) the induced map

$$\frac{\ker\left(\mathrm{d}\colon\operatorname{Tot}^{p+q}\left(C^{\bullet,\bullet}\right)\to\operatorname{Tot}^{p+q+1}\left(C^{\bullet,\bullet}\right)\right)\cap C^{p,q}}{\operatorname{im}\left(\mathrm{d}\colon\operatorname{Tot}^{p+q-1}\left(C^{\bullet,\bullet}\right)\to\operatorname{Tot}^{p+q}\left(C^{\bullet,\bullet}\right)\right)}\to\operatorname{Tot}^{p+q}\left(C^{\bullet,\bullet}\right)\right)}\to\frac{\ker\left(\mathrm{d}\colon\operatorname{Tot}^{p+q}\left(A^{\bullet,\bullet}\right)\to\operatorname{Tot}^{p+q+1}\left(A^{\bullet,\bullet}\right)\right)\cap A^{p,q}}{\operatorname{im}\left(\mathrm{d}\colon\operatorname{Tot}^{p+q-1}\left(A^{\bullet,\bullet}\right)\to\operatorname{Tot}^{p+q}\left(A^{\bullet,\bullet}\right)\right)}$$
is surjective.

Then the induced map

$$\left(C^{p-1,q-1} \xrightarrow{\partial\overline{\partial}} C^{p,q} \xrightarrow{\partial+\overline{\partial}} C^{p+1,q} \oplus C^{p,q+1}\right) \hookrightarrow \left(A^{p-1,q-1} \xrightarrow{\partial\overline{\partial}} A^{p,q} \xrightarrow{\partial+\overline{\partial}} A^{p+1,q} \oplus A^{p,q+1}\right)$$

of complexes induces a surjective map in cohomology.

Proof. Up to shifting, assume that $A^{r,s} = \{0\}$ whenever $(r,s) \notin \mathbb{N}^2$.

Step 1 – Firstly, we prove that, under the hypotheses (i) and (ii), the inclusion $(C^{\bullet,\bullet},\partial,\overline{\partial}) \hookrightarrow$ $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ induces, for every $(r, s) \in \mathbb{Z}^2$, a surjective map

$$\frac{\operatorname{im}\left(\mathrm{d}\colon\operatorname{Tot}^{r+s-1}\left(C^{\bullet,\bullet}\right)\to\operatorname{Tot}^{r+s}\left(C^{\bullet,\bullet}\right)\right)\cap C^{r,s}}{\operatorname{im}\left(\partial\overline{\partial}\colon C^{r-1,s-1}\to C^{r,s}\right)}\to\frac{\operatorname{im}\left(\mathrm{d}\colon\operatorname{Tot}^{r+s-1}\left(A^{\bullet,\bullet}\right)\to\operatorname{Tot}^{r+s}\left(A^{\bullet,\bullet}\right)\right)\cap A^{r,s}}{\operatorname{im}\left(\partial\overline{\partial}\colon A^{r-1,s-1}\to A^{r,s}\right)}$$

Indeed, let

$$\begin{aligned} \left(\omega^{r,s} \mod \operatorname{im}\left(\partial\overline{\partial}\colon A^{r-1,s-1} \to A^{r,s}\right)\right) &:= \left(\operatorname{d}\eta \mod \operatorname{im}\left(\partial\overline{\partial}\colon A^{r-1,s-1} \to A^{r,s}\right)\right) \\ &\in \frac{\operatorname{im}\left(\operatorname{d}\colon\operatorname{Tot}^{r+s-1}\left(A^{\bullet,\bullet}\right) \to \operatorname{Tot}^{r+s}\left(A^{\bullet,\bullet}\right)\right) \cap A^{r,s}}{\operatorname{im}\left(\partial\overline{\partial}\colon A^{r-1,s-1} \to A^{r,s}\right)} \,. \end{aligned}$$

Consider the bi-degree decomposition $\eta =: \sum_{(a,b) \in \mathbb{Z}^2} \eta^{a,b}$ where $\eta^{a,b} \in A^{a,b}$, for $(a,b) \in \mathbb{Z}^2$. Hence, consider the system

$$\begin{aligned} \partial \eta^{r+s-1,0} &= 0 \\ \overline{\partial} \eta^{r+s-\ell,\ell-1} &+ \partial \eta^{r+s-\ell-1,\ell} &= 0 \\ \overline{\partial} \eta^{r,s-1} &+ \partial \eta^{r-1,s} &= \omega^{r,s} \mod \operatorname{im} \left(\partial \overline{\partial} : A^{r-1,s-1} \to A^{r,s} \right) \\ \overline{\partial} \eta^{\ell,r+s-\ell-1} &+ \partial \eta^{\ell-1,r+s-\ell} &= 0 \\ \overline{\partial} \eta^{0,r+s-1} &= 0 \end{aligned} \qquad \text{for} \quad \ell \in \{1,\ldots,r-1\} \\ \overline{\partial} \eta^{0,r+s-1} &= 0 \end{aligned}$$

Set $\eta^{r+s-2,-1} := 0$, and consider the equation

$$\overline{\partial}\eta^{r+s-\ell,\ell-1} + \partial\eta^{r+s-\ell-1,\ell} = 0 \mod \operatorname{im}\left(\partial\overline{\partial} \colon A^{r+s-\ell-1,\ell-1} \to A^{r+s-\ell,\ell}\right) \qquad \text{for } \ell \in \{0,\ldots,s-1\} \ .$$

If $\eta^{r+s-\tilde{\ell},\tilde{\ell}-1} \in C^{r+s-\tilde{\ell},\tilde{\ell}-1}$ for some $\tilde{\ell} \in \{0,\ldots,s-1\}$, then, by applying Lemma 1.2 to the double complex $(A^{\bullet,\bullet},\overline{\partial},\partial)$, one gets that there exist $\tilde{\eta}^{r+s-\tilde{\ell}-1,\tilde{\ell}} \in C^{r+s-\tilde{\ell}-1,\tilde{\ell}}$ and $\hat{\eta}^{r+s-\tilde{\ell}-2,\tilde{\ell}} \in A^{r+s-\tilde{\ell}-2,\tilde{\ell}}$ such that

$$\eta^{r+s-\tilde{\ell}-1,\tilde{\ell}} = \tilde{\eta}^{r+s-\tilde{\ell}-1,\tilde{\ell}} + \partial \hat{\eta}^{r+s-\tilde{\ell}-2,\tilde{\ell}};$$

therefore, when $\tilde{\ell} \leq s - 2$, one gets the system

$$\begin{array}{ll} \partial \eta^{r+s-1,0} = 0 \\ \overline{\partial} \eta^{r+s-\ell,\ell-1} + \partial \eta^{r+s-\ell-1,\ell} = 0 & \text{for} \quad \ell \in \{1,\ldots,\tilde{\ell}-1\} \\ \overline{\partial} \eta^{r+s-\tilde{\ell},\tilde{\ell}-1} + \partial \tilde{\eta}^{r+s-\tilde{\ell}-1,\tilde{\ell}} = 0 \\ \overline{\partial} \tilde{\eta}^{r+s-\tilde{\ell}-1,\tilde{\ell}} + \partial \left(\eta^{r+s-\tilde{\ell}-2,\tilde{\ell}+1} - \overline{\partial} \hat{\eta}^{r+s-\tilde{\ell}-2,\tilde{\ell}}\right) = 0 \\ \overline{\partial} \left(\eta^{r+s-\tilde{\ell}-2,\tilde{\ell}+1} - \overline{\partial} \hat{\eta}^{r+s-\tilde{\ell}-2,\tilde{\ell}}\right) + \partial \eta^{r+s-\tilde{\ell}-3,\tilde{\ell}+2} = 0 \\ \overline{\partial} \eta^{r+s-\ell,\ell-1} + \partial \eta^{r+s-\ell-1,\ell} = 0 & \text{for} \quad \ell \in \{\tilde{\ell}+3,\ldots,s-1\} \\ \overline{\partial} \eta^{r,s-1} + \partial \eta^{r-1,s} = \omega^{r,s} \mod \operatorname{im} \left(\partial\overline{\partial} : A^{r-1,s-1} \to A^{r,s}\right) \\ \overline{\partial} \eta^{\ell,r+s-\ell-1} + \partial \eta^{\ell-1,r+s-\ell} = 0 & \text{for} \quad \ell \in \{1,\ldots,r-1\} \\ \overline{\partial} \eta^{0,r+s-1} = 0 \end{array}$$

where $\tilde{\eta}^{r+s-\tilde{\ell}-1,\tilde{\ell}} \in C^{r+s-\tilde{\ell}-1,\tilde{\ell}}$, and when $\tilde{\ell} = s-1$, one gets the system

$$\begin{cases} \frac{\partial \eta^{r+s-1,0} = 0}{\partial \eta^{r+s-\ell,\ell-1} + \partial \eta^{r+s-\ell-1,\ell} = 0} & \text{for} \quad \ell \in \{1,\dots,s-2\} \\ \frac{\partial \eta^{r+1,s-2} + \partial \tilde{\eta}^{r,s-1} = 0}{\partial \tilde{\eta}^{r,s-1} + \partial \eta^{r-1,s} = \omega^{r,s} \mod \operatorname{im} \left(\partial \overline{\partial} : A^{r-1,s-1} \to A^{r,s}\right)} \\ \frac{\partial \eta^{\ell,r+s-\ell-1} + \partial \eta^{\ell-1,r+s-\ell} = 0}{\partial \eta^{0,r+s-1} = 0} & \text{for} \quad \ell \in \{1,\dots,r-1\} \\ \frac{\partial \eta^{0,r+s-1} = 0}{\partial \eta^{0,r+s-1} = 0} \end{cases}$$

where $\tilde{\eta}^{r,s-1} \in C^{r,s-1}$.

In particular, since $\eta^{r+s-2,-1} = 0 \in C^{r+s-2,-1}$, we may assume that $\eta^{r,s-1} \in C^{r,s-1}$. Analogously, by applying Lemma 1.2 to the double complex $(A^{\bullet,\bullet}, \partial, \overline{\partial})$, we may assume that $\eta^{r-1,s} \in C^{r,s-1}$. $C^{r-1,s}$.

Therefore

$$\begin{split} \omega^{r,s} \mod \operatorname{im}\left(\partial\overline{\partial}\colon A^{r-1,s-1} \to A^{r,s}\right) &= \left(\overline{\partial}\eta^{r,s-1} + \partial\eta^{r-1,s}\right) \mod \operatorname{im}\left(\partial\overline{\partial}\colon A^{r-1,s-1} \to A^{r,s}\right) \\ &\in \quad \frac{\operatorname{im}\left(\operatorname{d}\colon \operatorname{Tot}^{r+s-1}\left(C^{\bullet,\bullet}\right) \to \operatorname{Tot}^{r+s}\left(C^{\bullet,\bullet}\right)\right) \cap C^{r,s}}{\operatorname{im}\left(\partial\overline{\partial}\colon A^{r-1,s-1} \to A^{r,s}\right)} \;, \end{split}$$

that is, the induced map

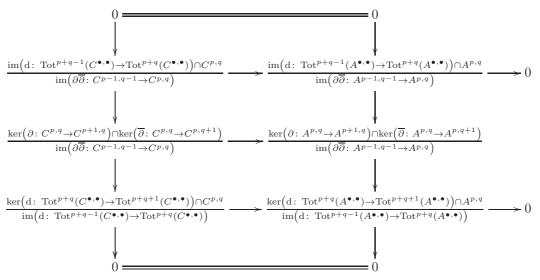
$$\frac{\operatorname{im}\left(\mathrm{d}: \operatorname{Tot}^{r+s-1}\left(C^{\bullet,\bullet}\right) \to \operatorname{Tot}^{r+s}\left(C^{\bullet,\bullet}\right)\right) \cap C^{r,s}}{\operatorname{im}\left(\partial\overline{\partial}: C^{r-1,s-1} \to C^{r,s}\right)} \to \frac{\operatorname{im}\left(\mathrm{d}: \operatorname{Tot}^{r+s-1}\left(A^{\bullet,\bullet}\right) \to \operatorname{Tot}^{r+s}\left(A^{\bullet,\bullet}\right)\right) \cap A^{r,s}}{\operatorname{im}\left(\partial\overline{\partial}: A^{r-1,s-1} \to A^{r,s}\right)}$$

is surjective.

Step 2 – Now, we prove that, under the additional assumption (iii), the induced map

$$\frac{\ker\left(\partial\colon C^{p,q}\to C^{p+1,q}\right)\cap\ker\left(\overline{\partial}\colon C^{p,q}\to C^{p,q+1}\right)}{\operatorname{im}\left(\partial\overline{\partial}\colon C^{p-1,q-1}\to C^{p,q}\right)}\to \frac{\ker\left(\partial\colon A^{p,q}\to A^{p+1,q}\right)\cap\ker\left(\overline{\partial}\colon A^{p,q}\to A^{p,q+1}\right)}{\operatorname{im}\left(\partial\overline{\partial}\colon A^{p-1,q-1}\to A^{p,q}\right)}$$

is surjective. Indeed, consider the commutative diagram



whose rows and columns are exact. By the Five Lemma, see, e.g., [51, page 26], the map

$$\frac{\ker\left(\partial: C^{p,q} \to C^{p+1,q}\right) \cap \ker\left(\overline{\partial}: C^{p,q} \to C^{p,q+1}\right)}{\operatorname{im}\left(\partial\overline{\partial}: C^{p-1,q-1} \to C^{p,q}\right)} \to \frac{\ker\left(\partial: A^{p,q} \to A^{p+1,q}\right) \cap \ker\left(\overline{\partial}: A^{p,q} \to A^{p,q+1}\right)}{\operatorname{im}\left(\partial\overline{\partial}: A^{p-1,q-1} \to A^{p,q}\right)}$$
surjective, completing the proof.

is surjective, completing the proof.

1.2.2. Conditions yielding an injective map in Bott-Chern cohomology. In order to provide conditions under which the inclusion of a suitable sub-complex induces an injective map in Bott-Chern cohomology, we consider a further structure of Hilbert space on the double complex. (For similar results in the case of solvmanifolds, see [22, Lemma 9], [4, Lemma 3.6].)

Let A be a Hilbert space, with inner product $\langle \cdot | \cdot \rangle : A \times A \to \mathbb{C}$. Denote by $\| \cdot \| := \langle \cdot | \cdot \rangle^{1/2}$ the associated norm.

Given a densely-defined linear operator $L: A \supseteq \operatorname{dom}(L) \to A$ on A, denote by

$$L^*_{\langle \cdot | \cdots \rangle} \colon \operatorname{dom} \left(L^*_{\langle \cdot | \cdots \rangle} \right) \to A$$

its $\langle \cdot | \cdot \rangle$ -adjoint operator, that is, the unique linear operator with domain

$$\operatorname{dom}\left(L^*_{\langle\cdot\,|\,\cdot\cdot\rangle}\right) := \{y \in A : \langle L \cdot | y \rangle : \operatorname{dom}(L) \to \mathbb{C} \text{ is continuous}\}$$

and defined by

$$\forall x \in \operatorname{dom}(L), \ \forall y \in \operatorname{dom}\left(L^*_{\langle \cdot | \cdot \cdot \rangle}\right), \qquad \langle Lx \,|\, y \rangle \;=\; \left\langle x \,\Big|\, L^*_{\langle \cdot | \cdot \cdot \rangle} y \right\rangle \;.$$

Given a closed sub-space C of A, denote the induced inner product on C by $\langle \cdot | \cdot \cdot \rangle_C := \langle \cdot | \cdot \cdot \rangle_C : C \times C \times C$ $C \to \mathbb{C}$, and the orthogonal projection onto C by $\pi^{C}_{\langle \cdot | \cdot \cdot \rangle} \colon A \to C \subseteq A$. One has that

$$\pi_{\langle \cdot | \cdot \cdot \rangle}^{C} \lfloor_{C} = \operatorname{id}_{C} \quad \text{and} \quad \left\langle C \left| \left(\operatorname{id}_{A} - \pi_{\langle \cdot | \cdot \cdot \rangle}^{C} \right) (A) \right\rangle \right. = \left. \{ 0 \} \right.$$

(To simplify notations, we do not specify the inner product $\langle \cdot | \cdot \rangle$ in writing the projection or the adjoint, whenever it is clear from the context.)

We firstly record the following lemma, stating that, if L commutes with π^{C} , then also L^{*} does.

Lemma 1.4. Let A be a Hilbert space, with inner product $\langle \cdot | \cdot \rangle$. Let $L: A \supseteq \operatorname{dom}(L) \to A$ be a denselydefined linear operator on A. Let C be a closed sub-space of A contained in dom(L) and in dom $(L^*_{\langle \cdot | .. \rangle})$. Suppose that

$$\pi^{C}_{\langle \cdot | \cdots \rangle} \circ L = L \circ \pi^{C}_{\langle \cdot | \cdots \rangle} \colon \operatorname{dom}(L) \to C$$

Then

$${}^{C}_{\langle \cdot | \cdots \rangle} \circ L^{*}_{\langle \cdot | \cdots \rangle} = L^{*}_{\langle \cdot | \cdots \rangle} \circ \pi^{C}_{\langle \cdot | \cdots \rangle} \colon \operatorname{dom} \left(L^{*}_{\langle \cdot | \cdots \rangle} \right) \to C$$

;

in particular, $L^*_{\langle \cdot | \cdots \rangle} \lfloor_C \colon C \to C$, and hence $(L \lfloor_C)^*_{\langle \cdot | \cdots \rangle_C} = L^*_{\langle \cdot | \cdots \rangle} \lfloor_C$.

Proof. It suffices to note that $\pi^C \colon A \to C \subseteq A$ is self- $\langle \cdot | \cdot \rangle$ -adjoint: for any $\alpha, \beta \in A$,

$$\left\langle \pi^{C}\alpha \left|\beta\right\rangle = \left\langle \pi^{C}\alpha \left|\beta - \left(\beta - \pi^{C}\beta\right)\right\rangle = \left\langle \pi^{C}\alpha \left|\pi^{C}\beta\right\rangle = \left\langle \pi^{C}\alpha + \left(\alpha - \pi^{C}\alpha\right)\right|\pi^{C}\beta\right\rangle = \left\langle \alpha \left|\pi^{C}\beta\right\rangle$$

It follows straightforwardly that $\pi^C \circ L^* = L^* \circ \pi^C$: dom $(L^*) \to C$. In particular, since $\pi^C \lfloor_C = \operatorname{id}_C$ and $C \subseteq \operatorname{dom}(L^*)$, it follows that $L^*(C) = (L^* \circ \pi^C)(C) = (\pi^C \circ L^*)(C) \subseteq C$, and hence $L^* \lfloor_C = (L \lfloor_C)^*_{\langle \cdot \mid \cdots \rangle_C} : C \to C$.

Now, let $A^{\bullet,\bullet}$ be a bounded \mathbb{Z}^2 -graded vector space with a structure of Hilbert space, with inner product $\langle \cdot | \cdots \rangle$ such that $\langle A^{p,q} | A^{p',q'} \rangle = \{0\}$ for every $(p,q) \neq (p',q')$. Let

$$\partial : A^{\bullet, \bullet} \supseteq \operatorname{dom}(\partial)^{\bullet, \bullet} \to A^{\bullet+1, \bullet}$$
 and $\overline{\partial} : A^{\bullet, \bullet} \supseteq \operatorname{dom}(\overline{\partial})^{\bullet, \bullet} \to A^{\bullet, \bullet+1}$

be densely-defined linear operators yielding a structure $\left(\left(\operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial})\right)^{\bullet,\bullet}, \partial, \overline{\partial}\right)$ of bounded double complex of \mathbb{C} -vector spaces. Denote by

$$\partial^* := \partial^*_{\langle \cdot | \cdots \rangle} \colon A^{\bullet, \bullet} \supseteq \operatorname{dom} \left(\partial^*\right)^{\bullet, \bullet} \to A^{\bullet - 1, \bullet} \qquad \text{and} \qquad \overline{\partial}^* := \overline{\partial}^*_{\langle \cdot | \cdots \rangle} \colon A^{\bullet, \bullet} \supseteq \operatorname{dom} \left(\overline{\partial}^*\right)^{\bullet, \bullet} \to A^{\bullet, \bullet - 1}$$

the $\langle \cdot | \cdot \rangle$ -adjoint operators of ∂ and, respectively, ∂ .

Following [46, Proposition 5], see also [64, §2.b, §2.c], define the (densely-defined) self- $\langle \cdot | \cdot \rangle$ -adjoint operator

$$\begin{split} \tilde{\Delta}^{BC} &:= \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} &:= \left(\partial\overline{\partial}\right) \left(\partial\overline{\partial}\right)^* + \left(\partial\overline{\partial}\right)^* \left(\partial\overline{\partial}\right) + \left(\overline{\partial}^*\partial\right) \left(\overline{\partial}^*\partial\right)^* + \left(\overline{\partial}^*\partial\right)^* \left(\overline{\partial}^*\partial\right) + \overline{\partial}^*\overline{\partial} + \partial^*\partial \\ &\in \operatorname{Hom}^{0,0} \left(\operatorname{dom} \left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle}\right)^{\bullet,\bullet}; A^{\bullet,\bullet}\right) \,. \end{split}$$

The following lemma states that, under a suitable decomposition hypothesis, the Bott-Chern cohomology of $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ is isomorphic to ker $\tilde{\Delta}^{BC}$.

Lemma 1.5. Let $A^{\bullet,\bullet}$ be a bounded \mathbb{Z}^2 -graded vector space with a structure of Hilbert space, with inner product $\langle \cdot | \cdot \cdot \rangle$ such that $\langle A^{p,q} | A^{p',q'} \rangle = \{0\}$ for every $(p,q) \neq (p',q')$. Let $\partial : A^{\bullet,\bullet} \supseteq \operatorname{dom}(\partial)^{\bullet,\bullet} \to A^{\bullet+1,\bullet}$ and $\overline{\partial} : A^{\bullet,\bullet} \supseteq \operatorname{dom}(\overline{\partial})^{\bullet,\bullet} \to A^{\bullet,\bullet+1}$ be densely-defined linear operators yielding a structure $\left((\operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial}))^{\bullet,\bullet}, \partial, \overline{\partial} \right)$ of bounded double complex of \mathbb{C} -vector spaces. Suppose that the operator $\tilde{\Delta}^{BC}_{\langle \cdot | \cdot \cdot \rangle} \in \operatorname{Hom}^{0,0} \left(\operatorname{dom} \left(\tilde{\Delta}^{BC}_{\langle \cdot | \cdot \cdot \rangle} \right)^{\bullet,\bullet}; A^{\bullet,\bullet} \right)$ induces the decomposition

$$\operatorname{lom}\left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\rangle}\right) = \operatorname{ker}\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\rangle} \oplus \operatorname{im}\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\rangle} \,.$$

Then, for every $(p,q) \in \mathbb{Z}^2$, the induced map

$$\left(0 \to \ker \tilde{\Delta}^{BC}_{\langle \cdot | \cdots \rangle} \cap A^{p,q} \to 0\right) \hookrightarrow \left(A^{p-1,q-1} \stackrel{\partial \overline{\partial}}{\to} A^{p,q} \stackrel{\partial +\overline{\partial}}{\to} A^{p+1,q} \oplus A^{p,q+1}\right)$$

is a quasi-isomorphism.

Proof. Note that, for every $\eta \in \operatorname{dom}\left(\tilde{\Delta}^{BC}\right)$, one has

$$\left\langle \tilde{\Delta}^{BC} \eta \left| \eta \right\rangle = \left\| \left(\partial \overline{\partial} \right)^* \eta \right\|^2 + \left\| \partial \overline{\partial} \eta \right\|^2 + \left\| \partial^* \overline{\partial} \eta \right\|^2 + \left\| \overline{\partial}^* \partial \eta \right\|^2 + \left\| \overline{\partial} \eta \right\|^2 + \left\| \partial \eta \right\|^2$$

hence

$$\ker \tilde{\Delta}^{BC} = \ker \partial \cap \ker \overline{\partial} \cap \ker \left(\partial \overline{\partial}\right)^*$$

On the other hand, since $\operatorname{im} \tilde{\Delta}^{BC} \subseteq \operatorname{im} \partial \overline{\partial} \oplus \left(\operatorname{im} \partial^* + \operatorname{im} \overline{\partial}^* \right)$ and $\left(\operatorname{im} \partial^* + \operatorname{im} \overline{\partial}^* \right) \cap \left(\ker \partial \cap \ker \overline{\partial} \right) = \{0\}$, one has

$$\operatorname{im} \tilde{\Delta}^{BC} \cap \left(\ker \partial \cap \ker \overline{\partial} \right) = \operatorname{im} \partial \overline{\partial}$$

It follows that

$$\ker \tilde{\Delta}^{BC} \cap A^{p,q} \xrightarrow{\simeq} \frac{\ker \tilde{\Delta}^{BC} \cap A^{p,q} + \operatorname{im} \partial \overline{\partial} \cap A^{p,q}}{\operatorname{im} \left(\partial \overline{\partial} : A^{p-1,q-1} \to A^{p,q}\right)} \simeq \frac{\ker \left(\partial + \overline{\partial} : A^{p,q} \to A^{p+1,q} \oplus A^{p,q+1}\right)}{\operatorname{im} \left(\partial \overline{\partial} : A^{p-1,q-1} \to A^{p,q}\right)},$$

completing the proof.

We have now the following result.

Theorem 1.6. Let $A^{\bullet,\bullet}$ be a bounded \mathbb{Z}^2 -graded vector space with a structure of Hilbert space, with inner product $\langle \cdot | \cdot \rangle$ such that $\langle A^{p,q} | A^{p',q'} \rangle = \{0\}$ for every $(p,q) \neq (p',q')$. Let $\partial : A^{\bullet,\bullet} \supseteq \operatorname{dom}(\partial)^{\bullet,\bullet} \to A^{\bullet+1,\bullet}$ and $\overline{\partial} : A^{\bullet,\bullet} \supseteq \operatorname{dom}(\overline{\partial})^{\bullet,\bullet} \to A^{\bullet,\bullet+1}$ be densely-defined linear operators yielding a structure $\left(\left(\operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial}) \right)^{\bullet,\bullet}, \partial, \overline{\partial} \right)$ of bounded double complex of \mathbb{C} -vector spaces. Let

$$j\colon \left(C^{\bullet,\bullet},\,\partial,\,\overline{\partial}\right) \hookrightarrow \left(\left(\operatorname{dom}(\partial)\cap\operatorname{dom}(\overline{\partial})\right)^{\bullet,\bullet},\,\partial,\,\overline{\partial}\right)$$

be a sub-complex. Suppose that:

(i) the operator
$$\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} \in \operatorname{Hom}^{0,0}\left(\operatorname{dom}\left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle}\right)^{\bullet,\bullet}; A^{\bullet,\bullet}\right)$$
 induces the decomposition
$$\operatorname{dom}\left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle}\right) = \ker \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} \oplus \operatorname{im} \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle};$$

(ii) it holds that

$$\partial^*_{\langle\cdot|\cdot\cdot\rangle} \lfloor_{C^{\bullet,\bullet}} = \left(\partial \lfloor_{C^{\bullet,\bullet}}\right)^*_{\langle\cdot|\cdot\cdot\rangle_{C^{\bullet,\bullet}}} : \operatorname{dom}\left(\partial^*_{\langle\cdot|\cdot\cdot\rangle} \lfloor_{C^{\bullet,\bullet}}\right)^{\bullet,\bullet} \to C^{\bullet-1,\bullet}$$

and

$$\overline{\partial}^*_{\langle\cdot|\,\cdot\cdot\rangle} \lfloor_{C^{\bullet,\bullet}} = \left(\overline{\partial} \lfloor_{C^{\bullet,\bullet}}\right)^*_{\langle\cdot|\,\cdot\cdot\rangle_{C^{\bullet,\bullet}}} : \operatorname{dom}\left(\overline{\partial}^*_{\langle\cdot|\,\cdot\cdot\rangle} \lfloor_{C^{\bullet,\bullet}}\right)^{\bullet,\bullet} \to C^{\bullet,\bullet-1};$$

in particular, it follows that

$$\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\rangle} \lfloor_{C^{\bullet,\bullet}} = \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\rangle} \in \operatorname{Hom}^{0,0} \left(\operatorname{dom} \left(\tilde{\Delta}^{BC} \lfloor_{C^{\bullet,\bullet}} \right)^{\bullet,\bullet}; C^{\bullet,\bullet} \right) ;$$

(iii) the operator $\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} |_{C^{\bullet,\bullet}} \in \operatorname{Hom}^{0,0} \left(\operatorname{dom} \left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} |_{C^{\bullet,\bullet}} \right)^{\bullet,\bullet}; C^{\bullet,\bullet} \right)$ induces the decomposition $\operatorname{dom} \left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} |_{C^{\bullet,\bullet}} \right) = \ker \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} |_{C^{\bullet,\bullet}} \oplus \operatorname{im} \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} |_{C^{\bullet,\bullet}}.$

Then, for every $(p,q) \in \mathbb{Z}^2$, the induced map

$$j \colon \left(C^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} C^{p,q} \xrightarrow{\partial +\overline{\partial}} C^{p+1,q} \oplus C^{p,q+1} \right) \hookrightarrow \left(A^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} A^{p,q} \xrightarrow{\partial +\overline{\partial}} A^{p+1,q} \oplus A^{p,q+1} \right)$$

of complexes induces an injective map j^* in cohomology.

Proof. By Lemma 1.5 and under the hypotheses (i), (ii), and (iii), one gets that both

$$\left(0 \to \ker \tilde{\Delta}^{BC} \cap A^{p,q} \to 0\right) \hookrightarrow \left(A^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} A^{p,q} \xrightarrow{\partial +\overline{\partial}} A^{p+1,q} \oplus A^{p,q+1}\right)$$

and

$$\left(0 \to \ker \tilde{\Delta}^{BC} \lfloor_{C^{\bullet,\bullet}} \cap C^{p,q} = \ker \tilde{\Delta}^{BC}_{\langle \cdot \mid \cdot \cdot \rangle_{C^{\bullet,\bullet}}} \cap C^{p,q} \to 0\right) \hookrightarrow \left(C^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} C^{p,q} \xrightarrow{\partial +\overline{\partial}} C^{p+1,q} \oplus C^{p,q+1}\right)$$

are quasi-isomorphisms.

