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Abstract 14 

Quantitative differences in plant defence metabolites, such as glucosinolates, may 15 

directly affect herbivore preference and performance, and indirectly affect natural 16 

enemy pressure. By assessing insect abundance and leaf damage rate, we studied the 17 

responses of insect herbivores to six genotypes of Brassica oleracea var. acephala, 18 

selected from the same cultivar for having high or low foliar content of sinigrin, 19 

glucoiberin and glucobrassicin. We also investigated whether the natural parasitism rate 20 

was affected by glucosinolates. Finally, we assessed the relative importance of plant 21 

chemistry (bottom-up control) and natural enemy performance (top-down control) in 22 



shaping insect abundance, the ratio of generalist/specialist herbivores and levels of leaf 23 

damage. We found that high sinigrin content decreased the abundance of the generalist 24 

Mamestra brassicae (Lepidoptera, Noctuidae) and the specialist Plutella xylostella 25 

(Lepidoptera, Yponomeutidae), but increased the load of the specialist Eurydema 26 

ornatum (Hemiptera, Pentatomidae). Plants with high sinigrin content suffered less leaf 27 

injuries. The specialist Brevicoryne brassicae (Hemiptera, Aphididae) increased in 28 

plants with low glucobrassicin content, whereas the specialists Pieris rapae 29 

(Lepidoptera, Pieridae), Aleyrodes brassicae (Hemiptera, Aleyrodidae) and Phyllotreta 30 

cruciferae (Coleoptera, Chrysomelidae) were not affected by the plant genotype. 31 

Parasitism rates of M. brassicae larvae and E. ornatum eggs were affected by plant 32 

genotype. The ratio of generalist/specialist herbivores was positively correlated with 33 

parasitism rate. Although both top-down and bottom-up forces were seen to be 34 

contributing, the key factor in shaping both herbivore performance and parasitism rate 35 

was the glucosinolate concentration, which highlights the impact of bottom-up forces on 36 

the trophic cascades in crop habitats. 37 
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Introduction 39 

Plant defence strategies against insect herbivores may involve the synthesis of a 40 

plethora of biologically active compounds (allelochemicals) which are phylogenetically 41 

conserved in specific plant families or genera (Mithöfer and Boland 2012). Many 42 

compounds act directly on the herbivores (bottom-up control), whereas others act 43 

indirectly, via the attraction of organisms from other trophic levels (i.e. parasitoids and 44 

predators) which, in turn, protect the plants (plant mediated top-down control) (Ode 45 

2006). The genus Brassica (Brassicaceae) has a sophisticated two-part defence system 46 

involving glucosinolate compounds and a myrosinase protein complex. The enzyme 47 



myrosinase breaks down glucosinolates into toxins (isothiocyanates, nitriles) upon leaf 48 

tissue damage (Hopkins et al. 2009). Glucosinolates derived from phenylalanine or 49 

tyrosine (aromatic), and those derived from alanine, valine, leucine and isoleucine 50 

(aliphatic) are typical of the Brassicales, although they have also been found outside the 51 

order, among non-cruciferous dicotyledonous angiosperms (Fahey et al. 2001). Indole 52 

(synthesized from tryptophan) and methionine-derived aliphatic glucosinolates are 53 

unique to the Brassicales, the latter being a group of metabolites characteristic of the 54 

family Brassicaceae (Bekaert et al. 2012). The synthesis of indole glucosinolates, such 55 

as glucobrassicin and neoglucobrassicin, tends to be induced by herbivory and fungal 56 

infection through jasmonate or other signalling pathways, whereas aliphatic 57 

glucosinolates, such as sinigrin and glucoiberin, tend to be constitutively expressed 58 

(Harvey et al. 2011). However, it has also been reported that aliphatic compounds may  59 

decrease after herbivore attacks (Velasco et al. 2007), and increase after jasmonate 60 

induction (Fritz et al. 2010) or by below-ground herbivory (Soler et al. 2005). Thus, 61 

patterns and relative concentrations of these chemicals are consistently subject to 62 

variation depending on genetic and environmental factors (Poelman et al. 2008; Lankau 63 

and Kliebenstein 2009).  64 

Glucosinolates may act as a potent feeding deterrent for generalist insect species, 65 

as their toxicity causes developmental and fitness damage. For insects specialized in 66 

brassicaceous plants, however, they may act as oviposition and feeding stimulants 67 

(kairomonal role). The toxic effect on the specialist herbivores are circumvented by 68 

excretion, detoxification, sequestration and behavioural responses (Hopkins et al. 2009). 69 

Nonetheless, the existence of qualitative and quantitative variation of phytochemicals 70 

among plant genotypes, tissues and ontogenetic stages still challenges insect survival 71 

(Ode 2006). Furthermore, glucosinolate breakdown products are also used by the 72 



natural enemies of herbivorous insects, such as parasitoids, as cues for host location. 73 

There is evidence that levels of attraction vary between parasitoids, however, and 74 

consequently the nature of these secondary metabolites may significantly affect their 75 

performance (Turlings and Benrey 1998; Gols and Harvey 2009). The net effect of 76 

glucosinolates on the host-parasite interaction is complex. On the one hand, 77 

glucosinolates may reduce the immune responses of the hosts, producing a positive 78 

effect on parasitoid survival (Bukovinszky et al. 2009), but on the other hand plant 79 

metabolites may also negatively affect parasitoid survival, through the direct ingestion 80 

of harmful phytochemicals from the herbivore and from reducing host quality (Gols and 81 

