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Abstract How can the components of visual compre-

hension be characterized as brain activity? Making sense of

a dynamic visual world involves perceiving streams of

activity as discrete units such as eating breakfast or walking

the dog. In order to parse activity into distinct events, the

brain relies on both the perceptual (bottom-up) data avail-

able in the stimulus as well as on expectations about the

course of the activity based on previous experience with, or

knowledge about, similar types of activity (top-down data).

Using fMRI, we examined the contribution of bottom-up

and top-down processing to the comprehension of action

streams by contrasting familiar action sequences with those

having exactly the same perceptual detection and motor

responses (yoked control), but no visual action familiarity.

New methods incorporating structural equation modeling of

the data yielded distinct patterns of interactivity among

brain areas as a function of the degree to which bottom-up

and top-down data were available.

Introduction

A fundamental question in visual neuroscience is how

information becomes integrated across visual, memory,

and perceptual pathways to produce understanding of

everyday action sequences. Previous work shows that in

order to comprehend the meaning of action streams, people

naturally and spontaneously parse activity into distinct

units of meaning (e.g., eating dinner, going to the movies,

etc). Moreover, observers who are asked to categorize

action sequences in real time produce consistent judgments

about action cluster start and end points (Hanson and Hirst

1989; Newtson 1973; Hanson and Hanson 1996; Heider

and Simmel 1944; Zacks and Tversky 2001). Although

parsing video action sequences into constituent structure is

a complex visual task, it seems clear that at a basic level it

involves a perceptual detection component that is depen-

dent on comprehension of the action sequence and

expectancies over time. Thus, the study of how people

understand action sequences offers a unique opportunity to

investigate how visual pathways in the brain that underlie

cognitive processes such as feature encoding, motion

detection, visual-spatial integration, visual search, visual

attention, and working memory interact.

In a series of experiments we contrast subjects’ viewing

of three different kinds of actions. The first what we will

call schema-rich sequences which consist of highly famil-

iar action sequences, like ‘‘making coffee and drinking it’’,

or ‘‘assembling a chair from a box’’ etc. (see typical movie

frames of two movies in Fig. 1). There were three different

schema-rich sequences: (1) a person assembling a chair

with parts taken from a box, (2) a person making coffee

and then sitting and drinking it and (3) a person coming

into a room and using a computer while studying from a

book. The second class of action sequences we call

schema-free (see Fig. 2). These consisted of an oddball

task in which a single rectangle jittered up and down ran-

domly with fixed mean excursion from a baseline and fixed

standard deviation. At seemingly random times the rect-

angle would jump 2 s.d. higher then at any other time point

indicating a significant change point. These points were not

random, but rather yoked to the response time points

detected while viewing schema-rich videos and a third type
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of action sequence (schema-poor), in which cartoon objects

(circles, squares etc.) made arbitrary movements. By yok-

ing the schema-free stimulus to response time points

obtained for the schema-rich stimulus, we were able to

control for simple perceptual or motor aspects of the

schema-rich task. Consequently, the contrast between

schema-rich and schema-free provides an index of the

‘‘top-down’’ neural correlates of cognitive control and

visual spatial attention. Although not all low level visual

processing (eye movements, spatial frequency, texture,

motion etc.) are controlled for, our main goal in this study

was differentiate between a simple detection task and an

event parsing task with the same response time/detection

demands. Moreover, we attempted to minimize any visual

content effects by aggregating over the three different

video action sequences that were yoked to their appropriate

time point schema-free controls (see Fig. 2 for specific

procedures).

Thus our use of ‘‘bottom-up’’ explicitly focuses on the

difference between a visual expectancy based detection

(independent of visual featural details) and a vigilance type

process invoked by tasks similar to an oddball task. This

type of contrast reflected our interest in dorsal and ventral

visual streams and how they are modulated by prefrontal

and parietal areas of the brain. For example attentional

modulation is known to occur between parietal, and ex-

trastriate areas in the monkey brain (Desimone and Duncan

1995; Kastner and Ungerleider 2000). We might therefore

expect to see a human analogue to MT (MT+) and STS as

well as parietal and prefrontal areas during an event per-

ception task (Zacks et al. 2001; Hanson et al. 2001).

Similarly, oddball tasks typically involve interactions

between known parietal and visual areas as well as pre-

frontal areas such as anterior cingulate cortex that,

according to some theories, may index change-point events

(Posner and Gilbert 1999; Miller and Cohen 2001). Hence,

despite the obvious differences in visual simulation

between an event perception task and a time/response

yoked oddball task, our interest lies in the functional

overlap of the perceptual detection component, which we

would argue is identical to that in an event perception

change point detection task. In Fig. 3, we provide more

detail about the theoretical processing stages of the event

perception task and the specific functions we are associ-

ating with ‘‘top-down’’ or ‘‘bottom-up’’ processing. Note

that in this figure we are showing a time line in which

occasional event change points (squiggle in each paren-

thetical) are broken out while subjects are watching the

familiar action sequence. Any given event change point

clearly consists of many complex visual processing ele-

ments including low level visual processing, saccadic eye

motion, and detailed featural content (e.g., ‘‘the man has a

beard’’). We argue that such an event change point is the

key to differentiating the event perception task and the

yoked oddball task in terms of ‘‘temporal’’ detection points.

