IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998 513

Bottom-Up Construction of Ontologies

Paul E. van der Vet and Nicolaas J.I. Mars, Senior Member, IEEE

Abstract—We present a particular way of building ontologies that proceeds in a bottom-up fashion. Concepts are defined in a way
that mirrors the way their instances are composed out of smaller objects. The smaller objects themselves may also be modeled as
being composed. Bottom-up ontologies are flexible through the use of implicit and, hence, parsimonious part-whole and subconcept-
superconcept relations. The bottom-up method complements current practice, where, as a rule, ontologies are built top-down. The
design method is illustrated by an example involving ontologies of pure substances at several levels of detail. It is not claimed that
bottom-up construction is a generally valid recipe; indeed, such recipes are deemed uninformative or impossible. Rather, the

approach is intended to enrich the ontology developer’s toolkit.

Index Terms—Knowledge engineering, knowledge base management, ontology, knowledge integration, domain model,

hierarchical reasoning.

1 INTRODUCTION: SETTING AND SCOPE

O NTOLOGY development and use constitute an important
research area for Al. In our work in ontology devel-
opment, we have found it beneficial to deviate from the
usual top-down approach by using a bottom-up approach
instead. In this paper, we present the ideas underlying the
bottom-up approach. We will illustrate the ideas by an ex-
ample taken from our own work, namely an ontology for
the chemical domain of pure substances. The ontology sup-
ports unambiguous definitions of concepts for pure sub-
stances and hierarchical reasoning (both separately and
combined) along two orthogonal dimensions, namely sub-
concept-superconcept and part-whole. We provide some
background in the present section.

1.1 Ontologies

The term ‘ontology’ is ambiguous. In the literature [1], no
less than seven different interpretations have been identi-
fied. We will have to outline our own view. In our work
[2], an ontology serves as a partial specification of the
knowledge representation to be built in a later stage. The
specification is partial because it supplies concepts in which
states of affairs can be expressed but does not actually
specify states of affairs. With respect to the knowledge rep-
resentation, the ontology supplies the meaning of every
nonlogical constant that occurs in the representation. To
allow this, an ontology is a concept system in which all
concepts are defined. Concepts are interpreted in a declara-
tive way, as standing for the sets of their instances. The
concept system is limitative: concepts can only be used if
they are defined in the ontology. Definitions are formal
where possible and informal otherwise. In our group, a
predefined ontology has been used as specification for

» The authors are with the Department of Computer Science, University
of Twente, 7500 AE Enschede, the Netherlands. N.J.I. Mars is also
affiliated with the Netherlands Institute for Scientific Information
Services (NIWI), Royal Netherlands Academy of Sciences and Arts,
Amsterdam, the Netherlands. E-mail: vet@cs.utwente.nl.

Manuscript received 6 Feb. 1996; revised 27 Dec. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104357.

representations in various languages in order to compare
different representation systems [3].

In the development of a knowledge-based system, the
use of an ontology is beneficial for two reasons [4]. It allows
for a more disciplined design of the knowledge base; and
it facilitates sharing and reuse. Both advantages are par-
ticularly important when the knowledge base becomes
large. Where it already proves difficult for developers of
small knowledge bases to gain insight into contents and
structure, this is humanly impossible for their large coun-
terparts. Also, developing large knowledge bases takes a
large investment which can be earned back more readily
if the knowledge base is used in more than a single ap-
plication. These functions of ontologies are akin to (but
not identical with) the functions played by the so-called
reference models IBM started to develop in the 1960s, to
guide software development for specific groups of custom-
ers (see, e.g., [5]).

1.2 Ontology Development

Currently, ontology development is a craft rather than a
science. Discussions at recent workshops, e.g., those at
ECAI ‘94, JCAI ‘95, and ECAI ‘96, and in the srkb mailing-
list, have tried to pinpoint the difficulties and find reme-
dies. We believe that proposals for a general method of on-
tology building are premature or misguided. Experiences in
other branches of engineering have shown that general
recipes tend to be over-general and thus of little practical
use. Instead, we should strive for practical experience and
try to identify (even if only in retrospect) the principles
upon which our ontologies are based. Working this way, we
may end up with a set of sufficiently precise recipes, each
with its own intended use.

In our view, it is profitable to gain practical experience
with ontologies for nontrivial domains like subfields of sci-
ence and engineering. Within the domains themselves,
structuring of information and often also standardization
have proceeded to a certain extent. This gives the ontology
builder a start. As a side-benefit, these ontologies have the
advantage of being potentially useful for practical applica-

1041-4347/98/$10.00 © 1998 IEEE

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998

tions. We have found that developing such ontologies takes
more than a passing knowledge of the domain.

1.3 Context

The ontology research reported here has been conducted
in the course of the Sapiens and Plinius projects, aimed
at semiautomatic indexing and semiautomatic knowledge
extraction, respectively. In both projects, the source material
is taken from document descriptions provided by produc-
ers of bibliographic databases. The domain for Sapiens
is medicine, that for Plinius ceramic materials. Detailed
information about the projects [6], [7], [8], [9] and
about particular ontologies [4], [10], [11], [12], can be ob-
tained elsewhere.

In a system like Plinius, it is impossible to exhaustively
predict in advance which concepts will be needed to ex-
press the knowledge found in the texts. The list of chemical
substances, for example, is in principle open-ended. The
Plinius ontology is designed to serve as an anchor point for
the development of the processes, so we did not like the
idea of having to add nodes to a top-down taxonomic on-
tology each time the system encounters a hew substance. In
knowledge representation systems designed with the top-
down approach in mind, like implementations of descrip-
tion logics, the addition of a node has to be done as a sepa-
rate step because the system only deduces where the new
node has to be placed in the already existing taxonomy.
Still, this would be a minor problem if a single node for
each new pure substance would have sufficed.

But chemical reasoning employs superconcepts at vari-
ous levels of detail, like ‘phosphate,” ‘calcium compound,’
and ‘calcium compound that also contains phosphate.’
Listing all these concepts in advance is impossible. If
no phosphates and calcium compounds are encountered
before, the occurrence of calcium phosphate requires the
addition of four nodes to the taxonomy: one for the sub-
stance itself and three for superconcepts. Worse, the situa-
tion can repeat for the next new substance. Keeping track
may require a considerable effort and is error-prone. There
are also negative computational consequences. In imple-
mentations of description logics, the addition of a node is
an expensive operation.

The (inorganic) substances mentioned in the Plinius
source texts can be uniquely characterized by their chemical
composition specified in terms of constituents and propor-
tions. We have used this to design a bottom-up ontology for
Plinius. Concepts for each and every substance that may
possibly exist are made available implicitly by laying down
which constituents there are and in which ways they can
combine to form substances. Superconcepts are made avail-
able by allowing constituents to be unspecified. For in-
stance, a calcium compound is a compound that consists of
calcium and other, unspecified constituents. The result
supports reasoning along two, orthogonal hierarchies: the
partonomy formed by substances and their constituents
and the taxonomy formed by concepts and superconcepts.
Reasoning that combines the two hierarchies is also possi-
ble. We are not aware of other designs that combine these
advantages in a similar, parsimonious and inexpensive

manner. The method is not specific for chemical applica-
tions, although (like any other method) it is not applicable
to each and every domain.

Lack of space prevents discussion of the full ontologies
developed for the projects mentioned. Instead, the ideas are
illustrated by a simplified version of the Plinius ontology
involving pure substances. Again, a fair treatment of the
necessary background knowledge is not possible and a
summary will have to do. A full treatment of the example of
pure substances, including an elaborate discussion of back-
ground knowledge and a formalization in Prolog, is avail-
able as a technical report [13].

2 ATOMISM AND THE BoTTOM-UP APPROACH

2.1 Atomism

Most ontologies published in the literature (for instance
those discussed at the workshops cited above) are con-
structed by means of top-down, iterative differentiation.
Description logics [14] are designed to support such on-
tologies. A declarative semantics is used. Concepts are in-
terpreted as sets of their instances, and the important sub-
concept relation is interpreted as a subset relation between
sets of instances [15]. A concept can be defined by telling in
which respects its instances differ from the instances of its
superconcept and from the instances of other subconcepts
of the same superconcept. This approach underlies Lin-
naeus’s biological taxonomies and can be traced back to
Aristotle’s ideas on classification involving genus, species,
and differentiae [16].