Harvey 2009). Consequently, plants may face a conflict between producing high or low 82 

levels of glucosinolates: higher levels can enhance resistance against generalist insect 83 

herbivores, but at the same time may attract co-evolved specialists, and also be harmful 84 

to the natural enemies of those herbivores. Lower levels, on the other hand, may 85 

increase the abundance of generalist herbivores (Lankau 2007; Kos et al. 2011a).  86 

In Brassica oleracea var. acephala L. (kale), two aliphatic compounds (sinigrin, 87 

glucoiberin) and one indole compound (glucobrassicin) dominate the glucosinolate 88 

pattern (Velasco et al. 2007; Cartea et al. 2008). Previous works have focused on the 89 

impact of glucosinolates in insect-plant interactions in Brassica ecosystems, by 90 

studying: 1) different populations of wild Brassica oleracea with qualitative differences 91 

in glucosinolate patterns (specifically the presence/absence of aliphatic glucosinolates) 92 

(Newton et al. 2009a, 2009b; Newton et al. 2010); 2) a wild population of B. nigra and 93 

cultivated varieties of B. oleracea with high or low total glucosinolate concentration 94 

(Poelman et al. 2008); 3) different cultivars of B. oleracea with quantitative differences 95 

in glucosinolate profiles (Poelman et al. 2009); and 4) wild species and cultivated 96 

varieties of B. oleracea, with quantitative differences in glucosinolate profiles (i.e. high 97 



vs. low levels) (Gols et al. 2008; Harvey et al. 2011). It is known that cultivars of 98 

Brassica species have low levels of glucosinolates in leaf tissue compared with wild 99 

populations, which justifies the comparison between wild and cultivated species (Gols 100 

and Harvey 2009). However, it is recognized that other plant traits, such as morphology, 101 

phenology, primary chemistry and physiology, related to their different origins, life-102 

histories and genetic backgrounds, could also play a role in insect responses (Carmona 103 

et al. 2011). At present, relatively few studies have used artificial selection to create 104 

lines of brassicaceous plants with different glucosinolate profiles, and those that did 105 

usually only had quantitative variation of sinigrin (Lankau 2007; Lankau and Strauss 106 

2008; Lankau and Kliebenstein 2009). In the present study, we performed a divergent 107 

selection from a local variety of kale, obtaining six plant genotypes which shared the 108 

phenotype but which differed in glucosinolate patterns, having high or low content of 109 

aliphatic (sinigrin and glucoiberin) and indole (glucobrassicin) glucosinolates. We 110 

focused on insect responses to quantitative variation in glucosinolates (bottom-up 111 

forces), by sampling a wide range of natural occurring specialist and generalist insect 112 

herbivores. In particular, generalists were expected to be most sensitive to high sinigrin 113 

concentration, as indicated in the literature (Ode 2006). On the other hand, the role of 114 

plant chemistry in attracting natural enemies (top-down forces), such as parasitoids, was 115 

assessed through the evaluation of parasitism rate. We also determined the extent to 116 

which the cost of the synthesis of secondary defence metabolites is translated into 117 

benefits (in terms of reduced herbivory), by assessing the variability of leaf damage 118 

rates among plant genotypes. Finally, we investigated whether the differences between 119 

plant groups in terms of herbivore abundance, the ratio between generalist and specialist 120 

herbivores, and leaf damage rates could principally be explained by parasitism rate (top-121 

down forces) or by plant constitutive defences (bottom-up forces).  122 



Material and methods 123 

Plant source 124 

Divergent selection was started in 2006 by using seeds of the kale population MBG-125 

BRS0062 (cycle 0), kept at the Brassica germplasm bank at Misión Biológica de 126 

Galicia (MBG-CSIC) (Galicia, NW Spain). This population is a local variety which 127 

represents the kale germplasm grown in NW Spain. The objective was to obtain six 128 

plant groups which had high (H-SIN) or low (L-SIN) concentration of sinigrin, high (H-129 

GIB) or low (L-GIB) glucoiberin, and high (H-GBS) or low (L-GBS) glucobrassicin 130 

content. In 2006, approximately 750 plants (cycle 0) were transplanted outside into six 131 

cages (125 plants each), and fenced with fine mesh walls to ensure isolation conditions. 132 

The leaf glucosinolate content (see details below) of all the plants was assessed 120 133 

days after sowing. In each cage, 20 plants with an extreme content of the relevant 134 

glucosinolate (i.e. the highest or the lowest concentration) were selected (20% selection 135 

intensity), and all remaining plants were destroyed before flowering. Because kale is an 136 

allogamous crop, cross-pollination among the selected plants in each cage was obtained 137 

using bumblebees. In 2007, an equal number of seeds were taken from the selected 138 

plants of the cycle 0, for each divergent selection, to create the cycle 1 generation (125 139 

plants per cage). According to the protocol adopted for cycle 0, only those plants which 140 

showed an extreme leaf glucosinolate content were selected (20 plants per cage). From 141 

