
REVUE FRANÇAISE D’AUTOMATIQUE INFORMATIQUE

RECHERCHE OPÉRATIONNELLE. INFORMATIQUE THÉORIQUE

G. BERRY

Bottom-up computation of recursive programs

Revue française d’automatique informatique recherche opérationnelle.
Informatique théorique, tome 10, no R1 (1976), p. 47-82

<http://www.numdam.org/item?id=ITA_1976__10_1_47_0>

© AFCET, 1976, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique informa-
tique recherche opérationnelle. Informatique théorique » implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1976__10_1_47_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique Théorique
(vol. 10, n° 3, mars 1976, p. 47 à 82)

BOTTOM-UP COMPUTATION OF RECURSIVE
PROGRAMS (*)

by G. BERRY (*)

Communicated by M. NIVAT

ABSTRACT. — In this paper, we de fine and study a mechanism for the implementation of
recursive programs: we call it production mechanism by opposition to the usual recursion
mechanism. It computes bottom-up, starting from the basic values given by halting conditions,
and générâtes intermediate values leading to the resuit. We use for this purpose a translation
of a recursive program into a system o f équations in a space ofsets. We introducé determinism
conditions providing the uniqueness of the set of intermediate values; we study the structure
of this set. As an application, we show the opiimality of an implementation of Ackermann
program (Rice's algorithm).

INTRODUCTION

When dealing with computer programs, one usually makes a distinction
between flow-charts and recursive programs. We restrict hère our attention
to the latter ones. Their generality has been showed by Luckham, Park and
Paterson [4],

Properties of programs have to be expressed in some mathematical
framework. Among the possible approaches, one of the most widely used is
Scott's fixpoint semantics: a recursive program is viewed as a set of équations
in some function space. The function it computes is defined as the least fixpoint
of the (monotonie) functional determined by the équations.

This approach has been showed suitable for studying various properties
of programs, such as correetness, termination, équivalence (see Manna-
Vuillemin [6], Milner [7], etc.). It has also been used by Vuillemin [14, 15]
to study the time complexity of the computations, as defined by the number
of substitutions.

On the other hand, in order to develop the "fixpoint induction" technique,
Park [10] présents a translation of a recursive program into a system of
équations on a space of subsets of a domain. These subsets represent in fact
graphs of functions, and the formalism is essentially equivalent to Scott's one.

In this paper, we want to show that working with graphs is suited to formalise
a production process, which is a dual of the usual recursion process. The

(*) Reçu décembre 1975.
0) École nationale supérieure des Mines, Paris, IRIA/LABORIA.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle n° mars 1976

4 8 G. BERRY

recursion mechanism can be considered as defining top-down computations,
which start from the given argument to reach the halting conditions. On the
other hand, certain «good" itérative programs perform the same set of compu-
tations just in the opposite way: they start from the basic values given by
the halting conditions, and then prodüce intermediate values of the function
towards the desired resuit. These programs generally avoid Computing
several times intermediate values, and use simple storage management. Well-
known examples are itérative programs for Computing Fibonacci numbers,
integer partitions, or Ackermann function (see Rice [11]).

More generally we consider that a given recursion program détermines
a recursion structure rather than a computational séquence. We study the
possible bottom-up computations of the function values according to this
recursion structure.

The formalism presented hère allows us to define in a précise way the relation
x -< y if «x is an intermadiete value in the computation of y"9 and bence
the recursion structure. The basic objects we manipulate are nodes in the graphs,
which identify to intermediate values and therefore to auxiliary storage cells.

In the first section, we present a way of translating a recursive program
into a predicate defining a monotonie production function on graphs'; we prove
the correctness of the mechanism.

A class a production functions of special interest is the class of those func-
tions for which the set of intermediate values is unambiguously determined
for any argument : this can hold either at any computation step (deterministic
production functions), or for this set as a whole (quasi-deterministic production
functions). The relation •< then besomes a well-founded partial ordering.

Second section is devoted to the study of stable discrete interprétations
for programs schemes: we show that the associated production function is
then deterministic.

In the third section, we study properties of production functions, indepen-
dently of the programming aspects. We introducé the notion of self-repro-
ducing set which will allow us to describe in a précise way bottom-up compu-
tations and the quasi-determinism condition. We study the structure of
these sets.

In the last section, we define the notions of time and space optimality of
bottom-up computations. As an example, we show that Rice's algorithm [11]
realises an optimal computation of the recursion structure associated to
Ackermann program.

Moreover, although this aspect is not developed in the paper, this example
should convince the reader that our approach is adequate to a study of space
complexity. This last point strengthens the parallel that one guesses between
our formalism and that of Jean Vuillemin.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPILATION OF RECURSIVE PROGRAMS 49

Some easy proofs are omitted, other are only sketched. Complete proofs
may be found in [1] .

NOTATIONS

Given a set D, we dénote by & (Z>) the powerset of D.

The symbol e will dénote:

— when used with lower case letters, Scott's relation "less defined than";
— when used with upper case letters, the usual set inclusion,

A rt-tuple (xu JC2, . . . , x„) is denoted by x; its / — th component is denoted
by x& or (*),.

The cardinality of a finite set X is denoted by card (X).

I. TRANSLATION OF A RECURSIVE PROGRAM INTO A MONO-
TONIC PRODUCTION FUNCTION

The production mechanism can be illustrated by the Fibonacci program:

Fib(n) = /ƒ>!:= OVn = 1 then\ else F i b (n - l) + F i b (n - 2) .

Given a subset X of the graph of Fib, we can use the program to generate
new points in the graph. For instance, if X contains the two points
< 4, fib (4) = 5 > and < 5, fib (5) = 8 >, we can generate the new point
< 6, fib (6) = 5-1-8 = 13 >. More precisely, the set produced by X in this
example can be defined by

) \ f = 1 ttien z = 1

else 3yly y2, z = >' t+v2 A(n- . l , y{)e X A (n - 2 , y2)e X}.

The purpose of this section is to formalise a translation of a recursive
program into a predicate defining the production function <î>. This translation
is such that the least fixpoint of <t> represents the graph of the function computed
by the program. It extends Park's translation [10], which corresponds to the
call-by-value rule.

1.1. Discrete domains and recursive programs

DÉFINITIONS : A discrete domain is a set D containing a distinguished
element JL, the undefined element, and ordered by the relation x ç y ifif x = J_
or x = y.

The relation £ extends to DP :

Vx, x'eDp, X Ç J C ' o Vie{ 1, 2, . . . , /?}, x(ç jc|.

n° mars 1976

50 G. BERRY

In Dp, two éléments x and 5c' always have a greatest lower bound
(g. 1. b.) x A 3c' defined by (xÀx')f = ± if xt ¥= x'v , (x Ax')t = xt if xt = xf

t.

If two éléments x and xf have a least upperbound (1. u. b.) 3c V3c', they are
said to be joinable (abbreviated x f x').

A function f : Dp —± D is monotonie (inereasing), iff for ail 3c, 3c' e Dp
9

X <= x'=* ƒ (x) £ƒ(* ') .
The set Ap of the monotonie functions from Dp to D is ordered by the

relation ^ defined by

Vf, g e À', / e g o VxeDp , /(5c) s g (5c).

For eaeh x9 either ƒ (x) is undefined, or f(x) = g (x).
The structure (Afl, c) is a complete partial order, whose minimal element

is the constant mapping to J_, also denoted by J_.

1.1.1. PROPOSITION : Let 3c, xf eDp. Then x and x' are joinable iff for ail
i € { 1, 2, . . . , p }, X| # ± a tó ^ # _L ï/w/?/y x,* = x<. For all f e àp

9 ifx f 3c',
f(x) # ± a ^ / (F) # X, ?AeW/(3c) = / (F) .

Let us now define the recursive program schemes.
The basic alphabet is divided into a set of connectors, a set of variables

V = { xl9 x2, . . . , x& }, a set of basic function symbols B = { è l5 è2» . . . , i e }>
a set of unknown function symbols F = { F l 5 F2, . . . ,F f f l }. To each function
symbol s is associated an integer p (s) ^ 0, the arity of s.

DÉFINITIONS : The set of terms is the language generated by the context-free
grammar:

A recursive program scheme S is a set of équations

y } Ji k*u *2> • • • • 9 X
P (fi)) - %i >

E (i = 0,l N

where the Xj are terms only containing variables in x l5 x2? • • *> xp(ftp
function symbols and unknown function symbols infuf2, . . . , f$.

A discrete interprétation l i s given by:

1) a discrete domain Dji

2) for each basic function symbol b9 a monotonie function / (b) e
We call recursive program a pair (E, /) .

NOTATION : Let (S, /) be a recursive program with N équations and
k variables, let ^ e A p ^ \ g2eÀe^2>, . . . , gNeA*V*\ let x be any term.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATION OF RECURSIVE PROGRAMS 51

We dénote by xl the functional from AJ<^> x A{(^> x . . . x AJ^N) to AJ defined
by the X-expression Xfu f29 .. .9 fN.x.

Given öc e Dk
v x1 (g) (a) dénotes the value computed by x on a when fl9

f2, . . . , fN are interpreted by gu g2, . . . , gN:

When no confusion arises, x1 will be abbreviated in x.

THEOREM: A recursive program (S, I) détermines a functional (p from
AP er o x A P (/2) x . . . x Ap (/jv) to itself: cp (g) = (x[(g\ x\ (g\ ..., x*N (g)).

This functional is monotonie and continuous with respect to the ordering <=,
and has a least fixpoint 7 (2 , I), called the solution of the équations.

This fixpoint is limit of Kleene's séquence Kp = < £:£, k*, . . . , £ £ > such
that Ko - < 1 , 1, . . . , 1 > and Kp+1 = 9 (Kp) for allp ^ 0.

Kleene's séquence satisfies Ko ç Jft ç . . . e Âp ç . . . s F (E, ƒ).

A proof may be found in Nivat [9] or Vuillemin [15],

1.2. Réduction to one single équation

In the translation process, we shall prefer to manipulate programs containing
a single équation. Given a recursive program, one can easily construct another
single équation program performing the same computations, by giving to a
generic function the name of the function to be computed as an
argument (see [1]).