The bottom-up approach is inspired by atomism, a tra-
dition that dates back to antiquity. According to atomism,
the objects we perceive are composed of indivisible units
called atoms. The specification of an object in terms of indi-
visible units and their interactions constitutes the fullest
possible description of the object (descriptive aspect), and
allows derivation of all other properties of the object (ex-
planatory aspect). The explanatory aspect is obviously more
ambitious than the descriptive aspect. Both aspects are part
and parcel of the received view in modern science, even
though the explanatory aspect is only an ‘in principle’ pos-
sibility in most cases. We will be concerned here with the
descriptive aspect.

Chemistry and particle physics are the paradigm cases.
A complicated picture involving several levels of composi-
tion has been developed [17], [18]. The systems we study in
the laboratory are composed of elementary particles; ele-
mentary particles interact to form atoms; atoms interact to
form molecules; atoms and molecules interact to form the
substances investigated by chemists. Extensions in both
directions are possible. Already in antiquity, the paradigm
has also been extended to engineering. Engineered artifacts
can be uniquely described by specifying their parts and the
way the parts are put together.

The descriptions sought both in science and in engi-
neering aim at generalization and therefore at a level above
that of individual objects. Descriptive atomism classifies
complex objects by their composition. Complex objects are
instances of the same concept if they are composed of the

VAN DER VET AND MARS: BOTTOM-UP CONSTRUCTION OF ONTOLOGIES

same kinds of constituents in the same numbers and
connected in the same way. The concept of a helium
atom is interpreted as the set of complex objects that con-
sist of two protons, an unspecified number of neutrons, and
two electrons, interacting to form an atom. The parts are
themselves specified as concepts, because it does not matter
which individual particles are present in a particular he-
lium atom as long as they are instances of the specified con-
cepts. We will consistently distinguish between parts (ob-
jects) and constituents (concepts for parts).

The concepts of descriptive atomism are given a de-
clarative semantics here, that is, they are interpreted as sets
of their instances. We will use the familiar symbol [c] to
denote the set of instances of concept c. Declarative seman-
tics is instructive for our account, but it is not entirely cor-
rect. Below, we will discuss the concept of a helium atom
with fifteen neutrons in its nucleus. The concept is allowed
in a bottom-up ontology, although no instances are known
to exist in the real world. Part of the power of atomism is
that we can nevertheless establish the truth of assertions
like the one stating that instances of the concepts are not
known to exist (which takes knowledge that enables ex-
perimental identification of instances). Where description
logics seem to concentrate on (Fregean) reference [19], our
atomist ontologies concentrate on sense.

The ability to construct concepts whose instances are not
known to exist is an advantage in many cases. We may
want to express the fact that no instances of a particular
concept are known to exist; it takes the concept to say so.
Also, knowledge of existence is highly time-dependent in
several domains, that of pure substances among them. It
would be unwise to burden an ontology with such knowl-
edge because it would necessitate frequent updates.

2.2 The Principle of Bottom-Up Ontologies

Drawing on the results obtained in the atomist tradition,
we can design ontologies for scientific and engineering
domains in a bottom-up fashion. A bottom-up ontology
is specified as a list of primitive concepts and a list
of construction rules that implicitly define so-called com-
plex concepts.

Formally, a bottom-up ontology is specified as a tuple
(A, C), with A the set of primitive concepts and C the
set of construction rules. When (A, C) is viewed as a cal-
culus, its deductive closure gives the ontology proper,
i.e., the complete list of primitive and complex concepts.
It is intended, however, that the complete list is never
actually constructed. Indeed, for the ontologies to be intro-
duced below this would be impossible because the number
of concepts is (denumerably) infinite. Instead of construct-
ing the full list, complex concepts are made ‘on the fly’
as needed.

2.3 Primitive Concepts

Primitive concepts are interpreted as sets of indivisible ob-
jects. (We avoid the obvious but potentially confusing term
‘atomic concepts.’) In the present context, ‘indivisibility’ is a
relative rather than an absolute notion. The choice of indi-
visible objects is a design decision. Primitive concepts are

515

introduced extensionally or intensionally, but either way
they are not fully defined in a formal sense. Instead, an in-
formal explication anchors them into consensus domain
knowledge. For instance, the concept of electron can be ex-
plained by citing physics textbooks.

In addition, we will have to be able to count. The obvi-
ous way is to introduce primitive concepts for natural
numbers (i.e., integers > 0).

In any ontology, concepts have to be given unique
names. For reasons that will become clear in a moment, we
introduce a function label(c) that returns a label for con-
cept c. For any primitive concept introduced by extensional
specification, the label is a unique name chosen in the
course of design. For primitive concepts introduced by
means of intensional specification, we implement 1abel(c)
as a scheme that reflects the intensional specification. For an
example of the latter, see the definition of labels for con-
cepts of type chemical element in Section 6.2.

It will prove advantageous to be able to refer to classes
of primitive concepts. We postulate a function type that
assigns a type to every primitive concept, so that type(c) =
t assigns type t to concept c. We also introduce the set S(t) of
concepts of the type t:

S(t) =or {cl type(c) = t} @

The choice of types of primitive concepts is a design
decision. An elaborate type system can be designed in-
volving subtypes at several levels. The result is an ontol-
ogy that combines a bottom-up approach for the concepts
with a top-down approach for the types. We prefer simpler
type systems.

2.4 Complex Concepts

Complex concepts are interpreted as sets of complex ob-
jects. Complex concepts are not listed explicitly, but rather
defined implicitly by means of construction rules. A con-
struction rule defines a whole class of complex concepts by
specifying primitive concepts and, where appropriate, the
interactions that bind together parts to form a complex ob-
ject. Thus, a construction rule for concepts for helium atoms
specifies electrons, protons, and neutrons in particular
numbers, and the interactions between these elementary
particles that bind them together to form atoms.

Construction rules can be applied iteratively, so that
complex concepts can be defined in terms of other com-
plex concepts.

The type function is also defined for complex concepts.
It is chosen such that there is a one-to-one correspondence
between construction rules and types of complex concepts.
All complex concepts constructed according to a particular
construction rule are of the same type.

Since complex concepts are not listed explicitly, we
need a scheme to assign unique names to them. The label
function is used for this purpose. For any complex concept
¢, label(c) is chosen such that the label reflects the ap-
plication of the construction rule used to generate the
concept. To accomplish this, we write labels using the lan-
guage of sets and tuples. For an example, take the concept of
helium-4 atom that we will write as “He-4” for short. He-4

516 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998

is one of the concepts of type helium atom. Leaving out the
interaction for clarity, we would write:

label(He-4) = {{proton, 2), {neutron, 2), {electron, 2)} (2)

Although formally a set, the expression at the right-hand
side is a label for a single concept. Sets used as labels for
concepts must be distinguished from sets of instances of
those concepts. We will refer to an expression like the one at
the right-hand side of (2) as a label or a label expression.

In any particular ontology, concepts are always identi-
fied by their labels. Still, concepts and labels identifying
concepts are different things and it pays for now to make
the distinction explicitly.

It is quite another matter to call concepts by names
or symbols that are recognized by humans, like “helium-4
atom.” We can construct a lexicon that maps label expres-
sions onto such names and vice versa. A lexicon may be
useful for interfacing, as in the Plinius process where the
system is required to translate natural-language terms
and chemical formulae into ontology concepts. The
lexicon, however, is not part of the ontology. The mapping
of natural-language terms and symbols onto concepts
is many-to-many.

Label expression (2) can be viewed as a list of constitu-
ents. Every instance of the concept identified by the label
consists of instances of the concepts of proton, neutron, and
electron, and two of each. Put simply, in order to assemble a
helium-4 atom, one needs two protons, two neutrons, and
two electrons. In this way, a concept’s label coincides with
its definition (at least within the context of the ontology).
This opens the possibility to design inferences that draw
information from label expressions.

3 DESIGN CONSIDERATIONS

The designer of a bottom-up ontology can vary along two
dimensions: choice of indivisible objects, and choice of level
of detail in the specification of interactions. Along both di-
mensions we can design a series of ever more detailed on-
tologies. We will give an example of an extension along
both dimensions in the context of the pure substances case
(Section 6.6 and Section 6.7).

3.1 Choice of Indivisible Objects

It is often unnecessary and undesirable to go down to the
lowest level of composition known. Most chemistry is ex-
pressed in terms of chemical elements, although science
recognizes several levels of composition below that of ele-
ments. In many biological applications, the level of cell or-
ganelles is a sensible choice of bottom-line. On the other
hand, it is desirable to design an ontology such that it can
be extended to embrace a deeper level without having to
redesign the whole ontology.