2008 to 2009, this process was repeated for two successive generation cycles. A recent 142 

investigation, still unpublished, has recorded the absence of significant differences in 143 

biomass and phenology between the six plant groups. Thus, we can reasonably conclude 144 

that the main differences among genotypes were due to differences in the glucosinolates 145 

subjected to selection, although the possibility exists that other plant traits may also 146 

combine with the selected glucosinolates to further influence insect performance. 147 



Insect herbivores 148 

The study was focused on insect herbivores feeding on kale leaves. In NW Spain, the 149 

most common lepidopteran herbivores are the generalists Mamestra brassicae L. 150 

(Noctuidae), Autographa gamma L. (Noctuidae) and Evergestis forficalis L. (Pyralidae), 151 

and the specialists Plutella xylostella L. (Yponomeutidae), Pieris rapae L. (Pieridae) 152 

and P. brassicae L. (Pieridae) (Cartea et al. 2009). Among hemipterans, the cabbage 153 

aphid Brevicoryne brassicae L. (Hemiptera, Aphididae), the whitefly Aleyrodes 154 

brassicae Walter (Hemiptera, Aleyrodidae) and the pentatomid Eurydema ornatum L. 155 

(Hemiptera, Pentatomidae), are also specialist herbivores of brassicaceous plants. The 156 

abundance of the adults of the cabbage flea beetle Phyllotreta cruciferae Goeze 157 

(Coleoptera, Chrysomelidae) was also assessed, because although the larvae feed only 158 

on roots and stems, adults feed on the foliage, producing small round holes. 159 

Experimental design 160 

The study was conducted during 2011 and 2012 at Misión Biológica de Galicia. Plants 161 

of the six genotypes were grown in multi-pot trays in a greenhouse at 20 ºC for 40 days 162 

and then transplanted into the field (Salcedo, NW Spain, 42º 24’N, 8º 38’W), at the 5-6 163 

true leaf stage, on 15 April 2011 and a second batch on 26 March 2012. Plant varieties 164 

were evaluated in a randomized complete block design with six replications. Each 165 

experimental block consisted of six rows of 25 plants each (one genotype per row, 166 

randomly assigned). Rows were spaced 0.8 m apart and plants within rows were spaced 167 

0.5 m apart. Field samplings were performed on 23 May, 23 June and 26 July 2011. A 168 

total of 1,080 observations were obtained (corresponding to 60 plants/genotype, three 169 

sampling dates and six genotypes). Sampling was interrupted in August 2011 due to the 170 

critical conditions of the plants, which were severely affected by whiteflies, aphids and 171 



fungal diseases. In 2012, the samplings were carried out on 9 June, 27 July, 27 August, 172 

27 September and 30 October. In 2012, 1,800 observations were obtained 173 

(corresponding to 60 plants/genotype, five sampling dates and six genotypes). In 174 

November, no more insects were found in the field.  175 

On each sampling date, ten plants per row were thoroughly inspected in the 176 

search for the presence of insect herbivores on leaves. However, the eggs of A. gamma, 177 

E. forficalis and P. xylostella and the mining first instar larvae of P. xylostella, were not 178 

sampled due to their small size. Also, M. brassicae pupae were not sampled because 179 

they develop while buried in the soil. Plants inspected on one sampling date were 180 

always left untouched on the following date. All the lepidopteran species studied are, in 181 

Spain, bi- or multivoltine, and we therefore assumed that sampling would not 182 

significantly reduce their abundance in the plots. Field collected material (i.e. 183 

lepidopteran eggs, larvae and pupae, and E. ornatum eggs) was transported to the 184 

laboratory, identified, counted and placed in plastic 10cm-diameter-Petri-dishes, 185 

labelled with the collection date, host plant, block and insect identity. Larvae were 186 

reared individually in Petri-dishes and fed with fresh kale leaves. Lepidopteran 187 

immature stages were reared until adulthood or until the emergence of parasitoids. Eggs 188 

were maintained until larvae or parasitoids emerged. All rearing was carried out at room 189 

temperature (20 ± 2 ºC) and under a natural photoperiod. Because of the magnitude of 190 

the colonies of B. brassicae and A. brassicae, and of adults of E. ornatum and P. 191 

cruciferae, their abundance was estimated by using a subjective 0-4 rating scale (0 = 192 

absence; 1 = up to 5 individuals; 2 = up to 10; 3 = up to 50; 4 = more than 50). It was 193 

expressed as the average rating scale measured on 10 plants. The parasitism rate of B. 194 

brassicae and A. brassicae was not assessed because these hemipterans are more subject 195 

to predators (i.e. syrphid fly maggots, green lacewing larvae, anthocorid bugs and 196 



ladybird beetles) than to parasitoid control in the system studied (S. Santolamazza-197 

Carbone, personal observation). Furthermore, any study of the parasitism rate of these 198 

colonies would require several leaves to be removed, thus provoking an alteration of the 199 

plant architecture. E. ornatum and P. cruciferae adults do not suffer parasitoid attacks at 200 

this life stage. A 1-5 rating scale was used to evaluate the damage level of the plants 201 

(i.e. the overall amount of injuries caused by the whole herbivore complex), where level 202 