Clearly, in the event perception task these detection points

are driven substantially by expectancies rather than atten-

tional vigilance. We propose that these expectancies

comprise the ‘‘top down’’ influence that can be isolated to

contrast these two kinds of tasks.

This study is consistent with past research that impli-

cates top-down and bottom-up control in visual spatial

attention, language processing, and cognitive control

functions as well as breaking new ground by using fMRI

bold data to do exploratory graphical modeling of the

recruitment and interaction of context sensitive brain

functions during top-down and bottom-up processing. We

will describe first the event perception task and relevant

behavioral data collected from subjects viewing one of

three different videos of familiar action sequences. After

describing the basic methods and behavioral results, we

will turn to the fMRI data and computational modeling.

Methods for behavioral data collection

Event perception

We used scripted videos, similar to other studies using

naturalistic movie viewing (e.g., Hausson et al. 2004),

where actors were given very simple and general instruc-

tions, such as, ‘‘make a pot of coffee’’ or ‘‘open this box

and assemble the chair inside’’. The videos were continu-

ously filmed from a single camera angle throughout the

action sequence (this is in contrast to commercial movies

which often involve multiple camera angles, action and

Fig. 1 Frames from two

different action sequences used

as stimuli in event perception

(left) the ‘‘chair’’ video,

showing a person putting a chair

together, (right) the ‘‘coffee’’

video showing a person making

and drinking a cup of coffee

(each frame shows a[0.9 event

change point)
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conceptual cuts). All videos were less than 5 min long and

consisted of a single actor interacting with relevant objects.

Example frames from two of the scripted videos are shown

above in Fig. 1, A third video, of a student entering a room

and working on laptop, which we called the ‘‘study’’ video,

was also used.

Subjects were asked to indicate ‘‘significant event

changes’’ by pressing a button while they were watching

the action sequences. Subjects typically find this task

natural and immediately begin parsing (viewing and button

pressing) once the video begins, usually without any fur-

ther clarification of the instructions.

Results: basic event perception experiments

A convenient way to visualize the subject agreement over

time is based on a group-wise analysis of temporal

Fig. 2 Construction of the

Yoked control sequence based

on the TRD (temporal response

density or probability), points in

the action sequence where

subjects had high common

agreement of an event change

point (single frame for

reference-not actually shown

with rectangles) was associated

with a increase in bar length that

was greater than 2 standard

deviations within a distribution

of bar lengths randomly

sampled from a gaussian

distribution with mean 10 mm

and standard deviation 2 mm

Fig. 3 Hypothetical processing of event change detection shown in

time from one frame prior to an event change point and the event

change point, that invokes various perceptual and cognitive processes

which we roughly segregate into ‘‘bottom-up’’ (gray boxes) and ‘‘top-

down’’ (green boxes), the yoked control is designed to only control

for more abstract visual feature, motion and detection of change of

state as in an ‘‘oddball task’’. We are explicitly not controlling for

specific eye motion or low level featural processing that may be

related to detailed content with the yoked control (white box).

Moreover, in order to focus on brain tissue that is associated with

more abstract visual features that elicit detection of event change, we

concatenated all three video sequences (study, chair, coffee) in our

GLM analysis—see Fig. 8
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response points from all subjects (N = 26), where their

responses are binned (one second resolution). This proce-

dure results in a response probability density over time,

what we will refer to hereafter as a temporal response

density (TRD) and is shown in Fig. 4. In Fig. 4, note that

the horizontal line shows the 99% confidence interval for

subject agreement event change points over the whole

action sequence. Event change points tend to involve rapid

body movements (‘‘standing up’’, ‘‘large arm movements’’

etc.) as well as conceptually dependent initiation (e.g.,

‘‘opening a box’‘‘, ‘‘filling coffee pot with water’ etc.),

which are not necessarily correlated with change in body

state.

Surprisingly, viewings of different scripted videos

results in very similar parsing rates for each subject as

evidenced by high correlation of parsing rates between two

different action sequences (see Fig. 5; experiments 1 and 2

repeat viewings of the same video). Thus, although sub-

jects can adjust their parsing rates, they seem to have a

preferred rate of parsing visual action sequences. Shown in

Fig. 7 is the parsing rate of for one scripted video and one

cartoon video with a correlation of 0.86 over 26 subjects

(each point in the graph is a subject parsing rate), although

the autocorrelation of their temporal point responses (see

Fig. 6) is not significant (horizontal line is 95% confidence

limit). These data indicate that the visual features of the

action sequence exert a strong primary control over parsing

behavior as opposed to some sort periodic (internal)

response based control. Behaviorally, therefore, subjects

have reliable parsing rates that mirror the event structure of

the action sequence and will, when queried, accurately

summarize the action sequence (e.g., ‘‘.. the guy was

making coffee’’).

Results: yoked control for bottom up

As subjects watched each video, their parsing responses in

real-time were used to construct a schema-free video which

in the visual field jittered up and down according to

Gaussian sampled noise with fixed standard deviation. At

each of the subject’s response time points in the scripted

video, the bar jittered 2 s.d above that of the background

jittering (see Fig. 2). After viewing the scripted video

Fig. 4 Button press responses from 25 subjects while observing the

‘‘study’’ action video accumulated in one second bins resulting in a

temporal response density (TRD) indexing an instantaneous estimate

of change point in the action sequence. The horizontal dashed line
indicates the 95% confidence interval for the change point estimate

which when thresholded produces 17 change points. For individuals

each TRD is a binary sequence of 1 s time points, which is convolved

with the HRF and used as an event change point regressor for the

GLM (see Fig. 8 )

Fig. 5 Button presses collected in one second bins while observes

watched the ‘‘House’’ video. Similar to Fig. 4, these are response time

densities indicating the instantaneous estimate of event change point.

