
Machine Learning, 41, 259–294, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Bottom-Up Induction of Feature Terms

EVA ARMENGOL eva@iiia.csic.es
ENRIC PLAZA enric@iiia.csic.es
IIIA—Artificial Intelligence Research Institute, CSIC—Spanish Scientific Research Council, Campus UAB,
08193 Bellaterra, Catalonia, Spain

Editor: Lorenza Saitta

Abstract. The aim of relational learning is to develop methods for the induction of hypotheses in representation
formalisms that are more expressive than attribute-value representation. Most work on relational learning has been
focused on induction in subsets of first order logic like Horn clauses. In this paper we introduce the representation
formalism based on feature terms and we introduce the corresponding notions of subsumption and anti-unification.
Then we explain INDIE, a heuristic bottom-up learning method that induces class hypotheses, in the form of feature
terms, from positive and negative examples. The biases used in INDIE while searching the hypothesis space are
explained while describing INDIE’s algorithms. The representational bias of INDIE can be summarised in that it
makes an intensive use of sorts and sort hierarchy, and in that it does not use negation but focuses on detecting
path equalities. We show the results of INDIE in some classical relational datasets showing that it’s able to find
hypotheses at a level comparable to the original ones. The differences between INDIE’s hypotheses and those of
the other systems are explained by the bias in searching the hypothesis space and on the representational bias of
the hypothesis language of each system.

Keywords: Inductive Logic Programming, relational learning, concept induction, feature structures

1. Introduction

The aim of relational learning is to develop methods for the induction of descriptions in
representation formalisms that are more expressive than attribute-value representation. Re-
lational learners are capable of dealing with structured objects, i.e. objects described struc-
turally in terms of their components and relations among components. Learned knowledge
is formed by descriptions of relations (i.e. definitions of predicates). In relational learners
the languages used to represent examples, background knowledge, and concept descriptions
are usually subsets of first-order logic. We think that Machine Learning research can also
profit from exploring other representation formalisms that support the expressive power of
relations but correspond to different subsets of first order logic. There is a group of relational
learners, calledInductive Logic Programmingsystems that uses knowledge represented as
Horn clauses. Most work on ILP has been focused on further subsets of Horn clause logic
(Muggleton & De Raedt, 1994).

ILP research has commonly focused on concept learning, where the examples are impli-
cations and the goal is to induce a hypothesis capable of correctly classifying the examples.
Concept learning uses positive and negative examples to induce a discriminating descrip-
tion for a concept. In this paper we introduce a representation formalism based on feature
terms and INDIE, a bottom-up learning method that induces class descriptions in the form

260 E. ARMENGOL AND E. PLAZA

of feature terms from positive and negative examples.Feature termsare a generalisation of
first-order terms that provides a natural way to describe incomplete information. Incomplete
information arises from the so-called problem of “unknown values” in Machine Learning
and, especially in attribute-value representation, the problem of irrelevant attributes. While
Horn representation is based on the notion of deduction and has to define from it the notion
of subsumption, feature terms representation is based around the foundational notion of
subsumption and, moreover, on the notion of sort and the intensive use of sort hierarchies.
The purpose of this paper is to show how to achieve relational inductive learning in this
setting with results that are comparable to other relational learning systems.

The structure of this paper is the following. First, feature terms are formally described and
then subsumption and anti-unification operations are defined. Subsumption defines a partial
ordering between feature terms that is useful in order to compare them. The anti-unification
produces as result a feature term containing all that is common to the anti-unified feature
terms. Data Mining and Knowledge Discovery in Databases aim to find the properties or
regularities that they present instead of discriminating descriptions (since only positive
examples are considered). In particular, the anti-unification operation can be used to detect
regularities between a set of feature terms. The algorithm of anti-unification is explained
in detail in Section 3. In Section 4 we introduce a general view of INDIE, an inductive
method for feature terms based on the subsumption and anti-unification operations. INDIE
solves the discrimination task, that is to say, given a training set of positive and negative
examples, INDIE finds a description satisfied (subsumed) by all positive examples and
no negative example. In Section 5 the INDIE algorithm is explained in detail. In order to
evaluate INDIE, we show that it is able to find correct hypotheses for several relational
datasets originally proposed by other authors to evaluate their relational learning systems
(Section 6). We also show the hypotheses found by the original systems and discuss the
similarities and differences from the ones obtained by INDIE. Finally, we present two
applications of INDIE: the identification of marine sponges in Section 7 and the assessment
of risk in diabetic patients in Section 8. Our goal in using both domains is to show that
INDIE is able to find hypotheses in the context of examples with partial information.