1 represents a healthy plant, without any damage, and level 5 represents a completely 203 

damaged plant, with 90-100% of the leaves attacked by herbivores. The damage level 204 

was calculated as the average rating measured on 15 plants. 205 

The impact of parasitoids on insect host populations was calculated as the 206 

proportion of available hosts that had been parasitized per sampling date, block and host 207 

plant genotype. Unhatched host eggs, host pupae and unhatched parasitoid cocoons 208 

were dissected under the microscope in order to take into account any unemerged adult 209 

parasitoids. Parasitoid taxonomical identity was ascertained by S. Santolamazza-210 

Carbone, and voucher specimens have been conserved at Misión Biológica de Galicia.  211 

Glucosinolate analysis 212 

In every experimental plot, two lots of 10 fresh leaves per plant genotype were 213 

collected. Collecting dates were 7 June and 7 July 2011, and 10 July and 30 October 214 

2012. Samples were stored at -80 ºC until prepared for analysis. Glucosinolate profiles 215 

were determined by UHPLC. Sample extraction and desulfation were performed 216 

according to Kliebenstein et al. (2001) with minor modifications. 5 microliters of the 217 

desulfo-glucosinolate extract from leaves were used to identify and quantify 218 

glucosinolates. Chromatographic analyses were carried out on an ultra-high-219 

performance liquid chromatography (UHPLC Nexera LC-30AD; Shimadzu) equipped 220 

with a Nexera SIL-30AC injector and one SPD-M20A UV/VIS photodiode array 221 



detector. The UHPLC column was an Acquity UPLC HSS T3 (1.8 µm particle size, 2.1 222 

x100 mm i.d.) from Waters (Waters Corporation, MA, USA) protected with a Van 223 

Guard UHPLC precolumn. The oven temperature was set at 30 ºC. Compounds were 224 

detected at 229 nm and were separated by using the following method in aqueous 225 

acetonitrile, with a flow of 0.4 mL min–1: 1.5 minutes at 90% A; a 3.5 min gradient 226 

from 10% to 25% (v/v) B; a 4 min gradient from 25% (v/v) to 50% (v/v) B; a 4.5 227 

minute gradient from 50% to 100% (v/v) B; a 1 minute gradient from 100% to 0%  228 

(v/v); B and a final 3 min at 90% A. Solvents used were: ultrapure water (A) and 25% 229 

of ACN (B). Data were recorded on a computer with the LabSolutions software 230 

(Shimadzu). Specific glucosinolates were identified by comparing retention times with 231 

standards and by UV absorption spectra. Glucosinolates were quantified at 229 nm by 232 

using sinigrin (SIN, sinigrin monohydrate from Phytoplan, Diehm & Neuberger GmbH, 233 

Heidelberg, Germany) and glucobrassicin (GBS, glucobrassicin potassium salt 234 

monohydrate, from Phytoplan, Diehm & Neuberger GmbH, Heidelberg, Germany) as 235 

an external standard and expressed in µmol g-1 dry weight (DW). The regression lines 236 

were made with at least five data points, from 0.34 to 1.7 nmol for sinigrin and from 237 

0.28 to 1.4 nmol for glucobrassicin. The average regression equations for sinigrin and 238 

glucobrassicin were y= 148818x (R2 = 0.99) and y= 263822 x (R2 = 0.99), respectively. 239 

Statistical analysis 240 

Sampling dates were analysed as independent events, irrespective of the year, because 241 

of the different number of samplings performed in 2011 and 2012. The impacts of plant 242 

genotype and sampling date (fixed factors) and the interaction between them on the 243 

abundance of insect herbivores and on leaf damage level, were investigated using a two-244 

way analysis of variance (ANOVA). Blocks were used as a random factor. Pairwise 245 

comparisons between two plant genotypes (i.e. high vs. low sinigrin, high vs. low 246 



glucoiberin and high vs. low glucobrassicin) and general comparisons (i.e. between the 247 

six genotypes), were also carried out. Insect count data were log10 (x+1) transformed 248 

prior to the analyses, whereas the insect abundance estimated by rating scales and the 249 

leaf damage level were arc-sin-square root transformed. Differences between means 250 

were assessed by a LSD (Least Significant Difference) test. The larvae of P. brassicae, 251 

E. forficalis and A. gamma, and the eggs of P. rapae were excluded from the statistical 252 

analyses because they were only sporadically found.  253 

Differences in the ratio of generalist (i.e. M. brassicae, A. gamma, E. forficalis) 254 

to specialist (i.e. P. xylostella, P. rapae, P. brassicae, E. ornatum) herbivores among 255 

plant genotypes and sampling dates (fixed factors) were assessed by using a Generalized 256 

Linear Model with binomial proportion (logistic regression) and logit link function.  257 

The influence of plant genotype, sampling date and the interactions between 258 

them on the parasitism rate was assessed by means of Generalized Linear Model 259 