There are two TRDs in the figure, each one composed of the same 25

subjects indicated event change points in two different sessions. The

horizontal dashed line indicated the 95% significance level from

which can be inferred 14 change points. Note the strong overlap

which represents a high correlation (r = 0.93) implying that the

estimate is highly stable
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subjects waited 2 min and then were asked to view the

schema-free video. Subjects, would be told to press a

button when they detected a significant change in the video

sequence and were provided no information about the

relationship between the first video and the schema-free

video. None of the subjects noticed the relationship

between the jittering of the bar in the schema-free video

and their own responses during the scripted video. This

‘‘yoked’’ condition therefore controlled for the button

pressing, and ‘‘bottom-up’’ attentional and cognitive con-

trol processing associated with event change detection in

the scripted video. As was found for the scripted videos,

TRDs showed significant change points but with lower

subject agreement. In fact, the correlation between the

scripted video and its yoked perceptual counterpart drop-

ped to near zero (r = 0.07; independent of the change point

button presses, which with were detected with high prob-

ability, .85). It is not surprising, therefore, that the pattern

of button presses around change points in the schema-rich

and schema-free videos were significantly different, despite

the high probability of detection of the specific change

points. Consequently, removing top-down cues changes the

pattern of change point detection and TRDs, and indicates

that action sequence content is critical for invoking the

natural individual parsing rates and patterns.

Neuroimaging methods

We replicated these experiments while collecting fMRI

from 32 subjects across the three video action sequences

and their yoked perceptual sequences as previously

described. Imaging was performed with a 3T Siemens

Allegra head only MRI scanner (Erlangen, Germany). We

used a 3D magnetization prepared rapid acquisition gra-

dient recalled echo (MP-RAGE) T1-weighted scanning

sequence with 2 mm isotropic resolution to acquire struc-

tural images for each participant. A T2*-weighted

asymmetric spin-echo, echo planar sequence with flip angle

of 90 and a 30 ms time to echo (TE) was used to acquire

functional data. There were 32, 4 mm slices with each slice

consisting of 3.75 · 3.75 mm cells in 64 · 64 grid were

acquired in whole volumes. The time to repetition (TR) for

each volume was 2 s. All data analysis was done using FSL

(Smith et al. 2001). MP-RAGE for all subjects were reg-

istered to standard atlas using FSL’s FLIRT subprogram to

the Montreal Neurological Institute (MNI) atlas template.

Data were realigned and detrended using the standard FSL

FLIRT tool. All localization was done in the Talairach and

Torneax (1988) atlas using appropriate affine transforma-

tions from MNI registered T1 and BOLD images.

GLM analysis and node clustering

In order to increase the detection of tissue that is more

independent of detailed action sequence content we also

aggregated over different video content. Consequently, we

had three conditions consisting of three separate schema-

rich videos with their corresponding yoked control schema-

free videos, and two schema-poor videos (these highly

stylized and consisted of similar cartoon sequences in

which various geometric shapes moved around the dis-

play). Initial preprocessing steps included performing an

event-related GLM, clustering in the subsequent brain

maps to detect potential candidate node clusters which

were further filtered by subject agreement ([50% of sub-

ject agreement in order to retain a cluster point), and

temporal coherence within the cluster assessed by eigen-

vector analysis (see below and Fig. 9). Specifically, GLM

analysis was performed on the fMRI using individual

subjects responses (binary time series) weighted with the

Fig. 6 Autocorrelation of time series in Fig. 4, the blue dash lines are

the 95% confidence interval for correlations, this type of profile is

typical of a random sequence indicating that the time series alone and

consequently independent of the action sequence cues has no simple

internal structure

Fig. 7 Correlation of parsing rates for 26 subjects in both the study

action sequence and the house action sequence. Note the tendency for

subjects to have a invariant parsing rate over time, note strong linear

relationship over an order of magnitude over parsing rates
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group-wise TRD (continuous probability density), thus

producing conservative estimate of the event change

judgments during action sequence viewing. Each weighted

TRD was further convolved with the HRF (hemodynamic

response function) and then used as a continuous regressor

(these would look similar to the TRDs in Figs. 4, and 5

except they would be phase-shifted and smoothed) in a

type of event-related GLM design. These preprocessing

steps produced Z-maps (see Fig. 8) for each subject that

were then submitted to a mode density clustering method

that jointly clustered over both spatial maps and subjects.

Crucial to the detection of graphical structure is the initial

detection of contiguous dense clusters of voxels that pos-

sess similar covariance with other dense ROIs.

At the same time, we constrained the mode seeking

algorithm to detect those voxels across subjects that were

in similar spatial coordinates (all subjects are registered in

MNI space). This mode density clustering ensures that we

extract time series from each area that contains highly

similar time series, and while the standard ROI clustering

might produce similar results, have both less temporal

coherence and less density spatially and therefore less

structure to model. More details and benchmarks about the

Dense Mode Clustering algorithm can be found in Hanson

et al. (2007a).