For bottom-up ontologies, there is a historical parallel:
the development of atomism. One of the characteristics of
atomism in the past century is the introduction of ever
deeper levels of composition [17], [18]. Post [20] argues that
these transformations are driven by the explanatory ideal
embodied in atomism. As the properties we have to ascribe
to our ultimate constituents multiply, it becomes more at-

tractive to regard those constituents as being composed of
even smaller constituents. At the same time, the descriptive
aspect of atomism holds up unscathed.

In the context of the He-4 example, it is easy to see
how the deeper level of quarks can be introduced. We
remove the concepts of proton and neutron from the list
of primitive concepts. We add the concepts of ‘up’ quark
and ‘down’ quark and construction rules for the con-
cepts of proton and neutron. The occurrences of ‘proton’
and ‘neutron’ in the label expression of (2) are replaced
by labels for the now complex concepts of proton and neu-
tron. The specification of interactions will have to be
changed accordingly.

3.2 Choice of Level of Detail in the Specification of
Interactions

Until now, we have been silent about the specification of
interactions. For explanatory purposes, a detailed account
of interactions between objects is indispensable. For de-
scriptive purposes, on the other hand, we are only inter-
ested in lack of ambiguity. Under those conditions, interac-
tions may often be specified in a minimal way or left out
entirely. One reason for doing so is that interactions are of-
ten difficult to model and may result in a large ontology.
Consider modeling the interactions between elementary
particles forming an atom in a quantum-mechanical way.
The extra effort has to be justified by gains, something
which can only be decided in the context of a particular
application.

Leaving out interactions entirely effectively identifies
complex concepts with lists of constituents, a kind of partes
pro toto strategy. That instances of constituents interact to
form complex objects is only expressed by collecting the
constituents in the same list. We stipulate that concepts
for noninteracting parts cannot occur in the same list.
Thus, even if interactions are left out we can still distin-
guish between, say, a car and a building kit to make
that car. The utility of complex concepts defined as con-
stituent lists depends on whether reasoning about interac-
tions between parts is needed for definitional purposes. If
there are several ways to put the parts together, each re-
sulting in a different artifact, and we want to distinguish
each of those artifacts from the others, constituent lists ob-
viously are insufficient.

If detail about interactions has to be added, we face
a dilemma. There is a trade-off between parsimony and
addition of detail. In principle, there is always a lot of
detail that can be added. To take an extreme case, for
distinguishing a badly constructed combustion engine from
a well-constructed one we may have to specify the torque
(as read on the dial of a torque wrench) with which certain
bolts have been turned. In many applications, however,
such details are not needed for making distinctions. Letting
the inclusion of details depend on the application at hand
may result in ontologies that cannot be shared or reused,
an unattractive prospect. The alternative, addition of all
details we can get to anticipate situations where details
are indispensable for making necessary distinctions, is

VAN DER VET AND MARS: BOTTOM-UP CONSTRUCTION OF ONTOLOGIES

equally unattractive because it would force the use of large
and unwieldy ontologies where slimmer versions would
have sufficed.

A way out of this dilemma is to mirror the atomist
strategy of levels of composition. The levels-of-composition
approach can be modeled in a domain-independent way;
after all, parts are parts. An equally domain-independent
levels-of-detail approach is not possible because patterns of
interaction are highly domain-dependent. We conjecture,
however, that there is a general way to add superficial in-
teraction information. The result is known in chemistry as a
configuration. It models complex objects as graphs (N, E)
with N the set of nodes and E the set of edges. Constituents
are labeled nodes; edges stand for interactions, such as
atomic bonds in molecules or physical connections in cars.
An attractive feature of this choice is that constituent lists
can be generated automatically from graphs. An electronic
circuit is typically specified as a configuration in this sense.
In model-based diagnosis, such graphs are widely used
[21]. The distinction between explanatory and descriptive
aspects returns here. Fully quantitative prediction of be-
havior takes detailed interaction information of a kind not
needed to unambiguously describe the artifact.

3.3 Relating Ontologies by Strictly Information-
Discarding Transformations

Along both dimensions we may have a number of ontolo-

gies that differ with respect to the level of detail such that

1) every level in itself constitutes a legitimate and correct
ontology, and

2) every ontology at some level other than that of most
detail can be obtained from an ontology at a more
detailed level by means of a strictly information-
discarding transformation.

As the name implies, a strictly information-discarding
transformation results in loss of information while no new
information has to be added. The relation is irreflexive,
asymmetric, and transitive. Strictly information-discarding
transformations correspond to the class of computer pro-
grams known as filters.

The idea of relating ontologies by means of strictly in-
formation-discarding transformations in general is not new,
but we believe that our particular application is. Ontolin-
gua [22] defines include-theory to have the definitions
laid down by the included ontology (Ontolingua says ‘the-
ory’) taken for granted by the including ontology. Deleting
one or more include-theory’s is equivalent to a strictly
information-discarding transformation. In the Ontolingua
approach, the underlying idea is to promote modular on-
tology development. The ontology designer can reuse an
already developed module such as that for engineering
quantities [23] instead of having to write it from scratch.
The strictly information-discarding transformations we
have been discussing, by contrast, serve the purpose of ob-
taining entire but less detailed ontologies from more de-
tailed ontologies for the same domain.

517

A layered system of ontologies connected by strictly
information-discarding transformations has also been
proposed by us [4] for an ontology of measurement units.
The transformations in this case affect information on the
conversion of arbitrary measurement units into Sl units.
Layer 0, a default layer, specifies a straightforward nu-
merical conversion that is sufficiently precise for most
practical purposes. At layer 1, conversion factors depend
on time and location. For instance, since 1958 the inch is
by definition equal to 2.54 cm. In the U.K. between 1923
and 1958, the inch was 2.5399956 cm; the U.S. inch was
slightly different. At layer 2, relativistic effects are also
taken into account.

A graph of ontologies is obtained when the ontologies are
connected by directed edges standing for strictly informa-
tion-discarding transformations. Since for bottom-up on-
tologies such transformations can be performed along two
degrees of freedom, graphs of ontologies can become quite
complex. They are instrumental in picking the ontology
with the appropriate level of detail from among the whole
set and in selecting the transformations needed to convert
an existing but too detailed ontology into a version fit for
the job at hand.

4 THE LANGUAGE L

4.1 Lists of Constituents

We have favorable experience with ontologies in which
definitions of complex concepts omit a specification of in-
teractions. It is satisfactory for large parts of inorganic
chemistry (including the Plinius domain). It is also satis-
factory in the context of intelligent component catalogs [24],
[25]. A component manufacturer may want to include part-
whole information in the catalog. Constituent lists are suffi-
cient if every assembly is uniquely characterized by its set
of components in the context of the catalog.

The label expressions employed for constituent list con-
cepts can be characterized as sets of tuples, see the expres-
sion on the right-hand side of (2) for 1abel(He-4). Each
tuple has two members: one is the concept that identifies
the constituent, the other the concept that identifies the
amount. Since the order in which the tuples are listed is
conceptually unimportant, they are collected in a set:

{<cis), gy Ny, ooy (Cpy N} 3)

where the ¢, are constituents and the n, specify amounts.
Expressions like these can be nested because the c, can be
constituent lists themselves. How many nesting levels there
are depends on the particular ontology.

When working with constituent lists, primitive concepts
fall into one of two categories: one collects the concepts for
indivisible objects, the other the concepts for natural num-
bers. Calling the former kind of concepts atoms for now, the
BNF specification of label expressions for constituent list
concepts is given in Table 1. It emphasizes appearance
rather than formal properties, because the braces that indi-
cate sets and angle brackets that indicate tuples are speci-
fied as terminals.

518

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998

TABLE 1
BNF SPECIFICATION OF THE LABEL LANGUAGE £
concept = “{"tuples”}” | atom
tuples = tuple | tuple tuples
tuple si= “[¥concept ”,” natural_number”[¥

To obtain unique label expressions, we impose the so-
called canonicity constraint. It demands that no constituent
occurs in more than one tuple in the same set. The con-
straint cannot be expressed in a context-free specification. It
can be formalized by returning to the view of labels as sets
of tuples. For any label I; written as a set of tuples (list of
constituents), we demand that for all I, and n; (where the I,
stand for constituents and the n; for natural numbers):

<|2, n1> € Il = _|3n2[<|2, n2> € Il A nl * n2]

(4)
The label language defined this way will be called L. It is
not an ontology because the ‘atoms’ are not specified. A
BNF specification of an ontology is obtained by adding one
or more rules to specify the atoms.