2. Feature terms

Feature terms(also called feature structures orψ-terms) are a generalisation of first-order
terms that have been introduced in theoretical computer science in order to formalise object-
oriented capabilities of declarative languages (A¨ıt-Kaci & Podelski, 1993; Carpenter, 1992).
Feature term formalisms have a family resemblance with, but are different from, unification
grammars and description logics (KL-One-like languages). The difference between feature
terms and first order terms is the following: a first order term, e.g.f (x, g(x, y), z), can be
formally described as a tree and a fixed tree traversal order. In other words, parameters are
identified by position. The intuition behind a feature term is that it can be described as a
labelled graph, i.e. parameters are identified by name (regardless of their order or position).

Definition (Feature Terms). Given a signature6 = 〈S, F,≤〉 (whereS is a set of sort
symbols that includes⊥ and>; F is a set of feature symbols; and≤ is a decidable partial

INDUCTION OF FEATURE TERMS 261

order onS such that⊥ is the least element and> is the greatest element) and a setϑ of
variables, we definefeature termsas an expression of the form:

ψ ::= X : s [f1 =̇91, . . . , fn =̇9n] (1)

whereX is a variable inϑ, s is a sort inS, f1 . . fn are features inF , n ≥ 0, and each9i

is a set of feature terms and variables. We also identify a feature term with the singleton set
of that feature term. Note that whenn = 0 we are defining a variable without features. The
set of variables occurring inψ is noted asϑψ .

Sorts have an informational order relation (≤) among them, whereψ ≤ ψ ′ means thatψ
has less information thanψ ′—or equivalently thatψ is more general thanψ ′. Note that the
informational ordering (≤) is the opposite of the one usually used in ML, the “more general
than” relation, while here (≤) is the “less specific than” relation. The minimal element (⊥)
is calledany and it represents the minimum information. When a feature has “unknown
value” it is represented as having the valueany. All other sorts are more specific thatany.

Definition(Root of a feature term). We call the variableX in definition (1) theroot of ψ
(noted Root(ψ)). Moreover, we say thatψ issortedby the sorts of the root (noted Sort(ψ))
and that it has featuresf1, . . . , fn.

A particular example of feature term is shown in figure 1 whereX is the root ofψ1 and
variablesX, Y, Z, T andP are of sortperson.

Definition(Path). A pathπ is a sequence of features:π ∈ F∗.

For instance, in the feature termψ1 of figure 1, the path to obtain the last name of the
father of personX is X@father.last-name—where concatenation is denoted by the dot
operation and the first element left of symbol @ is the variable where the path starts.

Definition(Path equality). We say that two pathsπ1 andπ2 areequalif both paths point
to the same value.

Figure 1. A feature termψ1 representing aperson. This person has three features:last-name, father andson.
The featureson has as value a set of two feature terms,Y andT .

262 E. ARMENGOL AND E. PLAZA

Path equality is equivalent to variable symbol equality. For instance, if we look at variable
symbol equality in the feature termψ1 in figure 1, we can see that there are two path
equalities:

X@last-name = X@father.last-name whose value isW

Y@father = T@father whose value isX

Feature terms provide a way to construct terms embodying partial information about an
entity. For instance, the feature termψ1 in figure 1 is a partial description of a person. The
meaning of the feature termψ1 is those individuals that satisfy that partial description; i.e.
ψ1 denotes the subset of individuals such that:

1) they have alast-name
2) they have two sons that are of sortpersonsuch that

– one son has a wife
– both sons are brothers of each other
– the father of both sons is the person in the root of the feature term.