Results GLM event related analysis

The results for all subjects across all scripted conditions are

shown in Fig. 8a, b. Significant areas (shown in red by

condition) were only included if both the z score was sig-

nificant (\0.01) and subject agreement exceeded at least

half the subjects ([50%, see Fig. 8). These consistent areas

are shown in the tables below for each of the group-wise

brain maps. Note in this analysis that there are both com-

mon and distinct areas between the schema-rich condition

(Fig. 8a) and the schema-poor condition could have

focused on only common areas as we constructed the

graphical analysis, which might have made it easier to

compare across conditions, clustering finds distinct areas

that should be treated as a variable in graphical analysis,

rather than being ignored. We tended to bias towards the

most common graphs nodes/constituents we could and to

construct graphs based on all the criterion based voxel

clusters. Common areas between the two conditions

included inferior parietal lobule (the IPL cluster included

some voxels in angular gyrus and supramarginal gyrus),

superior temporal sulcus and parts of the gyrus (cluster

including STS/STG) and medial frontal gyrus (MedFG).

Distinct areas that characterized the schema-rich condition

included middle temporal gyrus (MTG or what is usually

considered MT+) and middle frontal gyrus (MFG including

DLPFC) while the cingulate gyrus (anterior to middle) is

unique to the yoked perceptual (schema-free) condition.

Thus, the main difference between the scripted tasks that

tended to invoke more ‘‘top-down’’ or schema-rich

expectations and the yoked perceptual detection (schema-

free) task were MTG (MT+) and MFG, areas associated

with motion detection and working memory/storage func-

tions. Less surprising perhaps, was the unique area that

characterized schema-free condition was the anterior

cingulate (ACC), which often is associated with novelty or

stimulus change point detection (such as in oddball tasks

which the schema-free case closely resembles). Given that

common areas are recruited to these two very different

tasks and that unique areas appear that are specific to each

task, it seemed more productive to ask how these areas may

be interacting. In effect, we sought to characterize how

networks of these identified brain areas interact in order to

modulate top-down influence in this type of visual com-

prehension task (e.g., McIntosh 1999, 2001).

Brain interactivity: graph modeling

Different strategies have been used recently to fit graphical

models to data. Each of these approaches have focused on

different aspects of the time series data and priors on the

model. More critically, they have varied in the assumptions

underlying the kinds of parameters that can be estimated

about connectivity of brain regions. Friston et al. (2003)

and Penny et al. (2004) have focused on dynamic causal

modeling (DCM), a means of estimating the specific cou-

pled parameters in a bilinear dynamical system that are a

function of hemodynamic (based on an extended balloon

model, Buxton et al. 1998) and neurodynamic state vari-

ables. The ‘‘effective connectivity’’ in DCM is based on

three types of connections: (1) the ‘‘intrinsic connections’’

which specify regional connections and their direction, (2)

a set of connections from exogenous inputs with connec-

tivity to specified regions, and (3) connections which define

which of the regional connections can be modified by

which exogenous inputs. These sets of connectivity

parameters and their specification (estimation) comprise

the basic assumptions about the model structure. This is an

ambitious model in that it attempts to estimate node (region

of interests chosen by an initial GLM analysis by the user)

‘‘causal influence’’ based on these three types of connec-

tion estimates while maintaining a stable dynamical

system. Fundamental to this type of dynamic causal model

is the expectation that there is a single best model given the

coupled time series that can be selected from N^m possible

cyclic or acyclic (where N equals edges and m are the

number of nodes) models underlying the temporal co-

variations between ROIs. Although this approach is both
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impressive in its scope and complexity, it requires relevant

priors and penalties to reduce the risks of divergence in

what is already a huge model search space (see below).

Without strong priors on such models it is very likely that

estimation algorithms may degenerate as the number of

nodes increase beyond 5 or 6. Nonetheless, DCM is one of

the most widely used graphical modeling approaches, at

least partly due to its access in a popular analysis package

(e.g., SPM). At the opposite end of this spectrum are the

graph approaches by McIntosh (1999, 2001), which start

with a user specified model. In this approach a confirma-

tory strategy is taken which depends on either an existing

theory about how areas may be interacting or constraints

arising from plausible anatomical pathways. In these

models graphs are fit using partial least squares or factor

analysis, and confirmed by ‘‘failing to reject’’ the graph as

a likely model. This provides plausible confidence in the

fitted graph as not being inconsistent with covariances and

variances of the data. The method we propose could be

considered to be somewhere in between these two

approaches to graph estimation. Specifically, on oriented

(directed) labeled graphs and on the similarity of covari-

ances (as in the McIntosh confirmatory approach), rather

than the dynamics of time series. However, we will also be

interested in exploratory analysis, that may identify novel

graph influence. Two problems immediately arise. One

problem involves the size of graph space as we model more

ROIs and the natural increase in the number of Markov

equivalent graphs with the increasing graph space. We

have shown (Hanson et al. 2004b) that graph space

Fig. 8 GLM analysis showing

all subjects and videos for

(upper) schema rich action

sequences and (below) for

schema poor videos. Clustering

both within brain maps and

across subjects identified areas

that were common to at least

[0.5 of all subjects with same

cluster centroids
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increases as 3^((n – 1) · n)/2) which for even 5 ROIs

