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Abstract

The well-known privacy-preserved data miningmodifies
existing data mining techniques to randomized data. In this
paper, we investigate data mining as a technique for mask-
ing data, therefore, termeddata mining based privacy pro-
tection. This approach incorporates partially the require-
ment of a targeted data mining task into the process of
masking data so that essential structure is preserved in the
masked data. The idea is simple but novel: we explore the
data generalization concept from data mining as a way to
hide detailed information, rather than discover trends and
patterns. Once the data is masked, standard data mining
techniques can be applied without modification. Our work
demonstrated another positive use of data mining technol-
ogy: not only can it discover useful patterns, but also mask
private information.

We consider the following privacy problem: a data
holder wants to release a version of data for building classi-
fication models, but wants to protect against linking the re-
leased data to an external source for inferring sensitive in-
formation. We adapt an iterative bottom-up generalization
from data mining to generalize the data. The generalized
data remains useful to classification but becomes difficult to
link to other sources. The generalization space is specified
by a hierarchical structure of generalizations. A key is iden-
tifying the best generalization to climb up the hierarchy at
each iteration. Enumerating all candidate generalizations
is impractical. We present a scalable solution that exam-
ines at most one generalization in each iteration for each
attribute involved in the linking.

1 Introduction

The increasing ability to accumulate, store, retrieve,
cross-reference, mine and link vast number of electronic
records brings substantial benefits to millions of people. For
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example, cross-mining personal records on chemical expo-
sure and death records could help identify cancer-causing
substances. These advances also raise responsibility and
privacy concerns because of the potential of creating new
information. An example given in [11] is that asensi-
tive medical record was uniquely linked to anamedvoter
record in a publicly available voter list through the shared
attributes of Zip, Birth date, Sex. Indeed, since “the whole
is greater than the sum of the parts”, protection of individ-
ual sources does not guarantee protection when sources are
cross-examined. A relevant research topic is finding ways
to safeguard against inferring private information through
record linkage while continuing to allow benefits of infor-
mation sharing and data mining.

1.1 Our contribution

Information becomes sensitive when they are specific to
a small number of individuals. Data mining, on the other
hand, typically makes use of information shared by some
minimum number of individuals to ensure a required sta-
tistical significance of patterns. As such, sensitive infor-
mation are to be discarded for reliable data mining. This
observation motivates us to apply the requirement of an in-
tended data mining task to identify useful information to
be released, therefore, sensitive information to be masked.
This approach, calleddata mining based privacy protection,
turns data mining from a threat into a solution to privacy
protection.

We consider the followinganonymity problem[10]. A
data holder wants to release a person-specific dataR, but
wants to prevent from linking the released data to an exter-
nal sourceE through shared attributesR∩E, called thevir-
tual identifier. One approach is to generalize specific values
into less specific but semantically consistent values to create
K-anonymity: if one record r inR is linked to some exter-
nal information, at leastK − 1 other records are similarly
linked by having the same virtual identifier value as r. The
idea is to make the inference ambiguous by creating extra-
neous linkages. An example is generalizing “birth date” to
“birth year” so that every body born in the same year are



linked to a medical record with that birth year, but most of
these linkages are non-existing in the real life.

We focus on the use of data for building a classifier. We
propose a data mining approach, an iterative bottom-up gen-
eralization, to achieve the requiredK anonymity while pre-
serving the usefulness of the generalized data to classifica-
tion. The generalization space is specified by a taxonomical
hierarchy per attribute in the virtual identifier. The key is
identifying the “best” generalization to climb up the hier-
archy at each iteration. Evaluating all possible candidates
at each iteration is not scalable because each evaluation in-
volves examining data records. We present a scalable solu-
tion that examinesat most one generalization per attribute
in the virtual identifier in each iteration, where the work for
examining one generalization is proportional to the number
of (distinct) virtual identifier values that are actually gen-
eralized. We evaluate both quality and scalability of this
approach.