3) their father is a person whoselast-name is the same as that in 1).

2.1. Feature term subsumption

The semantic interpretation of feature terms brings an ordering relation among feature
terms. We call this ordering relationsubsumption. The intuitive meaning of subsumption is
that of aninformational orderingamong partial descriptions constructed on top of the sort
partial order relation (≤).

Definition (Subsumption). Given two feature termsψ andψ ′, we say thatψ subsumes
ψ ′, noted asψ v ψ ′, if there is a total mapping functionυ :ϑψ → ϑψ ′ such that:

1. υ(Root(ψ))=Root(ψ ′)
and∀x ∈ ϑψ

2. Sort(x) ≤ Sort(υ(x))
3. for every fi ∈ F such thatx. fi =̇9i is defined, thenυ(x). fi =̇9 ′i is also defined, and

(a) ∀ψk ∈9i , either∃ψ ′k ∈9 ′i such thatυ(Root(ψk))=Root(ψ ′k) or ∃x′ ∈9 ′i such that
υ(Root(ψk)) = x′

(b) ∀x ∈ 9i either∃ψ ′k ∈ 9 ′i such thatυ(x)=Root(ψ ′k)or∃ x′ ∈ 9 ′i such thatυ(x) = x′

(c) ∀ψk, ψ
′
k ∈ 9i (ψk 6= ψ ′k ⇒ υ(Root(ψk)) 6= υ(Root(ψ ′k)))

(d) ∀x, ψ ′k ∈ 9i (υ(x) 6= υ(Root(ψ ′k)))
(e) ∀x, y ∈ 9i (x 6= y⇒ υ(x) 6= υ(y))

As a corollary, it is worth remarking that path equality is preserved by subsumption, i.e.
whenψ vψ ′, all path equalities inψ also occur inψ ′. Intuitively, a feature termψ

INDUCTION OF FEATURE TERMS 263

subsumes another feature termψ ′(ψ v ψ ′) when all information inψ is also contained in
ψ ′. For instance, consider the example of the feature termψ1 in figure 1 and the following
one (ψ2) denoting persons that have married sons:

ψ2 = X2 : person [soṅ=Y2 : person [wife=̇ Z2 : person]]

Clearlyψ2 subsumesψ1(ψ2 v ψ1). Notice that inψ2 thefather feature of personY is
not explicitly given and thatX has only one son. Moreover for a termψ3 defined as

ψ3 = X3 : person

daughteṙ=W3 : person

son=̇Y3 : person

[
father=̇ X3

wife =̇ Z3 : person

]
it is easy to see thatψ3 satisfies thatψ2 v ψ3 (sinceψ3 has a son with a wife) butψ3 6v ψ1

(sinceψ1 has no daughter while that information is present onψ3).
The subsumption relation is the inverse of the “more general than” relation:

Definition(More general than relation). Given two hypotheseshi andh j , hi is more gen-
eral thanh j (hi ≥ h j) if and only if any instance that satisfiesh j also satisfieshi but some
instances satisfyinghi do not satisfyh j . (Mitchell, 1997).

Thus, whenhi subsumes hj (hi is less thanh j in the informational order, i.e.hi v h j)
clearly hi is more general than hj (hi is higher thanh j in the generalization order, i.e.
hi ≥ h j), and one order is the inverse of the other—or, in other words, the subsumption
relation is the “less specific than” relation.

2.2. Graph and clausal syntax

There are several syntaxes amenable to represent feature terms. We have used up to now a
record—like syntax, but graph syntax and clausal syntax can also be used. Using labelled
graphs,arcsare labelled with feature symbols,nodesstand for sorted variables (where the
sort symbol is the node label), andpath equalityis graphically represented by arcs arriving
at the same node. For instance, the graph syntax of feature term in figure 1 is shown in
figure 2.