(equal to ‘‘n’’ in the equation before) is well over 60 k

graphs for 8 ROIs nearly 10 billion! Without strong priors

on graph construction this will clearly be an intractable

search problem. One prior that does help is that there are

few brain area network type theories in cognitive neuro-

science that are likely to involve more than seven brain

areas at present. Even discussion of the so-called ‘‘mirror

system’’ which tends to be very distributed in humans often

involves no more than four to six areas (MT+, STS, pre-

Motor, Inferior Frontal Gyrus, IPS/IPL) and typically two

or three areas at a time. This limit on the number of rele-

vant brain areas can be used strategically to limit the data

structure of interest and make the search in these smaller

graph spaces computationally possible. Across many such

tasks if the same network of regions area engaged, then the

difference between them can only be seen in their potential

interconnectivity and influence. Our approach therefore is

only slightly stronger than calculating the thresholded

inter-correlations in that we are extracting a directed graph

from the reconstruction of the covariance from the model.

The other problem involves the fact that different graphs

will fit the same data with nearly the same goodness of fit.

This occurs when the different graphs have the same

implications for the partial correlations existing in the data.

Consequently, in order to get a data-driven measure of

directionality, we prefer a voting procedure to estimate the

presence of an edge and then the overall directionality of

the edge. All GOF (goodness of fit) equivalent graphs

(within some Epsilon) will thereby provide a weight of

evidence proportional to their presence in the equivalence

class. This provides a ‘‘best graph’’ in the sense of all

possible graphs that might have fit the covariance data and

an unbiased estimate of edges and influences between

ROIs. We have used simple Chi-square methods, but prefer

Akaike (AIC), which tradeoffs between degrees of freedom

in the model and the graph fit.

The graph fitting procedure and methods

Since the validity of the graph identified is critically

dependent on the ROIs or nodes identified, some commit-

ment to the node identification must be made in order to

assure they are stable, temporally coherent, and roughly

similar in size (from sampling error arguments). Some

methods (dynamic causal modeling) put the ROI identifi-

cation in the hands of the users. Unfortunately, without

guidance, an experimenter could pick the same ROIs from

each condition, even though, ROIs might consist of roughly

50 voxels in one condition and one voxel in the other.

(Even though it would be just as easy for the user to pick

the same number of voxels in both conditions, it would not

guarantee the similarity of their spatial density). This

comparison could produce different graphs, but not nec-

essarily on the basis of the condition difference since the

temporal coherence, sparseness of the ROI, and volume all

could contribute to any observed differences in graphs. One

apparent difficulty is that the present method could esti-

mate different nodes across the graphs in each condition

making the comparisons noncommensurate. We think this

misses the point. Although one could force the same

‘‘nodes’’ for each graph, this would have the effect of

reducing the validity of each graph in each condition. This

is because any constraint that gives preference to ROIs that

have lower probability of appearing in the graph in the first

place introduces uncertainty in the graph estimate itself.

Moreover, if the conditions are actually minimally differ-

ent, then the same or ‘‘related’’ areas should appear in the

analysis as stable and predictive. Can valid comparisons be

made across such graphs? If the same nodes do not appear

across conditions, there are instabilities in the presence or

absence of a node, which would seem to be diagnostic of

those conditions. On the other hand, if the same nodes do

appear then estimates of causal influence are still valid in

the context of the other nodes and can be scaled (e.g.,

normalized) in that graph context. Of course, absolute

influence estimates would not be valid, unless the graph

edge estimation across conditions are made in some more

global way. Nonetheless, the relative influence of any edge

within a given graph is meaningful within that context and

provides some evidence for the modulation of that influ-

ence between regions across conditions. So, for example, if

in condition 1 area A influences area B twice as much as

area C, then this relative comparison is valid with respect

to condition 2 where such influence might be absent. Thus

ordinal comparisons among conditions for the same areas

are clearly interpretable, even if interval scale information

about graph influence across conditions is not. Finally, in

the present method one can also include a prior on the same

areas appearing across graphs (perhaps dropping those that

are not common prior to graph estimation) that are also the

most spatially dense. This of course, becomes an empirical

issue that should not be resolved by model-based

assumptions or the convenience of absolute comparisons,

but rather the actual data-structure’s validity in terms of

presence of nodes and their estimated influences.

Consequently, we invest in a new method for clustering

that finds dense modes in brain maps that also have high

agreement across subjects. This new clustering method

(Hanson et al. 2007a), what we call dense mode clustering

(DMC), does 3-dimensional density estimation in brain

maps and iteratively searches through multi-scale spatial

filters, the most dense ROIs that are also most sparse in the

overall brain space. Simultaneously we identify over all

subjects the supra-thresholded common ([50%) clusters
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that according to DMC are also dense regions. Hence these

ROIs are both the most dense earlier, and are also found in

most subjects. We think this is the minimum criterion for

picking candidate nodes, although one could provide more

requirements concerning the time series or even their

underlying dynamics. The time series from all voxels per

region were concatenated (as opposed to averaged) over all

subjects (creating a ‘‘super subject’’). In this way, a time

series across each subject for each video could contribute

in an individual way to the underlying patterns represented

as a principle component. All scripted (schema-rich) action

sequences (3 videos) were submitted to an SVD (singular

value decomposition) to extract a common time series

based on the minimum number of eigenvectors to recon-

struct at least 80% of the original time series variance. This

was done for each ROI (five in the case of scripted action

sequences) over concatenated variances. A similar proce-

dure (see Fig. 9 for general data flow and pipeline analysis)

was used for the perceptual (schema-free) tasks over all

subjects for each ROI (four in the case of the yoked per-

ceptual detection task).

