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Abstract—In semiconductor assembly and test manufacturing
(ATM), a station normally consists of multiple machines (maybe
of different types) for a certain operation step. It is critical to opti-
mize the utilization of ATM stations for productivity improvement.
In this paper, we first formulate the bottleneck station scheduling
problem, and then apply ant colony optimization (ACO) to solve it
metaheuristically. The ACO is a biological-inspired optimization
mechanism. It incorporates each ant agent’s feedback information
to collaboratively search for the good solutions. We develop the
ACO-based scheduling framework and provide the system param-
eter tuning strategy. The system implementation at an Intel chipset
factory demonstrates a significant machine conversion reduction
comparing to a traditional scheduling approach.

Note to Practitioners—Scheduling a bottleneck station in ATM
is challenging due to expensive equipment, high product mixture,
and fluctuant market demands. It is desirable to maximize the
equipment utilization and minimize machine conversion time of
the bottleneck station. In practice, a manual scheduling method
was utilized at an Intel chipset factory and the performance was
not satisfactory. To this end, we develop a production sched-
uling system for a bottleneck station using the ACO technique.
ACO is a metaheuristic optimization algorithm that adapts the
biological metaphor of a colony of cooperating ants. The system
takes into account business rules and prioritized objectives in
ATM. The scheduling system was successfully implemented and
operated in an Intel chipset factory in 2005. By leveraging the
system in a production environment, we design and conduct
numerical experiments to optimize the system parameter tuning
strategy. Comparing to a previously existing manual approach, the
ACO-based scheduling system reduced the machine conversion
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time of a bottleneck station by 20% and saved Intel millions of
dollars.

Index Terms—Ant colony optimization (ACO), bottleneck,
heuristics, scheduling, semiconductor manufacturing.

I. INTRODUCTION

T
HERE ARE MAINLY two types of manufacturing pro-
cesses in semiconductor manufacturing: wafer fabrication

(front end) and assembly and test (back end). Assembly and
testing manufacturing (ATM) process is different and difficult
compared with wafer fabrication in the following aspects.
1) ATM is highly impacted by market demand fluctuation
because the finished goods of ATM are shipped directly to
customers. 2) Since one ATM factory normally is fed by several
wafer fabrication factories, the ATM factories have a higher
product-mix and technology-mix. 3) There could be multiple
(legacy) machine types for each operation in ATM due to long
machine life cycle.

Fig. 1 shows a typical ATM process flow for chipsets in a
current manufacturing facility. In the “Wafer Reflow” operation,
solder bumps on wafers are reflowed by exposing the wafers to a
specified temperature in reflow ovens in order to melt the solder
bumps to a rounded shape and create a protective thermal oxide
layer. The wafers are cut into individual dies during “SAW” the
process. The dies are then shot and stick to substrates in the
“SCAM” operation. Residual flux is removed during the “DE-
FLUX” process and epoxy materials are then filled into the tiny
space between the die and the substrate during “EPOXY.” The
“PEVI” process is a visual inspection operation to screen out
rejects. The “Burn-In” operation forces infant mortality failures
in a high temperature environment. In the “TEST” operation,
packaged units are 100% electrically tested and categorized into
different bins based upon their performances. The “Laser Mark”
operation is to mark the units with traceable information. In the
“Ball Attach” process, solder balls are attached to the bottom of
the units, the balls will serve as connection channels to external
devices, such as mother boards. “FVI” and “RVSI” are also vi-
sual inspection operations to control unit damage and defects.

Many ATM factories are designed based on theory of con-
straints (TOC), in which the throughput of the production line
is limited by the bottleneck station capacity. Therefore, we con-
centrate on production scheduling of the bottleneck stations,
such as the SCAM process in Fig. 1. If the bottleneck shifts from
one station to another due to product-mix change, we will apply
the algorithm to the new bottleneck station.

1545-5955/$25.00 © 2007 IEEE
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Fig. 1. Semiconductor ATM process flow.

Fig. 2. Ant colony searching paths. (a) No obstacle. (b) An obstacle is
interposed; ants go around it by two paths with equal probability. (c) More
pheromone is laid down on the shorter path and ants are more likely to follow
the shorter path with more pheromone. [1].