(logistic regression) with binomial proportion and logit link function. The binomial 260 

proportion (i.e. number of parasitized hosts/number of available hosts) was treated as 261 

the response variable, whereas plant genotype and sampling date were the independent 262 

variables. Pairwise and general comparisons among genotypes were assessed. 263 

Parasitism rate was only assessed for immature stages of the lepidopteran species and E. 264 

ornatum eggs. 265 

In order to assess whether overall herbivore abundance, the ratio of generalist to 266 

specialist herbivores and the leaf damage level were correlated with glucosinolate 267 

concentrations or with the parasitism rate (fixed factors), a multiple linear regression 268 

was adopted. Glucosinolate concentrations were expressed as the mean values for each 269 

sample date (June and July in 2011, and July and October in 2012), with six replications 270 

per genotype. For each glucosinolate, data from plants selected for having high and low 271 



concentrations were pooled. Parasitism rate was arc-sin square root transformed and 272 

herbivore abundance was log10 (x+1) transformed prior to the analysis. Significance was 273 

declared at P < 0.05. Statistical tests were carried out by using the GenStat12.1 software 274 

package (VSN International Ltd, Hemel Hempstead, UK). 275 

Results 276 

Glucosinolates  277 

Glucosinolate analyses confirmed that in both years the mean concentrations of sinigrin, 278 

glucoiberin and glucobrassicin varied significantly between genotypes (high vs. low 279 

concentration), according to the divergent selection previously performed (online 280 

resource, Table S1, ESM). In some cases, significant variation between genotypes in the 281 

concentration of other glucosinolates, not subjected to divergent selection, was also 282 

detected. In fact, this outcome was to be expected owing to the existence of links 283 

between the biosynthetic pathways of the different glucosinolates (Fahey et al. 2001). 284 

However, this factor is unlikely to have affected the reliability of the study because 285 

these variations were of considerably lower magnitude than those recorded in the 286 

selected glucosinolates.  287 

Herbivore responses to glucosinolate patterns 288 

Variation in the herbivore numbers recorded between the two years was due to natural 289 

population fluctuations and to the different number of sampling events (Table 1). We 290 

found that M. brassicae (84%) dominated the lepidopteran community, followed by P. 291 

rapae (8%) and P. xylostella (5%). Pairwise comparison of plant genotypes showed that 292 

the leaf damage level was significantly lower in plants with high sinigrin content (Table 293 

2, Fig. 1-a). General comparisons across the six plant genotypes also showed the high 294 

sinigrin genotype to have significantly lower leaf damage, as well as a significant 295 



variation in the extent of leaf damage depending on the sampling date (Table 3, Fig. 1-296 

a).  297 

Among the lepidopterans, M. brassicae larvae were significantly less abundant 298 

on the high sinigrin content genotype (pairwise comparisons) (Table 2, Fig. 1-b). By 299 

performing general comparisons, we found that plant genotype, sampling date and the 300 

interactions between them exerted a significant effect on the larval stage (Table 3), 301 

which avoided the plants selected for having high glucoiberin content (Fig.1-b). The 302 

abundance of M. brassicae eggs significantly decreased on the plants with high sinigrin 303 

concentration, but also on the genotype with low glucoiberin content (pairwise 304 

comparisons) (Table 2, Fig. 1-c). However, general comparisons only detected 305 

significant effects of the sampling date (Table 3).  306 

Pairwise comparisons between genotypes showed P. xylostella larvae and pupae 307 

to be less abundant in the plant genotype with high sinigrin content (Table 2, Fig. 1-d); 308 

however no genotype effect was observed on P. rapae larvae or pupae abundance 309 

(Table 2), although populations of this species did fluctuate depending on sampling date 310 

(Fig. 1-e). When general comparisons were performed, only the sampling date was 311 

significant for both P. xylostella and P. rapae (Table 3).   312 

Among the hemipterans, the abundance of E. ornatum eggs significantly 313 

increased in plants with high sinigrin content, and also varied depending on the 314 

sampling date (pairwise comparisons, Table 2, Fig.1-f). General comparisons confirmed 315 

the attraction exerted by plants with high sinigrin concentration (Table 3, Fig. 1-f). 316 

Numbers of adult E. ornatum, however, were only significantly affected by the 317 

sampling date, as indicated by both pairwise (Table 2, Fig. 1-g) and general 318 

comparisons (Table 3).   319 



The size of the colonies of B. brassicae consistently increased in plants with low 320 

glucobrassicin concentration and depended on the sampling date (pairwise comparisons) 321 

(Table 2, Fig. 1-h). When considering general comparisons, only the sampling date and 322 

the interaction between sampling date and plant genotype were found to be significant 323 

for this species (Table 3). 324 

The colonies of the whitefly A. brassicae (Fig. 1-i) and adults of the coleopteran 325 

P. cruciferae (Fig. 1-l) varied their magnitude depending on the sampling date in both 326 

pairwise (Table 3) and general comparisons (Table 3). 327 

The ratio of generalist to specialist herbivores significantly differed among plant 328 

genotypes (Wald test = 80, P < 0.001) and sampling dates (Wald test = 431.7 P < 0.001; 329 

genotype × sampling date: Walt test = 313.54, P < 0.001). In particular, when both 330 

years are considered together, plants selected for having high sinigrin and low 331 

glucobrassicin content were seen to be significantly more visited by specialists than 332 

generalists (online resource, Fig. S1-a, ESM). Considering the two years separately, 333 

specialists dominated all plant groups in 2011, but preferred the genotype with high 334 

sinigrin concentration (online resource, Fig. S1-b, ESM); in 2012, however, generalists 335 

were more abundant, especially in plants with low sinigrin, and high or low glucoiberin 336 

content (online resource, Fig. S1-c, ESM). 337 

Parasitoid responses to glucosinolate patterns 338 

Lepidopterans were parasitized by hymenopteran parasitoids belonging to the 339 

Braconidae, Ichneumonidae, Encyrtidae, Pteromalidae, Eulophidae, Scelionidae and 340 