In this case, functions of Kleene's séquence will be denoted by x? (_L).

1.3. Monotonie functions over subsets

DÉFINITIONS : O : @ (A) —> 0> {A) is monotonie (increasing) iff:

— X £ A Q?-produces x iff x e $ (X).

— X is a minimal ^-producer of x iff X produces x and no proper subset
of X produces x.

— X is a ykc/HH«f of <D> iff X = <b (X).

— $ is continuous iff for every increasing séquence

2 r o s J r 1 s . . . s J r . E . . . , ® (U x I) = (J *(*i>-
ieAT i e i V

1.3.1. THEOREM (Knaster-Tarski) : Every monotonie function <D : 0* (A) —• ̂ (^t)
te-s1 a least fixpoint Y($>). If O w continuous, then Y (<1>) w *Ae ///w/ï of the
Kleene séquence O (0), O2 (0), . . . , 3>" (0),

Proof given in Park [10].

n° mars 1976

52 G. BERRY

l. 3.2. PROPOSITION : <I> is continuüm ifffor every point x of® (A), ail minimal
producers of x are finit e,

1.4. Translation of a recursive program into a monotonie predicate

According to 1.2, we only translate single équation programs. Let

E : f(xu xl9 . . -,Xp) = x(/) (x 1 , x2, . . . , Xp)

be a recursive scheme with n occurences of ƒ in t. We first label these
occurrences by the integers 1,2, . . ., n, denoting them by ƒ * , / 2 , . . . , ƒ".

D É F I N I T I O N S : W e c o n s i d e r a s e t Y = { j l 5 j>2 , ...9yn} o f fo>w/i£/ variable
symbols, a rew/r variable symbol z, and a .ref variable symbol X.

We dénote by J ' = / '"('i* / j , •. ., tj) the subterm of T corresponding to
the occurrence i of f and by T° the term T itself.

We define a transformation ST on labelled terms which consists in replacîng
a sub te rm/ ' (t\y / | , . . ., tl

n) by the bound variable yt:

a) ST (v) = v if v is a variable symbol.
b) F (b (r1? /2, . . . , tk)) = 6 («T (/J , . . . , ^ (fft)) if ^ is a basic function

symbol.
c) r{f'{ti,v2, . . . , ? •)) = ƒ,,

If ^ is a term, £T (t) only contains basic function symbols and variable
symbois in x or / .

For every integer i, 1 ^ i ^ w, let /,. dénote labels of bound variables that
occur in subterms 3~ (ti) for 1 ^ j g p . Let Io dénote labels of bound variables
that occur in <T (x). The /,- détermine a partition of { 1, 2, . . . , « } ; 7f is empty
for the innermost occurences of ƒ

The nesting depth of a label i is defined by nd(i) = 1 iff /f = 0,
>w/(/) = 1 + max {nd(j)'^je/,} otherwise: /irf(i) is the maximal number of
nested occurences o f / i n T'.

Let us now define the translated predicate P r :

DÉFINITIONS : For every / € { l, 2, . . . , « } » the element ar y predicate pt

is defined by:

Pi = l(r(ti)(x, p), «rOD(x5 p), . . . , ^0p)(5, PX yd^xvyi = x]

F/ie predicate PE associated to Z is defined by

Pz(xu x 2 ? ...9xp,z,X) = 3yu y2, . . . , ym9 (z

Revue Française d'Automatique* Informatique et Recherche Opérationnelle

BOTTOM-UF COMPILATION OF RECURS1VE PROGRAMS 53

Example; X :f(xu x2) = a (f1 (b(xu x2l c(f2 (x29 xt)))).

Pz(xux2, Zf X) = Byis y2, z=£ ±Az = a(yt)
A[(b(xu x2% c(y2),

We now use Pz to define the production funetion $>% :

DÉFINITIONS : Let X be a single-equation program scheme» Iet ƒ be a discrete
interprétation. The production funetion $ (z , n : D^1 —• D£+1. associated to the
program (S, /) is defined by

$ (S » J) (^) = { (* l , X2, . . . 5 X p , Z) \ P S (X j , X 2 9 . . . , XpJ Z 5 X) } .

We abbreviate Px and ®(IlfI) in P and $ when no confusion arises.

Remark: If we take out the yt = ±, the translation is essentialy equivalent
to the one given in Park [10].

1.4.1. PROPOSITION # (r r) is monotonie and continuons.

Proof: The elementary predicates are monotonie, and the définition of 0
involves no négation: # is monotonie.

Since the number of elementary predicates is finite, <ï> is also
continuous (1.3.2). •

1.5, Correctness of the translation

We first need two définitions:

DÉFINITION: Let b be a funetion from Dp to D. The defined part of the graph
ofb, denoted dpg (b% is the set of p-f 1-tuples (xu x2, . • . , xp , z) such that z # X
andz = b(Xu x2, ..., xp).

DÉFINITION : Let (£» /) be a recursive program. A n-tuple

â^(au a2, ...9cQeiy,

is admissible for (x, z, Z) iff it satisfies z = S' (T°)Api Ap2 À . . . À^M

(L e. F2 without the quantifiers) as values of yi3 y29 . . . , yn.

Then (xs r) e $ (Jf) iff there exists an admissible w-tuple for (x, z, X).
We can now prove the correctness of the translation.

1.51 L THEOREM: Let (S , /) be a recursive program. Let h be a monotonie
funetion f rom DP to D, let H dénote dpg (h). Then:

or equivalent

n° mars 1976

5 4 G. BERRY

If a n-tuple â is admissible for (xs z, H), then

Vie{l ,2 , . . . , n } , aiczTi(h)(x).

Proof: 1) dpg (x (A)) s O (/f).
Assume z # X Az = -c (A) (S)- If « is defined by ai = T' (A) (x) for ail i,

then by construction of Pz, a is admissible for (x, z5 H).
2) ®(H)^dpg(%(h)).
Let (x, z) e $ (/J); then z # X. Let oc be admissible for (x, z, H). We show

by induction on the nesting depths that for ail i9 at ç r* (A) (x).
2 a) Case «^(i) = 1. The terms $~ (tj) (x,a) in pt only contain basic

functions and variables of x.

Hence 9* (tj) (x, a) = t) (x). By construction of pt 5 either a; = X, or

(*i'(x), *J(3c), ...,fp'(x
which means

2 è) Assume the property true for ail labels of nesting depth less than k,
and let / be of nesting depth k. The terms ^ (tj) (x, a) only contain basic
functions, variables in 3c and bound variables of nesting depth less than k.

Induction hypothesis and monotonicity of the basic functions imply:

Vj, l ^ j ^ p ,

If af 7* X5 then

b&9 a), ̂ (* i)(S, 5), . . . , ^ (^) (x , SX af)eH;

by monotonicity of A : (r| (x), / | (x), . . . , t*Çe)9 at)eH9 which means
o c , - T*{h)(5c).

Same argument applies to z : z = X and z = 5" (t) (5c, 5) imply

1.5.2. COROLLARY: Let (2, /) be a recursive program. Then for every m^.0
®m (0) = dpg (T« (±)) ; y (fc) = J M (y (£ j ƒ)).

If(x, z) e Om (0), and if oc w admissible for (x, z, $m~1 (0))5 then for ail
i e { 1, 2, ..., » }:

Proof: Foliows From 1.5.1 by induction on m. •

1.6. Extension of the production function

Let (x, z) G #m (0). By monotonicity of %m (X), we know that for ail
? 2 x , (x\ z) e #m (0). It may however happen that for some X, (x, z) e $ (X)

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPILATION OF RECURSIVE PROGRAMS 55

and (x', z) £ <ï> (X). For instance:

2 : /(x1} x2) = ifxi = 0 then 0 else /(xj —1, x2)

Let X = {(O, ±, 0)}. Then (1, _L, 0) e # (X) and (1, ny 0) $ # (X) for n e JV.
We now extend <S> to a more powerful production function *F.

DÉFINITIONS: Let D be a discrete domain, let X s DJ», r/ie se* X 15 defined
by X = {x' e]> | 3 x e X, x S 3c' }. 7%e extended production function *F
is defined by : V X S D P + I , ¥ (X) =

1.6.1. PROPOSITION: 1) *F ij monotonie and continuons

2)

Proof: 1) Monotonicity follows from I ç 7 = > I c F, continuity from
1.3.2.

2) By induction on n, using Offl (0) = $m (0). Q

1.6.2. PROPOSITION : If (x, z) e f (I) awi ifx' 2 x, ïAen (x', z)ex¥ (X).
//öt w admissible for (x, z, X), then a is also admissible for (x\ z, X).

Proof: Let a be admissible for (x, z, X). Then for every Ï such that

(x, 5), . .

(/]) (x', â) 2 J (tp (x, ô) implies

i ' , 5), r(4)(x\ 5), ..., ^-(^(x', 5), af)ei.
Now z = ,T (T°) (ï, 5) implies z = <T (T°) (x% a), and â is admissible

for (x', z, X). •

IL DETERMINISTIC PRODUCTION FUNCTIONS AND STABLE
INTERPRETATIONS

Let or dénote the «parallel or" function (X or true = true or _L == trué)9

and consider the following program, which tests if z is the sum of x and y:
sum(x , y, z) = ifx = OAy = 0 then z = 0 else sum(x— l,y z— 1) or sum
(x,,-l,z-l).

Starting from x,y9z> 0, there are several to ways perform the computa-
tion; we have no reason to choose one rather than another.

Moreover, let fx (x) and f2 (x) be two recursively defined boolean fonctions,
and consider the program ƒ (x) = f± (x) or f2 (x). There is only one way of
Computing ƒ (a) : to perform the computations of fx (a) and f2 (a) in parallel;
it is even not decidable which of the two computations is the most efficient.

n° mars 1976

56 G. BERRY

In his study of time complexity of computation rules» Vuillemin [14, 15]
introduces a determinism condition for top-down computations: the sequen-
tiaîity condition. With respect to production functions, we can consider the
two following conditions:

— Stepwise determinism: the set of intermediate values is unambiguously
determined at each production step; formally, every point has a unique
minimal producer mp (x). The whole set of intermediate values for x is then
determined by transitively applying mp. This wilî be satisfied by stable inter-
prétations.