1.2 Related work

A well-studied technique for masking sensitive informa-
tion, primarily studied in statistics, israndomizingsensitive
attributes by adding random error to values [2, 3, 4, 8]. Re-
cently, this technique was studied in data mining [1]. In
these works, privacy was quantified by how closely the orig-
inal values of a randomized attribute can be estimated. This
is very different from theK-anonymity that quantifies how
likely an individual can be linked to an external source. The
privacy-preserving data miningin [1] extends traditional
data mining techniques to handle randomized data. We in-
vestigate data mining itself as a technique for masking data.
The masked data does not require modification of data min-
ing techniques in subsequent data analysis.

Instead of randomizing data,generalizingdata makes in-
formation less precise. Grouping continuous values and
suppressing values are examples of this approach. Com-
pared to randomization, generalization has several advan-
tages. First, it preserves the “truthfulness” of information,
making the released data meaningful at the record level.
This feature is desirable in exploratory and visual data min-
ing where decisions often are made based on examining
records. In contrast, randomized data are useful only at the
aggregated level such as average and frequency. Second,
preferences can be incorporated through the taxonomical hi-
erarchies and the data recipient can be told what was done
to the data so that the result can be properly interpreted.

Generalization was used to achieve anonymity in Datafly
system [10] andµ-Argus system [6]. Their works did not
consider classification or a specific use of released data. In
fact, data distortion was simply measured by the number
of hierarchy levels climbed up [6]. Each iteration selected
the attribute having most number of distinct values in the

Datafly system or values not havingK occurrences in the
µ-Argus system to generalize or suppress. Such selection
did not address the quality for classification where there is a
different impact between generalization within a class and
that across classes.

To our knowledge, [7] is the only work that has con-
sidered the anonymity problem for classification, and pre-
sented a genetic algorithm to search for the optimal gener-
alization of the data. As noted in [7], their solution took
18 hours to generalize 30K records. We uses an entirely
different approach, the iterative bottom-up generalization,
and we focused on the scalability issue. We used an infor-
mation/privacy trade-off toselecta generalization, whereas
[7] used the privacy requirement to filter aselectedgeneral-
ization. Furthermore, the sequence of generalizations pro-
duced by our approach can be used to determine a desired
trade-off point between privacy and quality. The genetic
evolution of random nature does not serve this purpose, nei-
ther does the final generalized data because the same final
state can be reached by many generalization sequences.

Bottom-up generalization was previously used for ex-
tracting patterns, see [5] for example. The new lights in
our work are the consideration on privacy protection, qual-
ity preservation, and the related scalability issue.

2 The Problem

Consider that a data holder wants to release a person-
specific dataR(D1, · · ·, Dn, C) to the public. A record has
the form< v1, · · · , vn, cls >, wherevi is a domain value
from the attributeDi andcls is a class inC. Suppose that
R shares some attributes with an external sourceE, denoted
R ∩ E. If a value onR ∩ E is so specific that the probabil-
ity of having this value by chance is negligible, each link-
ing from a record inR to some information inE through
this value has a good chance of identifying a real life fact.
The data holder protects against such linkages by requiring
a minimum number of records linkable through each value
onR ∩ E.

Definition 1 (Anonymity) The virtual identifier, denoted
V ID, is the set of attributes shared byR andE. a(vid)
denotes the number of records inR with the valuevid on
V ID. The anonymityof V ID, denotedA(V ID), is the
minimuma(vid) for any valuevid on V ID. If a(vid) =
A(V ID), vid is called ananonymity vid. R satisfies the
anonymity requirement< V ID, K > if A(V ID) ≥ K,
whereK is specified by the data holder.

We transformR to satisfy the anonymity requirement
by generalizing specific values onV ID into less specific
but semantically consistent values. The generalization in-
creases the probability of having a given value onV ID by



chance, therefore, decreases the probability that a linking
through this value represents a real life fact. The general-
ization space is specified through a taxonomical hierarchy
per attribute inV ID, provided by either the data holder or
the data recipient. A hierarchy is a tree with leaf nodes rep-
resenting domain values and parent nodes representing less
specific values.R is generalized by a sequence of general-
izations, where each generalization replaces all child values
c with their parent valuep in a hierarchy. Before a valuec
is generalized, all values belowc should be generalized toc
first.