Hence, one has the commutative diagram

$$\ker \tilde{\Delta}^{BC} |_{C^{\bullet,\bullet} \cap C^{p,q}} \xrightarrow{\simeq} \frac{\ker(\partial + \overline{\partial} : C^{p,q} \to C^{p+1,q} \oplus C^{p,q+1})}{\operatorname{im}(\partial \overline{\partial} : C^{p-1,q-1} \to C^{p,q})} \int_{j^{*}}^{j^{*}} \ker \tilde{\Delta}^{BC} \cap A^{p,q} \xrightarrow{\simeq} \frac{\ker(\partial + \overline{\partial} : A^{p,q} \to A^{p+1,q} \oplus A^{p,q+1})}{\operatorname{im}(\partial \overline{\partial} : A^{p-1,q-1} \to A^{p,q})}$$

getting that j^* is injective.

By using Lemma 1.4, one gets the following corollary of Theorem 1.6, concerning closed sub-complexes. **Corollary 1.7.** Let $A^{\bullet,\bullet}$ be a bounded \mathbb{Z}^2 -graded vector space with a structure of Hilbert space, with inner product $\langle \cdot | \cdot \rangle$ such that $\langle A^{p,q} | A^{p',q'} \rangle = \{0\}$ for every $(p,q) \neq (p',q')$. Let $\partial : A^{\bullet,\bullet} \supseteq \operatorname{dom}(\partial)^{\bullet,\bullet} \to A^{\bullet+1,\bullet}$ and $\overline{\partial} : A^{\bullet,\bullet} \supseteq \operatorname{dom}(\overline{\partial})^{\bullet,\bullet} \to A^{\bullet,\bullet+1}$ be densely-defined linear operators yielding a structure $\left((\operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial}))^{\bullet,\bullet}, \partial, \overline{\partial} \right)$ of bounded double complex of \mathbb{C} -vector spaces. Let $j : (C^{\bullet,\bullet}, \partial, \overline{\partial}) \to ((\operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial}))^{\bullet,\bullet}, \partial, \overline{\partial})$ be a closed sub-complex. Suppose that:

(i) the operator
$$\tilde{\Delta}^{BC}_{\langle \cdot | \cdots \rangle} \in \operatorname{Hom}^{0,0} \left(\operatorname{dom} \left(\tilde{\Delta}^{BC}_{\langle \cdot | \cdots \rangle} \right)^{\bullet, \bullet}; A^{\bullet, \bullet} \right)$$
 induces the decomposition
$$\operatorname{dom} \left(\tilde{\Delta}^{BC}_{\langle \cdot | \cdots \rangle} \right) = \ker \tilde{\Delta}^{BC}_{\langle \cdot | \cdots \rangle} \oplus \operatorname{im} \tilde{\Delta}^{BC}_{\langle \cdot | \cdots \rangle};$$

 $\begin{array}{l} (ii) \ C^{\bullet,\bullet} \subseteq \operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial}) \cap \operatorname{dom}\left(\partial^*_{\langle\cdot \mid \cdot \cdot\rangle}\right) \cap \operatorname{dom}\left(\overline{\partial}^*_{\langle\cdot \mid \cdot \cdot\rangle}\right), \ and \ \pi^{C^{\bullet,\bullet}} \circ \partial = \partial \circ \pi^{C^{\bullet,\bullet}} \colon \operatorname{dom}(\partial)^{\bullet,\bullet} \to C^{\bullet+1,\bullet} \ and \ \pi^{C^{\bullet,\bullet}} \circ \overline{\partial} = \overline{\partial} \circ \pi^{C^{\bullet,\bullet}} \colon \operatorname{dom}(\overline{\partial})^{\bullet,\bullet} \to C^{\bullet,\bullet+1}. \end{array}$

Then, for every $(p,q) \in \mathbb{Z}^2$, the induced map

$$j \colon \left(C^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} C^{p,q} \xrightarrow{\partial +\overline{\partial}} C^{p+1,q} \oplus C^{p,q+1} \right) \hookrightarrow \left(A^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} A^{p,q} \xrightarrow{\partial +\overline{\partial}} A^{p+1,q} \oplus A^{p,q+1} \right)$$

of complexes induces an injective map j^* in cohomology.

Proof. By Lemma 1.4, one has $\pi^{C^{\bullet,\bullet}} \circ \partial^* = \partial^* \circ \pi^{C^{\bullet,\bullet}}$: dom $(\partial^*)^{\bullet,\bullet} \to C^{\bullet-1,\bullet}$ and $\pi^{C^{\bullet,\bullet}} \circ \overline{\partial}^* = \overline{\partial}^* \circ \pi^{C^{\bullet,\bullet}}$: dom $(\overline{\partial}^*)^{\bullet,\bullet} \to C^{\bullet,\bullet-1}$, and hence in particular $\partial^* \lfloor_{C^{\bullet,\bullet}} = (\partial \lfloor_{C^{\bullet,\bullet}})^*_{\langle \cdot \mid \cdot \cdot \rangle_{C^{\bullet,\bullet}}} : C^{\bullet,\bullet} \to C^{\bullet-1,\bullet}$ and $\overline{\partial}^* \lfloor_{C^{\bullet,\bullet}} = (\overline{\partial} \lfloor_{C^{\bullet,\bullet}})^*_{\langle \cdot \mid \cdot \cdot \rangle_{C^{\bullet,\bullet}}} : C^{\bullet,\bullet} \to C^{\bullet,\bullet-1}$.

Furthermore, it follows that $\pi^{C^{\bullet,\bullet}} \circ \tilde{\Delta}^{BC} = \tilde{\Delta}^{BC} \circ \pi^{C^{\bullet,\bullet}} \colon \operatorname{dom} \left(\tilde{\Delta}^{BC} \right)^{\bullet,\bullet} \to C^{\bullet,\bullet}$. In particular, it follows that

$$\pi^{C^{\bullet,\bullet}}\left(\ker\tilde{\Delta}^{BC}\right) = \ker\tilde{\Delta}^{BC}\lfloor_{C^{\bullet,\bullet}} \quad \text{and} \quad \pi^{C^{\bullet,\bullet}}\left(\operatorname{im}\tilde{\Delta}^{BC}\right) = \operatorname{im}\tilde{\Delta}^{BC}\lfloor_{C^{\bullet,\bullet}},$$

and hence one gets the decomposition

$$\operatorname{dom}\left(\tilde{\Delta}^{BC}\lfloor_{C^{\bullet,\bullet}}\right)^{\bullet,\bullet} = \pi^{C^{\bullet,\bullet}}\left(\operatorname{dom}\left(\tilde{\Delta}^{BC}\right)^{\bullet,\bullet}\right) = \pi^{C^{\bullet,\bullet}}\left(\operatorname{ker}\tilde{\Delta}^{BC}\right) + \pi^{C^{\bullet,\bullet}}\left(\operatorname{im}\tilde{\Delta}^{BC}\right)$$
$$= \operatorname{ker}\tilde{\Delta}^{BC}\lfloor_{C^{\bullet,\bullet}} \oplus \operatorname{im}\tilde{\Delta}^{BC}\lfloor_{C^{\bullet,\bullet}}.$$

Hence the hypotheses of Theorem 1.6 are satisfied, completing the proof.

Note that hypothesis *(iii)* in Theorem 1.6 is satisfied whenever the sub-complex $C^{\bullet,\bullet}$ is finite-dimensional.

Corollary 1.8. Let $A^{\bullet,\bullet}$ be a bounded \mathbb{Z}^2 -graded vector space with a structure of Hilbert space, with inner product $\langle \cdot | \cdot \rangle$ such that $\langle A^{p,q} | A^{p',q'} \rangle = \{0\}$ for every $(p,q) \neq (p',q')$. Let $\partial : A^{\bullet,\bullet} \supseteq \operatorname{dom}(\partial)^{\bullet,\bullet} \to A^{\bullet,\bullet+1}$ be densely-defined linear operators yielding a structure $\left((\operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial}))^{\bullet,\bullet}, \partial, \overline{\partial} \right)$ of bounded double complex of \mathbb{C} -vector spaces. Let $j : (C^{\bullet,\bullet}, \partial, \overline{\partial}) \to \left((\operatorname{dom}(\partial) \cap \operatorname{dom}(\overline{\partial}))^{\bullet,\bullet}, \partial, \overline{\partial} \right)$ be a sub-complex. Suppose that:

(i) the operator
$$\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} \in \operatorname{Hom}^{0,0}\left(\operatorname{dom}\left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle}\right)^{\bullet,\bullet}; A^{\bullet,\bullet}\right)$$
 induces the decomposition
$$\operatorname{dom}\left(\tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle}\right)^{\bullet,\bullet} = \ker \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle} \oplus \operatorname{im} \tilde{\Delta}^{BC}_{\langle\cdot|\cdot\cdot\rangle};$$

- (ii) $C^{\bullet,\bullet}$ is finite-dimensional;
- (iii) it holds that

$$\partial^*_{\langle \cdot | \cdots \rangle} \lfloor_{C^{\bullet, \bullet}} = (\partial \lfloor_{C^{\bullet, \bullet}})^*_{\langle \cdot | \cdots \rangle_{C^{\bullet, \bullet}}} : C^{\bullet, \bullet} \to C^{\bullet - 1, \bullet}$$

and

$$\overline{\partial}^*_{\langle\cdot|\cdots\rangle} \lfloor_{C^{\bullet,\bullet}} = \left(\overline{\partial} \lfloor_{C^{\bullet,\bullet}}\right)^*_{\langle\cdot|\cdots\rangle_{C^{\bullet,\bullet}}} : C^{\bullet,\bullet} \to C^{\bullet,\bullet-1} .$$

Then, for every $(p,q) \in \mathbb{Z}^2$, the induced map

$$j \colon \left(C^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} C^{p,q} \xrightarrow{\partial +\overline{\partial}} C^{p+1,q} \oplus C^{p,q+1} \right) \hookrightarrow \left(A^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} A^{p,q} \xrightarrow{\partial +\overline{\partial}} A^{p+1,q} \oplus A^{p,q+1} \right)$$

of complexes induces an injective map j^* in cohomology.

Proof. Note that, if $C^{\bullet,\bullet} \subseteq (\operatorname{dom} \partial \cap \operatorname{dom} \overline{\partial})^{\bullet,\bullet}$ is finite-dimensional, as in *(ii)*, then the \mathbb{C} -linear operators $\partial \lfloor_{C^{\bullet,\bullet}} : C^{\bullet,\bullet} \to C^{\bullet+1,\bullet}$ and $\overline{\partial} \lfloor_{C^{\bullet,\bullet}} : C^{\bullet,\bullet} \to C^{\bullet,\bullet+1}$ are continuous, and hence dom $(\partial \lfloor_{C^{\bullet,\bullet}})^*_{\langle\cdot | \cdots \rangle_{C^{\bullet,\bullet}}} = \operatorname{dom} (\partial^* \lfloor_{C^{\bullet,\bullet}}) = C^{\bullet,\bullet}$ and dom $(\overline{\partial} \lfloor_{C^{\bullet,\bullet}})^*_{\langle\cdot | \cdots \rangle_{C^{\bullet,\bullet}}} = \operatorname{dom} (\overline{\partial}^* \lfloor_{C^{\bullet,\bullet}}) = C^{\bullet,\bullet}$. By hypothesis *(iii)*, it follows that $\tilde{\Delta}^{BC} \lfloor_{C^{\bullet,\bullet}} = \tilde{\Delta}^{BC}_{\langle\cdot | \cdots \rangle_{C^{\bullet,\bullet}}} \in \operatorname{End}^{0,0}(C^{\bullet,\bullet})$. In particular, dom $\tilde{\Delta}^{BC}_{\langle\cdot | \cdots \rangle_{C^{\bullet,\bullet}}} = \operatorname{dom} \tilde{\Delta}^{BC} \lfloor_{C^{\bullet,\bullet}} = C^{\bullet,\bullet}$.

Hence, in order to apply Theorem 1.6, it suffices to show that, given a finite-dimensional \mathbb{C} -vector space C endowed with an inner product $\langle \cdot | \cdot \cdot \rangle$, any self- $\langle \cdot | \cdot \cdot \rangle$ -adjoint endomorphism $L \in \text{Hom}(C)$ yields a decomposition

$$C = \ker L \oplus \operatorname{im} L \,.$$

Indeed, take ker $L \subseteq C$ and let $V \subseteq C$ be the \mathbb{C} -vector sub-space of C being $\langle \cdot | \cdot \rangle$ -orthogonal to ker L;

in particular, $C = \ker L \stackrel{\perp}{\oplus} V$. It suffices to show that $V = \operatorname{im} L$. Since L is self- $\langle \cdot | \cdot \cdot \rangle$ -adjoint, then $\langle \operatorname{im} L | \ker L \rangle = \{0\}$, and hence $\operatorname{im} L \subseteq V$. Since $\dim_{\mathbb{C}} C = \dim_{\mathbb{C}} \operatorname{im} L + \dim_{\mathbb{C}} \ker L < +\infty$, it follows that $V = \operatorname{im} L$.

Remark 1.9. Obviously, Theorem 1.6, as well as its corollaries, holds, with straightforward modifications, also for the cohomologies associated to the operators $\Delta_{\langle \cdot | .. \rangle} := [d, d^*]$, and $\Box_{\langle \cdot | .. \rangle} := [\partial, \partial^*]$, and $\overline{\Box}_{\langle \cdot | .. \rangle} := [\overline{\partial}, \overline{\partial}^*]$, and $\overline{\Box}_{\langle \cdot | .. \rangle} := [\overline{\partial}, \overline{\partial}^*]$, and $\Delta_{\langle \cdot | .. \rangle}^A := \partial \partial^* + \overline{\partial \partial}^* + (\partial \overline{\partial})^* (\partial \overline{\partial}) + (\partial \overline{\partial}) (\partial \overline{\partial})^* + (\overline{\partial} \partial^*)^* (\overline{\partial} \partial^*) + (\overline{\partial} \partial^*) (\overline{\partial} \partial^*)^*$.

2. Applications

We are now interested in applying the general results of the previous section to suitable sub-complexes of the double complex $(\wedge^{\bullet,\bullet}X, \partial, \overline{\partial})$, where X is a compact complex manifold. We are especially interested in the case when X is a solvmanifold.

2.1. Complexes of PD-type. Let $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a double complex of \mathbb{C} -vector spaces. Suppose that $A^{\bullet,\bullet}$ have a structure \wedge of \mathbb{C} -algebra being compatible with the \mathbb{Z}^2 -grading (namely, $A^{p,q} \wedge A^{p',q'} \subseteq A^{p+p',q+q'}$ for every $(p,q), (p',q') \in \mathbb{Z}^2$), and with respect to which $d := \partial + \overline{\partial}$ satisfies the Leibniz rule, namely,

for every $a \in \operatorname{Tot}^{\hat{a}} A^{\bullet, \bullet}$, $[d, a \wedge \cdot] = d a \wedge \cdot \in \operatorname{End}^{\hat{a}+1}(\operatorname{Tot}^{\bullet} A^{\bullet, \bullet})$.

Following the notation introduced in [44, §2] by the second author, $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ is said to be a *bi-differential* \mathbb{Z}^2 -graded algebra of PD-type if

- (*i*) whenever p < 0 or q < 0, then $A^{p,q} = \{0\}$, and $A^{0,0} = \mathbb{C} \langle 1 \rangle$;
- (*ii*) there exists $n \in \mathbb{N}$ such that, whenever p > n or q > n, then $A^{p,q} = \{0\}$, and $A^{n,n} = \mathbb{C} \langle v \rangle$; (call n the PD-dimension of $A^{\bullet,\bullet}$;)
- (*iii*) for every $(h,k) \in \{0,\ldots,n\}^2$, the bi- \mathbb{C} -linear map $A^{h,k} \times A^{n-h,n-k} \to A^{n,n} \xrightarrow{\simeq} \mathbb{C}$ induced by \wedge is non-degenerate;
- (*iv*) d Tot⁰ $A^{\bullet,\bullet} = \{0\}$ and d Tot²ⁿ⁻¹ $A^{\bullet,\bullet} = \{0\}$.

Given a bi-differential \mathbb{Z}^2 -graded algebra $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ of PD-type, let $\langle \cdot | \cdots \rangle$ be an inner product on $A^{\bullet,\bullet}$ being compatible with the \mathbb{Z}^2 -grading, namely, $\langle A^{p,q} | A^{p',q'} \rangle = \{0\}$ whenever $(p,q) \neq (p',q')$, and being compatible with the PD-type structure, namely, $\langle v | v \rangle = 1$. Define the \mathbb{C} -anti-linear map

$$\bar{*}_{\langle\cdot\,|\,\,\cdot\,\rangle}\colon A^{\bullet_1,\bullet_2}\to A^{n-\bullet_1,n-\bullet_2}\qquad\text{such that}\qquad\text{for every }\alpha,\beta\in A^{\bullet,\bullet}\;,\quad\alpha\wedge\bar{*}_{\langle\cdot\,|\,\,\cdot\,\rangle}\beta\;=\;\langle\alpha\,|\,\beta\rangle\cdot v$$

(as above, we will understand the scalar product $\langle \cdot | \cdot \rangle$ whenever it is clear from the context).

By considering the Hilbert space given by the $\langle \cdot | \cdot \rangle$ -completion of $A^{\bullet,\bullet}$, one has that the operators

$$\partial^* := -\bar{*}_{\langle \cdot \mid \cdot \rangle} \, \partial \, \bar{*}_{\langle \cdot \mid \cdot \rangle} \colon A^{\bullet, \bullet} \to A^{\bullet - 1, \bullet} \qquad \text{and} \qquad \overline{\partial}^* := -\bar{*}_{\langle \cdot \mid \cdot \rangle} \, \overline{\partial} \, \bar{*}_{\langle \cdot \mid \cdot \rangle} \colon A^{\bullet, \bullet} \to A^{\bullet, \bullet - 1}$$

are in fact the $\langle \cdot | \cdot \rangle$ -adjoint operators $\partial^*_{\langle \cdot | \cdot \rangle}$, respectively $\overline{\partial}^*_{\langle \cdot | \cdot \rangle}$, of $\partial : A^{\bullet, \bullet} \to A^{\bullet+1, \bullet}$, respectively $\overline{\partial} : A^{\bullet, \bullet} \to A^{\bullet, \bullet+1}$, and the operator

$$\mathrm{d}^* := -\bar{\ast}_{\langle \cdot | \dots \rangle} \mathrm{d} \; \bar{\ast}_{\langle \cdot | \dots \rangle} = \partial^* + \overline{\partial}^* \colon \mathrm{Tot}^{\bullet} A^{\bullet, \bullet} \to \mathrm{Tot}^{\bullet - 1} A^{\bullet, \bullet}$$

is in fact the $\langle \cdot | \cdot \rangle$ -adjoint operator $d^*_{\langle \cdot | \cdot \rangle}$ of $d := \partial + \overline{\partial}$: Tot[•] $A^{\bullet, \bullet} \to \text{Tot}^{\bullet+1} A^{\bullet, \bullet}$, [44, Lemma 2.4].

The following result is an application of Corollary 1.8 to the case of bi-differential \mathbb{Z}^2 -graded algebras of PD-type.

Proposition 2.1. Let $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a bi-differential \mathbb{Z}^2 -graded algebra of PD-type of PD-dimension n. Let $\langle \cdot | \cdot \rangle$ be an inner product on $A^{\bullet,\bullet}$ being compatible with the \mathbb{Z}^2 -grading and with the PD-type structure. Consider the Hilbert space given by the $\langle \cdot | \cdot \rangle$ -completion of $A^{\bullet,\bullet}$, and suppose that the operator $\tilde{\Delta}^{BC}_{\langle \cdot | \cdot \rangle} \in \operatorname{End}^{0,0}(A^{\bullet,\bullet})$ induces the decomposition

$$A^{\bullet,\bullet} = \ker \tilde{\Delta}^{BC}_{\langle\cdot | \cdots \rangle} \oplus \operatorname{im} \tilde{\Delta}^{BC}_{\langle\cdot | \cdots \rangle} .$$
¹⁰

Let $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (A^{\bullet,\bullet}, \partial, \overline{\partial})$ be a finite-dimensional sub-complex of $(A^{\bullet,\bullet}, \partial, \overline{\partial})$ having a structure of bi-differential \mathbb{Z}^2 -graded algebra of PD-type of PD-dimension n induced by $A^{\bullet,\bullet}$. Suppose that

$$\bar{*}_{\langle \cdot | \cdot \rangle} \lfloor_{C^{\bullet, \bullet}} : C^{\bullet, \bullet} \to C^{n - \bullet, n - \bullet}$$
.

Then, for any $(p,q) \in \mathbb{Z}^2$, the induced inclusions

$$\left(\operatorname{Tot}^{\bullet} \left(C^{\bullet, \bullet} \right), \, \partial + \overline{\partial} \right) \hookrightarrow \left(\operatorname{Tot}^{\bullet} A^{\bullet, \bullet}, \, \partial + \overline{\partial} \right) \,, \qquad \left(C^{\bullet, q}, \, \partial \right) \hookrightarrow \left(A^{\bullet, q}, \, \partial \right) \,, \qquad \left(C^{p, \bullet}, \, \overline{\partial} \right) \hookrightarrow \left(A^{p, \bullet}, \, \overline{\partial} \right) \,,$$
 and
$$\left(C^{p-1, q-1} \stackrel{\partial \overline{\partial}}{\to} C^{p, q} \stackrel{\partial + \overline{\partial}}{\to} C^{p+1, q} \oplus C^{p, q+1} \right) \hookrightarrow \left(A^{p-1, q-1} \stackrel{\partial \overline{\partial}}{\to} A^{p, q} \stackrel{\partial + \overline{\partial}}{\to} A^{p+1, q} \oplus A^{p, q+1} \right)$$

$$\left(C^{p-1,q} \oplus C^{p,q-1} \stackrel{(\partial,\overline{\partial})}{\rightarrow} C^{p,q} \stackrel{\partial\overline{\partial}}{\rightarrow} C^{p+1,q+1}\right) \hookrightarrow \left(A^{p-1,q} \oplus A^{p,q-1} \stackrel{(\partial,\overline{\partial})}{\rightarrow} A^{p,q} \stackrel{\partial\overline{\partial}}{\rightarrow} A^{p+1,q+1}\right)$$

and

 $\oplus C^{p,q-1} \to C^{p,q} \to C^{p,q}$) ((

induce injective maps in cohomology.

Proof. By the hypothesis that $\bar{*}_{\langle\cdot| \dots \rangle} \lfloor_{C^{\bullet,\bullet}} : C^{\bullet,\bullet} \to C^{n-\bullet,n-\bullet}$, one gets that

 $\bar{\ast}_{\langle\cdot|\cdots\rangle}\big|_{C^{\bullet,\bullet}} = \bar{\ast}_{\langle\cdot|\cdots\rangle_{C^{\bullet,\bullet}}}$

(indeed, let $\alpha \in C^{\bullet, \bullet}$; then, for any $\beta \in C^{\bullet, \bullet}$, it holds that $(\bar{*}_{\langle \cdot | \cdots \rangle_{C^{\bullet, \bullet}}} \alpha - \bar{*}_{\langle \cdot | \cdots \rangle} \alpha) \land \beta = 0$; by taking $\beta = \bar{*}_{\langle \cdot | \cdots \rangle} \left(\bar{*}_{\langle \cdot | \cdots \rangle_C \bullet, \bullet} \alpha - \bar{*}_{\langle \cdot | \cdots \rangle} \alpha \right) \in C^{\bullet, \bullet}, \text{ one gets hence that } \bar{*}_{\langle \cdot | \cdots \rangle_C \bullet, \bullet} \alpha = \bar{*}_{\langle \cdot | \cdots \rangle} \alpha). \text{ In particular, it}$ follows that

$$\partial^*_{\langle\cdot\,|\,\cdot\cdot\rangle}\big|_{C^{\bullet,\bullet}} = \left(-\bar{*}_{\langle\cdot\,|\,\cdot\cdot\rangle}\partial\,\bar{*}_{\langle\cdot\,|\,\cdot\cdot\rangle}\right)\big|_{C^{\bullet,\bullet}} = -\bar{*}_{\langle\cdot\,|\,\cdot\cdot\rangle_{C^{\bullet,\bullet}}}\partial\big|_{C^{\bullet,\bullet}} \bar{*}_{\langle\cdot\,|\,\cdot\cdot\rangle_{C^{\bullet,\bullet}}} = \left(\partial\big|_{C^{\bullet,\bullet}}\right)^*_{\langle\cdot\,|\,\cdot\cdot\rangle_{C^{\bullet,\bullet}}} : C^{\bullet,\bullet} \to C^{\bullet-1,\bullet}$$

and

$$\overline{\partial}^*_{\langle\cdot|\cdots\rangle} \lfloor_{C^{\bullet,\bullet}} = \left(-\overline{*}_{\langle\cdot|\cdots\rangle} \overline{\partial} \,\overline{*}_{\langle\cdot|\cdots\rangle}\right) \lfloor_{C^{\bullet,\bullet}} = -\overline{*}_{\langle\cdot|\cdots\rangle_{C^{\bullet,\bullet}}} \overline{\partial} \lfloor_{C^{\bullet,\bullet}} \overline{*}_{\langle\cdot|\cdots\rangle_{C^{\bullet,\bullet}}} = \left(\overline{\partial} \lfloor_{C^{\bullet,\bullet}}\right)^*_{\langle\cdot|\cdots\rangle_{C^{\bullet,\bullet}}} : C^{\bullet,\bullet} \to C^{\bullet,\bullet-1}$$
Hence Corollary 1.8 see also Remark 1.9 applies

Hence Corollary 1.8, see also Remark 1.9, applies.

2.2. Compact complex manifolds. Let X be a compact complex manifold of complex dimension nendowed with a Hermitian metric q. (Note that all manifolds are assumed to have no boundary.)

By considering the (\mathbb{C} -anti-linear) Hodge-*-operator

$$\bar{*}_q \colon \wedge^{\bullet_1, \bullet_2} X \to \wedge^{n-\bullet_1, n-\bullet_2} X$$

and the inner product

$$\langle \cdot | \cdots \rangle := \int_X \cdot \wedge \bar{*}_g(\cdots) ,$$

one gets that the double complex $(\wedge^{\bullet,\bullet} X, \partial, \overline{\partial})$ has a structure of bi-differential \mathbb{Z}^2 -graded algebra of PD-type of PD-dimension n, such that $\langle \cdot | \cdot \rangle$ is compatible with the \mathbb{Z}^2 -grading and with the PD-type structure of $\wedge^{\bullet,\bullet} X$.

The 2^{nd} order self- $\langle \cdot | \cdot \rangle$ -adjoint elliptic differential operators

$$\Delta_g := [\mathbf{d}, \mathbf{d}^*] \in \operatorname{End}^0(\wedge^{\bullet} X \otimes \mathbb{C}) ,$$

and

$$\Box_g := [\partial, \partial^*] \in \operatorname{End}^{0,0}(\wedge^{\bullet, \bullet}X) , \qquad \overline{\Box}_g := \left[\overline{\partial}, \overline{\partial}^*\right] \in \operatorname{End}^{0,0}(\wedge^{\bullet, \bullet}X)$$

and the 4th order self- $\langle \cdot | \cdot \rangle$ -adjoint elliptic differential operators, [46, Proposition 5], [64, §2.b, §2.c],

$$\tilde{\Delta}_{g}^{BC} := \left(\partial\overline{\partial}\right) \left(\partial\overline{\partial}\right)^{*} + \left(\partial\overline{\partial}\right)^{*} \left(\partial\overline{\partial}\right) + \left(\overline{\partial}^{*}\partial\right) \left(\overline{\partial}^{*}\partial\right)^{*} + \left(\overline{\partial}^{*}\partial\right)^{*} \left(\overline{\partial}^{*}\partial\right) + \overline{\partial}^{*}\overline{\partial} + \partial^{*}\partial \in \operatorname{End}^{0,0}\left(\wedge^{\bullet,\bullet}X\right)$$

and

$$\tilde{\Delta}_{g}^{A} := \partial \partial^{*} + \overline{\partial \partial}^{*} + \left(\partial \overline{\partial}\right)^{*} \left(\partial \overline{\partial}\right) + \left(\partial \overline{\partial}\right) \left(\partial \overline{\partial}\right)^{*} + \left(\overline{\partial} \partial^{*}\right)^{*} \left(\overline{\partial} \partial^{*}\right) + \left(\overline{\partial} \partial^{*}\right) \left(\overline{\partial} \partial^{*}\right)^{*} \in \operatorname{End}^{0,0} \left(\wedge^{\bullet, \bullet} X\right) ,$$

(from now on, the metric q will be understood whenever it is clear from the context,) induce the $\langle \cdot | \cdot \rangle$ orthogonal decompositions, [45, page 450],

$$\wedge^{\bullet} X \otimes_{\mathbb{R}} \mathbb{C} = \ker \Delta \oplus \operatorname{im} \Delta = \ker \Delta \oplus \operatorname{im} d \oplus \operatorname{im} d$$

and

$$\wedge^{\bullet,\bullet}X = \ker \Box \oplus \operatorname{im} \Box = \ker \Box \oplus \operatorname{im} \partial \oplus \operatorname{im} \partial^*$$
$$= \ker \overline{\Box} \oplus \operatorname{im} \overline{\Box} = \ker \overline{\Box} \oplus \operatorname{im} \overline{\partial} \oplus \operatorname{im} \overline{\partial}^*,$$

and, [64, Théorème 2.2, §2.c],

$$\wedge^{\bullet,\bullet}X = \ker \tilde{\Delta}^{BC} \oplus \operatorname{im} \tilde{\Delta}^{BC} = \ker \tilde{\Delta}^{BC} \oplus \operatorname{im} \partial \overline{\partial} \oplus \left(\operatorname{im} \partial^* + \operatorname{im} \overline{\partial}^*\right)$$
$$= \ker \tilde{\Delta}^A \oplus \operatorname{im} \tilde{\Delta}^A = \ker \tilde{\Delta}^A \oplus \left(\operatorname{im} \partial + \operatorname{im} \overline{\partial}\right) \oplus \operatorname{im} \left(\partial \overline{\partial}\right)^* .$$

In particular, by arguing as in Lemma 1.5, it follows that

$$H^{\bullet}_{dR}(X;\mathbb{C}) := \frac{\ker d}{\operatorname{im} d} \simeq \ker \Delta , \qquad H^{\bullet,\bullet}_{\partial}(X) := \frac{\ker \partial}{\operatorname{im} \partial} \simeq \ker \Box , \qquad H^{\bullet,\bullet}_{\overline{\partial}}(X) := \frac{\ker \overline{\partial}}{\operatorname{im} \overline{\partial}} \simeq \ker \overline{\Box} ,$$

and, [64, Corollaire 2.3, §2.c],

$$H_{BC}^{\bullet,\bullet}(X) \ := \ \frac{\ker \partial \cap \ker \overline{\partial}}{\operatorname{im} \partial \overline{\partial}} \ \simeq \ \ker \tilde{\Delta}^{BC} \ , \qquad H_A^{\bullet,\bullet}(X) \ := \ \frac{\ker \partial \overline{\partial}}{\operatorname{im} \partial + \operatorname{im} \overline{\partial}} \ \simeq \ \ker \tilde{\Delta}^A$$

Note that $\bar{*}_g \circ \tilde{\Delta}^{BC} = \tilde{\Delta}^A \circ \bar{*}_g$, and hence the Hodge-*-operator induces the isomorphism

$$H_{BC}^{\bullet,\bullet}(X) \xrightarrow{\simeq} H_A^{n-\bullet,n-\bullet}(X)$$

In particular, by Proposition 2.1, one gets straightforwardly the following result, which provides a condition under which the Bott-Chern cohomology of a finite-dimensional sub-complex of $\wedge^{\bullet,\bullet}X$ is a subgroup of $H_{BC}^{\bullet,\bullet}(X)$. Such a result will be applied in the next section with the aim to study the Bott-Chern cohomology of a certain class of solvmanifolds.