A covariance measure across all ROIs in the scripted

and perceptual conditions were computed over all time

points (for the ‘‘super subject’’ 780 time points-schema-

rich videos were 305, 260, 225 s with a TR of 2 s).

Covariance matrices for each subject over all action

sequences and perceptual videos were also computed for

subsequent cross-validation.

Graph fitting results-schema-rich versus schema-free

Each covariance matrix was submitted to structural equa-

tion modeling (LISREL). All possible graphs (N = 5,

58,024, N = 4, 664) were fit and sorted by goodness of fit

(e.g., Akaike, although ‘‘P’’ value and BIC were compared

and typically consistent) and graph averaged over the top

5%. This produced a ‘‘best graph’’ in terms of connectivity

and direction of edges. In Fig. 10 we show brain interac-

tivity estimates from this new method (Hanson et al.

2007b), contrasting the scripted (schema-rich) and yoked

perceptual (schema-free).

In order to test the generality of the graph structures

shown, we cross-validated the ‘‘super subject’’ graph to

each individual subject covariance in the same condition

producing excellent agreement ([90%) for each individual

subject covariance (note that the group covariance, which

was not an average, is not required to reproduce the indi-

vidual graphs due to individual differences etc. Each edge

of the graph shows ‘‘influence’’ (in a regression sense) of

one area upon another during action sequence parsing.

Given the critical contrast between scripted (schema-rich)

and perceptual (schema-free) (i.e., ‘‘top-down’’/‘‘bottom-

up’’ contrast) we propose that the estimated schema-rich

graph represents two kinds of schema influences during

parsing. First is a schema activation sub-network consisting

of areas (IPL/IPS, MFG and MedFG) that we argue pri-

marily focused on retrieving, activating and comparing

Fig. 9 Structural equation

modeling procedure; we begin

with dense mode clusters and

extract time series based on

each voxel that are filtered with

the HRF convolved TRDs, the

remaining set are submitted to

an SVD producing an eigen-

time series that can reconstruct

at least 80% of the original time

series variance. These eigen-

time series are used to construct

an ROI x ROI covariance matrix

which is subsequently fit with

all possible directed cyclic and

acyclic graphs within the same

Markov equivalence class, for 5

nodes there are 58,024 such

graphs. These are sorted by

goodness of fit (GOF) and the

top 1% of these graphs are used

to vote for edge presence and

direction. Statistics are

aggregated from individual

edges and reported on the voted

graph
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perceptual features in familiar action sequences. Second, is

a subnetwork, consisting of areas (MT+, STS and IPL/IPS),

that we propose is activated concept schema to clustered

feature configurations to expectations based on activated

schema.

Schema-poor predictions

A test of the present graph structures is to compare the

schema-rich graph and schema-free to an intermediate

case. Such a case was first studied by Heider and Simmel

(1944) consisting of cartoon geometric objects moving in

arbitrary paths through a space of other cartoon objects. In

this case, subjects still reliably parsed the video sequence

despite its unfamiliarity. Significant change points were

seen as occuring when a change of direction, pausing of

the object near edges and other coincidental smooth

motion interruptions. Some subjects attempted to provide

elaborate accounts of the arbitrary motion sequences.

Because this task is somewhere between schema-rich

sequences and schema-free perceptual tasks, we predicted

would involve components of the perceptual detection task

as well as components of the rich video sequence task

inasmuch subjects have a bias to ‘‘tell a story’’ about any

type of animation sequence. Consequently, we might

expect to see both the sub-network that was associated

with purely bottom-up processing (i.e., cingulate, STS,

MT) and the schema activation sub-network (IPL/IPS,

MFG, MedFG). Shown in Fig. 10c is a graph estimated as

before over 10 subjects, 2 video sequences and in this case,

510 time points per subject. Note that as expected the

schema-poor graph is a hybrid of the subnetworks impli-

cating both schema activation and bottom-up visual search

such as that seen in both schema-rich and schema-free

graphs.

Discussion

In the present research we provide a framework for

detecting networks of brain regions that reflect different

levels of processing associated with classical ‘‘top-down’’

and ‘‘bottom-up’’ perceptual/cognitive functions. We show

Fig. 10 (a above) Schema-rich graph ‘‘scripted’’ and its (b right)
yoked schemafree ‘‘perceptual’’ counterpart. Note shared areas

include Medial frontal gyrus STS and IPL. Cingulate is specific to

yoked perceptual task. The ‘‘t’’ values on each edge indicates the

significance of the influence and the ‘‘P’’ indicates the probability of

the edge in the top 5% of the best fitting graphs, schema-poor brain

interactivity graph. The schema-poor (c bottom) graph represents the

response of subjects over 2 video sequences of a animation of a circle

moving through a geometrically constrained space through a random

trajectory. Some subjects would make up stories (e.g., ‘‘the circle was

searching for something’’) about the circle-changed directions in the

trajectory. In this case as expected there is a blending of the two

previous graphs from the schema-rich and schema-free cases in the

panel (a) and (b)
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how brain areas that have been associated in many kinds of

visual attention and recognition tasks (IPL/IPS, MFG,

MedFG) appear as sub-networks that form the basis for

hypotheses concerning constituent schema activation/

identification functions. These kinds of graphs are focused

on influence connectivity as opposed to anatomical (known

or not) connectivity and show how brain areas can influ-

ence each other in real-time cognitive/perceptual tasks.