Definition 2 (Generalization) A generalization, written
{c} → p, replaces all child values{c} with the parent value
p. A generalization isvalid if all values belowc have been
generalized toc. A vid is generalizedby {c} → p if the vid
contains some value in{c}.

Relationship Race Workclass a(vid) C

c1 b2 a3 4 0Y4N
c1 b2 c3 4 0Y4N
c1 b2 d3 3 0Y3N
c1 c2 a3 3 2Y1N
c1 c2 b3 4 2Y2N
d1 c2 b3 4 4Y0N
d1 c2 e3 2 2Y0N
d1 d2 b3 3 2Y1N
d1 d2 e3 2 2Y0N

ANY

e1 f1

b1a1

f2e2

ANY ANY

a3

e3

WorkclassRaceRelationship

d1 b2a2 c2 d2 b3

c3 d3

g3

f3
c1

Figure 1. Data and hierarchies for V ID

Example 1 Consider

V ID = {Relationship, Race, Workclass},
and the hierarchies and vids in Figure 1. We have com-
pressed all records having the same value onV ID into
a single row with the distribution of the Y/N class la-
bel and the counta(vid). Initially, the generalizations at

e1, f1, e2, f2, f3 are valid,A(V ID) = 2, andd1c2e3 and
d1d2e3 are anonymity vids. The requirement ofK = 3 can
be satisfied by applying{c2, d2} → f2, which generalizes
the vidsd1c2e3 andd1d2e3 into a single vidd1f2e3 with
a(d1f2e3) = 4.

Definition 3 (Anonymity for Classification) Given a rela-
tion R, an anonymity requirement< V ID, K >, and a hi-
erarchy for each attribute inV ID, generalizeR, by a se-
quence of generalizations, to satisfy the requirement and
contain as much information as possible for classification.

The anonymity requirement can be satisfied in more than
one way of generalizingR, and some lose more information
than others with regard to classification. One question is
how to select a sequence of generalizations so that informa-
tion loss is minimized. Another question is how to find this
sequence of generalizations efficiently for a large data set.
We like to answer these questions in the rest of the paper.

3 Metrics for generalization

We consider a metric for a single generalization, which
is used to guide the search of a sequence of generalizations
in the next section. A “good” generalization should pre-
serve information for classificationandfocus on the goal of
achieving theK-anonymity. Let us formalize this criterion.

Consider a generalizationG : {c} → p. Let Rc denote
the set of records containingc, and letRp denote the set
of records containingp after applyingG. |Rp| = Σc|Rc|,
where|x| is the number of elements in a bagx. The effect of
G is summarized by the “information loss” and “anonymity
gain” after replacingRc’s with Rp.

We adapt the entropy based information loss, which can
be substituted by other information measures:

I(G) = Info(Rp)− Σc
|Rc|
|Rp|Info(Rc),

whereInfo(Rx) is theimpurityor entropyof Rx [9]:

Info(Rx) = −Σcls
freq(Rx, cls)

|Rx| × log2
freq(Rx, cls)

|Rx| .

freq(Rx, cls) is the number of records inRx with the class
labelcls.

The anonymity gain isAG(V ID) − A(V ID), where
A(V ID) andAG(V ID) denote the anonymity before and
after applyingG, respectively.AG(V ID) ≥ A(V ID). In
the case ofAG(V ID) > K, AG(V ID) − K is the “sur-
plus” of anonymity. While more anonymity is always pre-
ferred for privacy protection, it comes at the expense of los-
ing more information. If such a “surplus” really outweighs
the information concern, the data holder should specify a



largerK in the first place. This consideration leads to the
modified anonymity gain:

P (G) = x−A(V ID)

wherex = AG(V ID) if AG(V ID) ≤ K, andx = K
otherwis.

Information-Privacy Metric . To minimize the informa-
tion loss for achieving a givenK-anonymity, our criterion is
to favor the generalization having the minimum information
loss for each unit of anonymity gain:

Minimize : IP (G) = I(G)/P (G).