Trichogrammatidae families, and by tachinid dipterans, whereas the eggs of the 341 

hemipteran E. ornatum were attacked by Trissolcus sp. (Hymenoptera, Scelionidae) (see 342 

Santolamazza-Carbone et al. 2013 for details of the parasitoid complex of B. oleracea 343 

herbivores). In 2011, the parasitism rate experienced by the generalist herbivores was 344 



lower (0.12 ± 0.01) than that experienced by the specialists (0.26 ± 0.03). A similar 345 

trend was found in 2012 for generalists (0.15 ± 0.05) and specialists (0.41 ± 0.01). 346 

The parasitism of M. brassicae larvae (Table 1), mainly exerted by the braconid 347 

wasps Microplitis mediator L. and, occasionally, by Cotesia rubecula Marshall, was 348 

significantly greater in those plants selected for high glucoiberin and high 349 

glucobrassicin content (pairwise comparisons) (Table 4). When considering general 350 

comparisons (Table 5), it was found that the parasitism rate was higher in genotypes 351 

with high glucoiberin and high glucoibrassicin content (Table 1), and also affected by 352 

sampling date, although the interaction was not significant  353 

When performing pairwise comparisons, we found that plant genotypes did not 354 

influence the parasitism rate of M. brassicae eggs, or of P. rapae and P. xylostella 355 

larvae (Table 1 and 4). Similar results were obtained from general comparisons of plant 356 

genotypes for the parasitism rate of M. brassicae eggs (Table 5). Sampling date did 357 

significantly affect the parasitism rate of P. rapae larvae (general comparisons), but the 358 

interaction between genotype and sampling date did not (Table 5). The parasitism rate 359 

of P. xylostella larvae was not affected by the plant genotype, the sampling date or their 360 

interactions when considering both pairwise (Table 4) and general comparisons (Table 361 

5). 362 

In 2011, 13.5% of E. ornatum eggs were parasitized, and parasitism rate was 363 

highest in plants with low sinigrin and high glucobrassicin content (Table 1 and 4). In 364 

2012 we did not detect any parasitism (Table 1). Further analysis (general comparisons) 365 

confirmed the positive effect of high glucobrassicin plants on the egg parasitism rate of 366 

this hemipteran, as well as the importance of the sampling date (Table 5).  367 

Top-down vs. bottom-up effects  368 



In 2011, herbivore abundance was significantly and positively correlated with sinigrin 369 

and glucobrassicin content, while the parasitism rate calculated in these plant genotypes 370 

was not (Table 6). The leaf damage rate was significantly and negatively correlated with 371 

sinigrin concentration, while the parasitism rate did not produce any effect on it (Table 372 

6). The ratio of generalist to specialist herbivores calculated on the genotypes with high 373 

and low glucobrassicin content did not show any significant relationship with 374 

glucosinolate concentration, but it had a positive relationship with the parasitism rate 375 

(Table 6).  376 

In 2012, variation in sinigrin, glucoiberin and glucobrassicin concentrations or 377 

parasitism rate did not have any significant relationship with herbivore abundance 378 

(Table 6). However, sinigrin concentration and the parasitism rate were significantly 379 

and negatively related to the leaf damage rate (Table 6). The ratio between generalist 380 

and specialist herbivores was not related to glucosinolate concentration or to parasitism 381 

rate (Table 6). 382 

 383 

Discussion 384 

The study indicates that quantitative variations in glucosinolate profiles, and in 385 

particular variations in sinigrin content, influence both the overall abundance of insect 386 

herbivores and the relative proportion of specialist and generalist species, which is 387 

translated into a significant variation in leaf damage levels. Sinigrin is known to be the 388 

principal glucosinolate found in kale varieties of NW Spain (Cartea et al. 2008), and 389 

this investigation shows that a high concentration of this major chemical defence can 390 

help deter both generalist and specialist lepidopteran herbivores. However, high sinigrin 391 

content may allow for an increased load of specialist hemiptera, and this can lead to an 392 

overall positive correlation between sinigrin concentration and herbivore abundance. 393 



This means that the role of specialist hemiptera on altering the net value of plant 394 

defence traits could be crucial, as also reported by Lankau (2007). Furthermore, the 395 

third trophic level represented by hymenopteran and dipteran parasitoids also performed 396 

differently depending on the plant genotype, which is likely to be due to variation in 397 

both the host density and the volatile blends emitted by the host plants (Gols and 398 

Harvey 2009).  399 

Herbivore responses to glucosinolate patterns 400 

Host plants with high sinigrin and low glucobrassicin concentrations harboured a 401 

significantly higher load of specialists. In particular, lepidopterans were outnumbered 402 

by specialist hemipterans in 2011, especially in plant groups with high sinigrin content, 403 

although this did not occur in 2012. There are a number of reasons that may explain the 404 

wide distribution of the hemipterans across the plant genotypes: for example, insects 405 

may build up high numbers on preferred host plants, eventually spilling over onto less 406 

preferred ones (associational susceptibility) (White and Whitam 2000). Furthermore, 407 

variation in the ratio between generalists and specialists also depended on the temporal 408 

components of herbivory: generalist species tended to avoid plants previously 409 

consumed by specialists, whereas specialists often colonized in large numbers plants 410 