They do not however constitute a theory about event per-

ception or how each of these specific brain areas may

influence perceptual processing. In the next section we

discuss a model first proposed by Hanson and Hanson

(1996). This model consists of a specific recurrent neural

network in which ‘‘state’’ or memory information is

maintained over time, conditionally dependent on present

stimulus input, and can seamlessly transition from one

stored schema to another in order to minimize prediction

error. The canonical theory of this type was first posited by

Neisser (1976) and Schank (1975) in different forms and

different contexts, but with substantially the same goal to

explain how we organize and use memory of similar epi-

sodes to predict, filter and comprehend present sensory

information flow.

A model of event perception

Schema or script processing theories first appeared in the

1970s in order to account for the continuity of perceptual

processing and narrative story comprehension (Rumelhart

and Ortony 1977). Schema as a concept was first adapted

by Bartlett (1932) to refer to a perception/action/goal

knowledge structure. This concept was further extended

by Rumelhart in the 1970s to include story comprehen-

sion. According to Rumelhart a story was encoded as an

episodic structure or event that could be traced to an

actor-action-goal sequence. These episodic events would

be implemented by schemata which would include nested

subgoals that would recursively satisfy the larger sche-

mata goal. Many results and details concerning memory

organization and story summarization seemed consistent

with this account. Computational accounts that attempted

to capture the schema concept were introduced by Schank

(1975) and provided simple data structures (‘‘scripts’’) that

were filled in as expectations within a story were realized.

Earlier Neisser (1967) had proposed a schema-processing

model for the what he termed the ‘‘perceptual cycle’’, a

perceptual processing account of how the world remains

stable and smooth in the face of constant changing stim-

ulus variation and diversity (see Fig. 11). In Neisser’s

scheme, a stimulus object or event would initiate some

specific schema which in turn would generate expecta-

tions which in turn would collect more data about the

world and the object context. Confirmation of the same

schema continues the perceptual cycle, while new data or

data inconsistent with the existing schema modifies or

initiates new schema. Computationally this was captured

in a simple model proposed by Hanson and Hanson

(1996), using a recurrent neural network (see Fig. 12).

This network was constructed to be similar in form to the

perceptual cycle (see Fig. 11) and captured the concept of

a controlled search through a schema space. In this case

stimulus input provided the ‘‘object’’ initiation or modi-

fication of the schema, while the hidden layer stored or

coded for schema that might be more general then the

input stimulus itself, while smoothly predicting the event

change points and event stable points. This model was

able to simulate many known experimental results con-

cerning memory organization and to exhibit schema type

behavior. In the next section we will map our graphs to

the schema RNN model and propose how functional areas

and their relation to the different graphs are consistent

with known interpretations of brain function in schema

activation, maintenance, top-down filtering.

Fig. 11 Model of Event

Perception (left) Neisser’s

Perceptual Cylce, (right) the

conceptual implementation of

the perceptual cycle as a

recurrent neural network see

Fig. 12
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Neural correlates of event processing

The present model begins with the identification of MT+

and STS for event change detection, which are known to be

activated by various motion cues and have been shown

previously to be associated with event change (Zacks et al.

2001). Based on the graphical models we propose that

these areas provide cues for schema search and selection to

medial frontal gyrus. Medial frontal gyrus is further med-

iated by inferior parietal lobule and nearby angular gyrus,

both of which have been previously identified with atten-

tion shifting and secondary cuing. Given a schema is

triggered by appropriate MT+/STS (as well as extrastriate

areas and probably higher order featural processing in IT,

although not in the present graphs) the IPL and MedFG

help instantiate and select a specific schema which is

maintained and implemented by PFC (MFG/DLPC), as

well as guiding expectancies and filtering and influencing

perceptual/sensory input (cf. Miller and Cohen 2001;

Johnson et al. 2005). This type of implementation (see

Fig. 13) can produce smooth transitions and maintain sta-

ble representations in the face of sensory or perceptual

variation; much as Neisser proposed in his ‘‘perceptual

cycle’’. We extend this model, however, in the present

proposal by providing both neural mechanisms, repre-

sented by known prefrontal/parietal and perceptual brain

areas, as well as providing a potential computational

account that has sequential and temporal constraints.

Unlike other approaches to event perception for creating

stable representations (Carpenter et al. 1991), we do not

expect a change point response or ‘‘reset’’ during event

perception (which might very well implicate ACC or

superior frontal gyrus), unless there are surprising sensory

data not within the prediction scope of the activated

schema.