IP (G) is ∞ if P (G) = 0. If P (G) = 0 for all (valid)
generalizationsG, we compare them based onI(G). This
metric also maximizes the anonymity gain for each unit of
information loss. We useI(G)/P (G) instead ofI(G) −
P (G) because differentiating semantically different quanti-
ties makes little sense.

Unlike the “penalty” metric in [7] that focuses on in-
formation distortion alone,IP (G) takes into account both
information and anonymity. The anonymity consideration
helps focus the search on the privacy goal, therefore, has a
look-ahead effect. However, this presents a new challenge
to scalability because the effect on anonymity is only avail-
able after applying a generalization. We will examine this
issue in subsequent sections.

4 Bottom-Up Generalization

Algorithm 1 describes our bottom-up generalization pro-
cess. In theith iteration, we generalizeR by the “best”
generalizationGbest according to theIP metric. This al-
gorithm makes no claim on efficiency because Line 2 and 3
requires computingIP (G) for all candidate generalizations
G. Let us look at this computation in more details.

Consider a candidate generalizationG : {c} → p in an
iteration. |Rc| andfreq(Rc, cls) can be maintained after
each iteration.|Rp| andfreq(Rp, cls) can be obtained by
aggregating|Rc| andfreq(Rc, cls). Therefore,I(G) can
be easily computed, i.e., without accessing vids. In fact,
any metric on a single attribute (plus the class label) can be
computed this way.A(V ID) is available as a result of ap-
plying the previous generalization. ComputingAG(V ID),
however, depends on the “effect” ofG, which is only avail-
able after applyingG, and requires accessing vids. This is
a new challenge to scalability.

Our insight is that most generalizationsG do not affect
A(V ID), therefore,AG(V ID) = A(V ID). In fact, if
a generalizationG fails to generalizeall anonymity vids,
G will not affect A(V ID). For suchG, P (G) = 0 and
IP (G) = ∞, and our metric does not needAG(V ID).
Therefore, we can focus on “critical generalizations” as de-
fined below.

Algorithm 1 The bottom-up generalization
1: while R does not satisfy the anonymity requirementdo
2: for all generalizationG do
3: computeIP (G);
4: end for;
5: find the best generalizationGbest;
6: generalizeR by Gbest;
7: end while;
8: outputR;

Definition 4 (Critical generalization) G is critical if
AG(V ID) > A(V ID).

A critical generalizationG has a non-zeroP (G) and a
finite IP (G), whereas a non-critical generalizationG has
a zeroP (G) and infiniteIP (G). Therefore, so long as
one generalization is critical, all non-critical generalizations
will be ignored by theIP metric. If all generalizations are
non-critical, theIP metric will select the one with mini-
mum I(G). In both cases,AG(V ID) is not needed for a
non-critical generalizationG. Based on this observation,
we optimize Algorithm 1 by replacing Line 2 and 3 with

2: for all critical generalizationG do
3: computeAG(V ID);

Three questions remain: how to identify all critical
generalizations without actually computingAG(V ID) for
all generalizations; how many generalizations are critical,
therefore, need to computeAG(V ID); and how to apply a
generalization without scanning all vids. We answer these
questions in the next section.

5 Pruning Strategies

A key issue in our approach is how to identify critical
generalizations without computingAG(V ID) for all candi-
dateG. First, we present an efficient structure for applying
a given generalization.

5.1 The data structure

We store all distinct vids in a tree structure, calledTax-
onomy Encoded Anonymity(TEA) index. Each level of the
tree represents the current generalization of a particular at-
tribute, and each path represents a particular vid witha(vid)
stored in the leaf node. In addition, the TEA index links
up the vids according to the generalizations that generalize
them. Each time a generalization is applied, the TEA index
is updated by adjusting the vids linked to this generaliza-
tion. The purpose of this index is to prune the number of
candidate generalizations to no more than|V ID| at each
iteration, where|V ID| is the number of attributes inV ID.
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Figure 2. The TEA index for V ID

Definition 5 (TEA index) The Taxonomy Encoded
Anonymity(TEA) index for V ID = {D1, · · · , Dk} is a
tree of k levels. The leveli > 0 represents the current
values forDi. Each root-to-leaf path represents an existing
vid in the data, witha(vid) stored at the leaf node. For
a generalizationG : {c} → p, a segmentof G is a
maximal set of sibling nodes,{s1, · · · , st}, such that
{s1, · · · , st} ⊆ {c}, wheret is the size of the segment. All
segments ofG are linked up. A vid isgeneralizedby a
segment if the vid contains a value in the segment.