Proposition 2.2. Let X be a compact complex manifold of complex dimension n endowed with a Hermitian metric g. Let $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (\wedge^{\bullet,\bullet} X, \partial, \overline{\partial})$ be a finite-dimensional sub-complex of $(\wedge^{\bullet,\bullet} X, \partial, \overline{\partial})$ having a structure of bi-differential \mathbb{Z}^2 -graded algebra of PD-type of PD-dimension n induced by $\wedge^{\bullet,\bullet} X$. Suppose that

$$\bar{*}_g \lfloor_{C^{\bullet,\bullet}} \colon C^{\bullet,\bullet} \to C^{n-\bullet,n-\bullet}$$
.

Then, for any $(p,q) \in \mathbb{Z}^2$, the induced inclusions

 $\left(\operatorname{Tot}^{\bullet}\left(C^{\bullet,\bullet}\right),\,\partial+\overline{\partial}\right)\hookrightarrow\left(\wedge^{\bullet}X\otimes_{\mathbb{R}}\mathbb{C},\,\mathrm{d}\right)\,,\qquad\left(C^{\bullet,q},\,\partial\right)\hookrightarrow\left(\wedge^{\bullet,q}X,\,\partial\right)\,,\qquad\left(C^{p,\bullet},\,\overline{\partial}\right)\hookrightarrow\left(\wedge^{p,\bullet}X,\,\overline{\partial}\right)\,,$ and

$$\left(C^{p-1,q-1} \stackrel{\partial\overline{\partial}}{\to} C^{p,q} \stackrel{\partial+\overline{\partial}}{\to} C^{p+1,q} \oplus C^{p,q+1}\right) \hookrightarrow \left(\wedge^{p-1,q-1} X \stackrel{\partial\overline{\partial}}{\to} \wedge^{p,q} X \stackrel{\partial+\overline{\partial}}{\to} \wedge^{p+1,q} X \oplus \wedge^{p,q+1} X\right)$$

and

$$\left(C^{p-1,q} \oplus C^{p,q-1} \xrightarrow{\left(\partial,\overline{\partial}\right)} C^{p,q} \xrightarrow{\partial\overline{\partial}} C^{p+1,q+1}\right) \hookrightarrow \left(\wedge^{p-1,q} X \oplus \wedge^{p,q-1} X \xrightarrow{\left(\partial,\overline{\partial}\right)} \wedge^{p,q} X \xrightarrow{\partial\overline{\partial}} \wedge^{p+1,q+1} X\right)$$

induce injective maps in cohomology.

Proof. The proof follows straightforwardly by [64, Théorème 2.2, \S 2.c] and [45, page 450], and by Proposition 2.1.

Remark 2.3. By applying Corollary 1.7 to the $\langle \cdot | \cdot \cdot \rangle$ -completion of $\wedge^{\bullet,\bullet}X$, the same conclusion of Proposition 2.2 holds true for a (possibly non-finite-dimensional) closed sub-complex $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (\wedge^{\bullet,\bullet}X, \partial, \overline{\partial})$ such that $\pi^{C^{\bullet,\bullet}} \circ \partial = \partial \circ \pi^{C^{\bullet,\bullet}} : \wedge^{\bullet,\bullet}X \to C^{\bullet,\bullet}$ and $\pi^{C^{\bullet,\bullet}} \circ \overline{\partial} = \overline{\partial} \circ \pi^{C^{\bullet,\bullet}} : \wedge^{\bullet,\bullet}X \to C^{\bullet,\bullet}$.

In order to study cohomologies of solvmanifolds, we need also the following result.

To simplify the notation, we say that a sub-complex $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (\wedge^{\bullet,\bullet}X, \partial, \overline{\partial})$ suffices in computing the de Rham, respectively conjugate Dolbeault, respectively Dolbeault, respectively Bott-Chern, respectively Aeppli cohomology of X if the induced inclusion

$$(\operatorname{Tot}^{\bullet} C^{\bullet, \bullet}, \partial + \overline{\partial}) \hookrightarrow (\wedge^{\bullet} X \otimes_{\mathbb{R}} \mathbb{C}, \mathrm{d}) ,$$

respectively, for any $q \in \mathbb{N}$,

$$(C^{\bullet,q},\partial) \hookrightarrow (\wedge^{\bullet,q},\partial)$$

respectively, for any $p \in \mathbb{N}$,

$$(C^{p,\bullet}, \overline{\partial}) \hookrightarrow (\wedge^{p,\bullet}, \overline{\partial})$$
,

respectively, for any $(p,q) \in \mathbb{Z}^2$,

$$\left(C^{p-1,q-1} \xrightarrow{\partial\overline{\partial}} C^{p,q} \xrightarrow{\partial+\overline{\partial}} C^{p+1,q} \oplus C^{p,q+1}\right) \hookrightarrow \left(\wedge^{p-1,q-1} X \xrightarrow{\partial\overline{\partial}} \wedge^{p,q} X \xrightarrow{\partial+\overline{\partial}} \wedge^{p+1,q} X \oplus \wedge^{p,q+1} X\right)$$
12

respectively, for any $(p,q) \in \mathbb{Z}^2$,

$$\left(C^{p-1,q} \oplus C^{p,q-1} \stackrel{(\partial,\overline{\partial})}{\to} C^{p,q} \stackrel{\partial\overline{\partial}}{\to} C^{p+1,q+1}\right) \hookrightarrow \left(\wedge^{p-1,q} X \oplus \wedge^{p,q-1} X \stackrel{(\partial,\overline{\partial})}{\to} \wedge^{p,q} X \stackrel{\partial\overline{\partial}}{\to} \wedge^{p+1,q+1} X\right)$$

is a quasi-isomorphism.

Proposition 2.4. Let X be a compact complex manifold of complex dimension n endowed with a Hermitian metric g. Let $(C^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (\wedge^{\bullet,\bullet} X, \partial, \overline{\partial})$ be a finite-dimensional sub-complex of $(\wedge^{\bullet,\bullet} X, \partial, \overline{\partial})$ having a structure of bi-differential \mathbb{Z}^2 -graded algebra of PD-type of PD-dimension n induced by $\wedge^{\bullet,\bullet} X$ and such that

$$\bar{*}_q|_{C^{\bullet,\bullet}}: C^{\bullet,\bullet} \to C^{n-\bullet,n-\bullet}$$

Let $(B^{\bullet,\bullet}, \partial, \overline{\partial}) \hookrightarrow (C^{\bullet,\bullet}, \partial, \overline{\partial})$ be a sub-complex of $(C^{\bullet,\bullet}, \partial, \overline{\partial})$ having a structure of bi-differential \mathbb{Z}^2 -graded algebra of PD-type of PD-dimension n induced by $C^{\bullet,\bullet}$ and such that

$$\bar{*}_{q}|_{B^{\bullet,\bullet}} \colon B^{\bullet,\bullet} \to B^{n-\bullet,n-\bullet}$$

If $(B^{\bullet,\bullet}, \partial, \overline{\partial})$ suffices in computing the cohomologies of X, then also $(C^{\bullet,\bullet}, \partial, \overline{\partial})$ suffices in computing the corresponding cohomologies of X.

Proof. By Proposition 2.1 and Proposition 2.2, both the inclusions $B^{\bullet,\bullet} \hookrightarrow C^{\bullet,\bullet}$ and $C^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} X$ induce injective maps in cohomology, whose composition is an isomorphism by the hypothesis.

2.3. Complex nilmanifolds. Let $X = \Gamma \setminus G$ be a *solvmanifold* (respectively, a *nilmanifold*), namely, a compact quotient of a connected simply-connected solvable (respectively, nilpotent) Lie group G by a co-compact discrete subgroup Γ , endowed with a G-left-invariant (almost-)complex structure J. We recall that a solvmanifold is called *completely-solvable* if, for any $g \in G$, all the eigenvalues of $\operatorname{Ad}_g :=$ $\operatorname{d}(\psi_g)_e \in \operatorname{Aut}(\mathfrak{g})$ are real, equivalently, for any $X \in \mathfrak{g}$, all the eigenvalues of $\operatorname{Ad}_X := [X, \cdot] \in \operatorname{End}(\mathfrak{g})$ are real, where $\psi : G \ni g \mapsto (\psi_g : h \mapsto g h g^{-1}) \in \operatorname{Aut}(G)$ and e is the identity element of G.

Recall that, by J. Milnor's Lemma [52, Lemma 6.2], G is unimodular (that is, det(Ad_g) = 1 for any $g \in G$), and hence, in particular, there exists a G-bi-invariant volume form η on X such that $\int_X \eta = 1$. Therefore, consider the F. A. Belgun symmetrization map in [14, Theorem 7], namely,

$$\mu\colon\wedge^{\bullet}X\otimes_{\mathbb{R}}\mathbb{C}\to\wedge^{\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*},\qquad\mu(\alpha):=\int_{X}\alpha\lfloor_{x}\eta(x).$$

Note, [14, Theorem 7], that μ commutes with d and with J, and hence also with ∂ and $\overline{\partial}$, and that $\mu \mid_{\wedge^{\bullet}(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*} = \mathrm{id}_{\wedge^{\bullet}(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*}$.

Lemma 2.5. Let $\Gamma \setminus G$ be a solvmanifold, and consider the F. A. Belgun symmetrization map $\mu \colon \wedge^{\bullet} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{\bullet} (\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*$ in [14, Theorem 7]. For a G-left-invariant differential form θ on $\Gamma \setminus G$ and for a differential form ω on $\Gamma \setminus G$, we have

$$\mu(\theta \wedge \omega) = \theta \wedge \mu(\omega).$$

Proof. Suppose that θ is a *G*-left-invariant 1-form on $\Gamma \backslash G$. Let ω be a *p*-form on $\Gamma \backslash G$. Then for $X_1, \ldots, X_{p+1} \in \mathfrak{g}$, since $\theta(X_j)$ is constant for every $j \in \{1, \ldots, p+1\}$, we have

$$\mu(\theta \wedge \omega)(X_1, \dots, X_{p+1}) = \int_{\Gamma \setminus G} \sum_{\sigma \in \mathfrak{S}_{p+1}} \theta_x \left(X_{\sigma(1)} \right) \cdot \omega \left(X_{\sigma(2)}, \dots, X_{\sigma(p+1)} \right) \eta(x)$$
$$= \sum_{\sigma \in \mathfrak{S}_{p+1}} \theta \left(X_{\sigma(1)} \right) \cdot \int_{\Gamma \setminus G} \omega_x \left(X_{\sigma(2)}, \dots, X_{\sigma(p+1)} \right) \eta(x)$$
$$= \left(\theta \wedge \mu(\omega) \right) \left(X_1, \dots, X_{p+1} \right) ,$$

where \mathfrak{S}_{p+1} is the set of permutations of p+1 elements. Hence, in this case, the lemma holds. We can easily check that the lemma holds in the general case.

Lemma 2.6 (see [11, Proposition 5.4]). Let $X = \Gamma \setminus G$ be a completely-solvable solvmanifold endowed with a G-left-invariant complex structure J. Consider the sub-complex

$$j\colon \left(\wedge^{\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*},\,\mathrm{d}\right)\hookrightarrow\left(\wedge^{\bullet}X\otimes_{\mathbb{R}}\mathbb{C},\,\mathrm{d}\right)\,,$$
¹³

which is a quasi-isomorphism by A. Hattori's theorem [37, Corollary 4.2]. The induced map

$$j: \frac{\ker\left(\mathrm{d}:\ \wedge^{p+q}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\to\wedge^{p+q+1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\right)\cap\wedge^{p,q}\mathfrak{g}^{*}}{\operatorname{im}\left(\mathrm{d}:\ \wedge^{p+q-1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\to\wedge^{p+q}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\right)}$$
$$\rightarrow \quad \frac{\ker\left(\mathrm{d}:\ \wedge^{p+q}X\otimes_{\mathbb{R}}\mathbb{C}\to\wedge^{p+q+1}X\otimes_{\mathbb{R}}\mathbb{C}\right)\cap\wedge^{p,q}X}{\operatorname{im}\left(\mathrm{d}:\ \wedge^{p+q-1}X\otimes_{\mathbb{R}}\mathbb{C}\to\wedge^{p+q}X\otimes_{\mathbb{R}}\mathbb{C}\right)}$$

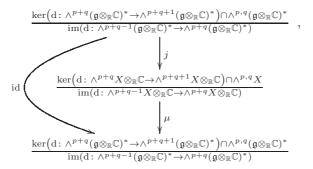
is an isomorphism.

Proof. For the sake of completeness, we recall here the argument of the proof (note that the statement holds, more in general, in the almost-complex setting).

The F. A. Belgun symmetrization map $\mu \colon \wedge^{\bullet} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{\bullet} (\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*$ induces the map

$$\mu \colon \frac{\ker \left(\mathrm{d} \colon \wedge^{p+q} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q+1} X \otimes_{\mathbb{R}} \mathbb{C} \right) \cap \wedge^{p,q} X}{\mathrm{im} \left(\mathrm{d} \colon \wedge^{p+q-1} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q} X \otimes_{\mathbb{R}} \mathbb{C} \right)}$$
$$\to \frac{\ker \left(\mathrm{d} \colon \wedge^{p+q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \to \wedge^{p+q+1} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \right) \cap \wedge^{p,q} \mathfrak{g}^*}{\mathrm{im} \left(\mathrm{d} \colon \wedge^{p+q-1} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \to \wedge^{p+q} \left(\mathfrak{g} \right)^* \otimes_{\mathbb{R}} \mathbb{C} \right)}$$

Hence, one gets the commutative diagram



from which one gets that

$$j: \frac{\ker\left(\mathrm{d}:\ \wedge^{p+q}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\to\wedge^{p+q+1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\right)\cap\wedge^{p,q}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}}{\mathrm{im}\left(\mathrm{d}:\ \wedge^{p+q-1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\to\wedge^{p+q}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\right)}$$
$$\to \frac{\ker\left(\mathrm{d}:\ \wedge^{p+q}X\otimes_{\mathbb{R}}\mathbb{C}\to\wedge^{p+q+1}X\otimes_{\mathbb{R}}\mathbb{C}\right)\cap\wedge^{p,q}X}{\mathrm{im}\left(\mathrm{d}:\ \wedge^{p+q-1}X\otimes_{\mathbb{R}}\mathbb{C}\to\wedge^{p+q}X\otimes_{\mathbb{R}}\mathbb{C}\right)}$$

is injective, and that

$$\mu \colon \frac{\ker \left(\mathrm{d} \colon \wedge^{p+q} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q+1} X \otimes_{\mathbb{R}} \mathbb{C} \right) \cap \wedge^{p,q} X}{\mathrm{im} \left(\mathrm{d} \colon \wedge^{p+q-1} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q} X \otimes_{\mathbb{R}} \mathbb{C} \right)}$$
$$\to \frac{\ker \left(\mathrm{d} \colon \wedge^{p+q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \to \wedge^{p+q+1} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \right) \cap \wedge^{p,q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^*}{\mathrm{im} \left(\mathrm{d} \colon \wedge^{p+q-1} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \to \wedge^{p+q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \right)}$$

is surjective.

Moreover, since $j: (\wedge^{\bullet} (\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*, d) \hookrightarrow (\wedge^{\bullet} X \otimes_{\mathbb{R}} \mathbb{C}, d)$ is a quasi-isomorphism by A. Hattori's theorem [37, Theorem 4.2], one gets that $\mu: H^{\bullet}_{dR}(X; \mathbb{C}) \to H^{\bullet} (\wedge^{\bullet} (\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*, d)$ is in fact the identity map, and hence

$$\mu \colon \frac{\ker \left(\mathrm{d} \colon \wedge^{p+q} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q+1} X \otimes_{\mathbb{R}} \mathbb{C} \right) \cap \wedge^{p,q} X}{\mathrm{im} \left(\mathrm{d} \colon \wedge^{p+q-1} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q} X \otimes_{\mathbb{R}} \mathbb{C} \right)}$$
$$\to \frac{\ker \left(\mathrm{d} \colon \wedge^{p+q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \to \wedge^{p+q+1} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \right) \cap \wedge^{p,q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^*}{\mathrm{im} \left(\mathrm{d} \colon \wedge^{p+q-1} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \to \wedge^{p+q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^* \right)}$$

is also injective.

Since X is compact, the dimension of $H^{\bullet}_{dR}(X; \mathbb{C})$ is finite, and hence μ is in fact an isomorphism. \Box

As an application of Theorem 1.3 and Proposition 2.2, one recovers the following results, concerning the Bott-Chern cohomology of nilmanifolds. (We refer to [71, 54, 13, 3, 25, 22, 59, 62] for definitions and notation.)

Corollary 2.7 ([4, Theorem 3.8]). Let $X = \Gamma \setminus G$ be a nilmanifold endowed with a G-left-invariant complex structure J, and denote the Lie algebra naturally associated to G by \mathfrak{g} . Suppose that one of the following conditions holds:

- X is complex parallelizable;
- J is an Abelian complex structure;
- J is a nilpotent complex structure;
- J is a rational complex structure;
- \mathfrak{g} admits a torus-bundle series compatible with J and with the rational structure induced by Γ ;
- dim_{\mathbb{R}} $\mathfrak{g} = 6$ and \mathfrak{g} is not isomorphic to $\mathfrak{h}_7 := (0^3, 12, 13, 23)$.

Then the inclusion $j: (\wedge^{\bullet,\bullet} (\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*, \partial, \overline{\partial}) \hookrightarrow (\wedge^{\bullet,\bullet} X, \partial, \overline{\partial})$ induces the isomorphisms

$$H_{BC}^{\bullet,\bullet}(X) \simeq \frac{\ker\left(\mathrm{d} \colon \wedge^{\bullet,\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^* \to \wedge^{\bullet+\bullet+1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^*\right)}{\operatorname{im}\left(\partial\overline{\partial} \colon \wedge^{\bullet-1,\bullet-1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^* \to \wedge^{\bullet,\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^*\right)}$$

and

$$H_{A}^{\bullet,\bullet}(X) \simeq \frac{\ker\left(\partial\overline{\partial}: \wedge^{\bullet,\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*} \to \wedge^{\bullet+1,\bullet+1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\right)}{\operatorname{im}\left(\partial: \wedge^{\bullet-1,\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*} \to \wedge^{\bullet,\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\right) + \operatorname{im}\left(\overline{\partial}: \wedge^{\bullet,\bullet-1}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*} \to \wedge^{\bullet,\bullet}\left(\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*}\right)}.$$

Proof. Choose a *G*-left-invariant Hermitian metric g on X. The sub-complex $(\wedge^{\bullet,\bullet}(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*, \partial, \overline{\partial})$ being finite-dimensional, the induced maps in Bott-Chern, respectively Aeppli cohomologies are injective by Proposition 2.2.

Under the hypothesis, by [61, Theorem 1], [25, Main Theorem], [22, Theorem 2, Remark 4], [59, Theorem 1.10], and [60, Corollary 3.10], one has that, for any fixed $p \in \mathbb{N}$, the induced map

$$j \colon \left(\wedge^{p, \bullet} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \right)^*, \overline{\partial} \right) \hookrightarrow \left(\wedge^{p, \bullet} X, \overline{\partial} \right)$$

is a quasi-isomorphism. By conjugation, one has also that, for any fixed $q \in \mathbb{N}$, the induced map

$$j: \left(\wedge^{\bullet,q} \left(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}\right)^*, \partial\right) \hookrightarrow \left(\wedge^{\bullet,q} X, \partial\right)$$

is a quasi-isomorphism. Lastly, condition *(iii)* in Theorem 1.3 is satisfied by Lemma 2.6. Hence, by Theorem 1.3, the induced map in Bott-Chern cohomology is surjective.

As regards Aeppli cohomologies, it suffices to note that the Hodge-*-operator $\bar{*}_g$ induces the isomorphisms $H_{BC}^{\bullet,\bullet}(X) \xrightarrow{\simeq} H_A^{n-\bullet,n-\bullet}(X)$ and $\frac{\ker d_{\lfloor \wedge \bullet,\bullet}(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*}{\operatorname{im} \partial \overline{\partial}} \xrightarrow{\simeq} \frac{\ker \partial \overline{\partial}_{\lfloor \wedge n-\bullet,n-\bullet}(\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C})^*}{\operatorname{im} \partial + \operatorname{im} \overline{\partial}}$, where *n* is the complex dimension of *X*.

The previous result can be used to compute the cohomology of the left-invariant complex structures classified by M. Ceballos, A. Otal, L. Ugarte, and R. Villacampa in [20], as in [6] and [48].

2.4. Complex solvmanifolds. Let G be a connected simply-connected n-dimensional solvable Lie group admitting a discrete co-compact subgroup Γ , and denote by \mathfrak{g} the (solvable) Lie algebra of G. Set $\mathfrak{g}_{\mathbb{C}} := \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$.

Consider the adjoint action

$$\operatorname{ad}: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}) , \quad \operatorname{ad}_X := [X, \cdot] ;$$

by denoting by $\operatorname{Der}(\mathfrak{g}) := \{D \in \mathfrak{gl}(\mathfrak{g}) : \forall X \in \mathfrak{g}, [D, \operatorname{ad}_X] = \operatorname{ad}_{DX}\}$ the \mathbb{R} -vector space of *derivations* on \mathfrak{g} , one has that $\operatorname{ad}(\mathfrak{g}) \subseteq \operatorname{Der}(\mathfrak{g})$. One has that every derivation ad_X , for $X \in \mathfrak{g}$, admits a unique Jordan decomposition, see, e.g., [32, II.1.10], namely,

$$\operatorname{ad}_X = (\operatorname{ad}_X)_{\mathrm{s}} + (\operatorname{ad}_X)_{\mathrm{n}}$$
,

where $(ad_X)_s \in \mathfrak{gl}(\mathfrak{g})$ is *semi-simple* (that is, each $(ad_X)_s$ -invariant sub-space of \mathfrak{g} admits an $(ad_X)_s$ -invariant complementary sub-space in \mathfrak{g}), and $(ad_X)_n \in \mathfrak{gl}(\mathfrak{g})$ is *nilpotent* (that is, there exists $N \in \mathbb{N}$ such that $(ad_X)_n^N = 0$).

Let \mathfrak{n} be the *nilradical* of \mathfrak{g} , that is, the maximal nilpotent ideal in \mathfrak{g} . Since \mathfrak{g} is solvable, there exists an \mathbb{R} -vector sub-space V (which is not necessarily a Lie algebra) of \mathfrak{g} so that (i) $\mathfrak{g} = V \oplus \mathfrak{n}$ as the direct sum of \mathbb{R} -vector spaces, and, (ii) for any $A, B \in V$, it holds that $(\mathrm{ad}_A)_{\mathrm{s}}(B) = 0$, see, e.g., [32, Proposition II I.1.1]. Hence, one can define the map

$$\operatorname{ad}_{\mathrm{s}} : \mathfrak{g} \to \operatorname{Der}(\mathfrak{g}), \qquad \mathfrak{g} = V \oplus \mathfrak{n} \ni (A, X) \mapsto (\operatorname{ad}_{\mathrm{s}})_{A+X} := (\operatorname{ad}_{A})_{\mathrm{s}} \in \operatorname{Der}(\mathfrak{g}).$$

Moreover, one has that (*iii*) $[ad_s(\mathfrak{g}), ad_s(\mathfrak{g})] = \{0\}$, and (*iv*) $ad_s: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is \mathbb{R} -linear, see, e.g., [32, Proposition III.1.1].

Since we have $[\mathfrak{g},\mathfrak{g}] \subseteq \mathfrak{n}$, see, e.g., [32, II.1.9], and $\mathrm{ad}_{\mathrm{s}}(\mathfrak{n}) = \{0\}$, the map $\mathrm{ad}_{\mathrm{s}} \colon \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is a representation of \mathfrak{g} , whose image $\mathrm{ad}_{\mathrm{s}}(\mathfrak{g})$ is Abelian and consists of semi-simple elements. Hence, denote by

$$\operatorname{Ad}_{s}: G \to \operatorname{Aut}(\mathfrak{g})$$
, respectively $\operatorname{Ad}_{s}: G \to \operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$.

the unique representation which lifts $ad_s: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$, see, e.g., [72, Theorem 3.27], respectively the natural \mathbb{C} -linear extension.

Let T be the Zariski-closure of $\operatorname{Ad}_{s}(G)$ in $\operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$. Denote by $\operatorname{Char}(T) := \operatorname{Hom}(T; \mathbb{C}^{*})$ the set of all 1-dimensional algebraic group representations of T. Set

$$\mathcal{C}_{\Gamma} := \{\beta \circ \mathrm{Ad}_{\mathrm{s}} \in \mathrm{Hom}(G; \mathbb{C}^*) : \beta \in \mathrm{Char}(T), \ (\beta \circ \mathrm{Ad}_{\mathrm{s}}) \mid_{\Gamma} = 1\} .$$

We consider the differential graded sub-algebra

$$\bigoplus_{\alpha \in \mathcal{C}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*}$$

of $\wedge^{\bullet} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}$. (Note that we have used left-translations on G to identify the elements of $\wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*}$ with the G-left-invariant complex forms in $\wedge^{\bullet} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}$, namely, the complex forms being invariant for the action of the Lie group G on $\Gamma \setminus G$ given by left-translations.) By $\operatorname{Ad}_{s}(G) \subseteq \operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$ we have the $\operatorname{Ad}_{s}(G)$ action on the differential graded algebra $\bigoplus_{\alpha \in \mathcal{C}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*}$. We denote by A_{Γ}^{\bullet} the space consisting of the $\operatorname{Ad}_{s}(G)$ -invariant elements of $\bigoplus_{\alpha \in \mathcal{C}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*}$, namely,

(1)
$$A_{\Gamma}^{\bullet} := \left\{ \varphi \in \bigoplus_{\alpha \in \mathcal{C}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*} : (\mathrm{Ad}_{s})_{g}(\varphi) = \varphi \text{ for every } g \in G \right\} .$$

Now we consider the inclusion

$$A_{\Gamma}^{\bullet} \subseteq \wedge^{\bullet} \ \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C}$$

of differential graded algebras. We have the following result.

Theorem 2.8 ([39, Corollary 7.6]). Let $\Gamma \setminus G$ be a solumanifold, and consider A^{\bullet}_{Γ} as defined in (1). Then the inclusion

 $(A^{\bullet}_{\Gamma}, \mathbf{d}) \hookrightarrow (\wedge^{\bullet} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C}, \mathbf{d})$

of differential graded algebras induces an isomorphism in cohomology.

Note that $\operatorname{Ad}_{s}(G) \subseteq \operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$ consists of simultaneously diagonalizable elements. Let $\{X_1, \ldots, X_n\}$ be a basis of $\mathfrak{g}_{\mathbb{C}}$ with respect to which

$$\operatorname{Ad}_{\mathrm{s}} = \operatorname{diag}(\alpha_1, \ldots, \alpha_n) : G \to \operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$$

for some characters

 $\alpha_1 \in \operatorname{Hom}(G; \mathbb{C}^*), \ldots, \alpha_n \in \operatorname{Hom}(G; \mathbb{C}^*)$.