4.2 The Constituent Relation

The language £ supports a particular part-of relation
that we will call the constituent relation. The occurrence of
label(c,) in label(c,) entails, that a specified number of
instances of c, are a physical part of each instance of c,. We
will generalize this to the condition that, for each instance
of c,, at least one instance of ¢, is a physical part of it. Com-
pare, again, the expression at the right-hand side of (2) for
label(He-4). The occurrence of the tuple (proton, 2) in
label (He-4) entails that at least one (instance of the con-
cept of) proton is a physical part of each (instance of the
concept of) helium-4 atom. The name ‘constituent relation’
is chosen to distinguish this part-of relation from other
part-of relations identified in the literature [26].

In order to interpret the constituent relation between
concepts, we have to assume in the universe of discourse a
relation P between the instances of concepts. (0,, 0,) € P is
true whenever object o, is a physical part of object 0,. P is
irreflexive, asymmetric, and transitive. The constituent re-
lation corresponds to a set constituent of concept pairs
(¢4, C,) defined as:

constituent =ps
{(c1, e 1V0 € [Ico] Fo;, € [ey] [04, 020 € P} ®)
The assertion constituent(c,, ;) is true if and only if
(€4, Cy) € constituent. This can be verified by inspecting
labels e £:
constituent(cy, C) &
3n[({ 1abel(c,), h) € label(c,)] v
Jc;In[{ 1abel(cy), N) € label(Cs) A

constituent(Cs, Cy)]

(6)

where labels for natural numbers are written as n. The first
condition on the right-hand side applies to direct occur-
rence of label(c;) in the constituent list and the second
clause to the nested case.

Another way to model part-whole relations makes use
of mereology. Roughly, in mereology there is no distinc-
tion between the membership and subset relations (for a
recent account and application, see [27]). Mereology seems
suited to model continuum theories, where, for instance,
counting parts is impossible. We, however, are working
in the atomist tradition where parts are discrete and can
always be counted.

5 SUPERCONCEPTS

In top-down ontologies, the kind-of relation is the main
structuring device. (We adhere to the custom of using
‘kind-of” for subconcept-superconcept relations, to be dis-
tinguished from ‘is-a’ for instantiation relations.) In our
treatment so far, there is no place for the kind-of relation
because there are no superconcepts. We first introduce the
kind-of relation and then show how superconcepts can be
defined implicitly. The formal account will concentrate on
concepts defined as constituent lists.

Our kind-of relation is identical to the kind-of relation
familiar from description logics, and we will use the same
symbol, E. Recalling that we write the set of instances of
concept c as [c], ¢; E c, is true if and only if [c,] C [c,]. The C
relation is reflexive, antisymmetric, and transitive.

5.1 The Language L

Superconcepts are introduced implicitly by means of the
function superconcept. The function takes a concept type
as its single argument and returns a concept that is a super-
concept of every concept of the type, or, for all c:

™)

We have to extend the language £ to allow for the occur-
rence of superconcepts, obtaining the language L.,;. Its BNF
specification is given in Table 2. Actual ontologies specify
the atoms (as before) and a class of types from which t has
to be chosen. The constraint of canonicity, (4), applies. Note
that £ c L.

The universe of discourse does not change as a result of
our decision to introduce superconcepts. Thus, for every
actual ontology, the set of instances of all concepts identi-
fied by L is identical to the set of instances of all concepts
identified by £,,;. As a consequence, the constituent relation
introduced in Section 4.2 and the verification condition
given by (6) are the same for £ and L.

¢ C superconcept(t) & type(c) =t

VAN DER VET AND MARS: BOTTOM-UP CONSTRUCTION OF ONTOLOGIES

519

TABLE 2
BFN SPECIFICATION OF THE LABEL LANGUAGE Lext

concept = “{"tuples”}” | atom|superconcept(t)
tuples = tuple | tuple tuples
tuple = “[¥ concept ”,” natural_ number “[7|

“[¥ concept ”,” superconcept (N)

" E{

Note: t is a type other than N.

As follows from Table 2, there are two kinds of super-
concepts: ‘simple’ superconcepts identified by a label that
just consists of a single occurrence of superconcept(t)
(with a specified t), and more complex superconcepts that
arise by embedding superconcepts in label expressions.
This opens the possibility to construct a great variety of
superconcepts. An example of a superconcept obtained by
embedding a superconcept in a label expression is:

{{proton, 2), (neutron, superconcept(N)), (electron, 2)}

8)
This is a label for the concept of helium atom in general.
Note that it covers more than the kinds of helium atom we
know. It also covers an atom whose nucleus consists of two
protons and fifteen neutrons. Such atoms are not known to
exist, but the presence of exactly two protons in their nu-
cleus makes them helium atoms by definition.

5.2 Semantics and Verification

Intuitively, the set of instances of a superconcept is the un-
ion of the sets of instances of all its subconcepts. We can
immediately lay down, for any concept s € Ly

[s] =o¢ U{lcllce LlcEs}. ©)

The definition relies on a set of necessary and suffi-
cient conditions for ¢ E s to be true. We will specify these
conditions in the form of a procedure that verifies whether
¢ C s by inspecting 1abel(s) and label(c). Since there is
a one-to-one mapping between concepts and their labels,
there is no harm in writing label(c) C label(s). Three
cases, numbered (a) through (c) below, can be distin-
guished. In all other cases, ¢ C s is false.

Case a. Equality: 1abel(c) = label(s) is a suffi-
cient condition for ¢ C s to be true.
Case b. If Label(s) = superconcept(t) and type(c)

=t, then ¢ C s is true. As a result, for sim-
ple superconcepts Definition 9 reduces to:

[superconcept(t)] =ps U {[cllc € L]type(c) =t}
(10)

Note that natural numbers are treated as concepts, so
that case a and case b may also obtain for natural
numbers. In particular, the following two relations
always hold for any natural number n:nC nandnC
superconcept(N).

Case c. c and s are both identified by label expres-
sions in set form. To find out whether cC s,

we have to recursively ‘peel off’ label(c)

and label(s) level for level until we arrive
at a level where we can perform an imme-
diate verification as in case a or case b. The
specification of L, guarantees, that we
will eventually arrive at one of these two
base cases. We distinguish two subcases.

case cl. label(c) and label(s) both con-
sist of a single tuple, that we will
write as (v, ny and (v, ny), re-
spectively. Then:

{ve, NP E{(vs,)} &

(veEvsancEny) (11)

Whether this is a base case de-
pends on whether v, and v, are
primitive or complex concepts. If
the latter, recursion takes place.

label(c) and label(s) consist of
the same number of tuples, where
that number is greater than one.
We now try to find a ‘matching
pair,’ i.e., a tuple € label(c) and a
tuple € label(s) such that the right-
hand condition of (11) holds. If this
succeeds, the tuples are removed
from the sets and the procedure is
repeated. Upon continued success,
we eventually obtain sets that each
consist of a single tuple, which is
case cl. Failure entails that there
is no kind-of relation. Formally,

case c2.

cCs &

AvAan v ang{v,, ng) €
CA Vg, Ng)E SA
V.EveAan,Enga C—

{< Ve, N >} Es- {< Ve Ng >}] (12)

5.3 Combining the Two Hierarchies

Finally, in the atomist tradition we often want to introduce
a superconcept in such a way that all its subconcepts de-
note complex objects sharing a common constituent. The
chemical concept of calcium compound is a good example.
It takes a combination of the constituent and the kind-of
hierarchies to establish such relations. It is an advantage of
the bottom-up approach that both hierarchies are available.

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998

We define a superconcept function with two arguments,
the first standing for the type of the superconcept and the
second for the shared constituent:

[superconcept(t, ¢,)] =ps
U {lc.ll type(c,) = t]

constituent}(cy, C,)} (13)

Verification whether such a superconcept relation holds
between two concepts proceeds, as before, by inspecting
the labels:

C, C superconcept (i, ¢;) &

[type(cy) =t A

constituent}(C, Cy)] (14)

Since the two hierarchies are orthogonal, additional kind-of
relations may hold between such superconcepts. In par-
ticular, the following are true by definition for any t, c,
¢y, and ¢

superconcept(t,) C superconcept(t) (15)

superconcept(t, ¢;) C superconcept(t, ¢,) &

(16)

constituent(cy, Cy)

6 EXAMPLE: PURE SUBSTANCES

6.1 Introduction

The concept is pure substance is one of the most important
in chemistry. It is introduced by imposing a dichotomy on
the set of (what we will call) samples, concrete pieces of stuff
used for experimentation. Put summarily, a sample is said
to consist of a mixture if it consists of two or more different
substances, and of a pure substance otherwise. (See any
inorganic chemistry textbook like [28] for details.) The
properties of isolated atoms and molecules differ signifi-
cantly from those of samples composed of very many at-
oms and molecules. We concentrate on the latter. They are
the instances of our concepts.