ACO is a metaheuristic optimization algorithm inspired by

the behaviors of ants. As illustrated in Fig. 2, when ants search

for the shortest path from their nest to food source, they com-

municate information to each other and work cooperatively.

When an ant walks on a path, it deposits pheromone on the

ground. The following ants smell pheromone and they tend to

choose, in probability, the path with strong pheromone concen-

trations. Due to evaporation, the pheromone intensity reduces

proportionally to the lapse of time. Thus, the longer the path, the

less the pheromone, and the lower probability that the ants will

follow. In this way, ants are likely to quickly find the shortest

path [2].

Many heuristic algorithms have been applied to tackle the

scheduling problem of bottleneck stations, but the results

are not satisfactory. Comparing with those heuristics, ACO

has two unique advantages. (1) ACO can effectively integrate

problem-specific information and business rules during solution

searching. This characteristic is vital for production scheduling

problems. Classic heuristics may not be able to handle both

business rules and operational constraints in real manufacturing

environments. (2) ACO is a model-based algorithm, which

is different from an instance-based GA algorithm [3]. The

learning process of ACO is distributed in each element of

the construction graph. This characteristic of ACO leads to

high-quality results with high probability.

The major contribution of this paper is the documentation of

a successful application of ACO in real-world semiconductor

production scheduling. The success of this application yielded

a 20% reduction of bottleneck machine conversion time with all

customer demand supported, compared with previous heuristic

scheduling method at an Intel chipset factory. Conversion time

is defined as the time duration to switch products running on the

machine. In this paper, we describe the modeling, development,

and implementation of an ACO-based scheduling system at an

Intel factory.

This paper is organized as follows. In Section II, we review

the related literature on ACO and its application to production

scheduling. In Section III, we describe and formulate the ATM

bottleneck scheduling problem and define prioritized objectives.

We present the ACO-based optimization model in Section IV,

and verify our approach by numerical experiments and indus-

trial implementation in Section V. Finally, we provide some

concluding remarks in Section VI.

II. RELATED WORK

ACO is a metaheuristic optimization method, and it was first

introduced in [4]. Many variants of the ACO algorithm could

be used for different combinatorial optimization problems, such

as traveling salesman [4], [5], quadratic assignment [6], vehicle

routing [7], job shop [8], telecommunication network, and graph

coloring.

Other than the ACO algorithm, there are some classic heuris-

tics for production scheduling problem, such as simulated an-

nealing (SA) [9]–[11], genetic algorithm (GA) [12], [13], tabu

search (TS) [14]–[16], and reinforcement learning (RL) [17],

[18].

The ACO algorithm also has some successful applications in

production scheduling. Colorni et al. [19] first introduced the

mapping method of the job shop problem (JSP) to generate a

construction graph, and then applied the ACO algorithm to solve

JSP. Stutzle [20] improved the local search procedure and ex-

tended the ACO algorithm with max–min boundary to minimize

makespan of the flow-shop scheduling problem (FSP). How-

ever, his approach only utilized pheromone information, not the

problem-specific heuristic value. Bauer et al. [21] applied ACO

to solve the single machine total tardiness problem, and used

a modified due date method to calculate the problem-specific

heuristic value. They also performed a pairwise swap technique

for local move (path) search. Comparing with classic heuristic

algorithms (such as SA), their ACO approach is more efficient

in solving benchmark problems. van der Zwaan and Marques

[8] introduced a statistic analysis for parameter tuning to im-

prove the performance of ACO when solving JSP. Merkle and

Middendorf [22] developed a novel pheromone summation rule

of the ACO algorithm for the single machine total weighted tar-

diness problem. They utilized the global pheromone informa-

tion instead of the local pheromone information for the tran-

sition probability calculation. Blum [23] applied ACO to the

group shop scheduling problem, which is a generalization of the

classic job shop and open shop scheduling problems. Rajendran

and Ziegler [24] proposed and analyzed two ACO algorithms for
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the permutation flow shop problem to minimize the makespan of

jobs. One of them was extended from the max-min ant system in

[20], and incorporated with the pheromone summation rule and

a job-index-based local search technique. The other algorithm in

[24] is a new development called PACO. When applying to the

benchmark problems, the proposed ant algorithms are clearly

superior to other heuristics.