— Global determinism: a "best" whole set of intermediate values is unam-
biguously determined for every argument. This weaker condition will be
formaïised as the quasi-determinism condition on production functions
(section III); it seems difficult to characterise corresponding interprétations.

The foliowing program satisfies the second condition but not the first (it
is possible but useless to produce (x, 0) from (x+1,0)):

f(x) = ifx = 0 then true else / (x -1) or ƒ(*+1).

II. 1. Deterministic production functions

DÉFINITION : A monotonie function <I> : âP (D) —* & (D) is deterministic
if and only if every point x in <I> (D) has a unique minimal producer mp (x).

II. 1.1. PROPOSITION: Â monotonie function d> is deterministic iff for every
finite or infinité family X*x, i e /, of subsets ofD,®(() Xt) = f] $ (Xt).

t e l iGl

Proof: Assume O (f) Xt) = f) # (Xt). Then mp (x) = n { X \ x e 0> (X)}.
iel tel

Converse follows from the définition of mp. D

II.2. Stable functions
Let us define the restricted class of functions we shall use in programs:

DÉFINITION: Let D be a discrete domain, let b be a monotonie function
from Dp to D. Then b is stable by minimalisation (or simply stable) if and only
if for every joinable x and x', é(xAx') = b(x)AbÇxf).

II.2.1. PROPOSITION: A function b e AP is stable if and only if for
every x B DP there exists in DP a unique minimal element mb (x) £ x such
that b (mb (x)) = b (x).

Proof: If b is stable, then mb (x) is the g. L b. of the set

Y={yeDp j

Revue Française d9Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATION OF RECURSIVE PROGRAMS 57

Assume conversely the existence of mb (3c) for every 3c e D*\ Let x and 3c'
be joinable. If b (x) = 1 or b(x') = ±, then b(xAx') = J_ by monoto-
nicity. If b (3c) = b (X')^ -L» then

b(5 V5c') = è(x) = b(*'), and m6(x Vx') çx ,m f c (xVx ')c F .

This impHes m^ ÇcVxf)^xAx' and by monotonicity

b(xAx') = 6(m6(jcV3c')) = b(x) - 6(5')- •

Let us study the connection with Vuillemin's sequential functions [14]:

DÉFINITION: A function b e A*> is sequential iff for every 3c e D*7 there exist
an integer i, l^i^p, such that y^3c and yt = x£ imply è (j) = 6 (3c). This
integer is called the critical index of x for b.

Example: Consider the usual ifthen-else function. For 3c = (±, x2i x3)
the critical index is 1. For x = (true, x2, x3) (resp. (false, x2, x3))9 the critical
index is 2 (resp. 3).

II.2.2. PROPOSITION: Every sequential function is stable. There exist stable
functions which are not sequential.

Proof: a) Assume b e A* is sequential but not stable. Let 3c and y satisfy 3c | j>,
b(x) = b(y)^±,b(xAy) = 1. For every ie {1, 2 , . . .,/>}, either (xAj;)j = xf5
or (xAy)t — yt. In the first case, 3ĉ 3c A^ and b (x)=>b (xAy), in the second
case y^xAy and b(y)=>b (xAy). Therefore x A y has no critical index, which
is impossible.

b) Let D = { _L, 0, 1 }, let b be the least function such that b (0, 1, X) = 0,
b (1, -L, 0) = 0, b (1,0, 1) = 0. Then è is stable, but (JL, 1 ,1) has no critical
index. •

II 3. Stable interprétations

DÉFINITION: Let E be a program scheme, let ƒ be a discrete interprétation.
Then / is stable ifandonly ifall basic functions I (b) are stable.

II.3.1. LEMMA: Let I be a stable interprétation, let T be a term only contai-
ning basic function symbols. Then T defines a stable function.

Proof: By structural induction on T. Case T = xt is obvious.
Let T(x) = b (Ti (3c), T2 (3c), ...,Tm (x)) assuming that the Tt define stable

functions. Assume 3c jj> and T(x) = T{y)^L. Then the m-tuples

(7 \ (x), T2 (x), . . . , Tm (x)) and (Tt (y), T2 (y), ...,Tm (y))

are joinable; by induction hypothesis, their g. 1. b. is the m-tuple

(TUxAy), TAxAy),..., Tm(xAy)).

n° mars 1976

58 G. BERRY

The resuit follows from the stability of b. D

II. 3.2. THEOREM: Let Y<be a recursive scheme, let I be a stable interprétation.
Then the functions xn (X) and the fixpoint F(£9 /) are stable.

Proof: For every m, xm (X) is defined by a term containing only basic
functions and the undefined function: Lemma applies. Let x, y e DP, X | y; there
existaleast m^O such that F(E,/)(x) = %m(±)(x)and YÇ:,I)(y) =
Then F(Z, ƒ) => xm(l) and xm(X)(x A y) = xm(X)(x) Axm(l)(y) imply

F(£, ƒ)(3c A y) = F(£, I)(3c) A F(E, J)(y). D

We now prove a crucial property of stable interprétations:

II. 3.3. THEOREM : Let S be a program scheme, let I be a stable interprétation.
If x is such that xm (±) (x) = ^ l , if x' is joinable to x and such thaï
F (S, ƒ) Çc') * 1, then xm (1) (x') = z.

Proof: By induction on w. Let g dénote F(E,/).

1) m = 0. Then z = x (1) (5c) = T° (3c, X), where X dénotes the «-tuple
(±, 1 5 . . . , 1). Let 3c' be such that x î 3c' and g (x') - z. Since g is fixpoint,
z = x (g) (3c') = T° (x', a) with a, == T* (g) (3c'). The p+w-tuples (3c, X) and
(3c', ôc) are joinable, and their g. 1. b. is (x Ax', X). Therefore T° (x Ax', X) = z
and by monotonicity T° (x', X) = z, which is equivalent to z = x (X) (x').

2) Assume the property true for m:

We show by structural induction that for every term T:

Case T = xt is obvious. Assume T = b (tl9 t2i...» 4) where the property
holds for every tk. Then:

T(g)(xf) = b(tx(g)Çn9 t2(g)(xf), . . . , tk(g)(xf)) = fc(ô)5

T(tm(X))(i) = fe(^(Tm(X))(x), r2(tw(X))(x), . . . , tk(x
m(±))(x)) =

But xm (X) ç g implies tt (x
m (X)) (3c) ç tt (g) (3c). By L 1.1, â and p are joi-

nable, and b(â) = £((3) = 6 (a A p). For every î such that (SAp)£ # X,
we have

(SA p), = tdgW) = h(xm(±Mx) * X.

By induction hypothesis on th tt (g) (3c') = tt (t
m (X)) (x').

Revue Française d''Automatique^ Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTÀHON OF RECURSIVE PROGRAMS 59

Therefore (5 A p) s (h (xm (1)) (x% t2 (x
m (1)) (x% . . . , tk (x

m (1)) (x')).
The result follows by monotonicity of b.

Assume now T — f(tu t2,..., *p). Since g is stable, the previous argument
holds, and we can replace g by xw(_L) in the subterms tt:

T(g)(x') = g(tl(

But 3c f 3c' implies ö | P ; the global mduction hypothesis applies and yields

TigKx') = tm(±)(f1(tw(±))(x')5 ^(x^CJ.))^), . . . , tp(x
m(±)Hx>))

which is the desired result.

Let now x, 3c' e D? be such that tm + 1 (1) (x) = z ^ J_5g(x') = z and
x t x'. Then z is the value of the term x (xm (1)) (x), and also the value of the
the term x (g) (x') since g is the fixpoint.

Applying to x the preceeding result for terms, we get:

x(g)(x') = t (t n (l)) (x ') = V + 1 (l)(x ') . D

This property is not true under gênerai interprétations. Consider for
instance the program

f(x,y) = (x = 0) or (x = 1 Ay - 0)j>r / (x - 1 , 0).

Here x (1) (1, 0) = frwe, x (1) (1,1) = 1 , x2 (1) (1,1) = true.

Let us finally study the admissible w-tuples.

II .3.4. THEOREM: Let Z be a recursive scheme, let Ibe a stable interprétation.
Let (3c, z) belong to <S>m (0), m > 0.

1) 7%e set of admissible n-tuples for (x,zf F (<!>)) has a minimal element
y under the orde ring <=.

2) y is also the minimal admissible n-tuplefor (mg (x), z9 F($)),
3) Y is admissible for (x, z, O"»'1 (0)).

Proof: Let g dénote F(S, I).

1) Let 7£ be the set of labels of the bound variables occuring in
«T (TO (^ 1-4). Let lt dénote the cardinality of Ih let pf = r< (g) (x).

We construct for every i a subset ƒ, of It satisfying the following two
conditions:

a) there exists an w-tuple a admissible for (3c, z, Y (O)) such that
as = Pj if y G Jj, af = 1 if j $ Jt and j e Iit

n° mars 1976

60 G. BERRY

b) for every w-tuple ôc admissible for (x, z, F (<&)), for aHjeJÎ9 OLJ— j
If /f = 0 , or if there exists a admissible for (x, z, F (<ï>)) such that ai = 1 ,

then Ji = 0 satisfies a and 6.

If every ex admissible for (x, z, F (<!>)) satisfies a; ^ X, then

with ijBlii there exists a minimal /rtuple 8 = (8ll5 8 l 2 , . . . , 8fi) such that

a . = £T (T*)Çc, S). Therefore /f = {ik\Bijç # 1 } satisfies a and b.
We now define y by ŷ = py if jejt for some i, ys = X otherwise. Then

y is by construction the unique minimal acceptable n-tuple for (x, z Y (€>)).

2) Let xf dénote mg(x). Since g(x') = z ^ X , there exists a «-tuple
y' admissible for (x', z5 F(<ï>)). By 1.6.2, y' is also admissible for (3c, z, F(^)),
and hence y' 3 y. Therefore (x, y) and (x'3 y') are joinable, with

(x, y) V(i's y') = (x, y') and (x, y)A(i', y') = (x'5 y).