A feature term can be also understood as a conjunct of clauses—see (A¨ıt-Kaci & Podelski,
1993) for the precise mapping among the different representations. This clausal represen-
tation is also useful and is closer to other relational learners representation. There are two
kinds of atomic clauses: sort clauses, namelys(X), and feature clauses, namelyf (X,Y).
Thus, the clausal representation of a feature term is as a conjunction of these two kind of
atomic clauses. The clausal form of a termψ ::= X : s[f1 =̇91 . . . fn =̇9n] is built with a
transformation8as follows:8(ψ) = s(X)∧ f1(X,Y1)∧8(91)∧ . . .∧ fn(X, Yn)∧8(9n)

whereY1, . . . ,Yn are the roots of91, . . . , 9n respectively. When a feature value is a set
91 then the8 transformation is applied to each elementψw ∈9i , as follows:8(ψw) =
f1(X, W) ∧8(ψw) whereW is the root ofψw.

264 E. ARMENGOL AND E. PLAZA

Figure 2. Representation of the feature term of figure 1 using a directed graph. Notice that the arcsonhas as
value a set of two persons.

For instance, the feature term in figure 1 can be represented in clausal form as follows:

person(X) ∧ last-name(X,W)∧ family-name(W)

∧ son(X,Y)∧ person(Y)∧ wife (Y, Z)

∧ person(Z)∧ father(Y, X)∧ brother(Y, T)

∧ son(X, T)∧ person(T)∧ father(T, X)∧ brother(T,Y)

∧ father(X, P)∧ person(P)∧ last-name(P,W)

3. Anti-unification

Many algorithms in Machine Learning use themore general thanrelation to organise the
search space. Feature terms form a partial ordering by means of the subsumption relation-
ship. By starting from subsumption it is natural to define the operations of unification and
anti-unification. In particular, to introduce the anti-unification operation we need first to
defineequivalenceamong feature terms as follows:

Definition (Syntactic Variants). Given two feature termsψ andψ ′ we say that they are
syntactic variantsif and only ifψ v ψ ′ andψ ′ v ψ .

Two feature terms that subsume each other are equivalent with respect to the informational
order in that they both contain the same information: they are equal up to a renaming of
variables. Theanti-unificationin feature terms is defined in the classical way (as theleast
common subsumeror most specific generalisation) over the subsumption lattice as follows:

INDUCTION OF FEATURE TERMS 265

Figure 3. An anti-unification example where (a) shows two feature terms representingperson1andperson2, and
(b) shows the feature termP3obtained by their anti-unification.

Definition (Anti-unification). The anti-unificationof two feature terms (ψ u ψ ′) is a
greatest lower bound (glb) with respect to the subsumption (v) ordering.

Intuitively, the anti-unification of two feature terms gives what is common to both (yielding
the notion of generalisation) and all that is common to both (the most specific generalisation).

Example 1. Let person1andperson2be the objects represented as the feature terms in
figure 3(a). The anti-unification of both is the feature term P3 shown in figure 3(b). The sort
of P3 ispersonand its features are those features common toperson1andperson2(namely
name andfather). In P3, the featurelast of thename feature term has as value the sort
family-namethat is the greatest lower bound in the sort hierarchy according to the≤ sort
relation, i.e. the most specific sort common to bothTaylorandSmithvalues. Featureswife
andlives-at only appear in one of the terms in figure 3(a), therefore they do not appear
in the anti-unification feature term P3.

Formally, when a feature does not appear in a feature term, it is equivalent to consider
that this feature has valueany, the minimal sort according to the≤ sort relation (see the
definition of feature terms). In such situation, the anti-unification ofanywith another value
produces as resultany, thus the feature will not “appear” in the anti-unified feature term.