Due to the high complexity of semiconductor manufac-

turing, heuristic algorithms are commonly used for production

scheduling. Some of the latest research efforts in the field are

as follows. Balasubramanian et al. [25] gave two versions of

a GA to schedule batching operations in wafer fabrication

to minimize the total weighted tardiness on parallel batch

machines with incompatible job families. The first GA was

applied to assign batches to the machines, while the second GA

assigns lots to the parallel machines and form and sequence

batches for each single machine. They demonstrated through

simulation that the GA outperformed traditional dispatching

rules. Choi and Reveliotis [26] provided an approximation

framework to schedule a capacitated reentrant production

line using neuron-dynamic programming (a systematic ap-

proximation schema of dynamic programming). The numeric

experiments indicated that the framework was superior to

traditional heuristics in term of optimality. Qu and Mason [27]

studied the single machine scheduling problem considering

product-mix. A meta-GA approach was presented to minimize

total weighted completion time and maximize on-time delivery.

Upasani et al. [28] proposed a heuristic to schedule a wafer fab.

The algorithm decomposes the fab scheduling problem into a

sequence of scheduling problems for stations by using a shifting

bottleneck type algorithm. The experiments demonstrated that

this station-based global scheduling heuristic outperformed

typically used dispatching rules with an acceptable amount

of computation time. In [29], a modified shifting bottleneck

heuristic was developed for minimizing the total weighted

tardiness in a fab. Most recently, Bixby et al. [30] demonstrated

promising results in fab scheduling using mixed-integer and

constraint programming, which is an optimization approach

that differentiates from heuristics.

Specifically in ATM production scheduling, heuristic algo-

rithms are also widely used. Xiong and Zhou [31] presented

two hybrid heuristic algorithms based on Petri nets. The algo-

rithms combined the heuristic best-first strategy and the con-

trolled backtracking strategy in order to reduce the machine

setup time. Freed and Leachman [32] considered the sched-

uling problem of the testers with multiple test heads and pro-

posed an enumeration framework. Ellis et al. [33] considered the

sequence dependency of machine setup times. They proposed

four heuristics to solve the test scheduling problem that aims

to minimize the makespan. Lin et al. [34] applied the theory

of constraint to develop the heuristic algorithm with capacity

constrains. They treated ATM facility as unrelated parallel ma-

chines with multiple constraints.

Several heuristics have been tested at the Intel ATM fac-

tory for bottleneck station scheduling. None of them showed

promising results until an ACO-based system was successfully

developed and implemented in 2005 [35]. In this paper, we de-

scribe in detail the mathematical modeling and implementation

of the system.

III. PROBLEM STATEMENT

In this section, we describe the scheduling problem we con-

sider and formulate the problem with assumptions, input, and

output.

Production scheduling aims to optimally allocate the cus-

tomer demands to available machines while satisfying business

rules. Due to highly fluctuant market demands, frequent ma-

chine conversions are required in ATM. It may take different

amount of times to convert different machines for different prod-

ucts. If not well scheduled, the time for machine conversions

will greatly increase and, thus, idle time of the bottleneck sta-

tion will be longer. According to the TOC theory, the capacity

loss of the bottleneck is the capacity loss of the whole factory.

Therefore, a good bottleneck station scheduling is very impor-

tant for ATM to support all the customer demands and minimize

the machine conversion frequency and the total conversion time.

We define the machine throughput (or runrate) as the volume

that a machine could produce in one week, the machine conver-

sion time as the time duration to switch products processed by

the machine, and “time interval” as the smallest granularity of

time we investigate. Without loss of generality, we assume the

following.

• The machine throughput (or runrate) considers the average

of rework, downtime, and facility maintenances.

• The length of the machine conversion (setup) time depends

only on the machine types and the product types.

• Each lot needs only to be processed on one machine of the

station and each machine should only process at most one

lot at a time. We do not consider specific lot size, lot split,

and lot merge.

• Once a process on a machine is started, it cannot be inter-

rupted until the process is finished.

• We assume the time interval for scheduling is 2 h, which

is based upon computing time requirement, operations

practice, and historical machine conversion performance.

Machines must produce the same type of products within

the interval and conversion could only happen at the

beginning/end of the intervals.