that were already being consumed by other phytofagous insects, irrespective of their 411 

feeding mode (Poelman et al. 2010).  412 

As expected, egg and larval abundances of M. brassicae were lower in plants 413 

with high sinigrin concentration. Attraction of the M. brassicae female to patches of 414 

plants may be mediated by visual and biochemical cues, while the decision of where to 415 

oviposit within a plant population would depend on the specific plant chemistry. The 416 

response of M. brassicae larvae to glucoiberin is less obvious. On the one hand, larvae 417 

were less abundant in September in plants with a high content of this aliphatic 418 



glucosinolate; this agrees with previous studies showing high glucoiberin concentrations 419 

to be negatively correlated with herbivore abundance and species richness (Poelman et 420 

al. 2009; Kos et al. 2011a). However, it was also found that M. brassicae eggs were 421 

more abundant in plants with high glucoiberin concentration. These discrepancies are 422 

commonly found in the literature, which reports impacts of the host plant on the M. 423 

brassicae fitness components ranging from no effect (Newton et al. 2009), to effects 424 

similar to those experienced by specialists herbivores (Poelman et al. 2008), to negative 425 

effects on larval survival, especially those genotypes with high concentration of 426 

aliphatic glucosinolates (Gols et al. 2008; Harvey and Gols 2011).  427 

In agreement with previous studies on neutral P. rapae responses to change in 428 

glucosinolate patterns (Newton et al. 2009; Newton et al. 2010; Gols et al. 2008), but in 429 

contrast with others where the negative effect of indole glucosinolates on oviposition 430 

preference has been reported (de Vos et al. 2008), we found that P. rapae did not 431 

respond to the range of glucosinolate profiles. It has been reported that this butterfly can 432 

redirect the course of the normal hydrolysis reaction that is provoked by the enzyme 433 

myrosinase upon insect feeding, by producing nitriles instead of toxic isothiocyanates, 434 

which are then excreted by the larvae (Hopkins et al. 2009). This detoxification system 435 

may allow P. rapae to be relatively insensitive to changes of plant chemical 436 

concentrations, as reported by Harvey et al. (2007).  437 

Several studies on host plant recognition have reported the ability of P. 438 

xylostella to employ glucosinolates as olfactory cues for oviposition (Hopkins et al. 439 

2009). In particular, the role of aliphatic glucosinolate breakdown products (Spencer et 440 

al. 1999; Renwick et al. 2006) and the impact of intact indole glucosinolates on 441 

oviposition behaviour (Reed et al. 1989; Sun et al. 2009) have been shown. 442 

Furthermore, as a crucifer specialist, physiological counter-adaptations to plant defence 443 



compounds have been evolved by P. xylostella larvae, which possess a glucosinolate 444 

sulfatase enzyme in the gut that enables the conversion of glucosinolates to 445 

desulfoglucosinolates, rather than toxic nitriles and isothiocyanates (Raztka et al. 2002). 446 

Interestingly, we found that P. xylostella abundance did not increase in plants with high 447 

sinigrin content, which does not agree with the evidence that, under laboratory 448 

conditions, elevated sinigrin concentration is highly attractive to this moth (Spencer et 449 

al. 1999).  450 

Piercing-sucking insects, such as hemipterans, are exposed to intact 451 

glucosinolate or possibly to the by-product produced by damages provoked by other 452 

herbivores (Hopkins et al. 2009). The aphid B. brassicae is a glucosinolate-sequestering 453 

specialist herbivore, which uses aphid-specific myrosinase enzymes to form toxic 454 

hydrolytic products against its natural enemies (Cole 1997). Among the hemipteran 455 

species studied, only B. brassicae showed significant responses to glucobrassicin 456 

variation, being more abundant on the low glucobrassicin genotype. This finding is 457 

consistent with the evidence that the sequestration of glucosinolates by this aphid from 458 

plant phloem is selective, with a clear preference for aliphatic instead of indole 459 

secondary metabolites (Kos et al. 2011b). It is interesting that this herbivore, which has 460 

a passive dispersal mechanism, displayed a clear response to certain glucosinolate 461 

profiles.  462 

This is the first time that the performance of the pentatomid E. ornatum in 463 

response to glucosinolate polymorphism of the host plant has been investigated. 464 

Although the adult bugs did not show preference for a specific plant genotype, their egg 465 

masses were especially abundant in plants with a high sinigrin content. The role of 466 

sinigrin as an oviposition stimulant for the E. ornatum female has never been reported 467 

in the past. A previous study on the responses of this hemipteran to the glucosinolate 468 



pattern of different Brassica crops did, however, highlight the importance of having a 469 

high content of aliphatic compounds, such as progoitrin, epiprogoitrin, gluconapin and 470 

glucoraphanin, and of the indole glucobrassicin in order to reduce the extent of damage, 471 

although the effects also depended on plant age (Bohinc et al. 2013).  472 

Parasitoid responses to glucosinolate patterns 473 

Parasitization of insect hosts is the result of a complex process which involves the 474 

attraction of parasitoids by semiochemical cues emitted by both the host (kairomones) 475 

and the plant (synomones), parasitoid arrestment and host searching, host selection, 476 

acceptance and oviposition (Godfray 1994). In the present study, the proportion of 477 

herbivores that were parasitized was affected by differences in the herbivore-induced 478 