Ontology development can profit from standardization
efforts in the application domain. The International Union
of Pure and Applied Chemistry (IUPAC) maintains an
elaborate set of recommendations for chemistry. The rec-
ommendations function as de facto standards, and many of
them have been turned into de jure ISO standards. The rec-
ommendations for inorganic chemistry are listed in what
chemists fondly call the “Red Book.” The latest edition has
been published in 1990 [29]. The Red Book has been in-
strumental in designing the ontology discussed here.

A pure substance consists of chemical elements in natural-
number proportions. Examples are table salt (NaCl) and
ethanol (CH;CH,OH, called alcohol in daily life). In these
formulae, the subscripts denote amounts. A subscript is
omitted if it is ‘1.” A substance’s empirical formula is a bare
listing of the constituent elements and their proportions.
The empirical formula of ethanol is C,H¢O.

Two complications block the simple expedient of mod-
eling complex concepts of type pure substance after empiri-
cal formulae.

First, empirical formulae are ambiguous due to a phe-
nomenon known as isomerism. The empirical formula for
ethanol is also the empirical formula for the quite different
pure substance methoxymethane. To distinguish between
ethanol and methoxymethane, we need knowledge of in-
teractions between the atoms forming the molecule. Isom-
erism is not always a problem. In the Plinius domain, it
does not occur.

Second, the subscripts denoting amounts of constituents
can be absolute or relative. This is a consequence of par-
ticular features of the bonds between atoms. Chemistry
recognizes three kinds of bonds: atomic, ionic, and metallic.
Only atomic bonds give rise to molecules. As a result of the
nature of atomic bonds, the numbers denoting amounts are
absolute for molecules. (Thus, NO, and N,O, are different
pure substances. Both exist.) For ionic and metallic com-
pounds, the numbers are relative. Chemists often signal
cases involving both absolute numbers and proportions by
writing a formula that groups molecular subunits, as in the
formula commonly given for hydroxylapatite, Cas(PO,);OH.
Here, PO, and OH (note that the number “1” is omitted at
three places) represent molecular subunits and the numbers
are absolute. By contrast, the numbers “5” for Ca, “3” for
PO,, and the omitted “1” for OH are relative and their
greatest common divisor is required to be one.

In the present section, we will first specify an ontology
of pure substances followed by examples (Section 6.2
through Section 6.4). Then we give an outline of the full
Plinius ontology (Section 6.5). Extensions of the ontology
of pure substances along the two degrees of freedom dis-
cussed in Section 3 follow (Section 6.6 and Section 6.7).
The example is rounded off by briefly looking at repre-
sentation and implementation (Section 6.8) and taking
stock (Section 6.9).

6.2 Complex Concepts for Pure Substances

We first lay down an ontology of pure substances for the
Plinius domain. We do not anticipate isomerism, so the
concepts can be modeled as constituent lists. We will have
to deal with the second complication, however.

The primitive concepts needed to construct complex
concepts for pure substances are concepts for chemical ele-
ments and concepts for natural numbers (type N, as before).
Concepts of type E (for chemical element) can be introduced
extensionally, by listing the chemical elements currently
known. This would result in a time-dependent ontology,
however, because new chemical elements are synthesized in
particle accelerators at a rate of about one per year. It is
unwise to burden an ontology with time-dependent knowl-
edge, so it is a better choice to define concepts of type E
intensionally. A chemical element is uniquely identified by
its atomic number. We introduce a function atom_kind
that, when applied to an atomic number, yields a concept of
type E. For example, atom_kind(6) is the label for the con-
cept of the chemical element carbon.

To distinguish between absolute and relative amount
specifications, we have introduced complex concepts of

VAN DER VET AND MARS: BOTTOM-UP CONSTRUCTION OF ONTOLOGIES

type GR (for group). A group is defined as consisting of
chemical elements. Groups are chosen such that, for any
given pure substance, the instances of any concept of type
group are either molecules or atoms not connected to other
atoms by atomic bonds. There is no way to decide auto-
matically what the groups are. This is not a disadvantage of
our approach but rather a consequence of the state of the
art in the domain. Next, complex concepts of type PS (for
pure substance) are defined in terms of concepts of type GR.
The BNF specification is given in Table 3. The type of any
concept is unambiguously fixed by its syntax. The sub-
scripts at the closing braces of labels in set form, GR and PS,
are inserted for convenience only.

The canonicity constraint, (4), applies to all labels written
as sets of tuples. Another constraint has to be added to en-
sure that the greatest common divisor of the numbers speci-
fying relative amounts in labels expressions for pure sub-
stances be one. The latter constraint cannot be expressed in
a context-free language. First-order expressions that define
the present label language and incorporate the two addi-
tional constraints can be found elsewhere [13].

6.3 Example and Counterexample

We provide two examples to make matters concrete. The
first constructs a concept for hydroxylapatite, Cas(PO,);OH.
For convenience, we will specify concepts by their chemi-
cal formulae in addition to the label expressions. It is
understood, however, that only the labels form part of
the ontology.

Hydroxylapatite consists of three groups. The atomic
numbers of Ca, P, O, and H are 20, 15, 8, and 1, respectively.

label(Ca) = {{(atom_kind (20), 1)}gr

label(PO,) = {{atom_kind(15), 1), (atom_kind(8), 4)}ar

label(OH) = {(atom_kind(8), 1), (atom_kind(1), 1)}qr
so that the label for hydroxylapatite becomes

label(Caz(PO,);0H) =
{(1abel(Ca), 5), (1abel(PO,), 3), (label(OH), 1 }ps

521

As stated before, the present ontology is unable to dis-
criminate isomers. Ethanol and methoxy-methane have
identical labels. They are both described by the same em-
pirical formula C,HgzO. They are wholly molecular and thus
consist of a single group.

6.4 Relations

The definitions of concepts of type group and pure sub-
stance are of the kind identified by L., (Section 5.1). There-
fore the constituent and kind-of relations identified in
Section 4.2 and Section 5 can be applied here directly.
Writing the concept for table salt (not explicitly introduced)
as NaCl we can, for instance, verify the following:

constituent(PO,, Cas(PO,);0H)
—constituent (PO, NaCl)
constituent(atom_kind(15), PO,)

constituent(atom_kind(15), Cas(PO,);0H)
—constituent(atom_kind(15), NaCl)

Superconcepts are easily introduced. An example is the
concept for pure substance in general, superconcept(PS).
In most cases, superconcepts involving both hierarchies
are particularly interesting from a chemical point of view.
It is an advantage of the bottom-up approach that such
superconcepts are easily available. For example, a phos-
phate is defined in chemistry as a pure substance that con-
tains at least one PO, group. The concept of a phosphate,
abbreviated here as ‘phosphate,’ can be introduced by way
of its label:

label(phosphate) =p; superconcept(PS, label(PO,))

We can again immediately verify a host of subconcept-
superconcept relations, among them Cas(PO,);OH C phos-
phate and NaCl Z phosphate.

Note that the verification of all relations mentioned only
needs information packed into the label expressions.

6.5 The Plinius Ontology

The actual ontology employed in the Plinius project (men-
tioned in Section 1.3) defines materials in a bottom-up way.

TABLE 3
BNF SPECIFICATION OF THE LABEL LANGUAGE THAT DEFINES AN ONTOLOGY OF PURE SUBSTANCES

element_1label

number_label te=

element_tuple s=
element_tuples ti=

group_label 1=

group_tuple 1=
group_tuples si= group_tuple

pure_subs_tuple s=

atom_kind (natural_ number) |
natural_number |
#“ 7 element_ label ”,” number_ label”[*
element_tuple
“{” element_tuples “}gr” |
superconcept(GR,
“¥ group_label ”,” number_label “[¥

| group_tuple ”,” group_tuples
“{” group_tuples “}pg” |
superconcept (PS,

superconcept (PS, element_label)

superconcept(E)

superconcept(N)

| element_tuple ”,” element_tuples
superconcept(GR) |

element_label)

superconcept (PS) |

group_label) |

522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998

Chemists speak about systems; materials are a special kind.
Systems either have one or more discontinuities that divide
the space occupied by the system into separate parts, as
when a layer of oil floats on water, or discontinuities are
absent, as in an ethanol-water mixture. The former kind of
systems is called heterogeneous, the latter homogeneous.
The discontinuities in heterogeneous systems separate parts
that themselves are homogeneous.

Under a microscope, materials like ceramics are seen
to be heterogeneous systems. The separate parts are
called grains. In between the grains there may be sub-
stances whose composition differs from that of the grains
themselves.