Using the stability of 3" (x), 3T (tp, gy one easily shows that y is admissible
for (x',z, F (#)) (/ [1])

3) Assume (x, z) e <ï>m (0). There exists y' admissible for (x, z, $ m x (0)).

Since (E»1*1"1 (0) ^ F(<I>)5 y' is also admissible for (x, z, F(<3>)) and y' 2 y.

For each i such that ŷ # X, we have :

\X, y / , «y l^a/v-^? Y /> • • *5 ^ l fpA*> T /?

(x, y) and (x, y') being joinable, ^ and Ç{ are joinable, an by IL3.3:

which means that y is admissible for (x, z, <bm~x (0)). •

Ü.4. Stable interprétations and ^-producers

Even under stable interprétations, the extended production function *P
is in gênerai not deterministic. Consider the example:

ƒ(*!, x2) = ifx1 = 0 then 0 else f(x1 — lif(x1—2> x2))

Hère (2, 1, 0) has two distinct minimal *F-producers Px = {(1, X, 0)}
andP 2 = {(1,0,0), (0,1,0)}.

But Pt is of smaller cardinality than P2, and contains more compact infor
mation: the existence of (1, X, 0) in T (0) implies the existence of (1, 0, 0)
by monotonicity, and the point (0,1,0) is not really useful for the computation.

Revue Française d*Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATÏON OF RECURSIVE PROGRAMS 61

To formalise this intuitive comparison between *F-producers, we define
the following partial preoder:

DEFTNITION: Let D b e a discrete domain, let Z, 7 g])pm

The relation E is defined by

Z E Y o V x e l , 3j;eY, x^y.

11.4.1. THEOREM: Let E be a recursive program scheme, let I be a stable
interprétation.

Let (3c, z) e Y Q¥\ let MP (x, z) dénote thefamüy of the minimal ^-producers
of(x,z).

1) The relation E induces a partial or dering on MP (3c, z).
2) MP (x, z) has a unique minimal element under E , which will be called the

optimal producer of(x9 z), and denoted opt (x, z).
3) If (3c, z) G ¥ m (0), then opt (3c, z) E ^ m ~ 1 (0).
4) Ify is the minimal admissible n-tuplefor (x, z, YQ¥))9 then y is admissible

for (x, z5 opt (x9 z)).

5) If x' is joinable to x and if (3c', z) e YQ¥) then opt (3c\ z) = opt (3c, z).

6) For every (U-producer or ^-producer P of (3c, z), the cardinality of opt (x, z)
is less than or equal to the cardinality of P.

Proof: 1) Let P e MP (x9 z). Then for every pyp' eP9p cz p' is false : otherwise
P—{p'} ^-produces (3cs z). Proposition follows easily.

2) Let (x, z)eY Ç¥)> let y be the minimal admissible «-tuple for (*, z5 Y (T)).
Let Po be the set of the points :

ïi = (^ (tl) (x, y), r (tï) (x, Y), . . . , 9- (tl) (x, Y), Ti) with Yi * J-

Then Po ^-produces (x, z). But 7 (S, /) is a stable function: for every Ç.
there exists a least TJ; Ç ^ ; such that T|£ e Y(<$>).

Let opt (3c, z) be the set of the T],-. By construction opt (xy z) E Po , and

therefore opt (x, z) ^ Po: opt (x, z) Y-produces (3c, z).

Assume JR ̂ Y(T) ^F-produces (x, z), and let öc be admissible for (3c, z, R)-

By II.3.4, a 2 y, and R contains at least the points:

^i) (x, â), 5-(*i) (JC, 5), . . . , 9-(t;) (x, 5), YD with Y< # JL.

For each / such that yt ^ 1 we have ^ ç Ç{ and hence r\t ^ Ç{. But iî
contains at least one r\'t such that T|J Ç ^;. Necessarily, TÎ ̂ T]J, and
opt (x9 z) E -^.

n° mars 1976

62 G. BERRY

Since opt (x, z) is finite, we prove that it is a minimal T-producer of (x, z)
by showing that it is a ¥-producer of minimal cardinality. Assume that U
^-produces (x, z) and assume card (U) < card (opt (x, z)). Since
opt (3c, z) C Uy there exist T|l9 n2 e opt (x, z) and ue U such that rjj ç u
and T|2 ç «. This is impossible, since by construction T\X and i\2 cannot be
joinable.

3) Since y is also admissible for (x, z, O"1"1 (0)), we have Po ç Om"1 (0).
Now II.3.3 implies opt (x, z) £ <E>m-1 (0).

4) The M-tuple y is admissible for Po, and opt (x, z) 3 Po-
5) If x | x ' and if (x', z) e F (Y), then by II. 3.4 y is also the minimal

admissible w-tuple for (x'9 z, 7(3»)).
6) We showed in 2 that opt (x, z) is a ^-producer of minimal cardinality.

But every <D-producer is also a ^F-producer. •

II.5. Construction of the deterministic production function 0 (S /)

Our last step is to construct a new production function 0 be selecting among
the ^-producers the optimal one. In fact 0 itself will not be derministic: we
only defined the optimal producers for the points in Y OF). However is
"restriction" to its fixpoint will be deterministic: every point of F(0) will
have a unique minimal producer included in Y (0), and all the results of the
next section will hold. We call minimal a point (x, z) such that (x, z) e YÇV),
and x' <= x implies (x', z) £ YÇ¥). By construction every point of opt (x, z)
is minimal. Given, for some m, ̂ m (0) and (x, z) in xFm (0), we can effectively
test if (x, z) is minimal: we just test if ̂ m (0) contains no point (x, z) with
x' c x; the number of possible points is finite. However this method fails
if we only know a proper subset X of xFm (0), as wîll be the case in most of
the actual bottom-up computations (see Chapter III). We shall modify *F by
adding to every point (x, z) a flag ƒ/ set to 1 irT(x, z) is minimal.

DÉFINITION: If X ç Dp + 1 x { 0, 1 }, p(X) dénotes the projection of X
ob£>p+1.

DÉFINITION: Let (£, /) be a recursive program.
The production function 9 (ï t J) : ̂ (i)P+1 x { 0, 1 }) -> ̂ (Z)J+1 x { 0, 1 }) is

defined by
Q(X) ^ {(x, z, fl)e Dï+1 x{0, l}\S(x, z, X)

A[//=loVx'cx ~S(x\ z, X)]}

with S(x, z, JT) = 3 Y s Z

II.5.1. PROPOSITION: 1) 0 is monotonie and continuons.
2)VrneN,p (0m (0)) = x¥m (0); /> (7(0)) =

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMMUTATION OF RECURSIVE PROGRAMS 6 3

3) If (Jc, zjï) e Y (9), ƒ/ = 1 is equivalent to (x, z) minimal.

4) If the interprétation I is stable, then every point (x, z, fï) in Y (0) has a
unique minimal producer included in Y (0); this minimal producer is
opt(x, z)x{ 1 }.

Proof: 1) 2) 3) directly follow from the construction (see [1]).

4) Every point of opt (x, z) is minimal by construction; therefore
opt (3c, z) x { 1 } 0-produces (x, z, 0) or (x, z, 1).

If P 0-produces (x, z, ƒ/), there exists P ' Ç P such that every point of P'
is minimal and such that p (P') ^P-produces (3c, z). Then P Zl opt (JC, z) and
P => opt (x, z). D

Remark: It may obviously be the case that I is not stable and 0 (I J) is
deterministic. However, given a non-stable function b e AP, one can easily
construct a non-deterministic program just by using sequential if-then-else
and constant functions {see [1]).

m. BOTTOM-UP COMPILATIONS. QUASI-DETERMINISTIC PRO-
DUCTION FUNCTIONS

Let D be an arbitrary set and <D be a monotonie function from 9 {D)
to & (D). Every notion is defined with respect to O, and symbols may be
prefixed by <£ if necessary: O-b. u. c. s., <D-s. r., <E>-dom.„

We first formalise the notion of bottom-up computation of a point in Y (3>).
We next express the quasi-deterministism condition (cf. section II), and then
study some properties of the quasi-deterministic functions. Lastly, we present
induction techniques based on the structure of the set of intermediate values.

Illustrations are given in diagram 1 (in annex).

III. 1. Bottom-up computation séquences; storage configuration séquences

For defining bottom-up computations, we use as basic opération the
production of a point by a subset of Z), starting from initially empty
information.

DÉFINITION : A bottom-up computation séquence (abbreviated b. u. c. s.) is
a séquence Xo, Xu . . . , Xn, . . . of subsets of D such that

*o = 0 and Vn^O, I „ c I „ + 1 c X n U (D (l n) ,

A storage configuration séquence (abbreviated s. c. s.) is a séquence
XQ, Xu . . . , Xn , . . . of subsets of D such that

Z o = 0 and VnkO, I n + 1 ç l f l

n° mars 1976

64 G. BERRY

A s. c. s. { Xn9 ne N} is simple iff it satisfies

VJCG (J Xn ~ 3p9 q, reN, p < q < r, x e XpAx $ XqAx e Xr.
n

A point xeD is computedbyas.c.s. { Xn, n e N} iff xe [j Xn.
n

s. c. s. correspond to actual compilations, b. u. c. s. correspond to histories
of compilations. In a s. c. s., we are allowed to discard intermediate values
when they are no longer useful for the computation. In simple s. c. s. we are
however not allowed to recompute intermediate values.

Clearly, every b. u. c. s. is a simple s. c. s. ; on the other hand, if { Yn , n e N }
is a s. c. s.9 then the séquence Xn = (J Yp is a b. u. c. s. An example of

simple s. c. s. is Kleene's séquence 0, O (0), . . . , O" (0), . . .

m . 2 . Self-reproducing sets. Quasi-deterministic fonctions

We now introducé the basic property which will allow us to characterise the
members and limits of b. u. c. s., and to express the quasi-determinism
condition.

DÉFINITION: A subset S of D is self-reproducing (abbreviated s. r.) iff it
satisfies 5 ç $ (5).

III. 2 .1 . PROPOSITION: If S is S. r., so is <S> (S); Afinite or infinité union of s. r,
sets is s. r.; For every ne N, <&n (0) is s. r.