volatile emissions of the different plant genotypes. Herbivore density was not 479 

manipulated because we were also interested in measuring herbivore abundance on 480 

different plant genotypes, and investigating its impact on the parasitism rate. However, 481 

the host density-dependent effect was not seen to contribute to top-down control. E. 482 

ornatum eggs, for example, were more abundant in plants with high sinigrin content, 483 

but suffered from a higher parasitism rate in plants with low sinigrin content. M. 484 

brassicae larvae were more abundant in plants with low glucoiberin content but not 485 

more parasitized there. Similarly, M. brassicae larvae and E. ornatum eggs were more 486 

parasitized in plants with high glucobrassicin content, even though their populations 487 

were not especially high on this genotype. These findings agree with work carried out 488 

on other B. oleracea varieties, which has shown volatile indole-derivates to be 489 

important in the attraction of natural enemies of pentatomid bugs (Conti et al. 2008). In 490 

fact, egg oviposition by herbivores could induce specific plant responses which are 491 

relevant for host location by egg parasitoids (Fatouros et al. 2012).  492 

Top-down vs. bottom-up effects  493 



Whether or not plant resources, natural enemies, or both, determine the abundance of 494 

insect herbivores in natural multi-trophic systems has long been a topic of debate 495 

(Hunter and Price 1992; Halaj and Wise 2001) that is yet to reach a general consensus. 496 

In comparison with natural habitats, managed crop systems have a relatively simple 497 

food web structure, characterized by the presence of a homogeneous plant community, 498 

for which the impact of bottom-up and top-down forces appears more predictable. The 499 

higher propensity of crop habitats to experience strong trophic cascades was clearly 500 

shown through meta-analysis by Halaj and Wise (2001). In this type of habitat the 501 

reduction of predator abundance, more than plant chemical defences, generally 502 

increased herbivory and reduced primary plant production (Halaj and Wise 2001). Our 503 

results, however, indicate the opposite trend. In our study system, the impact of bottom-504 

up forces on insects agrees with the general view about the importance of plant 505 

mediated forces in terrestrial ecosystems (Denno et al. 2002). Furthermore, previous 506 

studies focused on brassicaceous plants (Newton et al. 2009b; Kos et al. 2011a) have 507 

also highlighted that plant chemistry and morphology have more impact than natural 508 

enemy activity in shaping herbivore abundance.  509 

The statistical analyses showed that glucosinolate concentrations have a 510 

significant effect on the overall herbivore abundance, on the relative abundance of 511 

generalist and specialist herbivores, on the parasitism rate and on the leaf damage rate. 512 

On the other hand, parasitism rate also contributed in shaping the leaf damage rate in 513 

2011, and the ratio between generalist and specialist insects in 2012, which suggests 514 

that in reality many ecological forces combine to determine the patterns observed in the 515 

field. Interestingly, in 2011 the increase in sinigrin content was positively correlated 516 

with herbivore abundance, whereas an opposite trend was found for leaf damage rate. 517 

The massive presence of the hemipteran E. ornatum, and in particular the preference 518 



manifested by ovipositing females for plants with high sinigrin content, explained the 519 

positive relationship between sinigrin concentration and herbivore abundance. The 520 

reduction in leaf damage, on the other hand, can be explained by the fact that although 521 

overall herbivore numbers increased with high sinigrin content, the numbers of 522 

generalist lepidopteran herbivores decreased. This prompted a net decline in overall leaf 523 

damage because the damage provoked by chewing insects (including Lepidoptera) was 524 

disproportionately high and more widely detected than damage from hemipteran sap-525 

sucking species. In 2012, the leaf damage rate in plants with high sinigrin content was 526 

also reduced as a result of the increase in parasitism rate among the lepidoptera (the 527 

same pattern was not seen in hemiptera: E. ornatum eggs, for example, were parasitized 528 

in 2011 but not in 2012). These findings highlighted the role of sinigrin in plant 529 

protection.  However, an ecological cost of plant defence through sinigrin synthesis 530 

does exist, because specialists were more attracted to a high concentration of this 531 

secondary metabolite. Previous field studies on the role of B. oleracea chemicals on 532 

insect herbivore biodiversity showed the impact of glucoiberin in shaping insect 533 

communities (Poelman et al. 2009; Kos et al. 2011a). Data supporting the idea that 534 

sinigrin influences herbivore choices comes from laboratory trials (Shields and Mitchell 535 

1995; Gols et al. 2008) and from field tests performed in controlled environments (by 536 

manipulating insect presence and abundance) (Lankau 2007; Lankau and Kliebenstein 537 

2008; Lankau and Strauss 2009; Kos et al. 2011a). This is the first time that an 538 

investigation under natural conditions reported significant responses to sinigrin, 539 

glucoiberin and glucobrassicin expressed by herbivores with different feeding modes 540 

and behavioural ecologies, and by their parasitoids. 541 

To conclude, our results illustrate how quantitative variation in aliphatic and 542 

indole glucosinolates of kales may influence herbivore abundance and the control 543 



exerted by the parasitoid complex. Furthermore, the plant glucosinolate pattern 544 

contributes to reducing leaf damage rate. Although the top-down force indeed acts in 545 

concert with bottom-up regulation and with the other environmental factors, parasitoid 546 

pressure seems to be a weaker force in our study system.  547 
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