Intuitively, a segment ofG represents a set of sibling
nodes in the TEA index that will be merged by applying
G. To applyG, we follow the link of the segments ofG
and merge the nodes in each segment ofG. The merging of
sibling nodes implies inserting the new node into a proper
segment and recursively merging the child nodes having the
same value if their parents are merged. The merging of leaf
nodes implies summing upa(vid) stored at such leaf nodes.
The cost is proportional to the number of vids generalized
by G.

Example 2 Figure 2 shows the TEA index for the vids in
Example 1. A rectangle represents a segment, and a a
dashed line links up the segments of the same generaliza-
tion. For example, the left-most path represents the vid
c1b2a3, anda(c1b2a3) = 4. {c1, d1} at level 1 is a segment
of f1 because it forms a maximal set of siblings that will be
merged byf1. {c1c2} and{d1c2, d1d2} at level 2 are two
segments off2. {c1b2c3, c1b2d3} at level 3 is a segment of
f3. d1d2e3 andd1c2e3, in bold face, are the anonymity vids.

Consider applying{c2, d2} → f2. The first segment of

f2 contains only one sibling node{c1c2}, we simply re-
label the sibling byf2. This creates new vidsc1f2a3 and
c1f2b3. The second segment off2 contains two sibling
nodes{d1c2, d1d2}. We merge them into a new node la-
beled byf2, and merge their child nodes having the same
label. This creates new vidsd1f2b3 and d1f2e3, with
a(d1f2b3) = 7 anda(d1f2e3) = 4.

Observation 1. G is critical only if every anonymity
vid is generalized by some size-k segment ofG, k > 1. In
Figure 2, no anonymity vid is generalized by the (only) size-
2 segment off3, sof3 is not critical. The two anonymity
vids are generalized by the (only) segment size-2 off1, but
f1 is still not critical.

Observation 2. At each level of the TEA index, each vid
is generalized byat mostone segment. This observation im-
plies that the “only if” condition in Observation 1 holds for
at most one generalization at each level of the TEA index.

Theorem 1 G is critical only if every anonymity vid is gen-
eralized by some size-k segment ofG, wherek > 1. At
most|V ID| generalizations satisfy this “only if” condition,
where|V ID| denotes the number of attributes inV ID.

By checking the “only if” condition in Theorem 1, we
can prune the computation ofAG(V ID) for all but at most
|V ID| generalizations, and are still guaranteed to find all
critical generalizations. Note that|V ID| is a very small
constant, for example, 3 in Example 1. We implement this
pruning strategy in three steps.



5.2 Step 1: pruning generalizations

This step finds all generalizations satisfying the “only if”
condition in Theorem 1, denotedCand. We start at the leaf
nodes for the anonymity vids in the TEA index, walk up
their paths synchronously one level at a time. At each level,
we check if every anonymity vid is generalized by some
size-k segment of thesamegeneralizationG, k > 1. If not,
no critical generalization exists at the current level. If yes,
we addG to Cand. We then move up to the next level in
the TEA index.

5.3 Step 2: finding the best generalization

This step finds the best generalization by computing
IP (G) for every (valid) generalizationG. A(V ID) and
I(G) are available or easily computed from the result of
the previous iteration. For everyG not in Cand, G is non-
critical (Theorem 1), soIP (G) = I(G). So, we focus on
computingAG(V ID) for G ∈ Cand. We present a method
that examines only the vids actually generalized byG, not
all vids.

Let An
G be the minimuma(vid) for the new vids pro-

duced by applyingG. Let Ao
G be the minimuma(vid)

for all old vids not generalized byG. AG(V ID) =
min{An

G, Ao
G}. To computeAn

G, we applyG to the TEA
index as described in Section 5.1, except that the effect is
made permanent only ifG is actually the best generaliza-
tion.