III. 2.2. PROPOSITION: Every member or limit o f a è. w. c. s. is s. r.

Proof: Let { Xn, neN} be a b. u. c. s. If n = 0, then Xo = 0,
and Xo s $ (Xo). Assume Xn s O (JSTB). Then Xn+1 s Zn u O (Z„)
implies I „ + 1 g O (I „) , and Xn^Xn+1 implies $ (I J ç $ (Z n + 1) ; finally
JJfn+1 ^ $ (-*"„+1). The limit (J Xn is s. r. since it is a union of s. r. sets. •

n

The intuitive définition of the quasi-determinism condition was the
existence of a least set of necessary and sufficient intermediate values for any
given argument.

We now give the foliowing formai définition:

DÉFINITION: O is quasi-deterministic iff every point xe<&(D) has a unique
minimal self-reproducing producer prod {x).

III. 2.3. PROPOSITION: A function O is quasi-deterministic iff for every finite
or infinité family Si9 ie I, of s. r. sets, $ (f) S*) = (] O (St).

iel iel

Proof: See II. 1.1. D
Clearly, every deterministic function is quasi-deterministic.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATION OF RBCURSIVE PROGRAMS 65

III.2.4. PROPOSITION: Let $> be quasi-deterministic and continuais.

a) X ç y (<D) is the limit of a b. w. c. s. iffX is s. r.

b) X £ Y{<$) is member of a b. w. c. s. iffX is s. r. and included in $>m (0)
for some m ^ 0.

Proof: Let { Xn, neN} be a b. u. c. s. Then Xn and (J Xn are s. r.
neN

by III.2.2. By induction on n, Xn £ $"(0). Conversely, if S is s. r., then
the séquence S n $" (0) is a b. u. c. s.

A quasi-deterministic function may not be deterministic; however nothing
can be gained by using the non determinism facilities: let P1 be a minimal
producer of x included in prod (x% let P2 be another minimal producer such
that P2 $ prod (x). We can produce x by first producing either Px or P2.
Assume {Xn> neN} is a b. u. c. s. such that X„ 2 P2- Then xe $ (Xn).
But Xn is s. r. and produces x : X„ 2 prod (x), and Xn 3 P t ; computing P2

is simply a waste of time. Therefore prod (x) is actually the set of necessary
and sufficient intermediate values we wanted to define.

III.3. Producers and domains. The ordering -<

DÉFINITION : Let $> be quasi-deterministic. The domain of x, dom (x), is the
smallest s. r. set containing x. The relation -< is defined by x -< y iff
x e dom (y).

III. 3.1. PROPOSITION : Let O be quasi-deterministic and continuons, let xe Y (<3>);

1) dom (x) = prod{x) u { x };

2) x$prod{x);

3) The relation -< induces a well-founded ordering on Y (<ï>),

Proof: 1) Since dom (x) is s. r. and contains x, it produces x and
dom (x) 2 prod (x) u { x }. Now

<I> (prod (x) u { x }) 3 <t> (prod (x)) 2 prod (x) u { x} .

Then prod (x) u { x } is s. r. and contains x; hence

prod (x) u {x } 3 dom (x).

2) Let n be the smallest integer such that x e <DM (0).
Then <&n~l (0) is s. r. and produces x; hence prod (x) e O""1 (0) and

x £ prod (x).

3) The relation -< is obviously reflexive and transitive. It is also
antisymmetric: assume x < y, y -< x, x # y• Then x e prod (y) implies
prod (x) £ prod (j>), and y e prod (x) implies y e prod (y)* contradicting 2.

n° mars 1976

66 G. BERRY

If x G <ï>" (0) and y < x, then prod (x) c <&"-l (0) and y e <ï>rt~l (0).
The relation < is well-founded. Q

We extend the définitions of prod (x) and dom (x) to subsets of D:

DÉFINITION: Let <ï> be quasi-deterministic.

Let X ç y(<ï>). Then dom(X) dénotes the smallest s. r. set containing X,
prod(X) dénotes the smallest s. r. set producing X.

III. 3.2, PROPOSITION : 1) dom (X) = \J dom (x).

2) prod(X) = y prod(x),
xeX

3) dom (X) = prod(X) u X.
4) prod(X) = prod (dom (X)).

5) S s. r.oS = é m (5) o S 2 prorf (S).

III.4. Extremal points and extremal set of a s.r. set

A set S is s. r. iff S = [j dom (x). We note that if y e S is such that S z e S,
xeS

y G prod (z), then S = (J dom (x). We are interested hère in specifying
xeS-{y)

a least set E which characterises S by S = dom (£"),

DÉFINITION : Let O quasi-deterministic, Iet S be s. r. A point x e S is extremal
for S iff x $ prod (S). A subset E of S is extremal for S iff S — dom (E)
and ¥ e9 e' G E ~ e < e'. By convention, 0 is extremal for 0.

I I I . 4 . 1 . P R O P O S I T I O N : A point x is extremal for a s . r. set S iff S— {x} is s . r.

Proof; Let x be extremal for S. Then S~ {x) ^ prod (S), and
^ (^ - { x p s S - f i } . Assume conversely that S - { x } is s.r. Then
5— { x } 3 prod (S— { x }), and S— { x } ̂ prod (x), since S produces x.
Finally S- { x } 2 prod (S) and x $ prod (S). D

111.4.2. PROPOSITION: Let S be s. r. Then E £ S is extremal for S iff
S = dom (E) and E n prod (S) = 0 .

Proof: Clearîy, if E satisfies S = dom (E) and E n prod (S) = 0, then E is extre-
mal for *S. Assume conversely E extremal for S. Assume 3 eeE e e prod (S).
Then 3 se S e e prod (s). Since S = dom (£), 3 e' e E se dom (e9).
Finally e e prod (e% which is impossible. •

111.4.3. PROPOSITION: A s. r. set S has at most one extremal set ext (S). If it
exists, ext (S) is the set of extremal points ofS* IfE' ç S satisfies S = dom (£"),
then E' ^ ext (S).

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATION OF RECURSÏVE PROGRAMS 67

Proof: Let E be extremal for S. If e e E, then e <£ prod (S) and e is extremal
for 5.

Let e be extremal for S. Assume e $ E. Then S — { e } is s. r., and E ç 5— { e }
implies dom (E) £ 5— { ̂ }» contradicting dom (E) = S.

If E' satisfies dom (E') = S, then E' clearly contains the extremal points
of S. D

A s. r. set S may have no extremal set: this is the case for Y(<ï>) if
<D» (0) for all /?. This is however not the case for the bounded sets:

DÉFINITION: A set X is n-bounded iff X e t>«(0). The «-f/2 s//ce of F(0>)
is defined by xn = 0>" (0)-d>"~1 (0).

III. 4.4. THEOREM : Let <D ̂ quasi-detemrinistic, let S be s. /*, included in <J>M (0).
TTÎ^/Ï iS /jas1 aw extremal set; ext (S) is the union of S n xn and of the points of
ext (S n ®n~l (0)) which do not belong to dom (S n t").

Proof: By induction on n. •

111.4.5. CoROLLARY 1: Let x e Y(<I>). Then prod(x) has an extremal set.
Moreover, if<& is deterministic, then ext (prod (x)) =2 mp (x).

Proof: If x e F(<D), then x e <t>" (0) for some n and prod (x) is
(n— l)-bounded.

Assume 3> deterministic, assume y e ext (prod (x)) satisfies y $ mp (x).
Then prod (x)— { y } is s. r., contains mp (x), and produces x: contradiction

with the minimality of prod (x). •

III. 4.6. COROLLARY 2: Let <I> be quasi-deterministic, let Xn be a b. u. c. s.

Then Xn has an extremal set, which contains Xn — Xn_t.

Proof: By induction on n, Xn is «-bounded, and III .4 .3 applies. Now
Xn s 0> (Xn^) implies prod (Xn) Q Xa_x. Therefore ext (Xn) 2 XH-Xn-X. D

III.5» Extremal sets

According to the previous results, we can define the extremal sets in an
intrinsic way.

DÉFINITION: Let <ï> be quasi-deterministic. A set £ ç D is extremal iff E
is extremal for dom (E).

III .5 .1 . PROPOSITION: Let $ be quasi-deterministic

E extremal o En prod (E) = 0 <=> prod (E) = dom (E) — E.

n° mars 1976

68 G. BERRY

The relation -< extends to extremal sets:

DÉFINITION: Let <P be quasi-deterministic, let EXT dénote the family of
the extremal sets included in Y(<&). The relation -< is defined on EXT by
Ex < E2 o dom (Et) s dom CÊ:2).

III. 5.2. PROPOSITION : The relation < is a partial ordering on EXT,

Proof: Reflexivity and transitivity are obvious.

Assume Et < E2, E2 < Ex. Then d o m ^) = dom(E2).

Since a s. r. set has a unique extremal set, Et = E2, The relation is
antisymmetrie. D

111.5.3. LEMMA: Let Eu E2 e EXT. Then

Ei < E2 => prod(E1) c prod(E2).

Proof; We have prod (Et) s dom (E^ c dom (E2) = prod (E2) u E2.

Assume 3 e2 e E2 e2 e prod (£1). Then 3 et e Et e2 e prod (e^. Since

et e dom tE2), 3ef
2eE2, exe dom (^2)-

We get e2 e prod (ef
2), which is impossible since E2 is extremal. D

111.5.4. THEOREM: Let El9 E2£ EXT. Then Ex andE2 have a least upperbound
max (Ei> E2) in (EXT, •<). This L w. b. satisfies the following properties:

1) max (Eu E2) = ext (dom (E^ u dom (E2));

2) max (Et, E2) = {e1eEl\ei $prod(E2) } u { e2 e E2 J e2 $prod (E%) } ;
3) prod (max (Eu E2)) = prod(Et) u prod (E2).

Proof; Consider the set E defined by property 2; E is extremal by
construction. Since E ^ Etu E2, we have dom (E) s dom (Et) u dom (E2)*
Let x e dom (Ej) u dom (E2); we can assume x e dom (Et). Then
3 et e £x x e dom O J) . If ex ^ prod (E2\ then e t G £ and xe dom (JF).
If ^i e prod (£"2), there exists e2 e E2 such that et e prod (e2); ^1 e prod (£x)
being impossible, we have e2 $ prod (Et\ and hence e2e E and j£ 6 dom (£).