Let $\{x_1, \ldots, x_n\}$ be the dual basis of $\mathfrak{g}^*_{\mathbb{C}}$ of $\{X_1, \ldots, X_n\}$. For the basis $\{x_{i_1} \wedge \cdots \wedge x_{i_p}\}_{1 \leq i_1 < i_2 < \cdots < i_p \leq n}$ of $\wedge^{\bullet}\mathfrak{g}^*_{\mathbb{C}}$, for $\alpha \in \mathcal{C}_{\Gamma}$, we have

$$\left(\mathrm{Ad}_{\mathrm{s}}\right)_{g}\left(\alpha \, x_{i_{1}} \wedge \cdots \wedge x_{i_{p}}\right) = \alpha(g) \, \alpha_{i_{1} \cdots i_{p}}^{-1}(g) \, \alpha \, x_{i_{1}} \wedge \cdots \wedge x_{i_{p}} \,,$$

where we have shortened $\alpha_{i_1\cdots i_p} := \alpha_{i_1}\cdots \alpha_{i_p} \in \text{Hom}(G; \mathbb{C}^*)$. Then the basis

$$\left\{ \alpha \, x_{i_1} \wedge \dots \wedge x_{i_p} \mid 1 \le i_1 < i_2 < \dots < i_p \le n \text{ and } \alpha \in \mathcal{C}_{\Gamma} \right\}$$

of $\bigoplus_{\alpha \in C_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}^{*}_{\mathbb{C}}$ diagonalizes the $\operatorname{Ad}_{s}(G)$ -action, and $\alpha x_{i_{1}} \wedge \cdots \wedge x_{i_{p}} \in A^{\bullet}_{\Gamma}$ if and only if $\alpha = \alpha_{i_{1}\cdots i_{p}}$ and $\alpha_{i_{1}\cdots i_{p}} \lfloor_{\Gamma} = 1$. Hence the differential graded algebra A^{\bullet}_{Γ} is written as

(2)
$$A_{\Gamma}^{p} = \mathbb{C} \left\langle \alpha_{i_{1}\cdots i_{p}} x_{i_{1}} \wedge \cdots \wedge x_{i_{p}} \middle| 1 \le i_{1} < i_{2} < \cdots < i_{p} \le n \text{ such that } \alpha_{i_{1}\cdots i_{p}} \lfloor_{\Gamma} = 1 \right\rangle$$

In fact, the following result holds.

Theorem 2.9. Let $\Gamma \setminus G$ be a solumanifold. Let $\{X_1, \ldots, X_n\}$ be a basis of the \mathbb{C} -vector space $\mathfrak{g}_{\mathbb{C}}$ with respect to which $\operatorname{Ad}_s = \operatorname{diag}(\alpha_1, \ldots, \alpha_n)$ for some characters $\alpha_1, \ldots, \alpha_n \in \operatorname{Hom}(G; \mathbb{C}^*)$. Consider the finite set of characters

$$\mathcal{A}_{\Gamma} := \left\{ \alpha_{i_1 \cdots i_p} \in \operatorname{Hom}(G; \mathbb{C}^*) : 1 \le i_1 < i_2 < \cdots < i_p \le n \text{ such that } \alpha_{i_1 \cdots i_p} \mid_{\Gamma} = 1 \right\}$$

Then the sub-complex

$$\iota \colon \left(\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*}, \mathrm{d}\right) \hookrightarrow (\wedge^{\bullet} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C}, \mathrm{d})$$
16

induces an isomorphism in cohomology.

Suppose furthermore that G is endowed with a G-left-invariant complex structure. Consider the bigraded \mathbb{C} -vector sub-space

$$\iota\colon \bigoplus_{\alpha\in\mathcal{A}_{\Gamma}}\alpha\cdot\wedge^{\bullet,\bullet}\mathfrak{g}^{*}_{\mathbb{C}}\hookrightarrow\wedge^{\bullet,\bullet}\Gamma\backslash G ;$$

then ι induces, for any $(p,q) \in \mathbb{Z}^2$, the isomorphism

$$\iota^* \colon \frac{\ker \mathrm{d}_{\lfloor \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{p,q} \mathfrak{g}_{\mathbb{C}}^*}}{\mathrm{d}\left(\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{p+q-1} \mathfrak{g}_{\mathbb{C}}^*\right)} \xrightarrow{\simeq} \frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q} \Gamma \setminus G}}{\mathrm{d}\left(\wedge^{p+q-1} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}\right)}$$

Proof. Consider the G-left-invariant Hermitian metric

$$g := \sum_{j=1}^n x_j \odot \bar{x}_j$$

on $\Gamma \backslash G$, and the associated \mathbb{C} -anti-linear Hodge-*-operator $\overline{*}_g \colon \wedge^{\bullet} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{n-\bullet} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C}$, where n is the dimension of $\Gamma \backslash G$. If the restriction of a character α of G on Γ is trivial, then α induces a function on $\Gamma \backslash G$ and the image $\alpha(G)$ is a compact subgroup of \mathbb{C}^* , and hence α is unitary. For $\alpha_{i_1 \cdots i_p} := \alpha_{i_1} \cdots \alpha_{i_p} \in \mathcal{A}_{\Gamma}$, since G is unimodular, [52, Lemma 6.2], for the complement $\{j_1, \ldots, j_{n-p}\} := \{1, \ldots, n\} \setminus \{i_1, \ldots, i_p\}$ we have

$$\bar{\alpha}_{i_1\dots i_p} = \alpha_{i_1\dots i_p}^{-1} = \alpha_{j_1\dots j_{n-p}}.$$

By this, we have

$$\bar{*}_g \left(\alpha_{i_1 \cdots i_p} \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^* \right) = \alpha_{j_1 \cdots j_{n-p}} \cdot \wedge^{n-\bullet} \mathfrak{g}_{\mathbb{C}}^*$$

and, for $\alpha_{i_1...i_p} x_{i_1} \wedge \cdots \wedge x_{i_p} \in A^{\bullet}_{\Gamma}$, we have

$$\bar{*}_g \left(\alpha_{i_1 \dots i_p} \, x_{i_1} \wedge \dots \wedge x_{i_p} \right) = \alpha_{j_1 \dots j_{n-p}} \, x_{j_1} \wedge \dots \wedge x_{j_{n-p}} \in A_{\Gamma}^{n-\bullet}$$

Hence the sub-complexes

$$(A_{\Gamma}^{\bullet}, \mathbf{d}) \hookrightarrow \left(\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*}, \mathbf{d}\right) \hookrightarrow (\wedge^{\bullet} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C}, \mathbf{d})$$

are such that

$$\bar{*}_g \lfloor_{A_{\Gamma}^{\bullet}} \colon A_{\Gamma}^{\bullet} \to A_{\Gamma}^{n-\bullet} \qquad \text{and} \qquad \bar{*}_g \lfloor_{\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^*} \colon \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^* \to \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{n-\bullet} \mathfrak{g}_{\mathbb{C}}^* ,$$

therefore the first assertion follows from Theorem 2.8 and Proposition 2.4.

Consider the F. A. Belgun symmetrization map $\mu \colon \wedge^{\bullet} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{\bullet} \mathfrak{g}^{*}_{\mathbb{C}}$, [14, Theorem 7]. For $\alpha \in \mathcal{A}_{\Gamma}$, we define the map

$$\varphi_{\alpha} \colon \wedge^{\bullet} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C} \to \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*}, \qquad \varphi_{\alpha}(\omega) \coloneqq \alpha \cdot \mu\left(\frac{\omega}{\alpha}\right)$$

By the definition of μ , for a *G*-left-invariant differential form θ on $\Gamma \backslash G$ and for a differential form ω on $\Gamma \backslash G$, we have $\mu(\theta \land \omega) = \theta \land \mu(\omega)$, see Lemma 2.5. By this we have, for any $\alpha \in \mathcal{A}_{\Gamma}$,

$$\varphi_{\alpha}(\mathrm{d}\,\omega) = \alpha \cdot \mu\left(\frac{\mathrm{d}\,\omega}{\alpha}\right) = \alpha \cdot \mu\left(\mathrm{d}\left(\frac{\omega}{\alpha}\right) + \frac{\mathrm{d}\,\alpha}{\alpha} \wedge \frac{\omega}{\alpha}\right)$$
$$= \alpha \cdot \mathrm{d}\,\mu\left(\frac{\omega}{\alpha}\right) + \mathrm{d}\,\alpha \wedge \mu\left(\frac{\omega}{\alpha}\right) = \mathrm{d}\left(\alpha \cdot \mu\left(\frac{\omega}{\alpha}\right)\right)$$
$$= \mathrm{d}\,\varphi_{\alpha}(\omega) ,$$

and hence φ_{α} is a morphism of cochain complexes. Furthermore, for $\alpha \in \mathcal{A}_{\Gamma}$, by considering the inclusion $\iota_{\alpha} \colon \alpha \cdot \wedge^{\bullet} \mathfrak{g}^{*}_{\mathbb{C}} \hookrightarrow \wedge^{\bullet} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C}$,

we have that

$$\varphi_{\alpha} \circ \iota_{\alpha} = \operatorname{id}_{\alpha \cdot \wedge} \mathfrak{g}_{\mathbb{C}}^*$$
.

For distinct characters $\alpha, \alpha' \in \mathcal{A}_{\Gamma}$, for the *G*-left-invariant form $\frac{\alpha'}{\alpha} d\left(\frac{\alpha}{\alpha'}\right)$, since η is a *G*-left-invariant volume form, we can choose $\lambda \in \wedge^{\dim G-1} \mathfrak{g}^*_{\mathbb{C}}$ such that $\frac{\alpha'}{\alpha} d\left(\frac{\alpha}{\alpha'}\right) \wedge \lambda = \eta$. Then we have

$$d\left(\frac{\alpha}{\alpha'}\lambda\right) = \frac{\alpha}{\alpha'}\frac{\alpha'}{\alpha}d\left(\frac{\alpha}{\alpha'}\right)\wedge\lambda = \frac{\alpha}{\alpha'}\eta.$$

By this, using Stokes' theorem, for $\alpha \omega \in \alpha \cdot \wedge^p \mathfrak{g}^*_{\mathbb{C}}$ and for $X_1, \ldots, X_p \in \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$, we have

$$\mu\left(\frac{\alpha}{\alpha'}\omega\right)(X_1,\ldots,X_p) = \int_{\Gamma\backslash G} \frac{\alpha(x)}{\alpha'(x)}\omega\lfloor_x(X_1\lfloor_x,\ldots,X_p\rfloor_x) \eta(x) = \omega\left(X_1,\ldots,X_p\right) \int_{\Gamma\backslash G} \frac{\alpha(x)}{\alpha'(x)}\eta(x)$$
$$= \omega\left(X_1,\ldots,X_p\right) \int_{\Gamma\backslash G} d\left(\frac{\alpha}{\alpha'}\lambda\right) = 0$$

and hence we have

$$\varphi_{\alpha'} \circ \iota_{\alpha} = 0$$

By the definition and since the complex structure on $\Gamma \setminus G$ is G-left-invariant, we have that, for any $\alpha \in \mathcal{A}_{\Gamma}$, for any $(p,q) \in \mathbb{Z}^2$,

$$\varphi_{\alpha}\left(\wedge^{p,q} \Gamma \backslash G\right) \subseteq \alpha \cdot \wedge^{p,q} \mathfrak{g}_{\mathbb{C}}^{*}.$$

By noting that the set \mathcal{A}_{Γ} is finite, we define the map

$$\Phi := \sum_{\alpha \in \mathcal{A}_{\Gamma}} \varphi_{\alpha} \colon \wedge^{\bullet, \bullet} \Gamma \backslash G \to \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}_{\mathbb{C}}^{*} ;$$

note that Φ is a morphism of cochain complexes and we have, for any $(p,q) \in \mathbb{Z}^2$,

$$\Phi\left(\wedge^{p,q}\;\Gamma\backslash G\right)\subseteq\bigoplus_{\alpha\in\mathcal{A}_{\Gamma}}\alpha\cdot\wedge^{p,q}\mathfrak{g}_{\mathbb{C}}^{*}\qquad\text{and}\qquad\Phi\circ\iota\ =\ \mathrm{id}_{\bigoplus_{\alpha\in\mathcal{A}_{\Gamma}}\alpha\cdot\wedge^{p,q}\mathfrak{g}_{\mathbb{C}}^{*}}$$

where ι denotes the inclusion ι : $\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}^*_{\mathbb{C}} \hookrightarrow \wedge^{\bullet, \bullet} \Gamma \backslash G$. Consider the induced maps

$$\iota^* \colon H^{\bullet} \left(\operatorname{Tot}^{\bullet} \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}^*_{\mathbb{C}}, \, \mathrm{d} \right) \to H^{\bullet}_{dR} \left(\Gamma \backslash G ; \mathbb{C} \right)$$

and

$$\Phi^* \colon H^{\bullet}_{dR}\left(\Gamma \backslash G ; \mathbb{C}\right) \to H^{\bullet}\left(\operatorname{Tot}^{\bullet} \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}^*_{\mathbb{C}}, \operatorname{d}\right)$$

Since ι^* is an isomorphism by the first assertion and $\Phi^* \circ \iota^* = id$, then Φ^* is the inverse of ι^* . By $\Phi(\wedge^{p,q} \Gamma \setminus G) \subseteq \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{p,q} \mathfrak{g}^*_{\mathbb{C}}$, we have

$$\Phi^*\left(\frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q} \Gamma \setminus G}}{\mathrm{d}\left(\wedge^{p+q-1} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}\right)}\right) \subseteq \frac{\ker \mathrm{d}_{\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{p,q} \mathfrak{g}_{\mathbb{C}}^{*}}}{\mathrm{d}\left(\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{p+q-1} \mathfrak{g}_{\mathbb{C}}^{*}\right)}.$$

Hence the restriction of Φ^* to $\frac{\ker d\lfloor_{\Lambda^{p,q}\Gamma\backslash G}}{d(\Lambda^{p+q-1}\Gamma\backslash G)}$ is the inverse of the restriction of ι^* to $\frac{\ker d\lfloor_{\bigoplus_{\alpha\in\mathcal{A}_{\Gamma}}\alpha\cdot\Lambda^{p,q}\mathfrak{g}_{\mathbb{C}}^*}}{d\left(\bigoplus_{\alpha\in\mathcal{A}_{\Gamma}}\alpha\cdot\Lambda^{p+q-1}\mathfrak{g}_{\mathbb{C}}^*\right)}$, which is hence an isomorphism. Therefore the second assertion follows.

Corollary 2.10. Let $\Gamma \setminus G$ be a solvmanifold. Let J be a G-left-invariant complex structure on G satisfying, for all $g \in G$,

$$J \circ (\mathrm{Ad}_{\mathrm{s}})_{q} = (\mathrm{Ad}_{\mathrm{s}})_{q} \circ J .$$

Then, by setting $A_{\Gamma}^{p,q} := A_{\Gamma}^{\bullet} \cap \wedge^{p,q} \Gamma \setminus G$ for any $(p,q) \in \mathbb{Z}^2$, we have that the differential graded subalgebra $(A_{\Gamma}^{\bullet}, d) \hookrightarrow (\wedge^{\bullet} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}, d)$ defined in (1) is actually \mathbb{Z}^2 -graded,

$$A_{\Gamma}^{\bullet} = \bigoplus_{p+q=\bullet} A_{\Gamma}^{p,q} ,$$

and the inclusion $A_{\Gamma}^{\bullet,\bullet} \subset \wedge^{p,q} \Gamma \backslash G$ induces the isomorphism

$$\frac{\ker \mathrm{d}_{\lfloor A^{p,q}_{\Gamma} \rfloor}}{\mathrm{d}_{\Gamma}(A^{p+q-1}_{\Gamma})} \xrightarrow{\simeq} \frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q} \Gamma \backslash G}}{\mathrm{d}_{\Gamma}(\wedge^{p+q-1} \Gamma \backslash G \otimes_{\mathbb{R}} \mathbb{C})}$$

Proof. Consider the $\operatorname{Ad}_{s}(G)$ -action on $\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}_{\mathbb{C}}^{*}$. Then $A_{\Gamma}^{\bullet, \bullet}$ is the sub-complex that consists of the elements of $\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}_{\mathbb{C}}^{*}$ fixed by this action. Since Ad_{s} is diagonalizable, we have the decomposition

$$\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet} \mathfrak{g}_{\mathbb{C}}^{*} = A_{\Gamma}^{\bullet} \oplus D^{\bullet}$$

such that D^{\bullet} is a sub-complex and this decomposition is a direct sum of cochain complexes. By the assumption $J \circ (\mathrm{Ad}_{\mathrm{s}})_g = (\mathrm{Ad}_{\mathrm{s}})_g \circ J$ for any $g \in G$, the $\mathrm{Ad}_{\mathrm{s}}(G)$ -action is compatible with the bi-grading $\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}_{\mathbb{C}}^{*}$. Hence we have in fact

$$\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}^{*}_{\mathbb{C}} = A^{\bullet, \bullet}_{\Gamma} \oplus D^{\bullet, \bullet} .$$

Consider the projection $p: \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}^*_{\mathbb{C}} \to \mathcal{A}_{\Gamma}^{\bullet, \bullet}$ and the inclusion $\iota: \mathcal{A}_{\Gamma}^{\bullet, \bullet} \hookrightarrow \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{\bullet, \bullet} \mathfrak{g}^*_{\mathbb{C}}$. Then we have $p \circ \iota = \operatorname{id}_{\mathcal{A}_{\Gamma}^{\bullet, \bullet}}$. As similar to the proof of Theorem 2.9, we have that ι induces, for any $(p, q) \in \mathbb{Z}^2$, the isomorphism

$$\iota^* \colon \frac{\ker \mathrm{d}_{\lfloor A_{\Gamma}^{p,q}}}{\mathrm{d}\left(A_{\Gamma}^{p+q-1}\right)} \xrightarrow{\simeq} \frac{\ker \mathrm{d}_{\lfloor \bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{p,q} \mathfrak{g}_{\mathbb{C}}^*}}{\mathrm{d}\left(\bigoplus_{\alpha \in \mathcal{A}_{\Gamma}} \alpha \cdot \wedge^{p+q-1} \mathfrak{g}_{\mathbb{C}}^*\right)}$$

Hence the corollary follows from Theorem 2.9.

2.4.1. Complex solvmanifolds of splitting type. We consider now solvmanifolds of the following type.

Assumption 2.11. Consider a solumanifold $X = \Gamma \setminus G$ endowed with a G-left-invariant complex structure J. Assume that G is the semi-direct product $\mathbb{C}^n \ltimes_{\phi} N$ so that:

- (i) N is a connected simply-connected 2m-dimensional nilpotent Lie group endowed with an N-left-invariant complex structure J_N; (denote the Lie algebras of Cⁿ and N by a and, respectively, n;)
- (ii) for any $t \in \mathbb{C}^n$, it holds that $\phi(t) \in \operatorname{GL}(N)$ is a holomorphic automorphism of N with respect to J_N ;
- (iii) ϕ induces a semi-simple action on \mathfrak{n} ;
- (iv) G has a lattice Γ ; (then Γ can be written as $\Gamma = \Gamma_{\mathbb{C}^n} \ltimes_{\phi} \Gamma_N$ such that $\Gamma_{\mathbb{C}^n}$ and Γ_N are lattices of \mathbb{C}^n and, respectively, N, and, for any $t \in \Gamma'$, it holds $\phi(t)(\Gamma_N) \subseteq \Gamma_N$;)
- (v) the inclusion $\wedge^{\bullet,\bullet} (\mathfrak{n} \otimes_{\mathbb{R}} \mathbb{C})^* \hookrightarrow \wedge^{\bullet,\bullet} (\Gamma_N \setminus N)$ induces the isomorphism

 $H^{\bullet}\left(\wedge^{\bullet,\bullet}\left(\mathfrak{n}\otimes_{\mathbb{R}}\mathbb{C}\right)^{*},\overline{\partial}\right)\stackrel{\simeq}{\to} H^{\bullet,\bullet}_{\overline{\partial}}\left(\Gamma_{N}\setminus N\right)$.

Consider the standard basis $\{X_1, \ldots, X_n\}$ of \mathbb{C}^n . Consider the decomposition $\mathfrak{n} \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{n}^{1,0} \oplus \mathfrak{n}^{0,1}$ induced by J_N . By the condition *(ii)*, this decomposition is a direct sum of \mathbb{C}^n -modules. By the condition *(iii)*, we have a basis $\{Y_1, \ldots, Y_m\}$ of $\mathfrak{n}^{1,0}$ and characters $\alpha_1, \ldots, \alpha_m \in \text{Hom}(\mathbb{C}^n; \mathbb{C}^*)$ such that the induced action ϕ on $\mathfrak{n}^{1,0}$ is represented by

$$\mathbb{C}^n \ni t \mapsto \phi(t) = \operatorname{diag}\left(\alpha_1(t), \ldots, \alpha_m(t)\right) \in \operatorname{GL}(\mathfrak{n}^{1,0})$$

For any $j \in \{1, \ldots, m\}$, since Y_j is an N-left-invariant (1, 0)-vector field on N, the (1, 0)-vector field $\alpha_j Y_j$ on $\mathbb{C}^n \ltimes_{\phi} N$ is $(\mathbb{C}^n \ltimes_{\phi} N)$ -left-invariant. Consider the Lie algebra \mathfrak{g} of G and the decomposition $\mathfrak{g}_{\mathbb{C}} := \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{g}^{1,0} \oplus \mathfrak{g}^{0,1}$ induced by J. Hence we have a basis $\{X_1, \ldots, X_n, \alpha_1 Y_1, \ldots, \alpha_m Y_m\}$ of $\mathfrak{g}^{1,0}$, and let $\{x_1, \ldots, x_n, \alpha_1^{-1} y_1, \ldots, \alpha_m^{-1} y_m\}$ be its dual basis of $\wedge^{1,0} \mathfrak{g}_{\mathbb{C}}^*$. Then we have

 $\wedge^{p,q}\mathfrak{g}^*_{\mathbb{C}} = \wedge^p \left\langle x_1, \ldots, x_n, \, \alpha_1^{-1}y_1, \ldots, \, \alpha_m^{-1}y_m \right\rangle \otimes \wedge^q \left\langle \bar{x}_1, \ldots, \, \bar{x}_n, \, \bar{\alpha}_1^{-1}\bar{y}_1, \ldots, \, \bar{\alpha}_m^{-1}\bar{y}_m \right\rangle \, .$

The following lemma holds.

Lemma 2.12 ([40, Lemma 2.2]). Let $X = \Gamma \setminus G$ be a solvmanifold endowed with a *G*-left-invariant complex structure *J* as in Assumption 2.11. Consider a basis $\{Y_1, \ldots, Y_m\}$ of $\mathfrak{n}^{1,0}$ such that the induced action ϕ on $\mathfrak{n}^{1,0}$ is represented by $\phi(t) = \text{diag}(\alpha_1(t), \ldots, \alpha_m(t))$ for $\alpha_1, \ldots, \alpha_m \in \text{Hom}(\mathbb{C}^n; \mathbb{C}^*)$ characters of \mathbb{C}^n . For any $j \in \{1, \ldots, m\}$, there exist unique unitary characters $\beta_j \in \text{Hom}(\mathbb{C}^n; \mathbb{C}^*)$ and $\gamma_j \in \text{Hom}(\mathbb{C}^n; \mathbb{C}^*)$ on \mathbb{C}^n such that $\alpha_j \beta_j^{-1}$ and $\bar{\alpha}_j \gamma_j^{-1}$ are holomorphic.

We recall the following result by the second author.

Theorem 2.13. ([40, Corollary 4.2]) Let $X = \Gamma \setminus G$ be a solvmanifold endowed with a *G*-leftinvariant complex structure *J* as in Assumption 2.11. Consider the standard basis $\{X_1, \ldots, X_n\}$ of \mathbb{C}^n . Consider a basis $\{Y_1, \ldots, Y_m\}$ of $\mathfrak{n}^{1,0}$ such that the induced action ϕ on $\mathfrak{n}^{1,0}$ is represented by $\phi(t) = \text{diag}(\alpha_1(t), \ldots, \alpha_m(t))$ for $\alpha_1, \ldots, \alpha_m \in \text{Hom}(\mathbb{C}^n; \mathbb{C}^*)$ characters of \mathbb{C}^n . Let $\{x_1, \ldots, x_n, \alpha_1^{-1}y_1, \ldots, \alpha_m^{-1}y_m\}$ be the basis of $\wedge^{1,0}\mathfrak{g}^*_{\mathbb{C}}$ which is dual to $\{X_1, \ldots, X_n, \alpha_1Y_1, \ldots, \alpha_mY_m\}$. For any $j \in \{1, \ldots, m\}$, let β_j and γ_j be the unique unitary characters on \mathbb{C}^n such that $\alpha_j \beta_j^{-1}$ and $\bar{\alpha}_j \gamma_j^{-1}$

are holomorphic, as in Lemma 2.12. Define the differential bi-graded sub-algebra $B_{\Gamma}^{\bullet,\bullet} \subset \wedge^{\bullet,\bullet} \Gamma \backslash G$, for $(p,q) \in \mathbb{Z}^2$, as

(3)
$$B_{\Gamma}^{p,q} := \mathbb{C} \left\langle x_{I} \wedge \left(\alpha_{J}^{-1} \beta_{J} \right) y_{J} \wedge \bar{x}_{K} \wedge \left(\bar{\alpha}_{L}^{-1} \gamma_{L} \right) \bar{y}_{L} \mid |I| + |J| = p \text{ and } |K| + |L| = q$$

such that $(\beta_{I} \gamma_{L}) \mid_{\Gamma} = 1 \rangle$.

Then the inclusion $B_{\Gamma}^{\bullet,\bullet} \subset \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the cohomology isomorphism

$$H^{\bullet,\bullet}\left(B_{\Gamma}^{\bullet,\bullet},\overline{\partial}\right) \xrightarrow{\simeq} H_{\overline{\partial}}^{\bullet,\bullet}\left(\Gamma\backslash G\right) \;.$$

As a straightforward consequence, by means of conjugation, we get the following result.

Corollary 2.14. Let $X = \Gamma \setminus G$ be a solvmanifold endowed with a G-left-invariant complex structure J as in Assumption 2.11. Consider $B_{\Gamma}^{\bullet,\bullet}$ as in (3), and let

(4)
$$\bar{B}_{\Gamma}^{\bullet,\bullet} := \left\{ \bar{\omega} \in \wedge^{\bullet,\bullet} \; \Gamma \backslash G \; : \; \omega \in B_{\Gamma}^{\bullet,\bullet} \right\}$$

The inclusion $\bar{B}_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the cohomology isomorphism

$$H^{\bullet,\bullet}\left(\bar{B}_{\Gamma}^{\bullet,\bullet},\,\partial\right)\stackrel{\simeq}{\to} H^{\bullet,\bullet}_{\partial}\left(\Gamma\backslash G\right)$$

Hence we get the following result.

Corollary 2.15. Let $\Gamma \setminus G$ be a solumatifold endowed with a G-left-invariant complex structure J as in Assumption 2.11. Consider $B_{\Gamma}^{\bullet,\bullet}$ as in (3), and $\bar{B}_{\Gamma}^{\bullet,\bullet}$ as in (4). Let

$$C_{\Gamma}^{\bullet,\bullet} := B_{\Gamma}^{\bullet,\bullet} + \bar{B}_{\Gamma}^{\bullet,\bullet}$$

Then we have

(5)

(i) the inclusion $C_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the cohomology isomorphism

$$H^{\bullet,\bullet}\left(C_{\Gamma}^{\bullet,\bullet},\,\partial\right)\stackrel{\simeq}{\to} H^{\bullet,\bullet}_{\partial}\left(\Gamma\backslash G\right)\;;$$

(ii) the inclusion $C_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the cohomology isomorphism

$$H^{\bullet,\bullet}\left(C_{\Gamma}^{\bullet,\bullet},\,\overline{\partial}\right)\stackrel{\simeq}{\to} H^{\bullet,\bullet}_{\overline{\partial}}\left(\Gamma\backslash G\right)\;;$$

(iii) for any $(p,q) \in \mathbb{Z}^2$, the inclusion $C_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the surjective map

$$\frac{\ker \mathrm{d}_{\lfloor C^{p,q}_{\Gamma} \setminus G}}{\mathrm{d}\left(\mathrm{Tot}^{p+q-1} C^{\bullet,\bullet}_{\Gamma}\right)} \to \frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q} \Gamma \setminus G}}{\mathrm{d}\left(\wedge^{p+q-1} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}\right)}$$

Proof. Let g be the G-left-invariant Hermitian metric on G defined by

$$g := \sum_{j=1}^{n} x_j \odot \bar{x}_j + \sum_{k=1}^{m} \alpha_k^{-1} \bar{\alpha}_k^{-1} y_k \odot \bar{y}_k ,$$

and consider its associated \mathbb{C} -anti-linear Hodge-*-operator $\bar{*}_g: \wedge^{\bullet} \Gamma \backslash G \to \wedge^{2N-\bullet} \Gamma \backslash G$, where $2N := 2n + 2m = \dim_{\mathbb{R}} \Gamma \backslash G$. Then for multi-indices $I, J \subset \{1, \ldots, n\}$ and $K, L \subset \{1, \ldots, m\}$, and their complements $I', J' \subset \{1, \ldots, n\}$ and $K', L' \subset \{1, \ldots, m\}$, we have

$$\bar{*}_g \left(x_I \wedge \left(\alpha_J^{-1} \beta_J \right) \, y_J \wedge \bar{x}_K \wedge \left(\bar{\alpha}_L^{-1} \gamma_L \right) \, \bar{y}_L \right) = x_{I'} \wedge \left(\alpha_{J'}^{-1} \bar{\beta}_J \right) \, y_{J'} \wedge \bar{x}_{K'} \wedge \left(\bar{\alpha}_{L'}^{-1} \bar{\gamma}_L \right) \, \bar{y}_{L'}.$$

Since G is unimodular by the existence of a lattice, [52, Lemma 6.2], we have $\alpha_J \alpha_{J'} \bar{\alpha}_L \bar{\alpha}_{L'} = 1$ and so we have $\beta_{J'} \gamma_{L'} = \beta_J^{-1} \gamma_L^{-1} = \bar{\beta}_J \bar{\gamma}_L^{-1}$. This implies

$$x_{I'} \wedge \left(\alpha_{J'}^{-1}\bar{\beta}_J\right) y_{J'} \wedge \bar{x}_{K'} \wedge \left(\bar{\alpha}_{L'}^{-1}\bar{\gamma}_L\right) \bar{y}_{L'} = x_{I'} \wedge \left(\alpha_{J'}^{-1}\beta_{J'}\right) y_{J'} \wedge \bar{x}_{K'} \wedge \left(\bar{\alpha}_{L'}^{-1}\gamma_{L'}\right) \bar{y}_{L'} \in B_{\Gamma}^{\bullet,\bullet}.$$

Then we have $\bar{*}_g(B_{\Gamma}^{\bullet,\bullet}) \subseteq B_{\Gamma}^{N-\bullet,N-\bullet}$ and so also

$$\bar{*}_g \left(C_{\Gamma}^{\bullet, \bullet} \right) \subseteq C_{\Gamma}^{N-\bullet, N-\bullet}$$

Hence (i), respectively (ii), follows from Theorem 2.13, respectively Corollary 2.14, and Proposition 2.4.

