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 In the speech recognition literature:  

   Deep networks are shown to outperform HMMs (Seide 
2012, etc.).

 In the speaker recognition literature: 

   Many sites report ever-improving performance figures 
(Konig 1998, Garimella 2012).

The Big Picture
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Bottleneck Network Architecture

Stacked raw features from 0.5 seconds of speech

Speakers

BACK-
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STATISTICS

An information bottleneck acts as a feature compressor 
(Konig 1998).
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Using Neural Networks 
for Speaker Recognition

 Feature extraction with neural networks traditionally performs 
relatively poorly.

 We investigate approaches to  make the performance comparison 
the other way around. :-) 
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An Overview 

We demonstrate two ways of exploiting the expressive power of deep 
networks:

1) The training is adjusted to the targeted performance evaluation metric.

2) Information from a separate system is incorporated in training.
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 Frame level training has limitations: 
– Learning the speaker is constrained to the context around the 

current frame.

– A long context would explode the number of free parameters.

 Conversation level training offers solutions:
– The frames coming from one conversation are tied together so that 

a single decision is made.

– The network size can be kept relatively small.

Frame vs. Conversation Level Training
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 A log-likelihood ratio-based training criterion (Brummer 2005) is 
optimized

 There is one target and (S-1) nontarget scores at the output layer.

(1) A Speaker Recognition
Training Criterion 

:target :nontarget
( ) log(1 ) log(1 )NT u cu c

LLR
T N

J e eα β + +− −Θ = + + +∑ ∑

Cost associated 
with target trials

Cost associated 
with nontarget trials
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 We need a global constraint on the decision for the entire recording.

 The scores are averaged at the output layer before the nonlinearity. 

Conversation Level Training 
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(2) Using a Separate System in 
Training

Scores from a separate system are incorporated in 
training.

...
Standard 

MFCC 
System

Calibration

BN score 
generation

Additional 
scores

M
nu

( 1)−W l

( ) ( 1) ( 1)( ) σ− −Θ =u Wl l l

( 1) ( 1)
1 2( ) M

n nu uω σ ω κ− −′ Θ = + +W l l

in the training objective is replaced with

The term  
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Score Calibration

 The additional scores should have a log-likelihood 
ratio interpretation.

 The score calibration is achieved by solving

 The network is trained by solving

1 2

* * *
1 2 1 2

, ,
{ , , } arg min  ( , , |  fixed)LLRJ

ω ω κ
ω ω κ ω ω κ= Θ

* * *
1 2arg min  ( | , ,  fixed)LLRJ ω ω κ

Θ
Θ = Θ
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The Back-End System
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Experiments

 We ran experiments on the same and different 
microphone tasks of NIST SRE 2010. 

 Microphone recordings were used in bottleneck 
network training.
– 173 speakers in the training and validation sets
– 4341 recordings in training and 865 recordings in validation

 Network architecture:

       294 dimensional input → 1000 x  42  x  500  → 173 speakers  
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Processing of the Input and Output 
Features of the Network

Bottleneck 
Network

Decorrelated 
Bottleneck 
Features

● Input features are mean and variance normalized to 
better condition the network.

● The bottleneck features are decorrelated for modeling  
with diagonal covariance GMMs.

Decorrelation 
with PCA

Bottleneck Feature 
Extraction (before 
the nonlinearity)
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Effect of the Training Criterion
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Dependence on Feature Size
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Performance when Trained with 
Information from a Separate  System
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Summary

1) We showed how to train a neural network for use in 
the front-end of a speaker recognition system.

 
– A conversation level training criterion that minimizes a log-likelihood 

ratio score-based cost function is developed.

2) We also showed how to use neural networks to 
exploit information from a separate system.    
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Thank you!
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