Graphical models and ROIs: component theory

Almost every identifiable area of the brain has been shown

to have multiple functions in response to diverse kinds of

cognitive tasks. Recent reassessments of various areas

whose function had been previously well established are

now being reinterpreted in more abstract forms (e.g.,

Broca’s area, IFG, as response selection, Thompson-Schill

et al. 2005; fusiform ‘‘face’’ area, Kanwisher et al. 1997;

Haxby et al. 2001; Hanson et al. 2004a; Hanson and Hal-

chenko 2007, as complex feature reduction). What we

believe is more likely to be unique about specific brain

function is the pattern of constituent areas that are recruited

for the task and the way they influence one another during

that task (cf., McIntosh 2001). For the subnetworks we

identified with bottom-up processing, consider a snapshot

of the various functions ascribed to the constituents of this

subnetwork that have been proposed in the literature:

IPL/IPS: attention shifting, theory of mind, visual

awareness, spatial visual attention, spatial action intention,

agency inference, etc.

MFG (DLPC) working memory, sustained memory

functions, target detection, expectancy based decision

making, effective attention, auditory categorization, object

naming reading, language processing, tool use… etc.

Fig. 12 Recurrent neural network conceptualized in Hanson and

Hanson (1996) used to model event perception task. Note Fig. 11

right part of figure showing relationship to Neisser’s perceptual cycle

Instantiates  
Schema and 
maintains top 
down bias

Initiates Schema 
Search & 
Selection 
producing bottom 
up bias

Guides 
expectancies 
and top down  
influence/ 
filtering of 
sensory/perceptu

Fig. 13 Theoretical functional interactions between brain areas

during event perception tasks. Although this is a feedback cycle, if

entered at Sensory processing (bottom-up) we are assigning STS/

MT+ and extriate areas for initatiating a search for relevant schema

which in turn interacts with prefrontal areas to guide (top-down)

expectancies and filtering sensory processing
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MedFG: conflict monitoring, control of voluntary

action, selection response set, ‘‘high level executive func-

tions’’, decision processing, language supporting functions,

processing of reward, verbal working memory, interracial

judgments, numerical calculation, theory of mind... etc.

Theses types of observations have lead to a view that

brain activity is more likely to reflect a complex sort of

modularity where constituent functions are recruited

opportunistically in the context of other such functions.

Complex modularity: Donder’s Revisited Much of the

logic of hypothesis testing in neuroimaging is based on a

‘‘factor and localize’’ framework often referred to as

Donder’s method (Posner and Raichle 1994). This method

(originally defined for reaction time) assumes that brain

activity can be factored into additive effects that can be

localized by the appropriate baseline condition. ‘‘Rest’’

conditions are often used as baseline, but this could simply

introduce more variability given the lack of control on

subject’s ‘‘rest’’ states. Nonetheless this factoring strategy

has been successful in neuroimaging and does lead to

functional localization, but perhaps not in any simple

additive way. Graphical modeling in individual subjects

has the potential for providing a compromise between

approaches that focus on isolated modules and those

focused on distributed computation. What is left to resolve

in such schemes is the nature of the underlying constitu-

ents, levels of resolution, and the specific brain function. It

should be clear that any given task and its variations (e.g.,)

certainly involves cognitive functions (working memory,

executive functions... etc.), and there may that might cause

a radical restructuring of the graph edges and constiuent

nodes (coherent brain areas). Fodor (1983) describes two

kinds of modularity that are logically possible for the

organization of mental computations. One is what he refers

to as an horizontal modularity. That could be thought of as

an array with cognitive functions listed horizontally in no

particular order and with no particular level of granularity:

‘‘spatial memory’’ ‘‘language’’, ‘‘attention’’, ‘‘object rec-

ognition’’, and so on. A second possibility is vertical

modularity, often the default hypothesis in cognitive neu-

roscience, e.g., ‘‘language organs’’, ‘‘face areas’’, ‘‘morality

centers’’ etc. One could also specify a (yet to be specified)

constituent modularity, one that reuses horizontal elements

across many kinds of cognitive function independent of

domain (e.g., ‘‘sequential order of information’’ instead of

a ‘‘syntax area’’). Of course, hierarchical organization of

functional relations among neuronal groupings is familiar

in vision and in motor control, e.g., in saccadic eye

movements. The identification and decomposition of cog-

nitive tasks that have well correlated neural circuitry of the

kind we have considered here is an ongoing research task.

Although mapping cognitive function to localized brain

areas has been the fundamental task driving the human

brain mapping and cognitive neuroscience fields for the

past decade, it may be obvious from these types of obser-

vations that identifying the unique function of specific

areas of the brain is likely to be a an unsatisfying agenda, if

such function is context sensitive relative to other recruited

areas. Therefore, despite the apparent success of the pres-

ent normative program in identifying memory, attention

categorization, perception areas, it’s typical for many other

areas to be engaged during basic cognitive/perceptual tasks

that are often considered ‘‘background’’, ‘‘secondary’’ or

just irrelevant. As the neuroimaging field matures, theories

of cognitive neuroscience may naturally involve hypothe-

ses about interactions among as well as the causal influence

that one brain area may have upon another, what has been

termed effective connectivity (Friston et al. 2003) such as

we have demonstrated here. Whether we consider language

processing, working memory, or simple detection tasks,

cognitive and perceptual processes are likely to include

networks of regions that uniquely define a kind of com-

putation. The key observation in this work is that

constituents of brain activity may organize in networks

where underlying brain activity forms some stable, but

perhaps transient, computational function. Consequently,

our ability to model underlying networks depends critically

on detecting larger data structures (e.g., graphs) rather than

local regions of interest as normative approaches in cog-

nitive neuroscience do now.
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