We consider the sub-complex $A_{\Gamma}^{\bullet} \subseteq \wedge^{\bullet} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}$ defined in (1). Consider the standard basis $\{X_1, \ldots, X_n\}$ of \mathbb{C}^n . Consider a basis $\{Y_1, \ldots, Y_m\}$ of $\mathfrak{n}^{1,0}$ such that the induced action ϕ on $\mathfrak{n}^{1,0}$ is represented by $\phi(t) = \text{diag}(\alpha_1(t), \ldots, \alpha_m(t))$ for $\alpha_1, \ldots, \alpha_m \in \text{Hom}(\mathbb{C}^n; \mathbb{C}^*)$ characters of \mathbb{C}^n . Then, with

respect to the basis $\{X_1, \ldots, X_n, \overline{X}_1, \ldots, \overline{X}_n, \alpha_1 Y_1, \ldots, \alpha_m Y_m, \overline{\alpha}_1 \overline{Y}_1, \ldots, \overline{\alpha}_m \overline{Y}_m\}$ of $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g}^{1,0} \oplus \mathfrak{g}^{0,1}$, we have, for $(t, n) \in G = \mathbb{C}^n \ltimes_{\phi} N$,

$$(\mathrm{Ad}_{\mathrm{s}})_{(t,n)} = \left(\begin{array}{c|c} \mathrm{id}_{(\mathbb{C}^{n})^{1,0} \oplus (\mathbb{C}^{n})^{0,1}} & 0 \\ \hline 0 & \phi_{*} \lfloor_{\mathfrak{n}^{1,0} \oplus \mathfrak{n}^{0,1}}(t) \end{array} \right)$$
$$= \operatorname{diag} \left(\underbrace{1, \ldots, 1}_{2n \text{ times}}, \alpha_{1}(t), \ldots, \alpha_{m}(t), \bar{\alpha}_{1}(t), \ldots, \bar{\alpha}_{m}(t) \right) \,.$$

Hence we have $J \circ (\mathrm{Ad}_{\mathrm{s}})_{(t,n)} = (\mathrm{Ad}_{\mathrm{s}})_{(t,n)} \circ J$, and we can easily see that $A_{\Gamma}^{\bullet,\bullet} \subseteq C_{\Gamma}^{\bullet,\bullet} \subseteq \wedge^{\bullet,\bullet} \Gamma \setminus G$. Since the composition

$$\frac{\ker \mathrm{d}_{\lfloor A_{\Gamma}^{p,q}}}{\mathrm{d}(A_{\Gamma}^{p+q-1})} \to \frac{\ker \mathrm{d}_{\lfloor C^{p,q}}}{\mathrm{d}(\operatorname{Tot}^{p+q-1}C_{\Gamma}^{\bullet,\bullet})} \to \frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q}\Gamma\backslash G}}{\mathrm{d}(\wedge^{p-q-1}\Gamma\backslash G\otimes_{\mathbb{R}}\mathbb{C})}$$

is an isomorphism, then *(iii)* of the corollary follows.

Finally we get the following theorem.

Theorem 2.16. Let $\Gamma \setminus G$ be a solumanifold endowed with a G-left-invariant complex structure J as in Assumption 2.11. Consider $C_{\Gamma}^{\bullet,\bullet}$ as in (5). For any $(p,q) \in \mathbb{Z}^2$, the inclusion $C_{\Gamma}^{\bullet,\bullet} \subseteq \wedge^{\bullet,\bullet} \Gamma \setminus G$ induces the isomorphism

$$H\left(C_{\Gamma}^{p-1,q-1} \xrightarrow{\partial \overline{\partial}} C_{\Gamma}^{p,q} \xrightarrow{\partial + \overline{\partial}} C_{\Gamma}^{p+1,q} \oplus C_{\Gamma}^{p,q+1}\right) \xrightarrow{\simeq} H_{BC}^{p,q}\left(\Gamma \backslash G\right)$$

Proof. By Corollary 2.15, the surjectivity follows from Theorem 1.3. The injectivity follows from Proposition 2.2. \square

Example 2.17 (The completely-solvable Nakamura manifold, [40, Example 1]). The completely-solvable Nakamura manifold, firstly studied by I. Nakamura in [54, page 90], is an example of a cohomologically Kähler non-Kähler solvmanifold, [26], [33, Example 3.1], [27, §3].

Let $G := \mathbb{C} \ltimes_{\phi} \mathbb{C}^2$, where

$$\phi\left(x+\sqrt{-1}y\right) := \begin{pmatrix} \mathrm{e}^x & 0\\ 0 & \mathrm{e}^{-x} \end{pmatrix} \in \mathrm{GL}\left(\mathbb{C}^2\right) \,.$$

Then for some $a \in \mathbb{R}$ the matrix $\begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix}$ is conjugate to an element of $SL(2; \mathbb{Z})$. We have a lattice $\Gamma := (a\mathbb{Z} + b\sqrt{-1}\mathbb{Z}) \ltimes_{\phi} \Gamma''$ such that Γ'' is a lattice of \mathbb{C}^2 . Consider the completely-solvable solvmanifold $\Gamma \backslash G$.

(As a matter of notation, we consider holomorphic coordinates $\{z_1, z_2, z_3\}$, where $\{z_1 := x + \sqrt{-1}y\}$ is the holomorphic coordinate on \mathbb{C} , and we shorten, for example, $e^{-z_1} dz_{12\overline{1}} := e^{-z_1} dz_1 \wedge dz_2 \wedge d\overline{z_1}$.) By A. Hattori's theorem, [37, Corollary 4.2], the de Rham cohomology of $\Gamma \setminus G$ does not depend on Γ

and can be computed using just G-left-invariant forms on $\Gamma \backslash G$; more precisely, one gets

$$\begin{split} H^{0}_{dR}(\Gamma \backslash G \; ; \mathbb{R}) \;\; &=\;\; \mathbb{R} \; \langle 1 \rangle \; , \\ H^{1}_{dR}(\Gamma \backslash G \; ; \mathbb{R}) \;\; &=\;\; \mathbb{R} \; \langle \mathrm{d} \, z_{1} \; , \; \mathrm{d} \, \bar{z}_{1} \rangle \; , \\ H^{2}_{dR}(\Gamma \backslash G \; ; \mathbb{R}) \;\; &=\;\; \mathbb{R} \; \langle \mathrm{d} \, z_{23} \; , \; \mathrm{d} \, z_{1\bar{1}} \; , \; \mathrm{d} \, z_{2\bar{3}} \; , \; \mathrm{d} \, z_{1\bar{2}\bar{3}} \rangle \; , \\ H^{3}_{dR}(\Gamma \backslash G \; ; \mathbb{R}) \;\; &=\;\; \mathbb{R} \; \langle \mathrm{d} \, z_{123} \; , \; \mathrm{d} \, z_{12\bar{3}} \; , \; \mathrm{d} \, z_{1\bar{2}\bar{3}} \; , \; \mathrm{d} \, z_{1\bar{3}\bar{1}\bar{2}} \; , \; \mathrm{d} \, z_{1\bar{1}\bar{2}\bar{3}} \rangle \; , \\ H^{4}_{dR}(\Gamma \backslash G \; ; \mathbb{R}) \;\; &=\;\; \mathbb{R} \; \langle \mathrm{d} \, z_{12\bar{3}\bar{2}\bar{3}} \; , \; \mathrm{d} \, z_{23\bar{1}\bar{2}\bar{3}} \rangle \; , \\ H^{6}_{dR}(\Gamma \backslash G \; ; \mathbb{R}) \;\; &=\;\; \mathbb{R} \; \langle \mathrm{d} \, z_{12\bar{3}\bar{1}\bar{2}\bar{3}} \rangle \; , \end{split}$$

where we have listed the harmonic representatives with respect to the G-left-invariant Hermitian metric

 $g := \mathrm{d} z_1 \odot \mathrm{d} \bar{z}_1 + \mathrm{e}^{-z_1 - \bar{z}_1} \mathrm{d} z_2 \odot \mathrm{d} \bar{z}_2 + \mathrm{e}^{z_1 + \bar{z}_1} \mathrm{d} z_3 \odot \mathrm{d} \bar{z}_3 \text{ instead of their cohomology classes.}$ We consider $C_{\Gamma}^{\bullet,\bullet}$ as in (5). The bi-differential bi-graded algebra $B_{\Gamma}^{\bullet,\bullet}$ varies for a choice of b. By using Theorem 2.16, we compute $H_{BC}^{\bullet,\bullet}(\Gamma \setminus G) \simeq H_{BC}^{\bullet,\bullet}(C_{\Gamma}^{\bullet,\bullet})$, case by case:

- (i) $b = 2m\pi$ for some integer $m \in \mathbb{Z}$;
- (*ii*) $b = (2m+1)\pi$ for some integer $m \in \mathbb{Z}$;

(iii) $b \neq m\pi$ for any integer $m \in \mathbb{Z}$. Firstly, we write down $C_{\Gamma}^{\bullet,\bullet}$ case by case in Table 1, Table 2, and Table 3.

case (i)	$C_{\Gamma}^{\bullet, \bullet}$
(0 , 0)	$ \mathbb{C}\langle 1 \rangle$
(1, 0)	$\left \mathbb{C} \left\langle \mathrm{d} z_1, \mathrm{e}^{-z_1} \mathrm{d} z_2, \mathrm{e}^{z_1} \mathrm{d} z_3, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_2, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_3 \right\rangle \right.$
(0 , 1)	$\mathbb{C} \langle \mathrm{d} z_{\bar{1}}, \mathrm{e}^{-z_1} \mathrm{d} z_{\bar{2}}, \mathrm{e}^{z_1} \mathrm{d} z_{\bar{3}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{\bar{3}} \rangle$
(2 , 0)	$\mathbb{C} \langle e^{-z_1} d z_{12}, e^{z_1} d z_{13}, d z_{23}, e^{-\bar{z}_1} d z_{12}, e^{\bar{z}_1} d z_{13} \rangle$
(1 , 1)	$\mathbb{C} \left\langle \mathrm{d} z_{1\bar{1}}, \mathrm{e}^{-z_1} \mathrm{d} z_{1\bar{2}}, \mathrm{e}^{z_1} \mathrm{d} z_{1\bar{3}}, \mathrm{e}^{-z_1} \mathrm{d} z_{2\bar{1}}, \mathrm{e}^{-2z_1} \mathrm{d} z_{2\bar{2}}, \mathrm{d} z_{2\bar{3}}, \mathrm{e}^{z_1} \mathrm{d} z_{3\bar{1}}, \mathrm{d} z_{3\bar{2}}, \mathrm{e}^{2z_1} \mathrm{d} z_{3\bar{3}}, \right.$
	$\mathbf{e}^{-\bar{z}_1} \mathrm{d} z_{2\bar{1}}, \ \mathbf{e}^{-\bar{z}_1} \mathrm{d} z_{1\bar{2}}, \ \mathbf{e}^{\bar{z}_1} \mathrm{d} z_{1\bar{3}}, \ \mathbf{e}^{\bar{z}_1} \mathrm{d} z_{3\bar{1}}, \ \mathbf{e}^{-2\bar{z}_1} \mathrm{d} z_{2\bar{2}}, \ \mathbf{e}^{2\bar{z}_1} \mathrm{d} z_{3\bar{3}} \rangle$
(0 , 2)	$\mathbb{C} \left\langle e^{-z_1} d z_{\bar{1}\bar{2}}, e^{z_1} d z_{\bar{1}\bar{3}}, d z_{\bar{2}\bar{3}}, e^{-\bar{z}_1} d z_{\bar{1}\bar{2}}, e^{\bar{z}_1} d z_{\bar{1}\bar{3}} \right\rangle$
(3 , 0)	$\mathbb{C} \langle \mathrm{d} z_{123} \rangle$
(2 , 1)	$\mathbb{C}\left\langle e^{-z_{1}} d z_{12\bar{1}}, \ e^{-2z_{1}} d z_{12\bar{2}}, \ d z_{12\bar{3}}, \ e^{z_{1}} d z_{13\bar{1}}, \ d z_{13\bar{2}}, \ e^{2z_{1}} d z_{13\bar{3}}, \ d z_{23\bar{1}}, \ e^{-z_{1}} d z_{23\bar{2}}, \ e^{z_{1}} d z_{23\bar{3}}, \ e^{z_{1}$
	$e^{-\bar{z}_{1}} d z_{12\bar{1}}, e^{\bar{z}_{1}} d z_{13\bar{1}}, e^{-2\bar{z}_{1}} d z_{12\bar{2}}, e^{-\bar{z}_{1}} d z_{23\bar{2}}, e^{2\bar{z}_{1}} d z_{13\bar{3}}, e^{\bar{z}_{1}} d z_{23\bar{3}} \rangle$
$({\bf 1,2})$	$\mathbb{C}\left\langle e^{-\bar{z}_{1}} d z_{1\bar{1}\bar{2}}, e^{-2\bar{z}_{1}} d z_{2\bar{1}\bar{2}}, d z_{3\bar{1}\bar{2}}, e^{\bar{z}_{1}} d z_{1\bar{1}\bar{3}}, d z_{2\bar{1}\bar{3}}, e^{2\bar{z}_{1}} d z_{3\bar{1}\bar{3}}, d z_{1\bar{2}\bar{3}}, e^{-\bar{z}_{1}} d z_{2\bar{2}\bar{3}}, e^{\bar{z}_{1}} d z_{3\bar{2}\bar{3}}, e^{-\bar{z}_{1}} d z_{2\bar{2}\bar{3}}, e^{\bar{z}_{1}} d z_{3\bar{2}\bar{3}}, e^{-\bar{z}_{1}} d z_{2\bar{2}\bar{3}}, e^{-\bar{z}_{1}} d z_{2\bar{3}\bar{3}}, e^{-$
	$ e^{-z_1} dz_{1\bar{1}\bar{2}}, e^{z_1} dz_{1\bar{1}\bar{3}}, e^{-2z_1} dz_{2\bar{1}\bar{2}}, e^{-z_1} dz_{2\bar{2}\bar{3}}, e^{2z_1} dz_{3\bar{1}\bar{3}}, e^{z_1} dz_{3\bar{2}\bar{3}} \rangle $
(0 , 3)	$\mathbb{C} \langle \mathrm{d} z_{\overline{1}\overline{2}\overline{3}} \rangle$
(3 , 1)	$\mathbb{C} \langle \mathrm{d} z_{123\bar{1}}, \mathrm{e}^{-z_1} \mathrm{d} z_{123\bar{2}}, \mathrm{e}^{z_1} \mathrm{d} z_{123\bar{3}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{123\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{123\bar{3}} \rangle$
$({\bf 2},{\bf 2})$	$\mathbb{C}\left\langle e^{-2z_{1}} d z_{12\bar{1}\bar{2}}, d z_{12\bar{1}\bar{3}}, e^{-z_{1}} d z_{12\bar{2}\bar{3}}, d z_{13\bar{1}\bar{2}}, e^{2z_{1}} d z_{13\bar{1}\bar{3}}, e^{z_{1}} d z_{13\bar{2}\bar{3}}, e^{-z_{1}} d z_{23\bar{1}\bar{2}}, e^{z_{1}} d z_{23\bar{1}\bar{3}}, e^{-z_{1}} d z_{23\bar{1}\bar{2}}, e^{z_{1}} d z_{23\bar{1}\bar{3}}, e^{-z_{1}} d z_{23\bar{1}\bar{2}}, e^{-z_{1}} d z_{23\bar{1}\bar{3}}, e^$
	$dz_{23\bar{2}\bar{3}}, e^{-2\bar{z}_1} dz_{12\bar{1}\bar{2}}, e^{-\bar{z}_1} dz_{23\bar{1}\bar{2}}, e^{-\bar{z}_1} dz_{12\bar{2}\bar{3}}, e^{\bar{z}_1} dz_{13\bar{2}\bar{3}}, e^{2\bar{z}_1} dz_{13\bar{1}\bar{3}}, e^{\bar{z}_1} dz_{23\bar{1}\bar{3}} \rangle$
(1 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{1\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{2\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{3\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{-z_1} \mathrm{d} z_{2\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{z_1} \mathrm{d} z_{3\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 2)	$\mathbb{C} \left\langle e^{-z_1} d z_{123\bar{1}\bar{2}}, e^{z_1} d z_{123\bar{1}\bar{3}}, d z_{123\bar{2}\bar{3}}, e^{-\bar{z}_1} d z_{123\bar{1}\bar{2}}, e^{\bar{z}_1} d z_{123\bar{1}\bar{3}} \right\rangle$
(2 , 3)	$\mathbb{C} \left\langle e^{-z_1} d z_{12\bar{1}\bar{2}\bar{3}}, e^{z_1} d z_{13\bar{1}\bar{2}\bar{3}}, d z_{23\bar{1}\bar{2}\bar{3}}, e^{-\bar{z}_1} d z_{12\bar{1}\bar{2}\bar{3}}, e^{\bar{z}_1} d z_{13\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 3)	$\mathbb{C} \langle \mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \rangle$

TABLE 1. The double complex $C_{\Gamma}^{\bullet,\bullet}$ for the completely-solvable Nakamura manifold in case (i).

Note that, since $\partial \overline{\partial} \left(C_{\Gamma}^{\bullet, \bullet} \right) = \{ 0 \}$ for each case, we have, by using Theorem 2.16,

$$H_{BC}^{\bullet,\bullet}(\Gamma \backslash G) \simeq H_{BC}^{\bullet,\bullet}(C_{\Gamma}^{\bullet,\bullet}) = \ker \mathrm{d}_{C_{\Gamma}^{\bullet,\bullet}}.$$

Hence, we compute the Bott-Chern cohomology of the Nakamura manifold case by case in Table 4 and Table 5; note that, in the case *(iii)*, simply we have:

(6)
$$H_{BC}^{\bullet,\bullet}(\Gamma \backslash G) \simeq C_{\Gamma}^{\bullet,\bullet}$$
 in case *(iii)*.

We summarize in Table 6 the results of the computations of the Bott-Chern cohomology as done in Table 4 and Table 5 and (6), and of the Dolbeault cohomology, as done in [40, Example 1].

Remark 2.18. Note that in any case the canonical map $\operatorname{Tot}^{\bullet} H_{BC}^{\bullet,\bullet}(\Gamma \setminus G) \to H_{dR}^{\bullet}(\Gamma \setminus G)$ is surjective. (With the notation of [49, 9], this means that, in any case, $\Gamma \setminus G$ is *complex-C*^{∞}-*pure-and-full at every stage*, namely, the de Rham cohomology admits a decomposition in pure-type subgroups with respect to the complex structure.) In the case *(iii)*, by Proposition 1.1, we have $H_{dR}^{\bullet}(\Gamma \setminus G) \simeq H^{\bullet}(\operatorname{Tot}^{\bullet} C_{\Gamma}^{\bullet,\bullet}) =$

case (ii)	$C_{\Gamma}^{\bullet,\bullet}$
(0, 0)	$\mathbb{C}\langle 1 \rangle$
(1 , 0)	$\mathbb{C} \left\langle \mathrm{d} z_1 \right\rangle$
(0 , 1)	$\mathbb{C} \left\langle \mathrm{d} z_{ar{1}} \right\rangle$
(2 , 0)	$\mathbb{C} \left\langle \mathrm{d} z_{23} \right\rangle$
(1 , 1)	$\mathbb{C}\left\langle \mathrm{d} z_{1\bar{1}}, \mathrm{e}^{-2z_1} \mathrm{d} z_{2\bar{2}}, \mathrm{e}^{-2\bar{z}_1} \mathrm{d} z_{2\bar{2}}, \mathrm{e}^{2z_1} \mathrm{d} z_{3\bar{3}}, \mathrm{e}^{2\bar{z}_1} \mathrm{d} z_{3\bar{3}}, \mathrm{d} z_{2\bar{3}}, \mathrm{d} z_{3\bar{2}} \right\rangle$
(0 , 2)	$\mathbb{C} \left\langle \mathrm{d} z_{\overline{2}\overline{3}} \right\rangle$
(3 , 0)	$\mathbb{C} \left\langle \mathrm{d} z_{123} \right\rangle$
$({\bf 2},{\bf 1})$	$\mathbb{C}\left\langle \mathrm{d} z_{23\bar{1}}, \mathrm{e}^{-2z_1} \mathrm{d} z_{12\bar{2}}, \mathrm{e}^{-2\bar{z}_1} \mathrm{d} z_{12\bar{2}}, \mathrm{e}^{2z_1} \mathrm{d} z_{13\bar{3}}, \mathrm{e}^{2\bar{z}_1} \mathrm{d} z_{13\bar{3}}, \mathrm{d} z_{12\bar{3}}, \mathrm{d} z_{13\bar{2}} \right\rangle$
(1 , 2)	$\mathbb{C}\left\langle \mathrm{d} z_{1\bar{2}\bar{3}}, \mathrm{e}^{-2z_1} \mathrm{d} z_{2\bar{1}\bar{2}}, \mathrm{e}^{-2\bar{z}_1} \mathrm{d} z_{2\bar{1}\bar{2}}, \mathrm{e}^{2z_1} \mathrm{d} z_{3\bar{1}\bar{3}}, \mathrm{e}^{2\bar{z}_1} \mathrm{d} z_{3\bar{1}\bar{3}}, \mathrm{d} z_{2\bar{1}\bar{3}}, \mathrm{d} z_{3\bar{1}\bar{2}} \right\rangle$
(0 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 1)	$\mathbb{C} \left\langle \mathrm{d} z_{123\bar{1}} \right\rangle$
(2 , 2)	$\mathbb{C}\left\langle \mathrm{d} z_{12\bar{1}\bar{3}}, \mathrm{e}^{-2z_1} \mathrm{d} z_{12\bar{1}\bar{2}}, \mathrm{e}^{-2\bar{z}_1} \mathrm{d} z_{12\bar{1}\bar{2}}, \mathrm{e}^{2z_1} \mathrm{d} z_{13\bar{1}\bar{3}}, \mathrm{e}^{2\bar{z}_1} \mathrm{d} z_{13\bar{1}\bar{3}}, \mathrm{d} z_{23\bar{2}\bar{3}}, \mathrm{d} z_{13\bar{1}\bar{2}} \right\rangle$
(1 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{1 \overline{1} \overline{2} \overline{3}} \right\rangle$
(3 , 2)	$\mathbb{C} \left\langle \mathrm{d} z_{123\bar{2}\bar{3}} \right\rangle$
(2 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{23\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 3)	$\mathbb{C} \left< \mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \right>$

TABLE 2. The double complex $C_{\Gamma}^{\bullet,\bullet}$ for the completely-solvable Nakamura manifold in case *(ii)*.

Tot $C_{\Gamma}^{\bullet,\bullet}$ and hence the canonical map Tot $H_{BC}^{\bullet,\bullet}(\Gamma \setminus G) \to H_{dR}^{\bullet}(\Gamma \setminus G)$ induced by the identity is in fact an isomorphism: this implies that $\Gamma \setminus G$ in case *(iii)* satisfies the $\partial \bar{\partial}$ -Lemma (namely, every ∂ -closed $\bar{\partial}$ -closed d-exact form is $\partial \bar{\partial}$ -exact too, see [29]). In [40], it is shown that for some left-invariant Hermitian metric the space of harmonic forms admits the Hodge decomposition and symmetry (see also [41] for higher dimensional examples with the Hodge decomposition and symmetry).

Remark 2.19. In view of [10, Theorem A, Theorem B], stating that, for every compact complex manifold X, for any $k \in \mathbb{Z}$, the inequality

$$\sum_{p+q=k} \left(\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X) \right) \geq \sum_{p+q=k} \left(\dim_{\mathbb{C}} H^{p,q}_{\partial}(X) + \dim_{\mathbb{C}} H^{p,q}_{\overline{\partial}}(X) \right) \geq 2 \dim_{\mathbb{C}} H^{k}_{dR}(X;\mathbb{C})$$

holds, and that equalities hold for any $k \in \mathbb{Z}$ if and only if X satisfies the $\partial\overline{\partial}$ -Lemma, one gets that the non-negative integer numbers $\sum_{p+q=k} (\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X)) - 2 \dim_{\mathbb{C}} H^{k}_{dR}(X;\mathbb{C}) \in \mathbb{N}$, varying $k \in \mathbb{Z}$, provide a "measure" of the non-Kählerianity of X.

Note that, for the completely-solvable Nakamura manifold, in any case, one has

$$\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X) = \dim_{\mathbb{C}} H^{p,q}_{\partial}(X) + \dim_{\mathbb{C}} H^{p,q}_{\overline{\partial}}(X)$$

for any $(p,q) \in \mathbb{Z}^2$. On the other hand,

$$\sum_{p+q=k} (\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X)) - 2 \dim_{\mathbb{C}} H^{k}_{dR}(X;\mathbb{C}) = \begin{cases} 8 & \text{for } k \in \{1, 5\} \\ 20 & \text{for } k \in \{2, 4\} \\ 24 & \text{for } k = 3 \\ 0 & \text{otherwise} \end{cases} \text{ in case } (i),$$

case (iii)	$C_{\Gamma}^{\bullet,\bullet}$
(0 , 0)	$\mathbb{C}\langle 1 \rangle$
$({\bf 1},{\bf 0})$	$\mathbb{C} \left\langle \mathrm{d} z_1 \right\rangle$
(0 , 1)	$\mathbb{C} \langle \mathrm{d} z_{\bar{1}} \rangle$
(2 , 0)	$\mathbb{C} \langle \mathrm{d} z_{23} \rangle$
(1 , 1)	$\mathbb{C} \langle \mathrm{d} z_{1\bar{1}}, \mathrm{d} z_{2\bar{3}}, \mathrm{d} z_{3\bar{2}} \rangle$
(0 , 2)	$\mathbb{C} \left\langle \mathrm{d} z_{\bar{2}\bar{3}} \right\rangle$
(3 , 0)	$\mathbb{C} \langle \mathrm{d} z_{123} \rangle$
(2 , 1)	$\mathbb{C} \left\langle \mathrm{d} z_{23\bar{1}}, \mathrm{d} z_{12\bar{3}}, \mathrm{d} z_{13\bar{2}} \right\rangle$
(1 , 2)	$\mathbb{C} \left\langle \mathrm{d} z_{1\bar{2}\bar{3}}, \mathrm{d} z_{2\bar{1}\bar{3}}, \mathrm{d} z_{3\bar{1}\bar{2}} \right\rangle$
(0 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 1)	$\mathbb{C}\langle\mathrm{d}z_{123\bar{1}}\rangle$
(2 , 2)	$\mathbb{C} \left\langle \mathrm{d} z_{12\bar{1}\bar{3}}, \mathrm{d} z_{23\bar{2}\bar{3}}, \mathrm{d} z_{13\bar{1}\bar{2}} \right\rangle$
(1 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{1\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 2)	$\mathbb{C}\langle\mathrm{d}z_{123\bar{2}\bar{3}}\rangle$
(2 , 3)	$\mathbb{C}\langle\mathrm{d}z_{23\bar{1}\bar{2}\bar{3}}\rangle$
(3 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \right\rangle$

TABLE 3. The double complex $C_{\Gamma}^{\bullet,\bullet}$ for the completely-solvable Nakamura manifold in case *(iii)*.

and

$$\sum_{p+q=k} (\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X)) - 2 \dim_{\mathbb{C}} H^{k}_{dR}(X;\mathbb{C}) = \begin{cases} 0 & \text{for } k \in \{1, 5\} \\ 4 & \text{for } k \in \{2, 4\} \\ 8 & \text{for } k = 3 \\ 0 & \text{otherwise} \end{cases} \text{ in case } (ii),$$

and

$$\sum_{p+q=k} (\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X)) - 2 \dim_{\mathbb{C}} H^{k}_{dR}(X;\mathbb{C}) = \begin{cases} 0 & \text{for } k \in \{1, 5\} \\ 0 & \text{for } k \in \{2, 4\} \\ 0 & \text{for } k = 3 \\ 0 & \text{otherwise} \end{cases} \text{ in case (iii)}.$$

In particular, by [10, Theorem B], one gets that $\Gamma \setminus G$ in case *(iii)* satisfies the $\partial \overline{\partial}$ -Lemma, as noticed also in Remark 2.18.

Given a property depending on the complex structure, one says that it is *open under small defor*mations (respectively, strongly-closed under small deformations) if, for any complex-analytic families of compact complex manifolds parametrized by \mathcal{B} , the set of parameters for which the property holds is open (respectively, closed) in the strong topology of \mathcal{B} .

We recall that satisfying the $\partial \overline{\partial}$ -Lemma is an open property under small deformations, see [70, Proposition 9.21], [73, Theorem 5.12], [65, §B], [10, Corollary 2.7]. On the other hand, as pointed out by Luis Ugarte, the completely-solvable Nakamura manifold provides a counterexample to the strongly-closedness of the property of satisfying the $\partial \overline{\partial}$ -Lemma: indeed, complex structures in class (*iii*) satisfy the $\partial \overline{\partial}$ -Lemma while complex structures in classes (*i*) and (*ii*) do not. We have hence the following theorem.