Path equalityperson1@person.name.last=person1@person.father.name.last
of feature termperson1also occurs inperson2. For this reason, the path equality is preserved
in the anti-unification feature termP3. In general, a feature term obtained by the anti-
unification of a set of feature terms will contain a path equality only if all the anti-unified
feature terms contain that path equality.

266 E. ARMENGOL AND E. PLAZA

Figure 4. The AU algorithm constructs the most specific generalisation covering a given set of positive examples.
The functionAdd-feature(d, a, v) adds the featurea with valuev to the feature termd. The functionAdd-feature-
to-all(D,a, v) adds the featurea with valuev to all the feature terms in the setD. The variable?paths? is a list of
pairs(Wi , di) whereWi is a set of already anti-unified feature terms anddi is their anti-unification.

3.1. Anti-unification algorithm

As we will see later, when feature terms have sets of values in some feature, anti-unification
may be not unique. Figure 4 shows the anti-unification algorithm (AU) used to obtain a
most specific generalisation of a set of examples.

Given a set of examplesE={e1 . .en} represented as feature terms, the AU algorithm
builds a new feature termD following three steps:

INDUCTION OF FEATURE TERMS 267

1) the sort of the root ofD is the most specific sort common to all the sorts of the roots of
the examples inE,

2) the setA of features present inD is formed by those features present in all the examples
in E,

3) the value of each featureai in A is computed by recursively applying AU to the set
formed by the values thatai takes in eachek ∈ E.

We will introduce the AU algorithm with an example. For each featureai ∈ A common to
all ek ∈ E, let us consider the setWi = (vi 1, . . . , vin) wherevik = ek.ai , i.e. the value taken
by theai feature in the exampleek.

The first case in the AU algorithm (line 6 in figure 4) is to check ifvi 1 = vi 2 = · · · = vin,
i.e. whether all the examples have the same value in the featureai . In this situation the
anti-unification is a feature term that has exactly that value in featureai . A second case
(line 9) considering the setWi = (vi 1, . . . , vin) is when there is a path equality, i.e. when
two (or more) features of a term have the same value. If this path equality is shared by all
the terms inE, the feature term resulting from the anti-unification will have the same path
equality (see Example 1). Detecting a path equality means that the same setWi has already
been antiunified by the algorithm. In the implementation, we use the?paths? variable (see
figure 4) that contains all the pairs(Wj , dj) already processed and wheredj is the feature
term generated by anti-unifying the values of the setWj . Therefore, for a given setWi the
algorithm searches in?paths? for a pair (Wj , dj) such thatWj = Wi . If this pair is found
it means that there is a path equality in the anti-unified termD, and the value for featureai

has to be exactlydj .
Finally, the third case (line 11) in the AU algorithm holds when there is no setWj in

?paths? such thatWj =Wi . In that situation, the AU algorithm distinguishes two cases:

1) there is at least one termek ∈ E such thatek.ai = V where the current featureai has a
valueV that is a set, or

2) none of the values ofek.ai is a set.

The second case simply calls recursively the AU function, as shown on line 13 in figure 4.
The first case is solved using theantiunify-setsfunction (see figure 5). LetW = (V1, . . . ,

Vn) be the collection of valuesVk where eachVk is the value that the current featureai

takes in an exampleek. We express this situation asek.ai = Vk. EachVk is a set, although
some can be singleton sets.Antiunify-setshas to produce a setS, where each element in
S is the anti-unification of one element in eachVi ∈ W. EachVi = (xi 1, . . . , xi Ni) is a
set of termsxi j where 1≤ j ≤ Ni andNi = Card(Vi). EachVi has different cardinality
and according to the subsumption definition (Section 2), the cardinality ofS has to be
MinCard= min{Card(Vi)} wherei = 1, . . . ,n.

Elements inSare obtained as follows. First a setC is built where each element inC is a
tuple(x1 j1, . . . , xnjn) obtained from the Cartesian productV1×· · ·×Vn. In other words, each
elementxi jk of a tuple is thejk-th element of the setVi . There are Card(V1)× · · ·× Card
(Vn) possible tuples of values from allVi .