Finally dom (£) = dom (^i) u dom (£2). Property 1. is proved, and E
clearly is the 1, u. b. of Ex and £2-

By construction, E is of the form E[u E2 with E[£ Et and E2 £ £2*
Hence

prod(£) = prod (£ i) u prod (E2), and prod (E) e prod (E x)u prod (£2).

The reverse inclusion follows from III. 5.3, and property 3 is proved. D

111.5.5. PROPOSITION: TWO éléments Et and E2 of EXT have a g.lb* in
(EXT, -<) iff dom (Ex) n dom (E2) has an extremal set. If it exists, this g. L b.
satisfies min (Eu E2) = ext (dom (E{) n dom (E2))*

Revue Française d*Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPILATION OF RECURSIVE PROGRAMS 69

Proof: If dom (Ex) n dom (E2) has an extremal set E, then E clearly is
the g. 1. b. of Ex and E2. Assume conversely that Ex and E2 have a g. 1. b. E,
assume dom (E) J dom (Ex) n dom (E2). Let

a^dom(£)5 a € dom (E ^ n dom (£2),

Iet E' = max ({ a }, E). Then £" # E, E' > Ey E' < Ex, E' -< E2i which is
impossible. D

lu.6, S-complete sets

Among the extremal sets included in a s. r. set, those which are maximal
with respect to inclusion present a very rich structure. They seem to be also
useful for determining the storage requirements of bottom-up computa-
tions (see section IV).

DÉFINITION: Let <D be quasi-deterministic and continuous, let S be s. r.
inciuded in F(4>). A set C Ç S is S-complete iff C is extremal and no
extremal set included in S properly contai ns C,

SCOMP dénotes the family of the S-eomplete sets.

111.6.1. PROPOSITION: Let C ç S be extremal. Then C is S-complete iff
V x e S-dom (C) dom (x) n C # 0.

Proof: 1) Assume C S-complete, let x e 5-dom (C) satisfy dom (x)nC = 0.
Then for all c in C, c # dom (x) and x £ dom (c); hence C u { x } is extremal,
is included in S and strictly contains C: contradiction with C S-complete.
Conversely, assume Vx e S-dom (C) dom (x) n C ^ 0* Assume there
exists aeS such that C u {a } is extremal. Then dom (à) n C = 0
and a $ dom (C), which is impossible. •

The next characterisation does not directly involve the points of C, but the
domain of C:

111.6.2. THEOREM: Let C e s be extremal Then C is S-complete iff the
following two conditions hold:

1) Vx e S prod (x) £ prod (C) => x e dom (C).
2) Vx e S-prod (C) te (x) n é m (C) # 0.

Proq/? Ö) Assume C S-complete. The second condition holds by III. 6.1.
Assume there exists x e S such that x £ dom (C) and prod (x) £ prod (C).

Then x £ prod (C), and for all e e C, e £ prod (x); this means that C u { x }
is extremal, contradicting the S-completeness of C.

&) Assume both conditions hold, let x e S-prod (C).
Since xe# r t(0) for somew, the set dom(x) n dom(C) is w-bounded and has

an extremal set E (III .4.4). Because of the second condition, E is not empty.

n° mars 1976

70 G. BER&Y

Let e e £ , Lemma III.5.3 implies prod (e) ç prod (C), and first condition
implies e e dom (C). Therefore e e dom (x) n C, and C is S-complete
by III.6.1. D

111,6.3. COROLLARY: Let C be S-complete, 1er C{ ç S be such that C < C{.
Then Cx is S-complete iff Vx e S prod (x) ç prod (Q) => x e dom (C,).

III.7. Lattice of the S-complete sets

DÉFINITION: Let S be s. r., let S' be s. r. included in 5. The yield of S' in S
is defined by:

YS(S') = (<p(S')-S') n S = {seS\ s$ Sf A prod(s) c 5' }.

III. 7 ,1 . THEOREM : Let <I> quasi-deterministic and continuons^ let S be s. r.
and included in Y (O). Then (SCOMP, <) is a lattice; the L u. b. and g. L b.
satisfy the following properties:

1) cmaxs(Cu C2) = YsiprodiCi) u prod{C2)).

2) prod(cmaxs (Cl5 C2)) = prod(Ct) u prod(C2).

3) cmms(Cu C2) = Ys (prod (C J n prod (C2)).

4) cmins (Cl3 C2) = w/« (C1; C2) = ex? (ifom (Ct) n cfow (C2)).
5) cmws (C t, C2) = (C, n Jom (C2)) u (C2 n ^orn (Q))-
6) prod{cmins (Cu C2)) = prod(Cx) n prod(C2).

Proof: a) Let C = Ys (prod (Cx) v prod (C2)).

Clearly, Cis extremal and contains max (Cj5 C2) (c/*. ÏIf.5.4). Hence C > C,
and C > C2. By III. 5.3, prod (C) 3 prod (Cx) u prod (C2). By construction,
prod (C) e prod (Cx) u prod (C2), and 2 holds.

Assume x e S and prod (x) ç prod (C).
If x £ prod (Ci) u prod (C2), then x e C by définition of C. Otherwise

x e dom (Q) u dom (C2) ^ dom (C). Hence C is 5-complete by III.6.3.

Assume C' S-complete, C' > Cl5 C' > C2. Let ce C. Then

prod (c) c prod (C) = prod (Cj) u prod (C2).

But by III. 5.3, prod (Ct) u prod (C2) e prod (C'). Hence c e dom (C)
by III.6.2. Therefore C -< C', and C is the 1. u. b. of Cx and C2 inSCOMP.

b) Let C= Ys(prod(Cx)nprod(C2)).
b 1) Let ceC, Then prod (c) c prod (C^ n prod (C2) implies by III.6.2

c e dom (Ct) n dom (C2). Since c ^ prod (Ci) n prod (C2), we have either
c $ prod (Cx) and ce Cx n dom(C2), or c $ prod (C2) and ceC2n dom(Cj).
Therefore C ç (Ci n dom (C2)) u (C2 n dom (Cj)). The reverse inclusion
holds by construction, and property 5 is proved.

Revue Française d*Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATION OF RECURSIVE PROGRAMS 71

b 2) We now have

dom (C) = dom (Cx n dom (C2)) u dom (C2 n dom (Cx)),

and therefore dom (C) = d o m ^) n dom(C2); (<ƒ. III. 3.2). Since C i s
extremal by construction, property 4 holds.

b 3) To show that C is S-complete, we apply I I I .6 .1 .
Assume x e S-dom (C). Three cases are possible:

Case 1: x £ dom (Cv) and x e dom (C2), Then dom (x) n Cx ^ 0 ,
dom (JC) n (Cx n dom (C2)) # O and dom (x) n C ^ 0 .

Ca^ 2; x £ dom (Cj) and x e dom (C2). Symmetrie to case 1.

Case 3; x £ dom (C t) and x £ dom (C2). Then dom (x) n Q / 0 .

Let Cj e dom (x) n Clt If ct e dom (C2), then Ci e C. Otherwise

dom (c ,) n C 2 / 0, dom (x) n (C 2 n dom(C t)) ^ 0 and d o m (x) n C ^ 0 .

Eventually, C being the g. 1. b. of C t and C2 in (EXT, -<) is also their g. 1. b.
in (SCOMP, <) .

III.8. Bottom-up computations and induction techniques

We do not define precisely (ïbottom-up algorithms" or "bottom-up
computation rules". However we remark that there is always a way of
effectively producing every point of Y(<$) when D is denumerable:

III .8.1. PROPOSITION: Let D={dn, neN}, let O : » (/>)-> 0> (D) be
monotonie and continuous. Let Xn be the séquence of subsets of D definedby:

Xo = &;
Xn — Xn_1 u {di} if there exist a least integer i such that di^Xn_l

Xn = Zn_! otherwise,

Then { Xn, n e N } is a b. u. c. s., and has limit

Proof: The séquence is a b. u. c. s. by construction, and (J Xn e
n

holds by induction on n.

Assume that IJ Xn is not a fixpoint; then there would exist an integer p
n

such that dp $ (J Xn and dpeQ>([j X„). By continuity, dp e IJ 0> (Zn). Let q
n n n

be such that dpeO{Xq). Then dpe<!>(Xr) for r }> q, and there exists
a séquence dt , dt f . . . , dt + | , . . . of distinct points of D such that for
every l e N:

D° mars 1976

7 2 G. BERRY

This is impossible, since there only exist a finite number of integers less
than p. D

Top-down computation rules do not avoid recomputation of intermediate
values (except by using memo-functions, which may involve additional tests
and a waste of storage). It seems that when using "uniform bottom-up
computation rules", we cannot avoid to eompute useless intermediate values;
there is probably no uniform way of characterising the domain of a given point.

We now deveîop some induction techniques which might allow to
characterise the domains in particular examples. AU the induction principles
we present dérive from the following one:

III. 8.2. PROPOSITION : Let ® be continuons. Let h : D —• 9 (D) be such that
Vx 6 O" (0) h (x) s d>»-i (0). Let P be a property such that for every
x e F (O), if P is tme for every member o f h (x), then P is true of x. Then one
can conclude that P is true of every member of Y (<£).

[V x e 7(<D), [V y e h (x) P (y)] => P (x)] h- [V x G Y(O) P (x)].

Proof: By induction on n: Assume \fxeY(d>) [Vye h(x) P(y)~} = >P(x).
Let x 6 (D (0). Then h (x) = 0, and P (x) holds.

Assume Vy e $>" (0) P (y). Let x e 0)"+l (0). Then h (x) c <ï>» (0)
implies Vj e h (x) P (y), and therefore P (x). •

Some possible choices for h (x) are :
1) h (x) = «D"'1 (0). We obtain the usual truncation induction principle

(Morris [8]).
2) h (x) = prod (x). We obtain the usual structural induction principle

applied to the relation -<.
3) h(x) = ext(prod(x)).
4) h (x) = mp (x) if <b is deterministic. This principle seems to be the

most useful when dealing with recursive programs : the set mp (x) is directly
given by the elementary predicates of the translated formula.