Theorem 2.20. Satisfying the $\partial \overline{\partial}$ -Lemma is not a strongly-closed property under small deformations of the complex structure.

case (i)	$H_{BC}^{ullet,ullet}(\Gammaackslash G)$
(0 , 0)	$\mathbb{C}\langle 1 \rangle$
(1, 0)	$\mathbb{C}\left\langle \left[\mathrm{d}z_{1}\right] \right\rangle$
(0 , 1)	$\mathbb{C}\left< \left[\mathrm{d} z_{\bar{1}} \right] \right>$
(2 , 0)	$\mathbb{C} \langle [e^{-z_1} d z_{12}], [e^{z_1} d z_{13}], [d z_{23}] \rangle$
(1 , 1)	$\mathbb{C} \left\langle [\mathrm{d} z_{1\bar{1}}], \; [\mathrm{e}^{-z_1} \mathrm{d} z_{1\bar{2}}], \; [\mathrm{e}^{z_1} \mathrm{d} z_{1\bar{3}}], \; [\mathrm{d} z_{2\bar{3}}], \; [\mathrm{d} z_{3\bar{2}}], \; [\mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{2\bar{1}}], \; [\mathrm{e}^{\bar{z}_1} \mathrm{d} z_{3\bar{1}}] \right\rangle$
(0 , 2)	$\mathbb{C} \langle [d z_{\bar{2}\bar{3}}], [e^{-\bar{z}_1} d z_{\bar{1}\bar{2}}], [e^{\bar{z}_1} d z_{\bar{1}\bar{3}}] \rangle$
(3 , 0)	$\mathbb{C}\left\langle \left[\mathrm{d}z_{123}\right] \right\rangle$
(2 , 1)	$\mathbb{C}\left< [e^{-z_1} d z_{12\bar{1}}], \ [e^{-2z_1} d z_{12\bar{2}}], \ [d z_{12\bar{3}}], \ [e^{z_1} d z_{13\bar{1}}], \ [d z_{13\bar{2}}], \ [e^{2z_1} d z_{13\bar{3}}], \ [d z_{23\bar{1}}], \ [d $
	$[e^{-\bar{z}_1} d z_{12\bar{1}}], [e^{\bar{z}_1} d z_{13\bar{1}}]\rangle$
(1 , 2)	$\mathbb{C}\left< [e^{-\bar{z}_1} d z_{1\bar{1}\bar{2}}], \ [e^{-2\bar{z}_1} d z_{2\bar{1}\bar{2}}], \ [d z_{3\bar{1}\bar{2}}], \ [e^{\bar{z}_1} d z_{1\bar{1}\bar{3}}], \ [d z_{2\bar{1}\bar{3}}], \ [e^{2\bar{z}_1} d z_{3\bar{1}\bar{3}}], \ [d z_{1\bar{2}\bar{3}}], \ [d z_{1\bar{3}\bar{3}}], \ [d z_{1\bar{3}\bar{3}], \ [d z_{1\bar{3}\bar{3}}], \ [d z_{1\bar{3}\bar{3}], \ [d z_{1\bar{3}\bar{3}}], \ [d z_{1\bar{3}\bar{3}],$
	$\left[\mathrm{e}^{-z_1}\mathrm{d}z_{1\bar{1}\bar{2}}\right],\ \left[\mathrm{e}^{z_1}\mathrm{d}z_{1\bar{1}\bar{3}}\right]\rangle$
(0 , 3)	$\mathbb{C}\left<\left[\mathrm{d}z_{\bar{1}\bar{2}\bar{3}}\right]\right>$
(3 , 1)	$\mathbb{C} \left\langle [d z_{123\bar{1}}], \ [e^{-z_1} d z_{123\bar{2}}], \ [e^{z_1} d z_{123\bar{3}}] \right\rangle$
(2 , 2)	$\mathbb{C}\left< \left[e^{-2z_1} d z_{12\bar{1}\bar{2}} \right], \ \left[d z_{12\bar{1}\bar{3}} \right], \ \left[e^{-z_1} d z_{12\bar{2}\bar{3}} \right], \ \left[d z_{13\bar{1}\bar{2}} \right], \ \left[e^{2z_1} d z_{13\bar{1}\bar{3}} \right], \ \left[e^{z_1} d z_{13\bar{2}\bar{3}} \right], \ \left[d z_{23\bar{2}\bar{3}} \right], \ \left[d z_{23\bar{3}} \right], \ \left[d z_$
	$\left[\mathrm{e}^{-2\bar{z}_{1}} \mathrm{d} z_{12\bar{1}\bar{2}}\right], \left[\mathrm{e}^{-\bar{z}_{1}} \mathrm{d} z_{23\bar{1}\bar{2}}\right], \left[\mathrm{e}^{2\bar{z}_{1}} \mathrm{d} z_{13\bar{1}\bar{3}}\right], \left[\mathrm{e}^{\bar{z}_{1}} \mathrm{d} z_{23\bar{1}\bar{3}}\right] \right\rangle$
(1 , 3)	$\mathbb{C} \left\langle [\mathrm{d} z_{1\bar{1}\bar{2}\bar{3}}], \; [\mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{2\bar{1}\bar{2}\bar{3}}], \; [\mathrm{e}^{\bar{z}_1} \mathrm{d} z_{3\bar{1}\bar{2}\bar{3}}] \right\rangle$
(3 , 2)	$\mathbb{C} \left\langle \left[e^{-z_1} d z_{123\bar{1}\bar{2}} \right], \ \left[e^{z_1} d z_{123\bar{1}\bar{3}} \right], \ \left[d z_{123\bar{2}\bar{3}} \right], \ \left[e^{-\bar{z}_1} d z_{123\bar{1}\bar{2}} \right], \ \left[e^{\bar{z}_1} d z_{123\bar{1}\bar{3}} \right] \right\rangle$
(2 , 3)	$\mathbb{C} \left\langle \left[e^{-z_1} d z_{12\bar{1}\bar{2}\bar{3}} \right], \ \left[e^{z_1} d z_{13\bar{1}\bar{2}\bar{3}} \right], \ \left[d z_{23\bar{1}\bar{2}\bar{3}} \right], \ \left[e^{-\bar{z}_1} d z_{12\bar{1}\bar{2}\bar{3}} \right], \ \left[e^{\bar{z}_1} d z_{13\bar{1}\bar{2}\bar{3}} \right] \right\rangle$
	$\mathbb{C}\left< \left[\mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \right] \right>$
TAE	BLE 4. The Bott-Chern cohomology of the completely-solvable Nakamura manifold

TABLE 4. The Bott-Chern cohomology of the completely-solvable Nakamura manifolin case (i).

Remark 2.21. Actually, as remarked by Luis Ugarte, in defining closedness for deformations, one usually considers the Zariski topology, see, e.g., [56]: namely, a property \mathcal{P} is said to be (Zariski-)closed if, for any family $\{X_t\}_{t\in\Delta}$ of compact complex manifolds such that \mathcal{P} holds for any $t \in \Delta \setminus \{0\}$ in the punctured-disk, then \mathcal{P} holds also for X_0 . In [7], a family of deformations of the complex parallelizable Nakamura manifold is studied in order to prove that satisfying the $\partial\overline{\partial}$ -Lemma is also non-(Zariski-)closed.

2.4.2. Complex parallelizable solvmanifolds. Let G be a connected simply-connected complex solvable Lie group admitting a lattice Γ , and denote by 2n the real dimension of G. Denote the Lie algebra naturally associated to G by \mathfrak{g} . We use the following lemma.

Lemma 2.22. Let α , β be holomorphic characters of a connected simply-connected complex solvable Lie group G. If $\alpha \overline{\beta}$ is a unitary character, then $\alpha = \beta^{-1}$.

Proof. Since we have $\alpha([G,G]) = [\alpha(G), \alpha(G)] = 1$ and $\beta([G,G]) = [\beta(G), \beta(G)] = 1$, we can regard α and β as characters of G/[G,G]. Since G is connected simply-connected, G/[G,G] is also connected simply-connected, see [28, Theorem 3.5]. Since G/[G,G] is Abelian, it is sufficient to show the lemma in the case $G = \mathbb{C}^n$. For the coordinate set (z_1, \ldots, z_n) of \mathbb{C}^n , we write $\alpha = \exp\left(\sum_{j=1}^n a_j z_j\right)$ and $\beta = \exp\left(\sum_{j=1}^n b_j z_j\right)$, for some $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$. If $\alpha \overline{\beta}$ is unitary, then we have $\Re\left(\sum_{j=1}^n (a_j z_j + \overline{b}_j \overline{z}_j)\right) = 0$. By simple computations, we have $a_j = -b_j$ for any $j \in \{1, \ldots, n\}$. Hence the lemma follows.

Denote by \mathfrak{g}_+ (respectively, \mathfrak{g}_-) the Lie algebra of the *G*-left-invariant holomorphic (respectively, antiholomorphic) vector fields on *G*. As a (real) Lie algebra, we have an isomorphism $\mathfrak{g}_+ \simeq \mathfrak{g}_-$ by means of the complex conjugation.

case (ii)	$H_{BC}^{\bullet, \bullet}(\Gamma \backslash G)$
(0 , 0)	$\mathbb{C}\langle 1 \rangle$
(1 , 0)	$\mathbb{C}\left< \left[\mathrm{d} z_1 ight] \right>$
(0 , 1)	$\mathbb{C}\left< \left[\mathrm{d} z_{ar{1}} \right] \right>$
(2 , 0)	$\mathbb{C}\left< \left[\mathrm{d} z_{23} \right] \right>$
(1 , 1)	$\mathbb{C} \langle [\mathrm{d} z_{1\bar{1}}], \ [\mathrm{d} z_{2\bar{3}}], \ [\mathrm{d} z_{3\bar{2}}] \rangle$
(0 , 2)	$\mathbb{C}\left<\left[\mathrm{d}z_{\bar{2}\bar{3}}\right]\right>$
(3 , 0)	$\mathbb{C}\left< \left[\mathrm{d} z_{123} \right] \right>$
$({\bf 2},{\bf 1})$	$\mathbb{C}\left([\mathrm{d}z_{23\bar{1}}], \ [\mathrm{e}^{-2z_1}\mathrm{d}z_{12\bar{2}}], \ [\mathrm{e}^{2z_1}\mathrm{d}z_{13\bar{3}}], \ [\mathrm{d}z_{12\bar{3}}], \ [\mathrm{d}z_{13\bar{2}}]\right)$
$({\bf 1},{\bf 2})$	$\mathbb{C}\left([\mathrm{d}z_{1\bar{2}\bar{3}}],\ [\mathrm{e}^{-2\bar{z}_1}\mathrm{d}z_{2\bar{1}\bar{2}}],\ [\mathrm{e}^{2\bar{z}_1}\mathrm{d}z_{3\bar{1}\bar{3}}],\ [\mathrm{d}z_{2\bar{1}\bar{3}}],\ [\mathrm{d}z_{3\bar{1}\bar{2}}]\right)$
(0 , 3)	$\mathbb{C}\left<\left[\mathrm{d}z_{\bar{1}\bar{2}\bar{3}}\right]\right>$
(3 , 1)	$\mathbb{C}\left< \left[\mathrm{d} z_{123\bar{1}} \right] \right>$
(2 , 2)	$\mathbb{C}\left\langle [\mathrm{d}z_{12\bar{1}\bar{3}}], \; [\mathrm{e}^{-2z_1}\mathrm{d}z_{12\bar{1}\bar{2}}], \; [\mathrm{e}^{-2\bar{z}_1}\mathrm{d}z_{12\bar{1}\bar{2}}], \; [\mathrm{e}^{2z_1}\mathrm{d}z_{13\bar{1}\bar{3}}], \; [\mathrm{e}^{2\bar{z}_1}\mathrm{d}z_{13\bar{1}\bar{3}}], \; [\mathrm{d}z_{23\bar{2}\bar{3}}], \; [\mathrm{d}z_{13\bar{1}\bar{2}}]\right\rangle$
(1 , 3)	$\mathbb{C}\left< \left[\mathrm{d} z_{1\bar{1}\bar{2}\bar{3}} \right] \right>$
(3 , 2)	$\mathbb{C}\left< \left[\mathrm{d} z_{123\bar{2}\bar{3}} \right] \right>$
(2 , 3)	$\mathbb{C}\left< \left[\mathrm{d} z_{23\bar{1}\bar{2}\bar{3}} \right] \right>$
(3 , 3)	$\mathbb{C}\left<\left[\mathrm{d}z_{123\bar{1}\bar{2}\bar{3}}\right]\right>$

TABLE 5. The Bott-Chern cohomology of the completely-solvable Nakamura manifold in case (ii).

Let N be the nilradical of G. We can take a connected simply-connected complex nilpotent subgroup $C \subseteq G$ such that $G = C \cdot N$, see, e.g., [28, Proposition 3.3]. Since C is nilpotent, the map

$$C \ni c \mapsto (\mathrm{Ad}_c)_{\mathrm{s}} \in \mathrm{Aut}(\mathfrak{g}_+)$$

is a homomorphism, where $(Ad_c)_s$ is the semi-simple part of the Jordan decomposition of Ad_c . Let \mathfrak{c} be the Lie algebra of C; we take a subspace $V \subseteq \mathfrak{c}$ such that $\mathfrak{g} = V \oplus \mathfrak{n}$. Then the diagonalizable representation Ad_s constructed above, §2.4, is identified with the map

$$G = C \cdot N \ni c \cdot n \mapsto (\mathrm{Ad}_c)_s \in \mathrm{Aut}(\mathfrak{g}),$$

see [43, Remark 4].

We have a basis $\{X_1, \ldots, X_n\}$ of \mathfrak{g}_+ such that, for $c \in C$,

$$(\mathrm{Ad}_c)_{\mathrm{s}} = \mathrm{diag}\left(\alpha_1(c), \ldots, \alpha_n(c)\right) ,$$

for some characters $\alpha_1, \ldots, \alpha_n$ of C. By $G = C \cdot N$, we have $G/N = C/C \cap N$ and regard $\alpha_1, \ldots, \alpha_n$ as characters of G. Let $\{x_1, \ldots, x_n\}$ be the basis of \mathfrak{g}^*_+ which is dual to $\{X_1, \ldots, X_n\}$.

Theorem 2.23. ([43, Corollary 6.2 and its proof]) Let G be a connected simply-connected complex solvable Lie group admitting a lattice Γ . Denote the Lie algebra naturally associated to G by \mathfrak{g} . Consider a basis $\{X_1, \ldots, X_n\}$ of the Lie algebra \mathfrak{g}_+ of the G-left-invariant holomorphic vector fields on G with respect to which $(\operatorname{Ad}_c)_s = \operatorname{diag}(\alpha_1(c), \ldots, \alpha_n(c))$ for some characters $\alpha_1, \ldots, \alpha_n$ of C. Regard $\alpha_1, \ldots, \alpha_n$ as characters of G. Let B°_{Γ} be the sub-complex of $(\wedge^{0, \bullet} \Gamma \backslash G, \overline{\partial})$ defined as

(7)
$$B_{\Gamma}^{\bullet} := \left\langle \frac{\bar{\alpha}_I}{\alpha_I} \bar{x}_I \middle| I \subseteq \{1, \dots, n\} \text{ such that } \left(\frac{\bar{\alpha}_I}{\alpha_I} \right) \middle|_{\Gamma} = 1 \right\rangle ,$$

(where we shorten, e.g., $\alpha_I := \alpha_{i_1} \cdots \alpha_{i_k}$ for a multi-index $I = (i_1, \ldots, i_k)$). Then the inclusion $B^{\bullet}_{\Gamma} \hookrightarrow \wedge^{0, \bullet} \Gamma \backslash G$ induces the isomorphism

$$H^{\bullet}\left(B^{\bullet}_{\Gamma}, \overline{\partial}\right) \xrightarrow{\simeq} H^{0, \bullet}_{\overline{\partial}}(\Gamma \backslash G) .$$

		-		_		_	
	dR	$\frac{\mathrm{cas}}{\partial}$	se (i) BC	$\frac{\cos}{\partial}$	se (ii) BC	$\frac{\cos}{\partial}$	se (iii) BC
(0 , 0)	1	1	1	1	1	1	1
(1, 0)	2	3	1	1	1	1	1
(0 , 1)		3	1	1	1	1	1
(2 , 0)		3	3	1	1	1	1
(1 , 1)	5	9	7	5	3	3	3
(0 , 2)		3	3	1	1	1	1
(3 , 0)		1	1	1	1	1	1
(2 , 1)	8	9	9	5	5	3	3
$({\bf 1},{\bf 2})$		9	9	5	5	3	3
(0 , 3)		1	1	1	1	1	1
(3 , 1)		3	3	1	1	1	1
(2 , 2)	5	9	11	5	7	3	3
(1 , 3)		3	3	1	1	1	1
(3 , 2)	2	3	5	1	1	1	1
(2 , 3)		3	5	1	1	1	1
(3 , 3)	1	1	1	1	1	1	1

TABLE 6. The dimensions of the de Rham, Dolbeault, and Bott-Chern cohomologies of the completely-solvable Nakamura manifold.

By this theorem, since $\Gamma \backslash G$ is complex parallelizable, for the differential bi-graded algebra $(\wedge^{\bullet}\mathfrak{g}^{*}_{+}\otimes_{\mathbb{C}}B^{\bullet}_{\Gamma},\bar{\partial})$, the inclusion $\wedge^{\bullet_{1}}\mathfrak{g}^{*}_{+}\otimes_{\mathbb{C}}B^{\bullet_{2}}_{\Gamma}\hookrightarrow \wedge^{\bullet_{1},\bullet_{2}}\Gamma\backslash G$ induces the isomorphism

$$\wedge^{\bullet_1}\mathfrak{g}_+^* \otimes_{\mathbb{C}} H^{\bullet_2}_{\bar{\partial}}(B^{\bullet}_{\Gamma}) \xrightarrow{\simeq} H^{\bullet_1,\bullet_2}_{\bar{\partial}}(\Gamma \backslash G) .$$

Consider the G-left-invariant Hermitian metric

$$g := \sum_{j=1}^n x_j \odot \bar{x}_j \, .$$

Then, for $x_I \wedge \frac{\bar{\alpha}_K}{\alpha_K} \bar{x}_K \in \wedge^{|I|} \mathfrak{g}^*_+ \otimes_{\mathbb{C}} B_{\Gamma}^{|K|}$, since G is unimodular, [52, Lemma 6.2], we have

$$\bar{*}_g\left(x_I \wedge \frac{\bar{\alpha}_K}{\alpha_K} \bar{x}_K\right) = x_{I'} \wedge \frac{\alpha_K}{\bar{\alpha}_K} \bar{x}_{K'} = x_{I'} \wedge \frac{\bar{\alpha}_{K'}}{\alpha_{K'}} \bar{x}_{K'} \in \wedge^{n-|I|} \mathfrak{g}_+^* \otimes_{\mathbb{C}} B_{\Gamma}^{n-|K|}$$

where $I' := \{1, \ldots, n\} \setminus I$ and $K' := \{1, \ldots, n\} \setminus K$ are the complements of I and K respectively. Hence we have $\bar{*}_g(\wedge^{\bullet}\mathfrak{g}^*_+ \otimes_{\mathbb{C}} B^{\bullet}_{\Gamma}) \subseteq \wedge^{n-\bullet}\mathfrak{g}^*_+ \otimes_{\mathbb{C}} B^{n-\bullet}_{\Gamma}$.

We consider the space

$$\bar{B}^{\bullet}_{\Gamma} = \left\langle \frac{\alpha_I}{\bar{\alpha}_I} x_I \mid I \subseteq \{1, \dots, n\} \text{ such that } \left(\frac{\alpha_I}{\bar{\alpha}_I} \right) \Big|_{\Gamma} = 1 \right\rangle .$$

Then the inclusion $\bar{B}_{\Gamma}^{\bullet_1} \otimes_{\mathbb{C}} \wedge^{\bullet_2} \mathfrak{g}_{-}^* \subseteq \wedge^{\bullet_1, \bullet_2} \Gamma \backslash G$ induces the isomorphism in ∂ -cohomology

$$H^{\bullet_1}\left(\bar{B}^{\bullet}_{\Gamma}\otimes_{\mathbb{C}}\wedge^{\bullet_2}\mathfrak{g}^*_{-},\,\partial\right)\stackrel{\simeq}{\to} H^{\bullet_1,\bullet_2}_{\partial}\left(\Gamma\backslash G\right)$$

Consider

(8)
$$C^{\bullet_1,\bullet_2} := \wedge^{\bullet_1} \mathfrak{g}^*_+ \otimes_{\mathbb{C}} B^{\bullet_2}_{\Gamma} + \bar{B}^{\bullet_1}_{\Gamma} \otimes_{\mathbb{C}} \wedge^{\bullet_2} \mathfrak{g}^*_{-}.$$

Then we have $\bar{*}_g(C^{\bullet_1,\bullet_2}) \subseteq C^{n-\bullet_1,n-\bullet_2}$. As similar to Corollary 2.15, we can show the following result.

Corollary 2.24. Let G be a connected simply-connected complex solvable Lie group admitting a lattice Γ . Denote the Lie algebra naturally associated to G by \mathfrak{g} . Consider the sub-complex $C_{\Gamma}^{\bullet,\bullet} \subseteq \wedge^{\bullet,\bullet} \Gamma \backslash G$ as defined in (8).

(i) The inclusion $C_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the ∂ -cohomology isomorphism

$$H^{\bullet,\bullet}(C_{\Gamma}^{\bullet,\bullet},\partial) \xrightarrow{\simeq} H^{\bullet,\bullet}_{\partial}(\Gamma \backslash G)$$
.

(ii) The inclusion $C_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the $\overline{\partial}$ -cohomology isomorphism

$$H^{\bullet,\bullet}(C_{\Gamma}^{\bullet,\bullet},\overline{\partial}) \xrightarrow{\simeq} H_{\overline{\partial}}^{\bullet,\bullet}(\Gamma \backslash G)$$
.

(iii) The inclusion $C_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces, for any $(p,q) \in \mathbb{Z}^2$, the surjection

$$\frac{\ker \mathrm{d}_{\lfloor C^{p,q}}}{\mathrm{d}\left(\operatorname{Tot}^{p+q-1}C_{\Gamma}^{\bullet,\bullet}\right)} \to \frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q}\Gamma\backslash G}}{\mathrm{d}\left(\wedge^{p+q-1}\Gamma\backslash G\otimes_{\mathbb{R}}\mathbb{C}\right)}$$

Proof. By $\bar{*}_g(C^{\bullet_1,\bullet_2}) \subseteq C^{n-\bullet_1,n-\bullet_2}$, the first and second assertions follow as similar to the proof of Corollary 2.15.

By denoting the complex structure by J, for any $c \in C$, since we have $\operatorname{Ad}_c \circ J = J \circ \operatorname{Ad}_c$, we have $(\operatorname{Ad}_c)_{\mathrm{s}} \circ J = J \circ (\operatorname{Ad}_c)_{\mathrm{s}}$, and hence we have $(\operatorname{Ad}_{\mathrm{s}})_g \circ J = J \circ (\operatorname{Ad}_{\mathrm{s}})_g$ for any $g \in G$. We consider the sub-complex $A_{\Gamma}^{\bullet} \subseteq \wedge^{\bullet} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}$ as in (1), see Theorem 2.8. By Corollary 2.10, the inclusion $A_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{p,q} \Gamma \setminus G$ induces the isomorphism

$$\frac{\ker \mathrm{d}_{\lfloor A_{\Gamma}^{p,q}}}{\mathrm{d}\left(A_{\Gamma}^{p+q-1}\right)} \xrightarrow{\simeq} \frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q} \Gamma \setminus G}}{\mathrm{d}\left(\wedge^{p+q-1} \Gamma \setminus G \otimes_{\mathbb{R}} \mathbb{C}\right)}$$

We have

$$A_{\Gamma}^{\bullet} = \langle \alpha_I \, \bar{\alpha}_J \, x_I \wedge \bar{x}_J \mid I, J \subseteq \{1, \dots, n\} \text{ such that } (\alpha_I \, \bar{\alpha}_J) \mid_{\Gamma} = 1 \rangle .$$

For $(\alpha_I \bar{\alpha}_J)|_{\Gamma} = 1$, since we can regard $\alpha_I \bar{\alpha}_J$ as a function on $\Gamma \backslash G$, the image of $\alpha_I \bar{\alpha}_J$ is compact and hence it is unitary. By Lemma 2.22, we have $\alpha_I \bar{\alpha}_J = \frac{\bar{\alpha}_J}{\alpha_J}$. Hence we have the inclusion $A_{\Gamma}^{\bullet} \subseteq$ Tot[•] $\wedge^{\bullet} \mathfrak{g}^*_+ \otimes B_{\Gamma}^{\bullet}$ and so we have the inclusion $A_{\Gamma}^{\bullet,\bullet} \subseteq C_{\Gamma}^{\bullet,\bullet} \subseteq \wedge^{\bullet,\bullet} \Gamma \backslash G$. Since the composition

$$\frac{\ker \mathrm{d}_{\lfloor A_{\Gamma}^{p,q}}}{\mathrm{d}\left(A_{\Gamma}^{p+q-1}\right)} \to \frac{\ker \mathrm{d}_{\lfloor C^{p,q}}}{\mathrm{d}\left(\operatorname{Tot}^{p+q-1}C_{\Gamma}^{\bullet,\bullet}\right)} \to \frac{\ker \mathrm{d}_{\lfloor \wedge^{p,q}\Gamma\setminus G}}{\mathrm{d}\left(\wedge^{p-q-1}\Gamma\setminus G\right)}$$

is an isomorphism, then the third assertion of the corollary follows.

By this, we get the following result.

Theorem 2.25. Let G be a connected simply-connected complex solvable Lie group admitting a lattice Γ . Consider the sub-complex $C_{\Gamma}^{\bullet,\bullet} \subseteq \wedge^{\bullet,\bullet} \Gamma \backslash G$ as defined in (8). The inclusion $C_{\Gamma}^{\bullet,\bullet} \hookrightarrow \wedge^{\bullet,\bullet} \Gamma \backslash G$ induces the isomorphism

$$H\left(C_{\Gamma}^{\bullet-1,\bullet-1} \xrightarrow{\partial\overline{\partial}} C_{\Gamma}^{\bullet,\bullet} \xrightarrow{\mathrm{d}} C_{\Gamma}^{\bullet,+1,\bullet} \oplus C_{\Gamma}^{\bullet,\bullet+1}\right) \xrightarrow{\simeq} H_{BC}^{\bullet,\bullet}(\Gamma \backslash G)$$

Example 2.26 (The complex parallelizable Nakamura manifold). Let $G = \mathbb{C} \ltimes_{\phi} \mathbb{C}^2$ be such that

$$\phi(z) = \left(\begin{array}{cc} \mathrm{e}^{z} & 0\\ 0 & \mathrm{e}^{-z} \end{array}\right)$$

Then there exist $a + \sqrt{-1}b \in \mathbb{C}$ and $c + \sqrt{-1}d \in \mathbb{C}$ such that $\mathbb{Z}(a + \sqrt{-1}b) + \mathbb{Z}(c + \sqrt{-1}d)$ is a lattice in \mathbb{C} and $\phi(a + \sqrt{-1}b)$ and $\phi(c + \sqrt{-1}d)$ are conjugate to elements of SL(4; \mathbb{Z}), where we regard SL(2; \mathbb{C}) \subset SL(4; \mathbb{R}), see [36]. Hence we have a lattice $\Gamma := (\mathbb{Z}(a + \sqrt{-1}b) + \mathbb{Z}(c + \sqrt{-1}d)) \ltimes_{\phi} \Gamma''$ of G such that Γ'' is a lattice of \mathbb{C}^2 . Let $X := \Gamma \setminus G$ be the *complex parallelizable Nakamura manifold*, [54, §2].