The basis of the Plinius ontology is the ontology of pure
substances just discussed. Then there is a construction rule
for homogeneous systems that defines those systems in
terms of pure substances and their proportions. Finally,
there is a construction rule for heterogeneous systems,
which are defined in terms of homogeneous systems and
their proportions. All complex concepts are defined as con-
stituent lists. The design, including the use of supercon-
cepts, proved to be very fruitful for the system’s purposes.

6.6 Varying the Choice of Indivisible Objects

Above (Section 3.1) we have discussed the theme of re-
placing indivisible objects by indivisible objects on a lower
level of composition. A variant on this theme replaces a set
of primitive concepts of the same type by a set of concepts
at the same level of composition to account for finer distinc-
tions among instances. This situation is not contrived for
the purpose of the present discussion. It arose in chemistry
1914-1920 when isotopes were discovered [30]; in thermo-
dynamics, it arises in the context of the entropy of mixing
[31], [32].

To take account of isotopes in the ontology of pure
substances, we have to replace the class of primitive
concepts of type E by a class of primitive concepts of type |
(for isotope). Isotopes are characterized by atomic number
(common symbol Z) and mass number (common symbol
A); the mass number is the sum of the numbers of protons
and neutrons in the atomic nucleus. If two isotopes have
the same atomic number, they are isotopes of the same
chemical element. The replacement can proceed by means
of a redefinition of the function atom_kind to take two ar-
guments rather than one, to obtain atom_kind(Z, A). (For
the second argument we could also have chosen the num-
ber of neutrons, but the present choice conforms more
closely to chemical practice.) The value of the function
for any two arguments is a concept of type |. For chemi-
cal elements, the value of A does not matter. Therefore, in
the new version concepts for elements can be written as
atom_kind(Z, superconcept(N)). The concepts for iso-
topes of any given element are then subconcepts of the con-
cept for the element, which is the way chemists construe
the relationship, too.

The only other change required is to redefine concepts of
type group, by substituting | for E in the BNF specification
of Table 3. The definition of concepts of type pure substance
and definitions in terms of pure substances remain unaf-

fected, because these concepts do not ‘see’ elements or iso-
topes. They only ‘see’ groups, and those we have appropri-
ately redefined.

6.7 Introducing Interactions

Section 3.2 argues that the introduction of graphs is a gen-
erally applicable way to obtain concepts that incorporate at
least a first approximation of the interactions. There is
abundant experience with this use of graphs in chemistry.
The reason is clear: It takes graphs to distinguish, for in-
stance, ethanol and methoxymethane (compare the coun-
terexample of Section 6.3).

In a chemical graph, the nodes stand for atoms and the
edges for bonds. Chemical graphs are undirected and very
often cyclic. In the literature there is ample discussion of
chemical graphs. Research has addressed issues at the con-
ceptual, representational, and implementational levels. Al
applications are described in [33], [34], [35], [36] among
others. An interesting application outside Al is the deriva-
tion of topological characteristics of molecules on the basis
of graphs. The characteristics prove to be remarkably effec-
tive in predicting certain properties of the substances [37].
The DENDRAL project [38] has been immensely fruitful for
chemical graph research [39], [40], [41], [42] [43], [44].

To accommodate isomerism in an ontology of pure sub-
stances, we have to redefine concepts of type group such
that they are expressed as graphs. Concepts of type pure
substance and higher up remain unaffected.

Chemical graphs are not always attractive. Graphs may
be ambiguous because they cannot distinguish between
stereo-isomers. Graphs can also be over-specific. A graph is
over-specific if the costs of its inclusion are not compen-
sated by gains. For example, defining a concept of type
group as a chemical graph entails that we have to specify
each and every group as a graph. This in turn means that
we have to know the structure. Often, but not always, we
can take such information from chemical databases most of
which are quite expensive to access. If only a few structural
isomers are expected in the domain, it may be advanta-
geous to seek a more modest way of specifying configura-
tion information. Lack of canonicity may then become a
problem. When graphs are used only to distinguish the
isomers that occur in the domain under study, we run into
trouble when the domain has to be enlarged.

6.8 Formalization and Implementation

A number of versions of the ontologies of pure substances
discussed here can, and actually have been, formalized in
various description logics and implemented in the corre-
sponding systems [3]. There is no doubt that the same can
be said for other bottom-up ontologies. Yet a description
logic is not a ‘natural’ choice for representation language
when bottom-up ontologies are involved. A description
logic stores conceptual information in its predicates,
whereas we have been storing this information in argu-
ments. In fact, so much knowledge is stored in arguments
that assertions like constituent(c,, C,) and c; C ¢, need not
be stated explicitly. Their truth can be determined by in-

VAN DER VET AND MARS: BOTTOM-UP CONSTRUCTION OF ONTOLOGIES

specting label(c;) and label(c,). The worst-case compu-
tational complexity of these verification operations is of the
order 1", where | is the average number of tuples in a set
and n is the number of nested levels. Ontologies with large
n will be rare (in the Plinius ontology, n < 5), so perform-
ance is not a problem.

The underlying logic is a simple first-order logic that ex-
presses knowledge as assertions of the form predicate
(argument;, argument,, ...), where the only thing to note
is that the argument;’s are label expressions. From this
perspective, Prolog (as a subset of first-order predicate logic)
and feature logics [45] appear a more natural choice of
representation language. Accompanying implementa-
tions can use Prolog (as a programming language) or
ALE [46].

We have in fact implemented the Plinius ontology in
Prolog. We do not have the space to go into details (see
[13]). The effort was mainly directed at implementing the
inferences to automatically verify whether a constituent
or kind-of relation holds between two concepts. The ex-
pressions for label inspection presented in Section 4 and
Section 5 can be turned into Prolog rules more or less
directly.

6.9 Taking Stock

The different versions of the ontology of pure substances
discussed here are put together in a graph of ontologies,
Fig. 1. The four information-discarding transformations
shown in the figure have been implemented in the Prolog
version mentioned in Section 6.8.

It has been observed by Gruber [47] that a good ontology
consists of two mutually supplementary parts: a natural-
language part for explanatory purposes and a formal part
for ambiguity reduction. The two parts together define the
concepts. The important difference is that automated rea-
soning is supported by the formal part only. Therefore, we
prefer formal definitions whenever possible.

It is only natural to inquire how much of the defini-
tions of concepts given above is formal. For the atomic

523

concepts the answer is simple. Concepts of type natural
number are only posited. Concepts of type chemical ele-
ment are defined by means of the function atom_kind
that is also only posited. In these cases, meaning is acquired
through the natural-language account that anchors the defi-
nitions into consensus domain knowledge. Formally, we
just have names and automatic reasoning about their mean-
ings is impossible.

For the complex concepts, the answer is less obvious.
The construction rules define concepts such that they coin-
cide with their definitions. All the information available to
distinguish any concept from other concepts is stored in the
label expression for the concept itself. The expression in-
volves partial rather than full information. This is particu-
larly evident for constituent lists.

Although the information present in label expressed as
constituent lists is partial, it is still sufficient to unambigu-
ously identify the type of the concept. It also suffices for
verifying constituent and kind-of relations. This does not
entail that types are fully defined with respect to each other
for each and every application. Full definition is far off; in
the case of chemistry it would involve a full conceptualiza-
tion of bonding. Moreover, for most practical purposes the
definitions given here provide just what we need.

The bottom-up design of the Plinius ontology solves the
problem (mentioned in Section 1.3) of defining all chemical
substances in advance. A parsimonious set-up involving
two construction rules of the parts list variety is sufficient.
In a description logic we would have had to add an explicit
concept each time a new substance is encountered. Onto-
lingua [22] allows construction rules, but they have to
be written in raw KIF [48]. The automatic translators cur-
rently available in the Ontolingua system are unable to
handle raw KIF.

The representations of our ontologies in description
logics [3] are complex and unwieldy compared to the slim
Prolog version. The taxonomic, top-down approach that
underlies description logics is simply not suited to con-
ceptualize this kind of knowledge. With respect to kind-of
hierarchies, our bottom-up ontology is as expressive as a

T lists of parts chemical graphs
isotopes Ba— isotopes
composition
lists of parts chemical graphs
|———

chemical elements

chemical elements

Fig. 1. Graph of ontologies of pure substances.

interactions ——jm

524 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998

top-down ontology written in a description logic or pure
Ontolingua, but at less cost. A bottom-up ontology addi-
tionally has the constituent relation and combinations of
kind-of and constituent relations built in from the start.