To computeAo
G, we keep track of the number of vids not

generalized byG such thata(vid) = i, stored inO[i], for
1 ≤ i ≤ K. K is typically a few hundreds, so this is a small
cost. Before applyingG, O[i] is available from the previous
iteration. Each time a vid havinga(vid) = i is generalized
by G, we decrementO[i]. At the end of applyingG, O[i]
stores the correct value. Now, ifO[i] > 0 for some1 ≤ i ≤
K, letAo

G be the smallest suchi. If O[i] = 0 for 1 ≤ i ≤ K,
we consider two cases: ifAn

G ≤ K, thenAG(V ID) = An
G;

if An
G > K, thenAG(V ID) > K, but suchAG(V ID) is

never used in our metric.
The cost in this step is proportional to the number of vids

generalized byG, not all vids.

5.4 Step 3: applying the best generalization

This step applies the best generalizationGbest found in
Step 2. IfGbest is in Cand, we just make the effect ofG in
Step 2 permanent. IfGbest is not inCand, we applyGbest

to the TEA index. In this case,Cand must be empty, oth-
erwiseGbest must come fromCand following the remark
below Definition 4.

5.5 Analysis

The TEA index is typically smaller than the database be-
cause a vid may occur in multiple records, but is stored only
once in the TEA index. Once the TEA index is created, the
bottom-up generalization depends only on the TEA index,
not the database. The number of iterations is bounded by
the number of possible generalizations, which is equal to
the number of non-leaf nodes in all hierarchies. The analy-
sis below focuses on a single iteration.

Step 1 involves walking up the anonymity vids in the
TEA index. This cost is bounded by the number of
anonymity vids, which is typically small because of the con-
strainta(vid) = A(V ID). Step 2 and 3 together apply at
most |V ID| generalizations (Theorem 1). The cost of ap-
plying a generalization is bounded by the number of vids
actually generalized, not the number of all vids.

6 Experimental Validation

Our first objective is to evaluate the quality of general-
ized data for classification, compared to that of the unmodi-
fied data. Our second objective is to evaluate the scalability
of the proposed algorithm. All experiments were performed
on a 2.4GHz Pentium IV processor with 512MB memory.
The implementation language is C++.

6.1 Data quality

We adapted the publicly available “Adult” data1, used
previously in [7]. “Adult” has 6 continuous attributes and 8
categorical attributes. The class label represents two income
levels,≤50K or >50K. There are 45,222 records without
missing values, pre-split into 30,162 and 15,060 records for
training and testing. We used the same 7 categorical at-
tributes used in [7], shown in Table 1, and obtained their hi-
erarchies from the authors of [7]. [7] also used the numeric
attributeAge. We did not includeAge because our current
algorithm handles only categorical attributes. In effect, this
data is equivalent to their data withAge generalized into
ANY in advance. This puts us in a non-favorable position
because we do not have other choices of generalizingAge.
V ID contains all 7 attributes.

We generalized the training set onV ID and built a C4.5
decision tree on the generalized data. The found generaliza-
tion was then applied to the testing set and the errorE was
collected on the generalized testing set. We compared this
error with two errors.B denotes the “baseline error” where
the data was not generalized at all, which is 17.4%.W de-
notes the “worst error” where all the attributes inV ID were
generalized to ANY, which is 24.6%.W −B measures the

1http://www.ics.uci.edu/̃mlearn



Hierarchy # Leaf nodes # Levels

Occupation 14 3
Education 16 5
Country 41 4
Martial status 7 3
Sex 2 2
Race 5 2
Work class 8 3

Table 1. The hierarchies for “Adult" data

contribution of the attributes inV ID, andE −B measures
the quality lost by our generalization. Figure 3 showsE for
various thresholdsK. Below are the main findings.