We take the connected simply-connected complex nilpotent subgroup $C := \mathbb{C} \subseteq G$ such that $G = C \cdot N$, where N is the nilradical of G. Recall that \mathfrak{g}_+ denotes the Lie algebra of the G-left-invariant holomorphic vector fields on G. For a coordinate set (z_1, z_2, z_3) of $\mathbb{C} \ltimes_{\phi} \mathbb{C}^2$, we have the basis $\left\{ \frac{\partial}{\partial z_1}, e^{z_1} \frac{\partial}{\partial z_2}, e^{-z_1} \frac{\partial}{\partial z_3} \right\}$ of \mathfrak{g}_+ such that

$$\left(\operatorname{Ad}_{(z_1, z_2, z_3)}\right)_{\mathrm{s}} = \operatorname{diag}\left(1, \, \mathrm{e}^{z_1}, \, \mathrm{e}^{-z_1}\right) \in \operatorname{Aut}(\mathfrak{g}_+)$$

(a) If $b \in \pi \mathbb{Z}$ and $d \in \pi \mathbb{Z}$, then, for $z \in (a + \sqrt{-1}b) \mathbb{Z} + (c + \sqrt{-1}d) \mathbb{Z}$, we have $\phi(z) \in \mathrm{SL}(2; \mathbb{R})$. Since $\left(\frac{\mathrm{e}^{z_1}}{\mathrm{e}^{z_1}}\right)|_{\Gamma} = (\mathrm{e}^{z_1 - \bar{z}_1})|_{\Gamma} = 1$, we have

$$B^{\bullet}_{\Gamma} = \wedge^{\bullet} \mathbb{C} \langle \mathrm{d} z_{\bar{1}}, \, \mathrm{e}^{z_1} \, \mathrm{d} z_{\bar{2}}, \, \mathrm{e}^{z_1} \, \mathrm{d} z_{\bar{3}} \rangle \; .$$

Hence the double complex $C_{\Gamma}^{\bullet,\bullet}$ in case (a) is the one in Table 7. (We recall that, in order to shorten the notation, we write, for example, $e^{\bar{z}_1} dz_{1\bar{3}} := e^{\bar{z}_1} dz_1 \wedge d\bar{z}_3$.)

case (a)	$C_{\Gamma}^{\bullet,\bullet}$
(0, 0)	$\mathbb{C}\langle 1 angle$
(1 , 0)	$\mathbb{C} \langle \mathrm{d} z_1, \mathrm{e}^{-z_1} \mathrm{d} z_2, \mathrm{e}^{z_1} \mathrm{d} z_3, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_2, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_3 \rangle$
(0 , 1)	$\mathbb{C} \langle \mathrm{d} z_{\bar{1}}, \mathrm{e}^{-z_1} \mathrm{d} z_{\bar{2}}, \mathrm{e}^{z_1} \mathrm{d} z_{\bar{3}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{\bar{3}} \rangle$
(2 , 0)	$\mathbb{C} \langle e^{-z_1} d z_{12}, e^{z_1} d z_{13}, d z_{23}, e^{-\bar{z}_1} d z_{12}, e^{\bar{z}_1} d z_{13} \rangle$
(1 , 1)	$\mathbb{C} \left\langle \mathrm{d} z_{1\bar{1}}, \mathrm{e}^{-z_1} \mathrm{d} z_{1\bar{2}}, \mathrm{e}^{z_1} \mathrm{d} z_{1\bar{3}}, \mathrm{e}^{-z_1} \mathrm{d} z_{2\bar{1}}, \mathrm{e}^{-2z_1} \mathrm{d} z_{2\bar{2}}, \mathrm{d} z_{2\bar{3}}, \mathrm{e}^{z_1} \mathrm{d} z_{3\bar{1}}, \mathrm{d} z_{3\bar{2}}, \mathrm{e}^{2z_1} \mathrm{d} z_{3\bar{3}}, \mathrm{e}^{-z_1} \mathrm{d} z_{3\bar{3}}, \mathrm{e}^$
	$\mathbf{e}^{-\bar{z}_1} \mathrm{d} z_{2\bar{1}}, \ \mathbf{e}^{-\bar{z}_1} \mathrm{d} z_{1\bar{2}}, \ \mathbf{e}^{\bar{z}_1} \mathrm{d} z_{1\bar{3}}, \ \mathbf{e}^{\bar{z}_1} \mathrm{d} z_{3\bar{1}}, \ \mathbf{e}^{-2\bar{z}_1} \mathrm{d} z_{2\bar{2}}, \ \mathbf{e}^{2\bar{z}_1} \mathrm{d} z_{3\bar{3}} \rangle$
(0 , 2)	$\mathbb{C} \langle e^{-z_1} d z_{\bar{1}\bar{2}}, e^{z_1} d z_{\bar{1}\bar{3}}, d z_{\bar{2}\bar{3}}, e^{-\bar{z}_1} d z_{\bar{1}\bar{2}}, e^{\bar{z}_1} d z_{\bar{1}\bar{3}} \rangle$
(3 , 0)	$\mathbb{C} \langle \mathrm{d} z_{123} \rangle$
(2 , 1)	$\mathbb{C}\left\langle e^{-z_{1}} d z_{12\bar{1}}, \ e^{-2z_{1}} d z_{12\bar{2}}, \ d z_{12\bar{3}}, \ e^{z_{1}} d z_{13\bar{1}}, \ d z_{13\bar{2}}, \ e^{2z_{1}} d z_{13\bar{3}}, \ d z_{23\bar{1}}, \ e^{-z_{1}} d z_{23\bar{2}}, \ e^{z_{1}} d z_{23\bar{3}}, \ e^{-z_{1}} d z_{23\bar{2}}, \ e^{z_{1}} d z_{23\bar{3}}, \ e^{-z_{1}} d z_{23\bar{2}}, \ e^{-z_{1}} d z_{23\bar{2}}, \ e^{-z_{1}} d z_{23\bar{3}}, \ e^{-z_{1}} d z_{23$
	$e^{-\bar{z}_1} dz_{12\bar{1}}, e^{\bar{z}_1} dz_{13\bar{1}}, e^{-2\bar{z}_1} dz_{12\bar{2}}, e^{-\bar{z}_1} dz_{23\bar{2}}, e^{2\bar{z}_1} dz_{13\bar{3}}, e^{\bar{z}_1} dz_{23\bar{3}} \rangle$
(1 , 2)	$\mathbb{C}\left\langle e^{-\bar{z}_{1}} d z_{1\bar{1}\bar{2}}, \ e^{-2\bar{z}_{1}} d z_{2\bar{1}\bar{2}}, \ d z_{3\bar{1}\bar{2}}, \ e^{\bar{z}_{1}} d z_{1\bar{1}\bar{3}}, \ d z_{2\bar{1}\bar{3}}, \ e^{2\bar{z}_{1}} d z_{3\bar{1}\bar{3}}, \ d z_{1\bar{2}\bar{3}}, \ e^{-\bar{z}_{1}} d z_{2\bar{2}\bar{3}}, \ e^{\bar{z}_{1}} d z_{3\bar{2}\bar{3}}, \ e^{\bar{z}_{1}} d z_{3\bar{3}}, \ e^{\bar{z}_{1}} d $
	$e^{-z_1} dz_{1\bar{1}\bar{2}}, e^{z_1} dz_{1\bar{1}\bar{3}}, e^{-2z_1} dz_{2\bar{1}\bar{2}}, e^{-z_1} dz_{2\bar{2}\bar{3}}, e^{2z_1} dz_{3\bar{1}\bar{3}}, e^{z_1} dz_{3\bar{2}\bar{3}} \rangle$
(0 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 1)	$\mathbb{C} \left\langle \mathrm{d} z_{123\bar{1}}, \mathrm{e}^{-z_1} \mathrm{d} z_{123\bar{2}}, \mathrm{e}^{z_1} \mathrm{d} z_{123\bar{3}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{123\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{123\bar{3}} \right\rangle$
(2 , 2)	$\mathbb{C}\left\langle e^{-2z_{1}} d z_{12\bar{1}\bar{2}}, d z_{12\bar{1}\bar{3}}, e^{-z_{1}} d z_{12\bar{2}\bar{3}}, d z_{13\bar{1}\bar{2}}, e^{2z_{1}} d z_{13\bar{1}\bar{3}}, e^{z_{1}} d z_{13\bar{2}\bar{3}}, e^{-z_{1}} d z_{23\bar{1}\bar{2}}, e^{z_{1}} d z_{23\bar{1}\bar{3}}, e^{-z_{1}} d z_{23\bar{1}\bar{3}}, e$
	$dz_{23\bar{2}\bar{3}},e^{-2\bar{z}_1}dz_{12\bar{1}\bar{2}},e^{-\bar{z}_1}dz_{23\bar{1}\bar{2}},e^{-\bar{z}_1}dz_{12\bar{2}\bar{3}},e^{\bar{z}_1}dz_{13\bar{2}\bar{3}},e^{2\bar{z}_1}dz_{13\bar{1}\bar{3}},e^{\bar{z}_1}dz_{23\bar{1}\bar{3}}\rangle$
(1 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{1\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{2\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{3\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{-z_1} \mathrm{d} z_{2\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{z_1} \mathrm{d} z_{3\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 2)	$\mathbb{C} \left\langle e^{-z_1} d z_{123\bar{1}\bar{2}}, e^{z_1} d z_{123\bar{1}\bar{3}}, d z_{123\bar{2}\bar{3}}, e^{-\bar{z}_1} d z_{123\bar{1}\bar{2}}, e^{\bar{z}_1} d z_{123\bar{1}\bar{3}} \right\rangle$
(2 , 3)	$\mathbb{C} \left\langle e^{-z_1} d z_{12\bar{1}\bar{2}\bar{3}}, e^{z_1} d z_{13\bar{1}\bar{2}\bar{3}}, d z_{23\bar{1}\bar{2}\bar{3}}, e^{-\bar{z}_1} d z_{12\bar{1}\bar{2}\bar{3}}, e^{\bar{z}_1} d z_{13\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 3)	$\mathbb{C} \langle \mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \rangle$

TABLE 7. The double complex $C_{\Gamma}^{\bullet,\bullet}$ in (8) for the complex parallelizable Nakamura manifold in case (a).

We compute the Bott-Chern cohomology for the complex parallelizable Nakamura manifold in case (a) in Table 8.

The differential algebra A_{Γ}^{\bullet} for the complex parallelizable Nakamura manifold in case (a) is summarized in Table 9.

Remark 2.27. Suppose $b \in 2\pi \mathbb{Z}$ and $d \in 2\pi \mathbb{Z}$. Considering another Lie group $H := \mathbb{C} \ltimes_{\psi} \mathbb{C}^2$ such that

$$\psi(z) := \begin{pmatrix} e^{\frac{1}{2}(z_1 + \bar{z}_1)} & 0\\ 0 & e^{-\frac{1}{2}(z_1 + \bar{z}_1)} \end{pmatrix},$$

the correspondence $G \in (z_1, z_2, z_3) \mapsto (z_1, z_2, z_3) \in H$ gives an embedding $\Gamma \hookrightarrow H$ as a lattice and hence we can identify $\Gamma \backslash G$ with $\Gamma \backslash H$, see [74, Section 3]. Since H is equal to the solvable completely-solvable Lie group in Example 2.17, this case is identified with case (i) in Example 2.17. Note that A_{Γ}° is not G-left-invariant in this case (for example the 2-form d $z_{2\bar{3}}$ is not G-left-invariant)

case (a)	$H_{BC}^{\bullet,\bullet}(\Gamma \backslash G)$
(0 , 0)	$\mathbb{C}\langle 1 \rangle$
(1 , 0)	$\mathbb{C}\left< \left[\mathrm{d} z_1 ight] \right>$
(0 , 1)	$\mathbb{C}\left< \left[\mathrm{d} z_{ar{1}} ight] \right>$
(2 , 0)	$\mathbb{C} \langle [e^{-z_1} d z_{12}], [e^{z_1} d z_{13}], [d z_{23}] \rangle$
(1 , 1)	$\mathbb{C} \left\langle [\mathrm{d} z_{1\bar{1}}], \; [\mathrm{e}^{-z_1} \mathrm{d} z_{1\bar{2}}], \; [\mathrm{e}^{z_1} \mathrm{d} z_{1\bar{3}}], \; [\mathrm{d} z_{2\bar{3}}], \; [\mathrm{d} z_{3\bar{2}}], \; [\mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{2\bar{1}}], \; [\mathrm{e}^{\bar{z}_1} \mathrm{d} z_{3\bar{1}}] \right\rangle$
(0 , 2)	$\mathbb{C} \left\langle [\mathrm{d} z_{\bar{2}\bar{3}}], \; [\mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{\bar{1}\bar{2}}], \; [\mathrm{e}^{\bar{z}_1} \mathrm{d} z_{\bar{1}\bar{3}}] \right\rangle$
(3 , 0)	$\mathbb{C}\left< \left[\mathrm{d} z_{123} \right] \right>$
(2 , 1)	$\mathbb{C}\left< \left[e^{-z_1} d z_{12\bar{1}} \right], \ \left[e^{-2z_1} d z_{12\bar{2}} \right], \ \left[d z_{12\bar{3}} \right], \ \left[e^{z_1} d z_{13\bar{1}} \right], \ \left[d z_{13\bar{2}} \right], \ \left[e^{2z_1} d z_{13\bar{3}} \right], \right]$
	$[d z_{23\bar{1}}], [e^{-\bar{z}_1} d z_{12\bar{1}}], [e^{\bar{z}_1} d z_{13\bar{1}}] \rangle$
(1 , 2)	$\mathbb{C}\left< \left[e^{-\bar{z}_1} d z_{1\bar{1}\bar{2}} \right], \ \left[e^{-2\bar{z}_1} d z_{2\bar{1}\bar{2}} \right], \ \left[d z_{3\bar{1}\bar{2}} \right], \ \left[e^{\bar{z}_1} d z_{1\bar{1}\bar{3}} \right], \ \left[d z_{2\bar{1}\bar{3}} \right], \ \left[e^{2\bar{z}_1} d z_{3\bar{1}\bar{3}} \right], $
	$[\mathrm{d} z_{1\bar{2}\bar{3}}], \; [\mathrm{e}^{-z_1} \mathrm{d} z_{1\bar{1}\bar{2}}], \; [\mathrm{e}^{z_1} \mathrm{d} z_{1\bar{1}\bar{3}}] \rangle$
(0 , 3)	$\mathbb{C}\left< \left[\mathrm{d} z_{ar{1}ar{2}ar{3}} ight] ight>$
(3 , 1)	$\mathbb{C} \left\langle [\mathrm{d} z_{123\bar{1}}], \; [\mathrm{e}^{-z_1} \mathrm{d} z_{123\bar{2}}], \; [\mathrm{e}^{z_1} \mathrm{d} z_{123\bar{3}}] \right\rangle$
(2 , 2)	$\mathbb{C}\left< \left[e^{-2z_1} d z_{12\bar{1}\bar{2}} \right], \ \left[d z_{12\bar{1}\bar{3}} \right], \ \left[e^{-z_1} d z_{12\bar{2}\bar{3}} \right], \ \left[d z_{13\bar{1}\bar{2}} \right], \ \left[e^{2z_1} d z_{13\bar{1}\bar{3}} \right], \ \left[e^{z_1} d z_{13\bar{2}\bar{3}} \right], \ \left[e^{z_1} d z_{13\bar{3}} \right], \ \left[e^{z_1$
	$[\mathrm{d}z_{23\bar{2}\bar{3}}], \ [\mathrm{e}^{-2\bar{z}_1}\mathrm{d}z_{12\bar{1}\bar{2}}], \ [\mathrm{e}^{-\bar{z}_1}\mathrm{d}z_{23\bar{1}\bar{2}}], \ [\mathrm{e}^{2\bar{z}_1}\mathrm{d}z_{13\bar{1}\bar{3}}], \ [\mathrm{e}^{\bar{z}_1}\mathrm{d}z_{23\bar{1}\bar{3}}]\rangle$
(1 , 3)	$\mathbb{C} \left< [d z_{1\bar{1}\bar{2}\bar{3}}], \ [e^{-\bar{z}_1} d z_{2\bar{1}\bar{2}\bar{3}}], \ [e^{\bar{z}_1} d z_{3\bar{1}\bar{2}\bar{3}}] \right>$
(3 , 2)	$\mathbb{C} \left\langle \left[e^{-z_1} d z_{123\bar{1}\bar{2}} \right], \ \left[e^{z_1} d z_{123\bar{1}\bar{3}} \right], \ \left[d z_{123\bar{2}\bar{3}} \right], \ \left[e^{-\bar{z}_1} d z_{123\bar{1}\bar{2}} \right], \ \left[e^{\bar{z}_1} d z_{123\bar{1}\bar{3}} \right] \right\rangle$
(2 , 3)	$\mathbb{C} \left< \left[e^{-z_1} d z_{12\bar{1}\bar{2}\bar{3}} \right], \ \left[e^{z_1} d z_{13\bar{1}\bar{2}\bar{3}} \right], \ \left[d z_{23\bar{1}\bar{2}\bar{3}} \right], \ \left[e^{-\bar{z}_1} d z_{12\bar{1}\bar{2}\bar{3}} \right], \ \left[e^{\bar{z}_1} d z_{13\bar{1}\bar{2}\bar{3}} \right] \right>$
(3 , 3)	$\left \mathbb{C} \left\langle \left[\mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \right] \right\rangle \right.$

TABLE 8. The Bott-Chern cohomology of the complex parallelizable Nakamura manifold in case (a).

case ($(a) \parallel A_{\Gamma}^{\bullet}$
0	$\parallel \mathbb{C} \langle 1 \rangle$
1	$\ \mathbb{C} \langle \mathrm{d} z_1, \mathrm{d} z_{\overline{1}} \rangle$
2	$\mathbb{C} \langle \mathrm{d} z_{1\bar{1}}, \mathrm{d} z_{23}, \mathrm{d} z_{2\bar{3}}, \mathrm{d} z_{3\bar{2}}, \mathrm{d} z_{\bar{2}\bar{3}} \rangle$
3	$ \ \mathbb{C} \langle \mathrm{d} z_{123}, \mathrm{d} z_{12\bar{3}}, \mathrm{d} z_{13\bar{2}}, \mathrm{d} z_{3\bar{1}\bar{2}}, \mathrm{d} z_{2\bar{1}\bar{3}}, \mathrm{d} z_{\bar{1}\bar{2}\bar{3}}, \mathrm{d} z_{\bar{1}23}, \mathrm{d} z_{1\bar{2}\bar{3}} \rangle $
4	$\ \mathbb{C} \langle \mathrm{d} z_{123\bar{1}}, \mathrm{d} z_{13\bar{1}\bar{2}}, \mathrm{d} z_{23\bar{2}\bar{3}}, \mathrm{d} z_{12\bar{1}\bar{3}}, \mathrm{d} z_{1\bar{1}\bar{2}\bar{3}} \rangle$
5	$\mathbb{C} \left\langle \mathrm{d} z_{23\overline{1}\overline{2}\overline{3}}, \mathrm{d} z_{123\overline{2}\overline{3}} \right\rangle$
6	$\mathbb{C} \langle \mathrm{d} z_{123\overline{1}\overline{2}\overline{3}} \rangle$

TABLE 9. The cochain complex A_{Γ}^{\bullet} in (1) for the complex parallelizable Nakamura manifold in case (a).

and hence $H^{\bullet}(\wedge^{\bullet}\mathfrak{g}^{*}, \mathrm{d}) \not\simeq H^{\bullet}_{dR}(\Gamma \backslash G ; \mathbb{R})$, see also [27, Corollary 4.2]. On the other hand, we have $H^{\bullet}(\wedge^{\bullet}\mathfrak{h}^{*}, \mathrm{d}) \simeq H^{\bullet}_{dR}(\Gamma \backslash H ; \mathbb{R})$, where \mathfrak{h} is the Lie algebra of H. In [23, Main Theorem], it is proven that, for any solvmanifold $\Gamma \backslash G$, there exist a connected simply-connected solvable Lie group \tilde{G} and a finite index subgroup $\tilde{\Gamma} \subseteq \Gamma$ such that $H^{\bullet}(\wedge^{\bullet}\tilde{\mathfrak{g}}^{*}, \mathrm{d}) \simeq H^{\bullet}_{dR}(\tilde{\Gamma} \backslash G ; \mathbb{R})$, where $\tilde{\mathfrak{g}}$ is the Lie algebra of \tilde{G} .

(b) If $b \notin \pi \mathbb{Z}$ or $d \notin \pi \mathbb{Z}$, then the sub-complex B^{\bullet}_{Γ} defined in (7) is

$$B_{\Gamma}^{1} = \mathbb{C} \langle \mathrm{d} \, \bar{z}_{1} \rangle ,$$

$$B_{\Gamma}^{2} = \mathbb{C} \langle \mathrm{d} \, \bar{z}_{2} \wedge \mathrm{d} \, \bar{z}_{3} \rangle ,$$

$$30$$

$B_{\Gamma}^3 =$	$\mathbb{C} \langle \mathrm{d} \bar{z}_1 \rangle$	$\wedge d \bar{z}_2$	$\wedge \mathrm{d}\bar{z}_3\rangle$	
------------------	--	----------------------	-------------------------------------	--

Then the double complex $C_{\Gamma}^{\bullet,\bullet}$ is given in Table 10.

case (b)	$C_{\Gamma}^{\bullet,\bullet}$
(0 , 0)	$\mathbb{C}\langle 1 \rangle$
(1, 0)	$\mathbb{C} \langle \mathrm{d} z_1, \mathrm{e}^{-z_1} \mathrm{d} z_2, \mathrm{e}^{z_1} \mathrm{d} z_3 \rangle$
(0 , 1)	$\mathbb{C} \langle \mathrm{d} z_{\bar{1}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} \bar{z}_3 \rangle$
(2 , 0)	$\mathbb{C} \left\langle \mathrm{e}^{-z_1} \mathrm{d} z_{12}, \mathrm{e}^{z_1} \mathrm{d} z_{13}, \mathrm{d} z_{23} \right\rangle$
(1 , 1)	$\mathbb{C} \langle \mathrm{d} z_{1\bar{1}}, \mathrm{e}^{-z_1} \mathrm{d} z_{2\bar{1}}, \mathrm{e}^{z_1} \mathrm{d} z_{3\bar{1}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{1\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{1\bar{3}} \rangle$
(0 , 2)	$\mathbb{C} \left\langle \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{\bar{1}\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{\bar{1}\bar{3}}, \mathrm{d} z_{\bar{2}\bar{3}} \right\rangle$
(3 , 0)	$\mathbb{C} \langle \mathrm{d} z_{123} \rangle$
(2 , 1)	$\mathbb{C} \left\langle e^{-z_1} d z_{12\bar{1}}, e^{z_1} d z_{13\bar{1}}, d z_{23\bar{1}}, e^{-\bar{z}_1} d z_{23\bar{2}}, e^{\bar{z}_1} d z_{23\bar{3}} \right\rangle$
(1 , 2)	$\mathbb{C} \left\langle e^{-\bar{z}_1} d z_{1\bar{1}\bar{2}}, e^{\bar{z}_1} d z_{1\bar{1}\bar{3}}, d z_{1\bar{2}\bar{3}}, e^{-z_1} d z_{2\bar{2}\bar{3}}, e^{z_1} d z_{3\bar{2}\bar{3}} \right\rangle$
(0 , 3)	$\mathbb{C} \langle \mathrm{d} z_{\bar{1}\bar{2}\bar{3}} \rangle$
(3 , 1)	$\mathbb{C} \langle \mathrm{d} z_{123\bar{1}}, \mathrm{e}^{-\bar{z}_1} \mathrm{d} z_{123\bar{2}}, \mathrm{e}^{\bar{z}_1} \mathrm{d} z_{123\bar{3}} \rangle$
(2 , 2)	$\mathbb{C} \left\langle e^{-z_1} d z_{12\bar{2}\bar{3}}, e^{z_1} d z_{13\bar{2}\bar{3}}, d z_{23\bar{2}\bar{3}}, e^{-\bar{z}_1} d z_{23\bar{1}\bar{2}}, e^{\bar{z}_1} d z_{23\bar{1}\bar{3}} \right\rangle$
(1 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{1\bar{1}\bar{2}\bar{3}} \mathrm{e}^{-z_1} \mathrm{d} z_{2\bar{1}\bar{2}\bar{3}}, \mathrm{e}^{z_1} \mathrm{d} z_{3\bar{1}\bar{2}\bar{3}} \right\rangle$
(3 , 2)	$\mathbb{C} \langle e^{-\bar{z}_1} d z_{123\bar{1}\bar{2}}, e^{\bar{z}_1} d z_{123\bar{1}\bar{3}}, d z_{123\bar{2}\bar{3}} \rangle$
(2 , 3)	$\mathbb{C} \langle e^{-z_1} d z_{12\bar{1}\bar{2}\bar{3}}, e^{z_1} d z_{13\bar{1}\bar{2}\bar{3}}, d z_{23\bar{1}\bar{2}\bar{3}} \rangle$
(3 , 3)	$\mathbb{C} \left\langle \mathrm{d} z_{123\overline{1}\overline{2}\overline{3}} \right\rangle$

TABLE 10. The double complex $C_{\Gamma}^{\bullet,\bullet}$ in (8) for the complex parallelizable Nakamura manifold in case (b).

We compute $H_{BC}^{\bullet,\bullet}(\Gamma \backslash G)$ in case (b), summarizing the results in Table 11.

The cochain complex A^{\bullet}_{Γ} in (1) in case (b) is given in Table 12.

Finally, we summarize the results of the computations of the dimensions of the de Rham, the Dolbeault, and the Bott-Chern cohomologies in Table 13 (see [40, Example 2] for the Dolbeault cohomology).

Remark 2.28. Note that, for any $(p,q) \in \mathbb{Z}^2$,

$$\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X) = \dim_{\mathbb{C}} H^{p,q}_{\partial}(X) + \dim_{\mathbb{C}} H^{p,q}_{\overline{\partial}}(X)$$

in both case (a) and case (b); note also that

$$\sum_{p+q=k} (\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X)) - 2 \dim_{\mathbb{C}} H^{k}_{dR}(X;\mathbb{C}) = \begin{cases} 8 & \text{for } k \in \{1, 5\} \\ 20 & \text{for } k \in \{2, 4\} \\ 24 & \text{for } k = 3 \\ 0 & \text{otherwise} \end{cases} \text{ in case } (a),$$

and

$$\sum_{p+q=k} (\dim_{\mathbb{C}} H^{p,q}_{BC}(X) + \dim_{\mathbb{C}} H^{p,q}_{A}(X)) - 2 \dim_{\mathbb{C}} H^{k}_{dR}(X;\mathbb{C}) = \begin{cases} 4 & \text{for } k \in \{1, 5\} \\ 8 & \text{for } k \in \{2, 4\} \\ 8 & \text{for } k = 3 \\ 0 & \text{otherwise} \end{cases} \text{ in case } (b) .$$

case(h)	$H_{BC}^{\bullet,\bullet}(\Gamma \backslash G)$
(0 , 0)	$\mathbb{C}\left<1\right>$
(1 , 0)	$\mathbb{C}\left< \left[\mathrm{d} z_1 \right] \right>$
(0 , 1)	$\mathbb{C}\left< [\mathrm{d}z_{\bar{1}}] \right>$
$({f 2},{f 0})$	$\mathbb{C} \langle [e^{-z_1} d z_{12}], [e^{z_1} d z_{13}], [d z_{23}] \rangle$
(1 , 1)	$\mathbb{C}\left< \left[\mathrm{d} z_{1\bar{1}} \right] \right>$
(0 , 2)	$\mathbb{C}\left\langle \left[\mathrm{e}^{-\bar{z}_{1}} \mathrm{d} z_{\bar{1}\bar{2}}\right], \; \left[\mathrm{e}^{\bar{z}_{1}} \mathrm{d} z_{\bar{1}\bar{3}}\right], \; \left[\mathrm{d} z_{\bar{2}\bar{3}}\right] \right\rangle$
(3 , 0)	$\mathbb{C}\left< \left[\mathrm{d} z_{123} \right] \right>$
(2 , 1)	$\mathbb{C}\left\langle \left[\mathrm{e}^{-z_1} \mathrm{d} z_{12\bar{1}}\right], \; \left[\mathrm{e}^{z_1} \mathrm{d} z_{13\bar{1}}\right], \; \left[\mathrm{d} z_{23\bar{1}}\right] \right\rangle$
$({\bf 1},{\bf 2})$	$\mathbb{C} \langle [e^{-\bar{z}_1} d z_{1\bar{1}\bar{2}}], [e^{\bar{z}_1} d z_{1\bar{1}\bar{3}}], [d z_{1\bar{2}\bar{3}}], \rangle$
(0 , 3)	$\mathbb{C}\left\langle \left[\mathrm{d} z_{1\overline{2}\overline{3}} \right] \right\rangle$
(3 , 1)	$\mathbb{C}\left< \left[\mathrm{d} z_{123\bar{1}} \right] \right>$
(2 , 2)	$\mathbb{C} \left\langle \left[e^{-z_1} d z_{12\bar{2}\bar{3}} \right], \left[e^{z_1} d z_{13\bar{2}\bar{3}} \right], \left[d z_{23\bar{2}\bar{3}} \right], \left[e^{-\bar{z}_1} d z_{23\bar{1}\bar{2}} \right], \left[e^{\bar{z}_1} d z_{23\bar{1}\bar{3}} \right] \right\rangle$
(1 , 3)	$\mathbb{C}\left< \left[\mathrm{d} z_{1\overline{1}\overline{2}\overline{3}} \right] \right>$
(3 , 2)	$\mathbb{C} \left< \left[e^{-\bar{z}_1} d z_{123\bar{1}\bar{2}} \right], \ \left[e^{\bar{z}_1} d z_{123\bar{1}\bar{3}} \right], \ \left[d z_{123\bar{2}\bar{3}} \right] \right>$
(2 , 3)	$\mathbb{C} \left< \left[e^{-z_1} d z_{12\bar{1}\bar{2}\bar{3}} \right], \ \left[e^{z_1} d z_{13\bar{1}\bar{2}\bar{3}} \right], \ \left[d z_{23\bar{1}\bar{2}\bar{3}} \right] \right>$
(3 , 3)	$\mathbb{C}\left< \left[\mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \right] \right>$

TABLE 11. The Bott-Chern cohomology of the complex parallelizable Nakamura manifold in case (b).

case (b)	A_{Γ}^{\bullet}
0	$\mathbb{C}\langle 1 \rangle$
1	$\mathbb{C} \langle \mathrm{d} z_1, \mathrm{d} z_{\bar{1}} \rangle$
2	$\mathbb{C} \langle \mathrm{d} z_{1\bar{1}}, \mathrm{d} z_{23}, \mathrm{d} z_{\bar{2}\bar{3}} \rangle$
3	$\mathbb{C} \left\langle \mathrm{d} z_{123}, \mathrm{d} z_{\overline{1}\overline{2}\overline{3}}, \mathrm{d} z_{\overline{1}\overline{2}\overline{3}}, \mathrm{d} z_{1\overline{2}\overline{3}} \right\rangle$
4	$\mathbb{C} \left\langle \mathrm{d} z_{123\bar{1}}, \ \mathrm{d} z_{23\bar{2}\bar{3}}, \ \mathrm{d} z_{1\bar{1}\bar{2}\bar{3}} \right\rangle$
5	$\mathbb{C} \left\langle \mathrm{d} z_{23\bar{1}\bar{2}\bar{3}}, \mathrm{d} z_{123\bar{2}\bar{3}} \right\rangle$
6	$\mathbb{C} \left\langle \mathrm{d} z_{123\bar{1}\bar{2}\bar{3}} \right\rangle$

TABLE 12. The cochain complex A^{\bullet}_{Γ} in (1) for the complex parallelizable Nakamura manifold in case (b).

2.5. Currents. Let X be a compact complex manifold, of complex dimension n. Denote the space of currents on X by $D^{\bullet,\bullet}X := D_{n-\bullet,n-\bullet}X$, namely, the topological dual space of $\wedge^{n-\bullet,n-\bullet}X$; endow $D^{\bullet,\bullet}X$ with a structure of double complex, by defining $\partial: D^{\bullet,\bullet}X \to D^{\bullet+1,\bullet}X$ and $\overline{\partial}: D^{\bullet,\bullet}X \to D^{\bullet,\bullet+1}X$ by duality.