The inputs of the bottleneck station scheduling problem are:

product ;

machine ;

set of all products;

set of all machines;

current week;

next week;

demand of in ;

demand of in ;

runrate of on ;

conversion time of from

to .
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TABLE I
A GANTT CHART OF THE SCHEDULING RESULTS

Other possible inputs also include product priority, yield, ma-

chine initial condition, setup time, Work-In-Process (WIP) in-

ventory level, manufacturing starting time and due date, and ma-

chine scheduled downtime plans.

The optimization problem normally consists of an objective

function and constraint conditions. We present the objective

function below and the constraint conditions (i.e., the business

rules) in Section IV.

Let denote the type of product on machine at time

interval . The scheduling result of decision variable ’s
is showed in a Gantt chart (see Table I), which represents the

product type allocated on every machine in different time inter-

vals. A machine conversion happens if the product type switches

between two sequential time intervals.

The objective function is to minimize the weighted summa-

tion of the three objectives

where is the weight of objective .

Objective aims to minimize total unsupported customer

demands for the current and next weeks, where

Objective aims to minimize the total number of conver-

sions, where

The objective aims to minimize the total conversion time,

where

The larger , the more important . Normally, we should

keep at least the ratio of 10 between ’s. In this objective func-

tion, we set , , and . Many feasible

solutions (in the format of Table I) may exist for a bottleneck

station scheduling problem. We intend to identify the best solu-

tion measured by the objective function.

IV. ACO MODELING

In this section, we explain how we apply the ACO algorithm

to solve the bottleneck scheduling problem with the objective

function and the business rules.

We first create a construction graph for the scheduling

problem defined in Section III. As illustrated in Fig. 3, the

graph is a unidirected multipartite network. Nodes represent

machine statuses in different time intervals. Edges are weighted

based upon the constraints. In this paper, the construction

graph is used to solve an unrelated parallel machines problem

for the bottleneck scheduling. If we consider the flow shop

problem including up- and downstream stations, the graph can

be extended by adding one more index of stations in each node.

Every artificial ant of a colony performs probabilistic walks

one by one in the graph. Every ant creates a solution through its

walking path from the origin (Node O) to the destination (Node

D). One “cycle” is completed if all ants finish their search. For

each cycle, one solution (as illustrated in Table I) is generated.

We measure the solution by the objective function described in

Section III. If the value of the objective function for this solu-

tion is smaller than that for any existing solution, we keep this

best-so-far solution. If not, we remove this solution. We then

update the construction graph by resetting the transition proba-

bility of all the edges proportional to the goodness of the solu-

tion. We repeat the ant search for the next cycle until we satisfy

with the best-so-far solution or the time limit is reached.

A. Construction Graph

The most important step of the ACO algorithm is to create

a construction graph and build mapping relationships between

the graph and the scheduling problem. These relationships in-

clude the definition of the nodes in terms of the variables of the

scheduling problem.

Fig. 3 illustrates a unidirected multipartite network clustered

by time intervals. The scheduling time horizon starts at time in-

terval and ends at . In the graph, node rep-

resents machine processes product in time interval ,

where . For example, node represents

machine processes product in time interval . The nodes

belonging to the same machines are connected by the unidirec-

tional edges, which imply a machine can be converted between

time intervals to product different products. Notice that there are

no connecting edges between different machines because a ma-

chine cannot be changed to a different machine any time. Each

edge is weighted by a positive real number between zero and

one. The weight determines the probability ants walk from one

node to another.

When the scheduling process starts, first we have to make

decision on what to produce on each machine at time interval

. In the graph, that is equivalent to the scenario where one

ant leaves node O and travels to node . The choice

is based on the transition probability and the transition policy

that we will elaborate in Sections IV-B and C. For example, in

Fig. 3, we assume machine can only produce product

and , and can only produce and . In time interval

, there are two options for and two options for , and

thus the total combination of options. Based upon the

transition probability and the transition policy, the ant selects
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Fig. 3. Construction graph for the scheduling problem.

and for time interval , and then

move to time interval . Once the ant arrives at node D, its

walking path from O to D generates a scheduling solution as

shown in Table I.

B. Transition Probability

When the ant moves from one node of time interval to the

next node cluster of time interval in the construction graph,

there may exist multiple connecting edges (which lead to the

feasible nodes). Which edge to select among all these options?