7 ATTRIBUTE COMBINATIONS

The bottom-up approach can be extended to accommodate
more abstract cases, where concepts are not modeled by
specifying their parts but by specifying meaning constitu-
ents. Such complex concepts can be formed by ‘gluing’ to-
gether other concepts with the agreement that each of the
other concepts in some unidentified way specifies a partial
meaning of the complex concept. This may be called an
abstract version of atomism. We are defining the meaning
of complex concepts as assemblies of atomic meaning con-
stituents, but we do not imply that the referents of meaning
constituents can be regarded as parts of the referents of
complex concepts.

The meaning constituents will be called attributes and
their combination, a complex concept, an attribute combi-
nation. Since the parts-whole idea has been abandoned,
meaning constituents are assembled in tuples rather than
sets and the constituent relation is not defined between
these complex concepts and their meaning constituents. For
an example, consider the inclusion of ions in the ontology
of pure substances. lons are charged atoms or molecules.
Charges are positive or negative and their magnitude is a
whole multiple of the elementary charge. It is obvious to
model ions as combinations of two attributes: a concept of
type group to specify chemical composition and a concept
for a whole number to specify charge.

In an ontology of diseases developed for the Sapiens
project, we have modeled diseases as attribute combina-
tions [7]. Sapiens aimed at automatic generation of index
terms through analysis of title and abstract of biblio-
graphic document descriptions. The bibliographic data-
base in question was Elsevier’s Excerpta Medica; the index
terms had to be taken from the accompanying thesaurus
EmMTREE. We found the classification of diseases in EMTREE
confusing. Some diseases are classified according to loca-
tion in the body (macroscopic anatomy), others according
to cause, yet others in still another way. We decided to
merge the hierarchies and define any disease as a combi-
nation of four attributes. The attributes are taken from sets
of concepts defined previously: location according to mac-
roscopic anatomy, location according to functional anat-
omy, cause (etiology in official terminology), and organ-
ism affected. This differs from an approach reported in the
literature [49], which also models diseases as attribute
combinations. There, the approach is used to model rele-
vant relations for existing diseases. In other words, that
ontology pays attention to reference. The Sapiens ontol-
ogy, by contrast, pays attention to Fregean sense because it
is intended to define diseases in a parsimonious way that
allows construction of concepts for hitherto unknown dis-
eases when needed.

8 CONCLUDING REMARKS

The bottom-up approach to ontology design proposes to lay
down the meaning of complex concepts by means of primi-
tive meaning constituents. In concrete cases, the instances
of complex concepts are complex objects and the instances
of constituents are their indivisible parts. This interpreta-
tion leads immediately to an ontology of atomism that
naturally accommodates the two degrees of freedom so
characteristic of the atomist research tradition: choice of
smallest objects and choice of the way to specify interaction
between smallest objects. A concrete example of ontologies
of pure substances has demonstrated the viability of the
approach. Other applications have been outlined.

The bottom-up design is an attractive way to construct
ontologies. In the applications described here, the bottom-
up approach leads to parsimonious ontologies that natu-
rally support hierarchical reasoning along two, orthogonal
dimensions: constituent and kind-of.

We do not claim that the bottom-up approach constitutes
a generally applicable recipe. In keeping with the spirit of
our opening remarks, the bottom-up approach is presented
as one out of many ways to construct ontologies. We have
favorable experiences with the approach in two nontrivial
cases, an ontology of the chemical composition of materials
and an ontology of diseases. We can imagine other applica-
tions, but further research is needed to make those work.
We have also encountered cases where the approach does
not work. To sum, the bottom-up approach is intended to
enrich rather than supplant the ontology designer’s toolkit.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the contributions of Jan Vis
and Hidde de Jong (both of the University of Twente) to
the present work. Jan Vis has suggested various im-
provements to the treatment of the semantics of the con-
cepts. We are also indebted to the anonymous referees for
their helpful comments.

REFERENCES

[1] N. Guarino and P. Giaretta, “Ontologies and Knowledge Bases:
Towards a Terminological Clarification,” Towards Very Large
Knowledge Bases: Knowledge Building and Knowledge Sharing 1995,
N.J.l. Mars, ed., pp. 25-32, Amsterdam: 10S Press, 1995.

[2] N.J.I. Mars, “What is an Ontology?” The Impact of Ontologies on
Reuse, Interoperability, and Distributed Processing, A. Goodall, ed.,
pp. 9-19, Uxbridge, Middlesex, U.K.: Unicom, 1995.

[3] P.-H. Speel, “Selecting Knowledge Representation Systems,” PhD
thesis, Univ. of Twente, Enschede, the Netherlands, 1995.

[4] N.J.I. Mars, “The Role of Ontologies in Structuring Large Knowl-
edge Bases,” Knowledge Building and Knowledge Sharing, K. Fuchi
and T. Yokoi, eds., pp. 240-248, Tokyo: Ohmsha, 1994.

[5] IBM, Business System Development Method: Introducing BSDM,
second ed., London: IBM U.K., 1992.

[6] N.J.I. Mars and A. Schreiber, “Direct Access to Knowledge in
Bibliographic Databases,” Proc. ARTINT Workshop Artificial In-
telligence and Information Retrieval, Luxembourg, pp. 83-86,
Sept. 1985, Luxembourg, Commission of the European Commu-
nities, 1985.

VAN DER VET AND MARS: BOTTOM-UP CONSTRUCTION OF ONTOLOGIES

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

P.-H. Speel, N.J.I. Mars, and PE. van der Vet, “A Knowledge-
Based Approach to Semi-Automatic Indexing,” Proc. Workshop
Language Information Processing, Oct. 1991, Washington, D.C.,
held during the 54th ASIS Annual Meeting, A.T. McCray, ed.,
pp. 49-58, 1991.

N.J.I. Mars, W.G. ter Stal, H. de Jong, P.E. van der Vet, and P--H.
Speel, “Semi-Automatic Knowledge Acquisition in Plinius: An
Engineering Approach,” Proc. Eighth Banff Knowledge Acquisition
for Knowledge-Based Systems Workshop, Banff, Canada, Jan.—Feb.
1994, B. Gaines and M. Musen, eds., pp. 4.1-4.15, 1994.

P.E. van der Vet, H. de Jong, N.J.l. Mars, P.-H. Speel, and W.G.
ter Stal, “Plinius Intermediate Report,” Memoranda Informatica
94-35, Univ. of Twente, Enschede, the Netherlands, 1994.

P.E. van der Vet and N.J.I. Mars, “Structured System of Concepts
for Storing, Retrieving, and Manipulating Chemical Information,”
J. Chemical Information and Computer Sciences, vol. 33, pp. 564—
568, 1993.

P.E. van der Vet and N.J.I. Mars, “Concept Systems as an Aid for
Sharing and Reuse of Knowledge Bases in Materials Science,”
Knowledge-Based Applications in Materials Science and Eng., J.K.
McDowell and K.J. Meltsner, eds., pp. 43-55, Warrendale, Penn.,
Minerals, Metals, and Materials Soc., 1994.

P.E. van der Vet, P.-H. Speel, and N.J.I. Mars, “Ontologies for Very
Large Knowledge Bases in Materials Science: A Case Study,” To-
wards Very Large Knowledge Bases: Knowledge Building and Knowl-
edge Sharing 1995, N.J.I. Mars, ed., pp. 73-83, Amsterdam: 10S
Press, 1995.

P.E. van der Vet and N.J.I. Mars, “Bottom-Up Construction of
Ontologies: The Case of an Ontology of Pure Substances,” Memo-
randa Informatica 95-35, Univ. of Twente, Enschede, the Nether-
lands, 1995.

R. MacGregor, “The Evolving Technology of Classification-Based
Knowledge Representation Systems,” Principles of Semantic Net-
works: Explorations in the Representation of Knowledge, J.F. Sowa, ed.,
pp. 385-400, San Mateo Calif.: Morgan Kaufmann, 1991.

R.J. Brachman, “What’s in a Concept: Structural Foundations for
Semantic Networks,” Int’l J. Man-Machine Studies, vol. 9, pp. 127-
152, 1977.

D. Knight, Ordering the World: A History of Classifying Man, Lon-
don: Burnett, 1981.

G. Toraldo di Francia, The Investigation of the Physical World, Cam-
bridge, U.K.: Cambridge Univ. Press, 1981.

E. Segre, From X-Rays to Quarks, San Francisco: Freeman, 1980.

R.J. Brachman, “ ’I Lied about the Trees,” or Defaults and Defini-
tions in Knowledge Representation,” Al Magazine, vol. 6, no. 3,
pp. 80-93, 1985.