An example of application of this last principle is given in the next section.

IV. TIME AND SPACE OPTIMALITY. APPLICATION TO ACKER-
MANN PROGRAM

IV. 1. Time and space optimality of storage configuration séquences

Given a recursive program, there exist several differerft implementations,
using either recursion mechanism or production mechanisms. It is natural
to compare these implementations. We shall use as time and space complexity
measures the number of recursion or production steps and the number of
intermediate values respectively.

Revue Française a"*Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPILATION OF RECURSIVE PROGRAMS 73

Diagram 1.1

A determinist ie production function.

The arrows represent the relation x e mp (y). The relation ^ is obtained by transitivity.
dom (x)

O mp (x)
+ + + an extremal set.

Diagram 1.2

a s. r. set S.
O O O O a S-complete set.

Our formai ism provides naturally these évaluations for the implementations
using production mechanisms: let { Yn, n e N } be a storage configuration
séquence which computes a point (x, z).

n° mars 1976

74 G. BERRY

— The amount of space used by this séquence is the maximal cardinality
of Ya.

— The séquence is optimal with respect to time if its limit is the domain
of (.x, z) and if it is simple (cf. III. l) : that is no intermediate value is computed
twice, onîy useful intermediate values are computed.

— The séquence is optimal iff it is optimal with respect to time, and iff
it is optimal with respect to space among those s. c. s. which are optimal
with respect to time. (It may be the case that one can use less space by
recomputing some intermediate values.)

An algorithm realising an implementation is said optimal iff for every
argument, the s. c. s. it détermines is optimal.

We emphasise the fact that optimality is defined with respect to the
implementation of a given recursive program, and not with respect to the
function it computes. For instance, the Fibonnaci function can be defined
by the two following programs:

P 1. fib («) = ifn = OV/z = 1 then 1 else fib (n -])+ f ib 0 - 2) .
P 2. fib («) = ifn = OVn = 1 then 1 else if n = 2 then 2.

else (fib (rc- l) + 3xfib (rc-2)+fib (n-3))/2.

An optimal implementation of P 2 is not optimal for the computation
of fib (n), n > 2: there always exist better implementations of P 1. In fact,
no implementation of P 1 is an implementation of P 2 and conversely.

IV.2. Application: Ackermann program

The purpose of the next sections is to show that Rice's algorithm [11]
realises an optimal bottom-up implementation of Ackermann program.

Ackermann program is defined on TV u { J_ } by the following program
scheme :

A (m, n) — if m = 0 then n + 1 else if n = 0 then A (m — 1, 1)

else A (m — 1, A (m, n — 1)).

The tests m = 0 and n — 0 imply

V m, neN A (l , 1) = A (m, 1) = A (l , n) = _L.

Hence no bound variable can be set to ±, and the associated production
function may be simply defined by:

= {(m, n, z)eN3\ifm = 0 then z = n+\
else if n = 0 then (m —1, 1, z)eX
else 3 y (m— 1, y, z)eX A (m, n —1, y) e ^ } .

Revue Française d'Automatique\ Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATION OF RECURSIVE PROGRAMS 75

As the function 0 in II .5, the function <t> is not deterministic, but is such
that every point in Y (<ï>) has a unique minimal producer in Y (<D).

— If m = 0, then mp (m, /?, z) = 0.
— If m # 0 and n = 0, then mp (m, /?, z) = { (m— 1, 1, z) }.
— If m / 0 and « / 0, then

mp(m, «, z) = {(m, n —1, A(m, ra —1)), (m —1, A(m, n — 1), z)}.

IV. 2.1. PROPOSITION: 1) The function is total: V m, ne N, A (m, n) e N.

2) V m, n, n' e N, n' > n = > A (m, n') > A {m, n).

3) V m, m', n e N, m > m —> A (m\ n) > A (m, n).

Proof: A proof of 1 is given in Manna [5] (p. 410); it uses the well-
foundedness of the lexicographie ordering ^ / on N2: (x, y) <ït (x\ y') holds
iffx < x' or x = x' and y ^ y'. Properties 2 and 3 are well-known, and can
be easily proved by induction on (IV, g) and (W2, ^ ,) . n

We now characterise the domains:

IV.2.2. PROPOSITION: Let (m, n, z) e Y(<E>). Then:

1) if m = 0, then dom (m, n, z) = { (/w, «, z) };

2) if m ¥= 0, rtew

dom {m, n, z) - {(m', n', z')e Y(O) | m' ^ m A z ' g z } - { 0, 0,1 }.

Proof: By induction on the minimal producers (III.8.2).
Let D (m, «, z) = { (m\ n\ z') e 7 (0) ! m' ^ m A z' ^ z } - { 0, 0,1 }.

Cave m = 0: then mp (m, n, z) = 0 implies property 1.

Case m > 1, n ^ 0: let z 1 = A (m, n— 1); assume

d o m (m , n - 1, z 1) = D(m, n- \,z 1) and dom (m - 1, z I, z) = D(m- 1, z 1, z).

Then:
dom (m, ?7, z) = £>(/??, n— 1, z l) u D(m — 1, z l , z) u {(m, n, z)}.

Proposition IV. 2.1 implies z 1 < z, and therefore dom (m, n,z)^D (m, n, z).

Let (m', «', z') e D (m, n, z):

— If m'= m, then IV.2.1 implies ri ^L n; if ri = «> then (m', n', z') = (m, n,z),
otherwise (m', n\ z') e D (m, n— 1, z 1).

— If m' < m, then (m', «', z') G D (m—1, z 1, z).
In both cases, (m\ ri, z')eôom(m, n, z). Eventually,

dom (m, M, z) = £> (m, «, z).

m 7e 0, n = 0 and m = 1, n ^ 0: similar proofs.

n° mars 1976

16 G. BERRY

IV

•L Z 3 t, 5" « 7 ï 3 i.0 H

Diagram 2

Ackermann recursion structure.

The domain of (4, 0, 13); numbers are values of the fonction.

.3, À bottom-up implemeötation of Ackermann program

The given PASCAL program implements a variant of Rice's algorithm [11].

Remark: The arrays PLACE and VAL should have dimension 0. . M
and 0. . M -h l (PASCAL does not alîow flexible arrays).

If M = 0, the program is directly exited with ACK = tf+1; if N = 0,
the argument (M, N) is transformed into (M-l9 1); therefore we only
investigate the case M > 0, N > 0.

A termination proof is given in Manna [2] (p. 200-202), and we only give
an informai correctness proof; a formai one could be constructed by usiag
the defining predicate of <S> 'm. assertions.

The algorithm uses the fact that for every z > 1, the arguments such
that A (m, n) = z form a Imite séquence of the form (0, n 1), (1, n 2), . . . ,
(*, nk).

Points in the graph are represented by triples (/, PLACE [I], VAL [/]).
A new point is created each time one of the blocks A or B is exited. The
variable T count the number of such exists, and will be called the time counter:
(T is useless for the algorithm itseîf). For every variable JT, let Xx dénote the
value of X at time /; let dt be the new triple introduced, let lt be the set of
intermediate triples "in storage":

rf(=(r(,PLACE[IJoVAL[IrJ),

Y, - {(J, PLACE[J]f, VAL[J]()1, 0 S J â M A VAL[J]t > 0}.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPILATION OF RECURSIVE PROGRAMS 77

function ACK(M;INTEGER;N:INTEGER):INTEGER;

var VAL,PLACE;array[0..10]of INTEGER;

I,Z,T:INTEGER;

begin

if M=0 then ACK:=N+I

else begin

if N«0 then

begin

M:=M-1;

N: = l;

end;

for I:=l t o M d o %INITIALISATIONS%

begin

VAL[I]:=1;

PLACE[I]:=-ï;

end ;

PLACE[0]:=0;

T Ï = 0 ;

Z Ï = 2 ;

repeat %LOOP ON THE FUNCTION VALUE%

begin

%BLOCK A%

PLACE[0]Ï=PLACE[0]+1;

VAL[0];=Z;

Ti=T+l;

end %A%

I; = l;

while(VAL[I]=PLACE[I-Ï])and(I<=M)do

begin

%BLOCK B%

VALCI3:=Z;

PLACEÜlD^PLACEEll + l;

I:=I+1-,

T:=T+1;

end %B%;

Z:-Z+l;

until PLACE[M]=N %END TEST%;

ACK:=VAL[K];

end;

end;

TABLE

We are in fact not interested in the program itself, but in the s. c. s. Yt it
defines.

Let rO be the value of T when the program is exited.

IV. 3 , 1 , PROPOSITION: For every M, N > 0, the séquence { Y t 9 l ^ t £ T 0 }
is a simple s. c. s. with limit dom (M, N, A (M, N)); ACK (M, N) = A (M, N).

Proof; 1) Yt is a s. c. s.

- Case It = 0: block A was exited, and VAL [0], = PLACE [0] t +l ;
hence dt s $ (0).

n° mars 1976

78 G. BERRY

- Case Jt ^ 0, PLACE [ƒ,], = 0: block B was exited at time t, and also
at time t—\: the following relations hold:

U t = 1 , -1; Z r _ , = Z , .

VAL [!,],_, = 1; PLACE [!,],_, = - I .

VAL[I,], = Z,.

Since the <7<> loop was entered, we also have:

P L A C E [l r - l] , _ , = VAL [!,],_, - I.

Hence </,., = (/,_„ PLACE [/,_,],_„ VAL [/,_,],_,) = (/ , - ! , I, Z,).
Therefore </, e <D ({ </,_, }) c <P (V,^).

— O/.sr /, / 0, PLACE [ƒ,], / 0: similar proof; one easily shows that y,_ t

contains the Ivvo points

(l , . PLACE[l ,] , - l , V A L ^ X . O a n d a - l , VAL[I,],_,, Z,),

This implies </, e <I> (y ,_i) .
2))'I is simple; the pairs (Zr , ƒ,) strict!y increasc with respect to the

lexicographie ordering :g, o\\ N2\ \\o value is compuled twice.
3i) ACK(M. N) = A (A/, A)̂; siacc Yt is a s. c. s., the rcsulls of the 1irsl

sections imply for every r VAL [/,], = A (/, , PLACE [/,],). When the
program is exiled, we have Ir0 = A/, PLACE [/7 Ü] / O = /V and

ACK = VAL[lTO]7.o = A(M, /V).