By means of the injective operator

$$T: \wedge^{\bullet,\bullet} X \to D^{\bullet,\bullet} X$$
, $T_{\eta} := \int_X \eta \wedge \cdot$,

which satisfies $T \circ \partial = \partial \circ T$ and $T \circ \overline{\partial} = \overline{\partial} \circ T$, consider the de Rham double complex $(\wedge^{\bullet,\bullet}X, \partial, \overline{\partial})$ as a double sub-complex of $(D^{\bullet,\bullet}, \partial, \overline{\partial})$.

For $(p,q) \in \mathbb{Z}^2$, denote the sheaf of *p*-holomorphic forms on X by Ω_X^p , denote the sheaf of (p,q)-forms on X by $\mathcal{A}_X^{p,q}$, and denote the sheaf of bi-degree (p,q)-currents by $\mathcal{D}_X^{p,q}$. Recall that, for any fixed $p \in \mathbb{Z}$, both

$$0 \to \Omega_X^p \to \left(\mathcal{A}_X^{p,\bullet}, \overline{\partial}\right) \qquad \text{and} \qquad 0 \to \Omega_X^p \to \left(\mathcal{D}_X^{p,\bullet}, \overline{\partial}\right)$$

$\dim_{\mathbb{C}} \mathbf{H}^{\bullet, \bullet}_{\sharp} \left(\Gamma \backslash \mathbf{G} \right)$	case (a)			case (b)		
H	dR	$\overline{\partial}$	BC	dR	$\overline{\partial}$	BC
(0 , 0)	1	1	1	1	1	1
(1 , 0)	2	3	1	2	3	1
(0 , 1)		3	1		1	1
(2 , 0)		3	3	3	3	3
(1 , 1)	5	9	7		3	1
(0 , 2)		3	3		1	3
(3 , 0)		1	1		1	1
(2 , 1)	8	9	9	4	3	3
(1 , 2)		9	9		3	3
(0 , 3)		1	1		1	1
(3 , 1)		3	3		1	1
(2 , 2)	5	9	11	3	3	5
(1 , 3)		3	3		3	1
(3 , 2)	2	3	5	2	1	3
(2 , 3)		3	5		3	3
(3 , 3)	1	1	1	1	1	1

TABLE 13. Summary of the dimensions of the cohomologies of the complex parallelizable Nakamura manifold.

are fine (and hence acyclic, see, e.g., [30, IV.4.19]) resolutions of Ω_X^p , and hence

$$\frac{\ker\left(\overline{\partial}:\ \wedge^{p,\bullet}X\to\wedge^{p,\bullet+1}X\right)}{\operatorname{im}\left(\overline{\partial}:\ \wedge^{p,\bullet-1}X\to\wedge^{p,\bullet}X\right)}\ \simeq\ \check{H}^{\bullet}\left(X;\Omega^{p}_{X}\right)\ \simeq\ \frac{\ker\left(\overline{\partial}:\ \mathrm{D}^{p,\bullet}X\to\mathrm{D}^{p,\bullet+1}X\right)}{\operatorname{im}\left(\overline{\partial}:\ \mathrm{D}^{p,\bullet-1}X\to\mathrm{D}^{p,\bullet}X\right)}\ ,$$

see, e.g., [30, IV.6.4].

Remark 2.29. More precisely, given X a compact complex manifold, for any $p \in \mathbb{Z}$ and for any $q \in \mathbb{Z}$, the maps $T: (\wedge^{\bullet,q}X, \partial) \to (D^{\bullet,q}X, \partial)$ and $T: (\wedge^{p,\bullet}X, \overline{\partial}) \to (D^{p,\bullet}X, \overline{\partial})$ are quasi-isomorphisms.

Indeed, firstly, we show that $T: (\wedge^{p,\bullet}X, \overline{\partial}) \to (D^{p,\bullet}X, \overline{\partial})$ induces an injective map in cohomology. Fix g a Hermitian metric on X. If $T_{[\alpha]} = [\overline{\partial}S] = [0] \in H^{\bullet}(D^{p,\bullet}X, \overline{\partial})$ with α the $\overline{\Box}_{g^{-}}$ harmonic representative of $[\alpha] \in H^{\bullet}(\wedge^{p,\bullet}X, \overline{\partial})$ and $S \in D^{p,\bullet-1}X$, then in particular $T_{\alpha}|_{\ker\overline{\partial}} = 0$. Since $\overline{*}_{g}\alpha \in \ker\overline{\partial}$, it follows that $0 = T_{\alpha}(\overline{*}_{g}\alpha) = \int_{X} \alpha \wedge \overline{*}_{g}\alpha$ and hence $\alpha = 0$. Now, since $\frac{\ker(\overline{\partial}: \wedge^{p,\bullet-1}X \to \wedge^{p,\bullet+1}X)}{\operatorname{im}(\overline{\partial}: D^{p,\bullet-1}X \to \operatorname{correnti}^{p,\bullet}X)}$ are isomorphic \mathbb{C} -vector spaces of finite dimension, it follows that $T: (\wedge^{p,\bullet}X, \overline{\partial}) \to (D^{p,\bullet}X, \overline{\partial})$ is actually a quasi-isomorphism. By conjugation, also $T: (\wedge^{\bullet,q}X, \partial) \to (D^{\bullet,q}X, \partial)$ is a quasi-isomorphism.

By applying Proposition 1.1 to $(\wedge^{p,\bullet}X, \overline{\partial}) \hookrightarrow (\mathbb{D}^{p,\bullet}X, \overline{\partial})$, or by noting that both $0 \to \underline{\mathbb{C}}_X \to (\mathcal{A}_X^{\bullet} \otimes \mathbb{C}, d)$ and $0 \to \underline{\mathbb{C}}_X \to (\mathcal{D}_X^{\bullet} \otimes \mathbb{C}, d)$ are acyclic resolutions of the constant sheaf $\underline{\mathbb{C}}_X$ over X (where, for $k \in \mathbb{Z}$, the sheaf of k-forms on X is denoted by \mathcal{A}_X^k , and the sheaf of degree k-currents is denoted by \mathcal{D}_X^k), one gets that

$$\frac{\ker\left(\mathrm{d}\colon\wedge^{\bullet}X\otimes_{\mathbb{R}}\mathbb{C}\to\wedge^{\bullet+1}X\otimes_{\mathbb{R}}\mathbb{C}\right)}{\operatorname{im}\left(\overline{\partial}\colon\wedge^{\bullet-1}X\otimes_{\mathbb{R}}\mathbb{C}\to\wedge^{\bullet}X\otimes_{\mathbb{R}}\mathbb{C}\right)} \simeq \check{H}^{\bullet}\left(X;\underline{\mathbb{C}}_{X}\right) \simeq \frac{\ker\left(\mathrm{d}\colon\mathrm{D}^{\bullet}X\otimes_{\mathbb{R}}\mathbb{C}\to\mathrm{D}^{\bullet+1}X\otimes_{\mathbb{R}}\mathbb{C}\right)}{\operatorname{im}\left(\mathrm{d}\colon\mathrm{D}^{\bullet-1}X\otimes_{\mathbb{R}}\mathbb{C}\to\mathrm{D}^{\bullet}X\otimes_{\mathbb{R}}\mathbb{C}\right)}.$$

Lemma 2.30. Let X be a compact complex manifold. For any $(p,q) \in \mathbb{Z}^2$, the map $T : \wedge^{\bullet,\bullet} X \to D^{\bullet,\bullet} X$ induces the isomorphism

$$T: \frac{\ker\left(\mathrm{d}: \wedge^{p,q} X \to \wedge^{p+q+1} X \otimes_{\mathbb{R}} \mathbb{C}\right)}{\operatorname{im}\left(\mathrm{d}: \wedge^{p+q-1} X \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q} X \otimes_{\mathbb{R}} \mathbb{C}\right)} \to \frac{\ker\left(\mathrm{d}: \mathrm{D}^{p,q} X \to \mathrm{D}^{p+q+1} X \otimes_{\mathbb{R}} \mathbb{C}\right)}{\operatorname{im}\left(\mathrm{d}: \mathrm{D}^{p+q-1} X \otimes_{\mathbb{R}} \mathbb{C} \to \mathrm{D}^{p+q} X \otimes_{\mathbb{R}} \mathbb{C}\right)}$$

Proof. Consider the regularization process in [31, Theorem III.12]: there exist $R: D^{\bullet,\bullet}X \to \wedge^{\bullet,\bullet}X$ and $A: D^{\bullet}X \otimes_{\mathbb{R}} \mathbb{C} \to D^{\bullet+1}X \otimes_{\mathbb{R}} \mathbb{C}$ linear operators such that

$$\mathrm{id}_{\mathrm{D}^{\bullet,\bullet}X} = R + \mathrm{d}A + A \mathrm{d}$$
, and $R \mid_{\wedge^{\bullet,\bullet}X} = \mathrm{id}_{\wedge^{\bullet,\bullet}X}$ and $A \mid_{\wedge^{\bullet,\bullet}X} = 0$.

Take $S \in \frac{\ker(\mathrm{d}: \mathrm{D}^{p,q}X \to \mathrm{D}^{p+q+1}X \otimes_{\mathbb{R}} \mathbb{C})}{\operatorname{im}(\mathrm{d}: \mathrm{D}^{p+q-1}X \otimes_{\mathbb{R}} \mathbb{C} \to \mathrm{D}^{p+q}X \otimes_{\mathbb{R}} \mathbb{C})}$. Since the map $T : \wedge^{\bullet,\bullet} X \to \mathrm{D}^{\bullet,\bullet}X$ is a quasi-isomorphism, then there exist $\eta \in \ker \mathrm{d} \cap \wedge^{p,q} X$ and $U \in \mathrm{D}^{p+q-1}X \otimes_{\mathbb{R}} \mathbb{C}$ such that

$$S = T_{\eta} + \mathrm{d} U ;$$

hence one gets

$$RS = T_{\eta} + d \left(U - AS \right) ,$$

and hence the lemma follows.

As a consequence, by using Theorem 1.3, we get another proof of the following result by M. Schweitzer: see [64], and also [47, §3.4], where it is noticed as a consequence of the hypercohomological interpretation of the Bott-Chern cohomology, see also [30, IV.12.1].

Corollary 2.31 (see [64, §4.d]). Let X be a compact complex manifold. Then, for any $(p,q) \in \mathbb{Z}^2$, the natural map

$$T: \frac{\ker\left(\partial + \overline{\partial} \colon \wedge^{p,q} X \to \wedge^{p+1,q} X \oplus \wedge^{p,q+1} X\right)}{\operatorname{im}\left(\partial\overline{\partial} \colon \wedge^{p-1,q-1} X \to \wedge^{p,q} X\right)} \to \frac{\ker\left(\partial + \overline{\partial} \colon \mathrm{D}^{p,q} X \to \mathrm{D}^{p+1,q} X \oplus \mathrm{D}^{p,q+1} X\right)}{\operatorname{im}\left(\partial\overline{\partial} \colon \mathrm{D}^{p-1,q-1} X \to \mathrm{D}^{p,q} X\right)}$$

induced by $T : \wedge^{\bullet, \bullet} X \ni \eta \mapsto T_{\eta} := \int_X \eta \wedge \cdot \in D^{\bullet, \bullet} X$ is an isomorphism.

Proof. We firstly prove that T induces an injective map in Bott-Chern cohomology. Indeed, let $\mathfrak{a} = [\alpha] \in H^{p,q}_{BC}(X)$ be such that $[T_{\mathfrak{a}}] = 0 \in \frac{\ker(\partial + \overline{\partial} : D^{p,q}X \to D^{p+1,q}X \oplus D^{p,q+1}X)}{\operatorname{im}(\partial \overline{\partial} : D^{p-1,q-1}X \to D^{p,q}X)}$. Choose g a Hermitian metric on X, and let $\alpha \in \wedge^{p,q}X$ be the $\tilde{\Delta}^{BC}$ -harmonic representative of \mathfrak{a} with respect to g. Therefore, there exists $S \in D^{p-1,q-1}X$ such that $T_{\alpha} = \partial \overline{\partial}S$. In particular, $T_{\alpha}|_{\ker \partial \overline{\partial}} = 0$. Since $\overline{*}_{g}\alpha \in \ker \partial \overline{\partial}$, it follows that $0 = T_{\alpha}(\overline{*}_{g}\alpha) = \int_{X} \alpha \wedge \overline{*}_{g}\alpha$, and hence $\mathfrak{a} = [\alpha] = 0$.

We prove now that T induces a surjective map in Bott-Chern cohomology. Firstly, by Remark 2.29, for any $p \in \mathbb{Z}$ and for any $q \in \mathbb{Z}$, the maps $T : (\wedge^{\bullet,q}X, \partial) \to (D^{\bullet,q}X, \partial)$ and $T : (\wedge^{p,\bullet}X, \overline{\partial}) \to (D^{p,\bullet}X, \overline{\partial})$ are quasi-isomorphisms. Furthermore, by Lemma 2.30, the induced map

$$T_{\cdot}:\frac{\ker\left(\mathrm{d}\colon\wedge^{\bullet}X\otimes\mathbb{C}\to\wedge^{\bullet+1}X\otimes\mathbb{C}\right)\cap\wedge^{p,q}X}{\operatorname{im}\left(\mathrm{d}\colon\wedge^{\bullet-1}X\otimes\mathbb{C}\to\wedge^{\bullet}X\otimes\mathbb{C}\right)}\to\frac{\ker\left(\mathrm{d}\colon\mathrm{D}^{\bullet}X\otimes\mathbb{C}\to\mathrm{D}^{\bullet+1}X\otimes\mathbb{C}\right)\cap\mathrm{D}^{p,q}X}{\operatorname{im}\left(\mathrm{d}\colon\mathrm{D}^{\bullet-1}X\otimes\mathbb{C}\to\mathrm{D}^{\bullet}X\otimes\mathbb{C}\right)}$$

is surjective. Hence, Theorem 1.3 applies, yielding that the map T induces a surjective map in Bott-Chern cohomology.

Remark 2.32. Given X a compact complex manifold of complex dimension n and G a finite group of biholomorphisms of X, consider the compact complex orbifold $\tilde{X} := X/G$ of complex dimension n (namely, [63, Definition 2], \tilde{X} is a singular complex space whose singularities are locally isomorphic to quotient singularities \mathbb{C}^n/G with $G \subset \operatorname{GL}(\mathbb{C}^n)$ finite; see [18, Theorem 1], see also [57, Theorem 1.7.2]).

By extending the action of G on X to $\wedge^{\bullet}X$, respectively $\wedge^{\bullet,\bullet}X$, set $\wedge^{\bullet}\tilde{X}$ the space of G-invariant forms in $\wedge^{\bullet,\bullet}X$. Respectively $\wedge^{\bullet,\bullet}\tilde{X}$ the space of G-invariant forms in $\wedge^{\bullet,\bullet}X$. Analogously, consider $D^{\bullet}\tilde{X}$ the space of G-invariant currents in $D^{\bullet,\bullet}X$, respectively $D^{\bullet,\bullet}\tilde{X}$ the space of G-invariant currents in $D^{\bullet,\bullet}X$. Consider the sub-complex $T: (\wedge^{\bullet,\bullet}\tilde{X}, \partial, \overline{\partial}) \hookrightarrow (D^{\bullet,\bullet}\tilde{X}, \partial, \overline{\partial})$. By W. L. Baily's result [12, page

Consider the sub-complex $T: (\wedge^{\bullet,\bullet}X, \partial, \partial) \hookrightarrow (D^{\bullet,\bullet}X, \partial, \partial)$. By W. L. Baily's result [12, page 807], and arguing as in Remark 1.9 by means of a Hermitian metric on \tilde{X} , namely, a *G*-invariant Hermitian metric on X, it follows that, for any $p \in \mathbb{Z}$, the induced inclusion $T: (\wedge^{p,\bullet}\tilde{X}, \overline{\partial}) \hookrightarrow (D^{p,\bullet}\tilde{X}, \overline{\partial})$ is a quasi-isomorphism; by conjugation, it follows also that, for any $q \in \mathbb{Z}$, the induced inclusion $T: (\wedge^{\bullet,q}\tilde{X}, \partial) \hookrightarrow (D^{\bullet,q}\tilde{X}, \overline{\partial})$ is a quasi-isomorphism. In particular, by using Proposition 1.1, one recovers that the induced inclusion $T: (\wedge^{\bullet}\tilde{X}, d) \hookrightarrow (D^{\bullet,\tilde{X}}, d) \hookrightarrow (D^{\bullet,\tilde{X}}, d)$ is a quasi-isomorphism. Is a quasi-isomorphism, as proved also by I. Satake, [63, Theorem 1].

We note that the inclusion $T: \wedge^{\bullet,\bullet} \tilde{X} \to D^{\bullet,\bullet} \tilde{X}$ induces the surjective map

$$T_{\cdot} : \frac{\ker\left(\mathrm{d} \colon \wedge^{p+q} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q+1} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C}\right) \cap \wedge^{p,q} \tilde{X}}{\mathrm{im}\left(\mathrm{d} \colon \wedge^{p+q-1} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C} \to \wedge^{p+q} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C}\right)}$$
$$\to \frac{\ker\left(\mathrm{d} \colon \mathrm{D}^{p+q} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C} \to \mathrm{D}^{p+q+1} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C}\right) \cap \mathrm{D}^{p,q} \tilde{X}}{\mathrm{im}\left(\mathrm{d} \colon \mathrm{D}^{p+q-1} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C} \to \mathrm{D}^{p+q} \tilde{X} \otimes_{\mathbb{R}} \mathbb{C}\right)};$$

indeed, since $g^* \circ T \circ g^* = T$ for any $g \in G$, the regularization (see [31, Theorem III.12]) of a G-invariant current of bidegree (p, q) gives a G-invariant (p, q)-form.

Hence, Theorem 1.3 applies, yielding that, for any $(p,q) \in \mathbb{Z}^2$, the inclusion T induces an isomorphism

$$T: \frac{\ker\left(\mathrm{d} \colon \wedge^{p,q} \tilde{X} \to \wedge^{p+1,q} \tilde{X} \oplus \wedge^{p,q+1} \tilde{X}\right)}{\operatorname{im}\left(\partial\overline{\partial} \colon \wedge^{p-1,q-1} \tilde{X} \to \wedge^{p,q} \tilde{X}\right)} \xrightarrow{\simeq} \frac{\ker\left(\mathrm{d} \colon \mathrm{D}^{p,q} \tilde{X} \to \mathrm{D}^{p+1,q} \tilde{X} \oplus \mathrm{D}^{p,q+1} \tilde{X}\right)}{\operatorname{im}\left(\partial\overline{\partial} \colon \mathrm{D}^{p-1,q-1} \tilde{X} \to \mathrm{D}^{p,q} \tilde{X}\right)}$$

as proved also in [5, Theorem 1].

Note that one can argue also by means of the sheaf-theoretic interpretation of the Bott-Chern and Aeppli cohomologies, developed by J.-P. Demailly, [30, §V I.12.1] and M. Schweitzer, [64, §4], see also [47, §3.2].

Remark 2.33 ([8]). We note that the results in Section 1 can be used also to investigate the symplectic Bott-Chern and Aeppli cohomologies, as introduced and studied by L.-S. Tseng and S.-T. Yau in [66, 67, 68], for solvmanifolds endowed with left-invariant symplectic structures. In particular, one gets a different proof of the result in [50, Theorem 3] by M. Macrì for completely-solvable solvmanifolds, and a generalization for (non-necessarily completely-solvable) solvmanifolds. The complex parallelizable Nakamura manifold $\Gamma \backslash G$ can be investigated explicitly, also in relation with the validity of the dd^{Λ}lemma, equivalently, the Hard Lefschetz Condition; see also [38]. We refer to [8] for more details.

References

- A. Aeppli, On the cohomology structure of Stein manifolds, Proc. Conf. Complex Analysis (Minneapolis, Minn., 1964), Springer, Berlin, 1965, pp. 58–70.
- [2] L. Alessandrini, G. Bassanelli, Small deformations of a class of compact non-Kähler manifolds, Proc. Amer. Math. Soc. 109 (1990), no. 4, 1059–1062.
- [3] A. Andrada, M. L. Barberis, I. G. Dotti Miatello, Classification of abelian complex structures on 6-dimensional Lie algebras, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 232–255.
- [4] D. Angella, The cohomologies of the Iwasawa manifold and of its small deformations, J. Geom. Anal. Online First (2011), DOI: 10.1007/s12220-011-9291-z.
- [5] D. Angella, Cohomologies of certain orbifolds, J. Geom. Phys. 171 (2013), 117-126.
- [6] D. Angella, M. G. Franzini, F. A. Rossi, Degree of non-Kählerianity for 6-dimensional nilmanifolds, arXiv:1210.0406 [math.DG].
- [7] D. Angella, H. Kasuya, Cohomologies of deformations of solvmanifolds and closedness of some properties, arXiv:1305.6709v1 [math.CV].
- [8] D. Angella, H. Kasuya, Symplectic Bott-Chern cohomology of solvmanifolds.
- [9] D. Angella, A. Tomassini, On cohomological decomposition of almost-complex manifolds and deformations, J. Symplectic Geom. 9 (2011), no. 3, 403–428.
- [10] D. Angella, A. Tomassini, On the ∂∂-Lemma and Bott-Chern cohomology, Invent. Math. Online First (2012), DOI: 10.1007/s00222-012-0406-3.
- [11] D. Angella, A. Tomassini, W. Zhang, On Cohomological Decomposability of Almost-Kähler Structures, arXiv:1211.2928v1 [math.DG], to appear in Proc. Amer. Math. Soc..
- [12] W. L. Baily, On the quotient of an analytic manifold by a group of analytic homeomorphisms, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), no. 9, 804–808.
- [13] M. L. Barberis, I. G. Dotti Miatello, R. J. Miatello, On certain locally homogeneous Clifford manifolds, Ann. Global Anal. Geom. 13 (1995), no. 3, 289–301.
- [14] F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), no. 1, 1–40.
- [15] Ch. Benson, C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513–518.
- [16] B. Bigolin, Gruppi di Aeppli, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 23 (1969), no. 2, 259–287.
- [17] J.-M. Bismut, Hypoelliptic Laplacian and Bott-Chern cohomology, preprint (Orsay) (2011).
- [18] S. Bochner, Compact groups of differentiable transformations, Annals of Math. (2) 46 (1945), no. 3, 372–381.
- [19] R. Bott, S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), no. 1, 71–112.
- [20] M. Ceballos, A. Otal, L. Ugarte, R. Villacampa, Classification of complex structures on 6-dimensional nilpotent Lie algebras, arXiv:1111.5873v4 [math.DG].

- [21] S. Console, Dolbeault cohomology and deformations of nilmanifolds, Rev. Unión Mat. Argent. 47 (2006), no. 1, 51-60.
- [22] S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds, *Transform. Groups* 6 (2001), no. 2, 111–124.
- [23] S. Console, A. Fino, On the de Rham cohomology of solvmanifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, 801–818.
- [24] L. A. Cordero, M. Fernández, L. Ugarte, A. Gray, A general description in the terms of the Frölicher spectral sequence, Differ. Geom. Appl. 7 (1997), no. 1, 75–84.
- [25] L. A. Cordero, M. Fernández, A. Gray, L. Ugarte, Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5405–5433.
- [26] L. C. de Andrés, M. Fernández, M. de León, J. J. Mencía, Some six-dimensional compact symplectic and complex solvmanifolds, *Rend. Mat. Appl.* (7) 12 (1992), no. 1, 59–67.
- [27] P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds, Ann. Inst. Fourier 56 (2006), no. 5, 1281–1296.
- [28] K. Dekimpe, Semi-simple splittings for solvable Lie groups and polynomial structures, Forum Math. 12 (2000), no. 1, 77–96.
- [29] P. Deligne, Ph. Griffiths, J. Morgan, D. P. Sullivan, Real homotopy theory of Kähler manifolds, *Invent. Math.* 29 (1975), no. 3, 245–274.
- [30] J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf 2012.
- [31] G. de Rham, Differentiable manifolds. Forms, currents, harmonic forms., Grundlehren der Mathematischen Wissenschaften, 266, Springer-Verlag, Berlin, 1984.
- [32] N. Dungey, A. F. M. ter Elst, D. W. Robinson, Analysis on Lie Groups with Polynomial Growth, Progress in Mathematics, 214, Birkhäuser Boston (2003).
- [33] M. Fernández, V. Muñoz, J. A. Santisteban, Cohomologically Kähler manifolds with no Kähler metrics, Int. J. Math. Sci. (2003), no. 52, 3315–3325.
- [34] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Reprint of the 1978 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994.
- [35] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65–71.
- [36] K. Hasegawa, Small deformations and non-left-invariant complex structures on six-dimensional compact solvmanifolds, Differ. Geom. Appl. 28 (2010), no. 2, 220–227.
- [37] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), no. 1960, 289–331.
- [38] H. Kasuya, Formality and hard Lefschetz properties of aspherical manifolds, arXiv:0910.1175v4 [math.GT], to appear in Osaka J. Math..
- [39] H. Kasuya, Minimal models, formality and hard Lefschetz properties of solvmanifolds with local systems, J. Diff. Geom. 93 (2013), no. 2, 269–298.
- [40] H. Kasuya, Techniques of computations of Dolbeault cohomology of solvmanifolds, Math. Z. 273 (2013), no. 1-2, 437–447.
- [41] H. Kasuya, Hodge symmetry and decomposition on non-Kähler solvmanifolds, arXiv:1109.5929v4 [math.DG].
- [42] H. Kasuya, Geometrical formality of solvmanifolds and solvable Lie type geometries, arXiv:1207.2390v2 [math.DG], to appear in RIMS Kôkyûroku Bessatsu, Geometry of Transformation Groups and Combinatorics.
- [43] H. Kasuya, De Rham and Dolbeault cohomology of solvmanifolds with local systems, arXiv:1207.3988v3 [math.DG].
- [44] H. Kasuya, The Frölicher spectral sequence of certain solvmanifolds, arXiv:1210.2661v3 [math.DG], to appear in J. Geom. Anal.
- [45] K. Kodaira, Complex manifolds and deformation of complex structures, Translated from the 1981 Japanese original by Kazuo Akao, Reprint of the 1986 English edition, Classics in Mathematics, Springer-Verlag, Berlin, 2005.
- [46] K. Kodaira, D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Annals of Math. (2) 71 (1960), no. 1, 43–76.
- [47] R. Kooistra, Regulator currents on compact complex manifolds, Thesis (Ph.D.)–University of Alberta (Canada), 2011.
- [48] A. Latorre, L. Ugarte, R. Villacampa, On the Bott-Chern cohomology and balanced Hermitian nilmanifolds, arXiv:1210.0395 [math.DG].
- [49] T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651–684.
- [50] M. Macrì, Cohomological properties of unimodular six dimensional solvable Lie algebras, arXiv:1111.5958v2 [math.DG].
- [51] J. McCleary, A user's guide to spectral sequences, Second edition, Cambridge Studies in Advanced Mathematics, 58, Cambridge University Press, Cambridge, 2001.
- [52] J. Milnor, Curvature of left-invariant metrics on Lie groups, Adv. Math. 21 (1976), no. 3, 293–329.
- [53] G. D. Mostow, Cohomology of topological groups and solvmanifolds, Annals of Math. (2) 73 (1961), no. 1, 20–48.
- [54] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differ. Geom. 10 (1975), no. 1, 85–112.
- [55] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Annals of Math. (2) 59 (1954), no. 3, 531–538.
- [56] D. Popovici, Deformation openness and closedness of various classes of compact complex manifolds; Examples, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), DOI: 10.2422/2036-2145.201110_008.
- [57] J. Raissy, Normalizzazione di campi vettoriali olomorfi, Tesi di Laurea Specialistica, Università di Pisa, http://etd.adm.unipi.it/theses/available/etd-06022006-141206/, 2006.
- [58] M. S. Raghunathan, Discrete subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.

- [59] S. Rollenske, Geometry of nilmanifolds with left-invariant complex structure and deformations in the large, Proc. London Math. Soc. 99 (2009), no. 2, 425–460.
- [60] S. Rollenske, Dolbeault cohomology of nilmanifolds with left-invariant complex structure, in W. Ebeling, K. Hulek, K. Smoczyk (eds.), Complex and Differential Geometry: Conference held at Leibniz Universität Hannover, September 14 18, 2009, Springer Proceedings in Mathematics 8, Springer, 2011, 369–392.
- [61] Y. Sakane, On compact complex parallelisable solvmanifolds, Osaka J. Math. 13 (1976), no. 1, 187–212.
- [62] S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3, 311-333.
- [63] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), no. 6, 359-363.
- [64] M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528v1 [math.AG].
- [65] A. Tomasiello, Reformulating supersymmetry with a generalized Dolbeault operator, J. High Energy Phys. 2008, no. 2, 010, 25 pp.
- [66] L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: I, J. Differ. Geom. 91 (2012), no. 3, 383–416.
- [67] L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: II, J. Differ. Geom. 91 (2012), no. 3, 417–443.
- [68] L.-S. Tseng, S.-T. Yau, Generalized Cohomologies and Supersymmetry, arXiv:1111.6968v1 [hep-th].
- [69] J. Varouchas, Sur l'image d'une variété Kählérienne compacte, in F. Norguet (ed.), Fonctions de plusieurs variables complexes V, Sémin. F. Norguet, Paris 1979-1985, Lect. Notes Math. 1188, 245–259 (1986).
- [70] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10, Société Mathématique de France, Paris, 2002.
- [71] H.-C. Wang, Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954), no. 5, 771–776.
- [72] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Corrected reprint of the 1971 edition, Graduate Texts in Mathematics, 94, Springer-Verlag, New York-Berlin, 1983.
- [73] C.-C. Wu, On the geometry of superstrings with torsion, Thesis (Ph.D.)Harvard University, Proquest LLC, Ann Arbor, MI, 2006.
- [74] T. Yamada, A pseudo-Kähler structure on a nontoral compact complex parallelizable solvmanifold, Geom. Dedicata 112 (2005), no. 1, 115–122.

(Daniele Angella) Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127, Pisa, Italy

E-mail address: angella@mail.dm.unipi.it

(Hisashi Kasuya) Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

E-mail address: khsc@ms.u-tokyo.ac.jp