H.R. Post, “The Problem of Atomism,” British J. Philosophy of Sci-
ence, vol. 26, pp. 19-26, 1975.

R.R. Bakker, P.C. van den Bempt, N.J.I. Mars, D.-J. Out, and D.C.
van Soest, “Issues in Practical Model-Based Diagnosis,” Future
Generation Computer Systems, vol. 9, pp. 329-337, 1993.

T.R. Gruber, “A Translation Approach to Portable Ontology Speci-
fications,” Knowledge Acquisition, vol. 5, pp. 199-220, 1993.

T.R. Gruber and G.R. Olsen, “An Ontology for Engineering
Mathematics,” Proc. KR, Fourth Int’l Conf. Principles of Knowl-
edge Representation and Reasoning, J. Doyle, E. Sandewall, and
P. Torasso, eds., pp. 258-269, San Francisco, Morgan Kauf-
mann, 1994.

J.H. Adams and M.A. Dahl, “Using Knowledge-Based Systems to
Define Materials Technology in the Aircraft Design/Build Proc-
ess,” Knowledge-Based Applications in Materials Science and Engi-
neering, J.K. McDowell and K.J. Meltsner, eds., pp. 67-74, Warren-
dale, Penn., Minerals, Metals, and Materials Soc., 1994.

S. Bradley, A. Agogino, and W. Wood, “Intelligent Engineering
Component Catalogs,” Artificial Intelligence in Design ‘94, J. Gero
and F. Sudweeks, eds., pp. 641-658, Dordrecht: Kluwer Aca-
demic, 1994.

M.E. Winston, R. Chaffin, and D. Herrmann, “A Taxonomy of Part-
Whole Relations,” Cognitive Science, vol. 11, pp. 417-444, 1987.

N. Asher and L. Vieu, “Toward a Geometry of Common Sense: A
Semantics and Complete Axiomatization of Mereotopology,” Proc.
IJCAI, 14th Int’l Joint Conf. Artificial Intelligence, Montreal, Que.,
Canada, Aug. 1995, C.S. Mellish, ed., San Mateo Calif., pp. 846—
852, lICAIll/Morgan Kaufmann, 1995.

D. Shriver, P. Atkins, and C. Langford, Inorganic Chemistry. Ox-
ford, U.K.: Oxford Univ. Press, second ed., 1994.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

525

Nomenclature of Inorganic Chemistry, G. Leigh, ed., IUPAC Rec-
ommendations 1990, Oxford, U.K.: Blackwell Scientific Publica-
tions, 1990.

P.E. van der Vet, “The Aborted Takeover of Chemistry by Physics:
A Study of the Relations between Chemistry and Physics in
the Present Century,” PhD thesis, Univ. of Amsterdam, Amster-
dam, 1987.

J. von Neumann, Mathematische Grundlagen der Quantenmechanik,
Berlin: Springer, 1932.

D. Dieks and V. van Dijk, “Another Look at the Quantum Me-
chanical Entropy of Mixing,” Am. J. Physics, vol. 56, pp. 430—
434, 1988.

R. Levinson, “A Self-Organizing Retrieval System for Graphs,”
Proc. AAAI ‘84, Nat’l Conf. Artificial Intelligence, R. Brachman, ed.,
Los Altos, Calif., pp. 203-206, AAAI/William Kaufmann, 1984.

H. Gelernter, J.R. Rose, and C. Chen, “Building and Refining a
Knowledge Base for Synthetic Organic Chemistry via the Meth-
odology of Inductive and Deductive Machine Learning,” J.
Chemical Information and Computer Sciences, vol. 30, pp. 492—
504, 1990.

A. Napoli, “Subsumption and Classification-Based Reasoning in
Object-Based Representations,” Proc. 10th European Conf. Artificial
Intelligence, B. Neumann, ed., pp. 425-429, Chichester, U.K.: John
Wiley, 1992.

R.E. Valdés-Pérez, “Machine Discovery in Chemistry: New Re-
sults,” Artificial Intelligence, vol. 74, pp. 191-201, 1995.
Computational Chemical Graph Theory, D.H. Rouvray, ed., New
York: Nova Science Publishers, 1990.

R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum, and J. Lederberg,
“DENDRAL: A Case Study of the First Expert System for Scien-
tific Hypothesis Formation,” Artificial Intelligence, vol. 61, pp. 209—
261, 1993.

R.E. Carhart, D.H. Smith, H. Brown, and C. Djerassi, “An Ap-
proach to Computer-Assisted Elucidation of Molecular Struc-
ture,” J. Am. Chemical Soc., vol. 97, pp. 5,755-5,762, 1975.

H. Brown, L. Hjelmeland, and L. Masinter, “Constructive Graph
Labeling Using Double Cosets,” Discrete Math., vol. 7, pp. 1-30,
1974.

H. Brown and L. Masinter, “An Algorithm for the Construction of
the Graphs of Organic Molecules,” Discrete Math., vol. 8, pp. 227-
244, 1974,

J.G. Nourse, “Generalized Stereoisomerization Modes,” J. Am.
Chemical Soc., vol. 99, pp. 2,063-2,069, 1977.

J.G. Nourse, R.E. Carhart, D.H. Smith, and C. Djerassi, “Exhaus-
tive Generation of Stereoisomers for Structure Elucidation,” J. Am.
Chemical Soc., vol. 101, pp. 1,216-1,223, 1979.

J.G. Nourse, D.H. Smith, R.E. Carhart, and C. Djerassi, “Com-
puter-Assisted Elucidation of Molecular Structure with Stereo-
chemistry,” J. Am. Chemical Soc., vol. 102, pp. 6,289-6,295, 1980.

B. Carpenter, The Logic of Typed Feature Structures, Cambridge,
U.K.: Cambridge Univ. Press, 1992.

B. Carpenter and G. Penn, “ALE: The Attribute Logic Engine,
Version 2.0, User’s Guide,” technical report, Computational Lin-
guistics Program, Philosophy Dept., Carnegie Mellon Univ., Pitts-
burgh, 1994.

T.R. Gruber, “The Role of Common Ontology in Achieving
Sharable, Reusable Knowledge Bases,” Proc. KR ’91, Second Int’l
Conf. Principles of Knowledge Representation and Reasoning, Cam-
bridge, Mass., J. Allen, R. Fikes, and E. Sandewall, eds., pp. 601-
602, 1991.

M.J. Genesereth and R.E. Fikes, “Knowledge Interchange Format,
Version 3.0, Reference Manual,” Report Logic 92-1, Computer Sci-
ence Dept., Stanford Univ,, Stanford, Calif., 1992.

O. Senyk, R.S. Patil, and F.A. Sonnenberg, “Systematic Knowledge
Base Design for Medical Diagnosis,” Applied Artificial Intelligence,
vol. 3, no. 2, pp. 249-274, 1989.

526 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 1998

Paul E. van der Vet obtained his MSc degree in
chemistry and philosophy of science in 1977
from the University of Utrecht, the Netherlands,
and his PhD degree in chemistry in 1987 from
the University of Amsterdam. He has been a
senior staff member of the Knowledge—-Based
Systems Group at the University of Twente,
Enschede, the Netherlands, since 1989. Earlier,
| he worked at the Tiele Academy, a library poly-
technic, and at a courseware firm. He has served
on the boards of the Dutch Society for Philoso-
phy of Science and the Dutch Artificial Intelligence Society. His current
research interests are knowledge-intensive natural-language engi-
neering, particularly of scientific texts and, with Nicolaas J.I. Mars,
building ontologies for several scientific domains. He heads the
Plinius project.

Nicolaas J.I. Mars obtained his BSc and MSc
degrees in electrical engineering in 1972 and
1974, respectively, and his PhD degree in tech-
nical sciences in 1982, all from the University of
Twente, Enschede, the Netherlands. He has
been a professor of computer science at the
University of Twente since 1986. Since 1996, he
has also served as deputy director for electronic
services at the Netherlands Institute for Scientific
Information Services (NIWI), an institute of the
Royal Netherlands Academy of Arts and Sci-
ences in Amsterdam. From 1993 to 1995, he was also dean of the
Department of Computer Science at the University of Twente. Previ-
ously, he worked at the University of Leiden and at Yale University. He
has been on the boards of the Dutch Atrtificial Intelligence Society, the
Dutch Information Science Society, and the European Coordinating
Committee for Al. His current research interests are real-world applica-
tions of knowledge-based systems, especially for engineering and
scientific tasks. With Paul E. van der Vet, he works on building and
using ontologies for several scientific domains. He is a senior member
of the IEEE and a member of the IEEE Computer Society.