The transition probability determinates the probability of

each edge that the ant will walk on. It can be calculated by

(1)

where is the pheromone value that corresponds to machine

producing product in time interval (see Section IV-D for

details). is the corresponding heuristic value. Determined

by the business rules, the heuristic value has significant impacts

on the feasibility of solutions.

The exponential parameters and in (1) tune the rela-

tive importance in the pheromone value and the heuristic value.

If , the ants do not utilize the heuristic value in solu-

tion generating, which will lead to rapid emergence of a local

minimum. If , on the other hand, the ants do not com-

municate through pheromone and they perform a classical sto-

chastic greedy algorithm only based upon the business rules.

Therefore, a tradeoff between the pheromone intensity and the

heuristic value appears to be necessary and can be achieved by

tuning and . We will discuss the parameter tuning strategy

in Section V.

In the rest of this section, we will discuss in detail the business

rules that determine the heuristic value.

We categorize all the business rules into “hard constraint

rules” and “soft constraint rules.” A hard rule is the rule that

must be satisfied; otherwise, the solution will be infeasible. If

a move of the ant in the construction graph violates any hard

rule, the heuristic value of the associated edge will be set to

zero. Hence, the transition probability for that edge will be

zero. However, a soft rule does not need to be strictly enforced.

It can be violated with a penalty. If the ant move only violates

a soft rule, the ACO algorithm will decrease the heuristic value

to a certain degree that is predefined empirically.

Let us use an example to explain how the business rules de-

termine the heuristic value. Fig. 4 presents a detailed flow chart

of a soft constraint rule called “loading balance for different

products.”
As the production goes on, some customer demands have al-

ready been fulfilled, while some others still have not. Thus, we

may have to convert machines to ensure on time completion of

all the products.

First, the ideal number of machines needed for each product

IdealNum is calculated based on the ratio of the customer de-

mands and the machine runrates. Next, we compare IdealNum to

the actual allocated machine ActualNum and generate set vari-

ables DevOverMachine (a set of products with excessive ma-

chine capacity and high probability of demand fulfillment) and

DevLackMachine (a set of products with insufficient machine

capacity and low probability of demand fulfillment). If both

DevOverMachine and DevLackMachine are not empty, we can

generate the releasable machine list and reallocate the machine

resources that produce the products in DevOverMachine to the

products in DevLackMachine by updating the heuristic values

of the associated edges.

For example, in a certain time interval , we have product

and in DevOverMachine and in DevLackMachine. can

release one machine , can release two machines and
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Fig. 4. A business rule that impacts the transition probability: “loading balance
for different products.”

, and requires one more machine to fulfill the demand.

So, the releasable machine list is . The prefer-

ence rate is used to describe the preference level for a certain

product to be processed on a certain machine. It is predeter-

mined empirically. The larger the rate, the higher the preference

level. Assume the preference rates for are: 0.5, 1, and 0.3 for

, , and , respectively. Also assume the machine con-

version times are 8 h from to on , 2 h from to

on , and 4 h from to on . We update the heuristic

values as follows:

If other parameters remain unchanged, the transition proba-

bility for machine , , will be larger than those of

other two machines and . Therefore, machine will

be most likely have to be converted to product in time in-

terval .

For another example, we consider a hard constraint rule called

“machine downtime restriction rule.” If the machine is down

to production in time interval , we will set the heuristic value

to zero for any product . Therefore,

the transition probability is zero, which implies that no

product can be processed on in .

We also consider the following ATM business rules as hard

or soft constraints in our math model and system.

• Product cutoff time hard constraint: The production tasks

must be finished before the corresponding cutoff time.

• Machine-product matching hard constraint: Some types of

products can only be processed on certain types of ma-

chines.

• Machine-product matching soft constraint: Some types of

products are preferred to process on certain types of ma-

chines.

• Optimized machine conversion time soft constraint: A con-

version with a shorter conversion time is preferred if a con-

version occur.

• WIP balance soft constraint: The WIP of each station has

a preferred level.

• Machine experiment time hard constraint: If a machine is

in use for experiments, it cannot be used for production.

• Week-to-week machine loading smoothness soft con-

straint: The machine loading is balanced among different

weeks of the scheduling time horizon.