4) (J yr - dom (M, /V, /* (>V/, JV)); Let S - (J K;; for every /,
I ^ ; ^ T O I <tS 7 0

we have /, ^ A/ and Z , g Zr0. By I V . 2 . 2 , (/ , edom (/V/, A', A{M,N))\
Hence 5 ç dom (A/, A', /! {M, N)).

But 5 is s. r. (III. 1. I, III .2.4) , and contains (A/, N, A (/V/, A/)): therefore
S => dom (M, A/, /l (A/, A^)). •

IV . 4. Optimality of the s. c. s. defined by Rice's algorithm

Proposition IV. 3.1 shows that the algorithm is optimal with respect to time.
Given v, y > 0, the simple s. c. s. it défi nes uses x + 1 space units to
compute A (.v, r). Our purpose is to show that no simple s. c. s. can use less
than -Y+ 1 space units (we only consider s. c. s. of the form { Yn , 0 tz n = N }
such that (x, } \ A (x, y)) e YN).

We use a technique similar to that developed by Cook and Sethi in [3],

DÉFINITION: Let xe Y(<&). A path from x to <D (0) is a séquence
x0, A-1S . . . , A-n of points of Y ($>) such that A'O = x, .Y„ e <D (0)
y P, 1 ^ P < n9 xp+l G mp (xp).

Revue Françoise d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPILATION OF RECURSIVE PROGRAMS 79

The proof relies on the following lemma:

IV.4. I. LEMMA: Let <D be determinisüc, let x e Y(<D), let { Y„ , 0 ^ n ^ N }
be a simple s. c. s. with limit dom (x), and assume x e YN. Let { j f f l , O ^ / ï ^ N)
be the corresponding b. u. c. s,: Xn = (J Yp. Let k be the smallest integer

such that Xk =2 dom (x) n O (0). Thenfor ever y path P — { x0, x l s . . ., xq }
from x to <X> (0), the following property holds:

V/c', k^k' ^7V, Pn Yk,^ 0.

Proof: Assume the property false. Then there exists a path "

P ~ { XOi X I * • • • » Xq ƒ

and an index k\ k ^ k' <L N, such that P n Yk, = 0.

The set P n Xk, is not empty, since it contains at least xq. Let q' be the least
integer such that xq, e Xk,.

We cannot have q' = 0: otherwise xe Xk> and x e YN would imply x e Yk,
and P c\ Yk. ^ 0 (cf définition of simplicity).

Since x(/, $ Yk. and xq, e Ym for some m < k', xq. $ Ym. holds for m' ^ k'.
Consider now the point x r _ , : by hypothesis, xq, e mp (xq.-x) and x^_, §É A^
hold. This implies for every m ^ k' mp(xqr_]) $ y,n, , and hence
xtl.-x $ Yni'+\< Finally, x, r_, ^ K;n for all m g M This is impossible, since
x„,-! edom(x) and (J Km = dom (x). Q

m

Let us come back to Ackermann production function. Given (x,y, z) eK(<D),
our purpose is now to construct x-f-1 paths which are distinct in Xk for every
simple s. c. s. We use for this the construction of a dom (x)-complete set C.
Let us define the following transformations:

DÉFINITIONS: Let (x, y, z) e Y (O), x > 0, y > 0.

H(x, y, z) = (x - l , yU z) with z = A (x - 1 , y Y).

v(x, y, z) = (x, y— 1, z J) wa7/t z 1 — A(x, >J— 1).

C (x, y, z) - { cm (x, >', z) | 0 ^ m ^ x }

with cm(x, y, z) = vuA~m(x, y, z) for 0 < m g x,

co(x, y, z) = n*(x, y, z).

We dénote cm (x, y, z) = (m, c,J , c^).

IV.4.2. LEMMA: VX, y > 0, A (x, y-l) < A(x-1, A (x, > ' - l) - l) .

Proof: Left to the reader.

n° mars 1976

80 G. BERRY

IV. 4 .3 . PROPOSITION : Let x, y > 0; the set C (x, y9 z) is dom (x, y9 z)-complete.

Proof: by IV. 2.1, IV, 2.2, C(x, y9 z) g d o m f e y, z) holds.
By lemma IV.4.2, we have cl < cxlt < ... < c\ < c\ < z = e§; hence

C (x, y, z) is extremal.
Let (x', y\ z') e dom (x9 y, z); if x > 0, then either (x\ y\ z') e dom (cx,),

or cx, e dom (x', y'; z'). If x' = 0, then either (je', yf, z') = c0 or
(x\ y\ z') € dom (ct). Therefore C (x3 yf z) is dom (x, y, z)-complete. •

IV.4.4 . PROPOSITION: let (x, y, z) G F («) , X, y > 0; let { Yn » 0 ^ n S
ibe a simple s. c, s. with limit dom (x, JF5 Z), let { Z„ , 0 ^ « g TV } de
associated b. u. c. 5.; /e? ̂ be the least integer such that

Xk 2 dom(x, j ; , z)n

(x', ƒ', z) e Xfc împ/îèj x' = 0.

Proof: Assume (x% y\ z)eXk9 x ' ^ 0; then Xk_x 2 prod (x', y\ z).
But by IV.2.2, prod (x', / , z) n O (0) = prod (x, y, z)n®(0); this
contradicts the minimaîity of k.

We now show the final resuit:

IV.4 .5 . THEOREM: Let €> dénote the Ackermann production function, let
(x, y, z)e Y(O), x > 09 y > 0. Let { Yn , 0 ^ n S N} he a simple s. c. s.
with limit dom (x» y> z). Then max card (Yn) ^ x 4-1.

Proof: To each cm we associate a path Pm from (x, y9 z) to 0 (0) in the
foliowing way: we first apply \x x—m times and then v, to reach cm; we then
apply \x m times to reach <!> (0), thus keeping the third coordinate equal to c^.
Let a dénote (x, y, z):

Po = (a, lia, \x2 a, ..., \ix~la, \ixa = c0),

Pi = (a , ̂ ia5 ji2a5 . . . , n * " ^ , v ^ " x a = c1? ncO

Pm = (a, \ia, \i2a, . . . , nx~ma, vpx"ma = cm? | icm , \i2cm, ..., ^imcm)

P x = (a , va = c,5 ^ c x ? p 2 c ^ ? ...,fi*cJC).

Let m < mf; by IV.4 .3 , Pm and Pm, only intersect at points a> \xa,
\i2 a, . . . , |Ax"m', a, and by IV.4.4, these points do not belong to Xk.
Lemma IV.4.1 impües the resuit. •

Remark: The fact that C (x, y9 z) is dom (a)-complete is not essential to the
proof; however looking for 5-complete sets seems to be a good heuristic in
this class of problems.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

BOTTOM-UP COMPUTATION OF RECURSIVE PROGRAMS 81

This result has been improved in [1]. The s. c. s. associated to Rice's
algorithm is directly defined by reccurence relations instead of a program.
Using a similar method, we show that it is optimal with respect to storage
among all possible s. c. s., thus even allowing recomputation of intermediate
values.

Diagram 3

The set C(3, 1, 13), and the corresponding paths P09 Pu P2,

ACKNOWLEDGEMENTS

I am grateful to Pr. M, Nivat for his advice and encouragement.
Many thanks to Bruno Courcelle, Philippe Flajolet, Gérard Huet, Jean-Jacques Lévy,

Charles Rackoff, and particularly Jean-Marc Steyaert, who helped me in this work.

REFERENCES

1. G. BERRY. Calculs ascendants des programmes récursifs. Thèse de 3 e cycle»
Université Paris VII, 1976.

2. R. BURSTALL. Proving Properties of Programs by Structural Induction. Computer
Journal, vol. 12, 1969, p. 41-48.

3. S. COOK and R. SETHL Storage Requirements for Deterministic Polynomial
Time Recognizible Languages. Proc. 6th annual symposium on theory of Compu-
ting, Seattle, Washington, 1974, p. 33-39.

4. D. LUCKHAM, D. PARK and M. PATERSON. On Formalised Computer Programs.
Journal of Computer and System Sciences, vol. 4, No. 3, 1970, p. 220-250.

5. Z. MANNA. Mathematical theory of Computation. McGraw-Hill, (Computer
science séries), 1975.

6. Z. MANNA and J. VUILLEMIN. Fixpoint Approach to the Theory of Computation.
Comm. ACM, vol. 15, No. 7, 1972, p. 528-536.

7. R. MILNER. Implementation and Applications of Scotfs Logic for Computable
Functions, Proceedings ACM Conference on Proving assertions about programs,
Las Cruces, New Mexico, 1972, p. 1-5.

8. J. H. MORRIS. Another Recursion Induction Principle. Comm. ACM, vol. 14,
No. 5, 1971, p. 351-354.

n° mars 1976

82 G. BERRY

9. M. NrvAT. On the Interprétation of Recursive Program Schemes. Symposia
Mathematica, Vol. XV, Instituto Nazionale di Alta Matematica, Italy, 1975,
p. 255-281.

10. D. PARK. Fixpoint Induction and Proofs of Program Properties. Machine Intelli-
gence 5, Edinburgh University press, 1969, p. 59-77.

11. H. G. RICE. Recursion and Itération. Comm. ACM, vol. 8, No. 2, 1965, p. 114-115.
12. D. SCOTT. Outline o f a Mathematical Theory of Computation, Programming

research group monography n° 2, Oxford University, 1970.
13. D. SCOTT and C. STRACHEY. Towards a Mathematical Semant les for Programming

Languages. Programming research group monography No. 6, Oxford University,
1972.

14. J. VUILLEMIN. Proof Techniques for Recursive Programs. Ph. D. thesis, Computer
Science Department, Stanford University, U.S.A., 1973.

15. J. VUILLEMIN. Syntaxe, sémantique et axiomatique d'un language de program-
mation simple. Thèse de doctorat d'état ès-sciences mathématiques, Université
Paris VI» Paris, 1974.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