First, E − B is no more than 1.1% for allK in the
range from 10 to 500, which is significantly lower than
W−B = 7.2%. On one hand, the largeW−B implies that
the attributes generalized are important. On the other hand,
the smallE − B implies that the generalizations required
for theK-anonymity does not harm the quality much. We
observed that most generalizations tended to focus on over-
fitting values for theK tested, and if a generalized attribute
became less discriminating, some previously unused alter-
natives emerged and were picked by C4.5 classifiers. Our
approach takes advantage of such “health generalizations”
and “multiple structures” typically present in the data for
masking sensitive information while preserving quality.

Second, our results are comparable to the best results in
[7] but take much less time. [7] reported the errors from
17.3% to 18.5% forK up to 500, with the baseline error
of 17.1%. Our errors ranged from 18.4% to 18.5%, but our
data has the baseline error of 17.4%. The error increase
relative to the baseline is similar in both cases. On the other
hand, our algorithm took no more than 7 seconds to create
the index and no more than 22 seconds to generalize the
data for allK tested, whereas the genetic algorithm took 18
hours as reported in [7].

6.2 Scalability

This experiment evaluated the scalability of the proposed
algorithm by enlarging the “Adult” data. First, we merged
the training set and testing set into one set, which gave
45,222 records. For each original recordt in the merged set,
we addedσ − 1 “variations” of t, whereσ > 1 is thescale
factor. A variation oft took random values onρ attributes
randomly selected fromV ID, and agreed witht on the re-
maining attributes inV ID. ρ is called thenovelty factor.
Random values came from the leaves in the corresponding
hierarchy. The enlarged data has the 45,222 original records
plus all variations, giving a total ofσ ∗ 45, 222 records. We
usedσ andρ to control the number of distinct vids.
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Figure 3. Error versus K

Figure 4 (from top to bottom) plots the time versus the
thresholdK, scale factorσ, and novelty factorρ. Another
50 seconds or less were spent on creating the index. As
one parameter varied, the other two were fixed. “Pruning-
based” refers to the implementation that uses the pruning
discussed in Section 5. “Index-based” refers to the imple-
mentation that uses the TEA index for performing a gener-
alization, but not pruning.

In all experiments, both methods finished in less than
730 seconds. The longest time was took atσ = 30,
K = 150 andρ = 3 (the middle figure) where the data
has45, 222 ∗ 30 = 1, 356, 660 records and 127,831 distinct
vids. These experiments showed a much better scalability
than the genetic algorithm in [7].

The first figure shows thatK has some but not major
effect on the time. The second figure shows that “pruning-
based” scales up much better than “index-based” for a large
scale factor. In this experiment, we observed that the scale
factor has more impact on scalability than the novelty factor
in that it increased the number of distinct vids faster. When
the number of distinct vids is large, the effectiveness of the
pruning in “pruning-based” became more significant.

7 Conclusion

We have investigated data mining as a technique for
masking data, calleddata mining based privacy protection.
The idea is to explore the data generalization concept from
data mining as a way to hide detailed information, rather
than discover trends and patterns. Once the data is masked,
standard data mining techniques can be applied without
modification. Our work demonstrated another positive use
of the data mining technology: not only can it discover use-
ful patterns, but also mask private information.

In particular, we presented a bottom-up generalization
for transforming specific data to less specific but seman-
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Figure 4. Scalability

tically consistent data for privacy protection. We focused
on two key issues, quality and scalability. The quality is-
sue was addressed by a trade-off of information and pri-
vacy and an iterative bottom-up generalization process. The
scalability issue was addressed by a novel data structure for
focusing on good generalizations. The proposed approach
achieved a similar quality but much better scalability com-
pared to existing solutions. Our current algorithm greedily
hill-climbs a k-anonymity state, therefore, has the possibil-
ity of getting stuck at a local optimum. As suggested by
one reviewer, local optimum can be escaped by introducing
stochastic elements to this greedy heuristic or by using Sim-
ulated annealing. We plan to study this possibility in future
work.

We believe that the framework of bottom-up general-

ization is amenable to several extensions that will make it
more practical: incorporating different metrics, handling
data suppression where a value is taken out entirely, and par-
tial generalization where not necessarily all child values are
generalized altogether, and generalizing numeric attributes
without a pre-determined hierarchy. We plan to investigate
these issues further.
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