• Week-to-week product loading smoothness soft constraint:

The product loading is balanced among different weeks of

the scheduling time horizon.

C. Transition Policy

A transition policy, which has been proposed by Dorigo et al.

[4], is also applied to balance the decision between keeping the

best-known solution and exploring additional region of the so-

lution space. Let be a configurable parameter within .

When an ant makes a move, it will generate a random number

(which follows a uniform distribution over ) and compare

to . If , the ant will move though the edge with the

best-known value of ; otherwise, the ant will obey

the transition probability to select the next node. Tuning al-

lows the ACO algorithm to choose whether to concentrate on

the local area around the best-known solution or to explore new

search space. The use of the transition policy increases the al-

gorithm convergence speed significantly.

D. Pheromone Update

Due to evaporation, the pheromone intensity would decrease.

Normally, the evaporation quantity is proportional to the lapse

of time. Therefore, older pheromone (information) has less in-

fluence on the future transitions. When all ants have completed

constructing a solution, the pheromone values of all the edges

should be modified for the next solution construction cycle

based upon the following equation:

(2)

where is the evaporation coefficient and is the

pheromone value that corresponds to the best solution so far.
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Fig. 5. Product-mix weekly changes of the Intel chipset factory.

The pheromone update consists of two actions [8]. First, a

fraction of pheromone on each edge is evaporated so that old

pheromone would not have too strong influence on the future

ant moves. This action prevents searching in the neighborhood

of a local minimum only. Second, an increment of pheromone is

given to those edges belonging to the best-so-far solution found

by the ant colony. The increment is proportional to the solution

quality. For example, if we found the best-known production

schedule, we will largely increase the pheromone values of the

edges on this path. The global pheromone update will speed up

the searching process for the best solution.

V. IMPLEMENTATION AND RESULTS

We successfully implemented the ACO-based production

scheduling system at an Intel chipset ATM factory. We only

focus on the bottleneck station scheduling in this paper.

In the past, the bottleneck station production schedule was

carried out manually by quantity per shift (QPS) method: first,

we assume a fixed batch size and calculate the QPS for every

product according to their weekly demands; second, we allocate

capacity for products with large demands based on their QPS,

and then allocate the rest of capacity for other products. Unfor-

tunately, the QPS method has serious disadvantages including:

1) high risk of human errors and inconsistency; 2) short time

horizon coverage; and 3) nonoptimal solution.

We successfully implemented the ACO-based bottleneck

station scheduling system in Intel chipset ATM factory in 2005.

Comparing with the QPS method, the ACO-based system

demonstrated remarkable improvement. We studied the fol-

lowing case from the Intel chipset factory during week 10–17

in 2005. Fig. 5 shows the product-mix of the factory during that

period of time. There were six different products with weekly

volume change over 50%.

We utilized the ACO system and the QPS method to generate

the production schedule for SCAM (which is a bottleneck sta-

tion) separately to compare their results. There were no unsup-

ported customer demands in both results, which clearly mini-

mize the value of objective 1. Fig. 6 illustrates an over 20% re-

duction (most of the weeks) of the number of machine conver-

sions for the bottleneck station. Similar reduction in machine

conversion time was also achieved. As the results, the capacity

loss decreased and the product unit cost reduced significantly.

The parameter values in the ACO algorithm are critical for

computing time and solution quality. Therefore, we also de-

Fig. 6. Reduction of the numbers of machine conversions. The line shows the
percentage improvement from the QPS method to the ACO system.

signed and conducted numerical experiments to study system

parameter tuning strategy using the production system we de-

veloped.

We considered the parameter space by two independent sub-

spaces [8]: 1) the transition probability ( and ) and 2) the

pheromone update (the total number of ants AntNum and the

evaporation coefficient ). We studied these two independent

subspaces separately.

To facilitate the numerical experiments, we defined a bench-

marking problem based upon the real production information of

the Intel chipset factory at week 34 in 2005. The best solution of

the problem is with the values of three objectives in Section III

at 0, 17, and 88, respectively.

In order to study the influence of the parameter and , a

two-factor analysis was carried out to the benchmark sched-

uling problem. For each pair of , we ran the ACO algo-

rithm five times and recorded the number of cycles it took to

converge, i.e., reach the best solution. Given the fixed param-

eter and , the experimental results are

shown in Fig. 7 and Table II. Normally, the system computing

time is proportional to the number of the cycles to converge.

Hence, the number of the cycles is a good indicator to measure

the system performance.

In the case of , the ant colony does not utilize the

problem-specific heuristic value during the solution searching,

and every ant is only guided by the pheromone intensity. So,

the algorithm is expected to take a long time to find the best

solution . If , the ants do not communi-

cate through pheromone and only perform a simple stochastic

greedy algorithm. In this case, the algorithm may converge to a

local (not global) optimal solution. For most of the other

pairs, the best solution can be found in less than 1000 cycles.

Among the pairs we tested, the ACO algorithm reaches

the fastest convergence of 206 cycles when and .

Since ACO is a heuristic algorithm, we cannot claim this pair of

is the optimal but it should be a near-optimal setting.

In order to understand the influence of the pheromone update,

we used the benchmarking problem to study the total number of

ants AntNum and the evaporation coefficient separately.

The convergence performance of the ACO algorithm can be

roughly defined by the total computing cycles, which is the

product of AntNum and the average number of cycles. Obvi-
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Fig. 7. Convergence performance: average number of cycles in need for the
ACO algorithm to obtain the best solution for different pairs of (�; �).

TABLE II
CONVERGENCE PERFORMANCE

ously, more ants may find the best solution in fewer cycles.

Given a fixed set of , , and values, we studied the influence

of AntNum on the ACO algorithm convergence performance.

Fig. 8 shows the impacts of AntNum with , , and

over five system runs. We can clearly see that AntNum

has a small impact on the algorithm performance and the best

value is .

Fig. 9 shows the performance of the ACO algorithm for dif-

ferent values of the evaporation coefficient with the parameter

set , , and . If , the

algorithm cannot converge to the best solution within 1000 cy-

cles; if , the number of the cycles to converge

increase rapidly; and the best evaporation coefficient value is

around .

Beside the numerical experiments above, we also study the

relationship between the system convergence performance and

the product-mix, the number of machines, and the duration of

the machine conversion time. We summarize the findings as

follows.

1) The metaheuristic approach demonstrated better conver-

gence performance than single-thread heuristics. From

Fig. 7 and Table II, we can see that the system convergence

performance degrades whenever or is set to zero. The

best performance is achieved through the proper balance

of the pheromone value and the heuristic value.

2) The algorithm is not very sensitive to the number of ants.

Fig. 8. The number of ants on ACO algorithm convergence performance.

Fig. 9. Impacts of evaporation coefficient on ACO algorithm convergence
performance.

3) There is a lower bound (or threshold) for the evaporation

coefficient. That implies that the algorithm may not con-

verge if we do not take advantage of good solutions avail-

able. On the other hand, too large evaporation coefficients

can slow down the improvement of solution quality for

each cycle.

4) When the product-mix or the number of machines

increases, the conversion reduction over QPS is contin-

uously improved. However, the system computing time

increases exponentially.

5) When the machine conversion time increases, the conver-

sion reduction over QPS is first improved and then down-

graded. There is a machine conversion time that maximizes

the benefit of the ACO system. Meanwhile, the system

computing time keeps flat with small variation.

VI. CONCLUSION

In this paper, we formulated the bottleneck station scheduling

in semiconductor ATM into an optimization problem. The ob-
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jective is to minimize the total unsupported demands and ma-

chine conversion time. The constraints are defined by the ATM

business rules. The optimization problem was mapped to a uni-

directed multipartite network and solved using an ACO tech-

nique. ACO is a bioinspired metaheuristic algorithm inspired

by the communication behaviors of ants. We also designed and

conducted numerical experiments to tune the system parame-

ters using a real-world benchmarking problem. The ACO-based

scheduling system was successfully implemented and verified in

an Intel ATM factory. Comparing to the previous QPS method

and other heuristic approaches, we experienced over 20% of av-

erage machine conversion time reduction with the better order-

fulfillment performance. The proposed ACO-based scheduling

system demonstrated promising results in solving the single-sta-

tion scheduling problem. In the future, we would like to solve

the factory-level scheduling problem by the integration of de-

composition and the ACO algorithm.

APPENDIX

FLOW CHART FOR ACO SCHEDULING ALGORITHMS
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