From the setC, the algorithm obtains the subset CS containing those tuples inC having
the most specific root sort. Next, the set DS is built containing the termsdj obtained from

268 E. ARMENGOL AND E. PLAZA

Figure 5. Antiunify-setstakes a collectionW of sets of values and produces as result its anti-unification. glb(c)
represents the greatest lower bound sort of a tupleci of sorts to be anti-unified.

Figure 6. Algorithm of theObtain-one-solutionfunction. This algorithm is used to obtain a set of MinCard terms
compatible with a fixed termdi .

the anti-unification of the elements (feature terms) of each tuplecj ∈ CS. Finally, from
DS, the set of most specific terms (MS) is built. MS contains those terms in DS that are
not subsumed by another term is DS. If the set MS contains only one term then the anti-
unification of the setW will be unique and it will be obtained using theobtain-one-solution
function (figure 6). Otherwise, values inW can produce several antiunifications. In this
case, the anti-unification is obtained using theobtain-several-solutionsfunction shown in
figure 7.

Let us analyse theobtain-one-solutionfunction of figure 6. The termdi is an element
of S but we still need MinCard - 1 elements more to completely buildS. Once a termdi

INDUCTION OF FEATURE TERMS 269

Figure 7. Algorithm of theobtain-several-solutionsfunction. This algorithm is used to obtain all the solutions
when anti-unification is not unique.

obtained from a tupleci has been included inS, all the tuples inC incompatible withci

may be eliminated. We say that two tuples arecompatibleif their intersection is empty, i.e.
they do not have any common element. Otherwise the tuples areincompatible. A tuplecj

is incompatible withci if there is some value in tuplecj that is also inci , and thus, it has
already used in the anti-unification that obtaineddi . Let us illustrate this definition with an
example. Let us suppose that objectsX1 andX2 have the following definitions:

X1 : person

[
children=̇ Mary

John

]
X2 : person

[
children=̇ Peter

Jennifer

]

The sets of values of the children feature in both feature terms can be combined in the follow-
ing tuples:c1= (Mary,Peter), c2= (Mary, Jennifer), c3= (John,Peter) andc4= (John,
Jennifer). Tuplec1 is incompatible withc2 since both share the valueMary, andc1 is also
incompatible withc3 since both share the valuePeter. Pairs of compatible tuples are (c1,
c4) and (c2, c3).

Whensearch-most-specificfunction of figure 5 has Card(MS)> 1 there are several terms
in MS that are maximally specific. Consequently,search-most-specificwill provide a dif-
ferent anti-unification for each subset of termdk ∈ MS compatible with eachdi . Search-
most-specificusesobtain-several-solutionsfunction to obtain all possible solutions. In turn,
theobtain-several-solutionsfunction (figure 7) usesobtain-one-solutionto obtain, for each
maximally specific termdi ∈ MS, MinCard terms compatible withdi . In this casesearch-
most-specificwill return several feature terms as the anti-unification of sets inW.

When the anti-unification of a setW is not unique, the AU algorithm (lines 19 to 23
in figure 4) has to createM copies of the current anti-unification termD. Each copy will
contain the current featureai with a different value according to the result ofobtain-several-
solutions.

We have now finished the detailed presentation of the anti-unification algorithm. Since
INDIE is a bottom up learner that is based on the anti-unification operation and the sub-
sumption lattice this presentation was necessarily a detailed one. However, as a summary,
it’s worth noting that, except for the management of set-valued features, the AU algorithm
is straightforward: AU is a recursive function that for each feature computes the sort of
the next node as the least common sort and keeps track of the path equalities already
visited.

270 E. ARMENGOL AND E. PLAZA

4. General view of INDIE

In this section we describe INDIE, an inductive learning method for the discrimination task,
defined as follows:

Given: a setE containing positiveE+ and negativeE− examples, a notion of subsumption,
and background knowledge

Find a termD such that∀e∈ E+ : D v e and∀e′ ∈ E− : D 6v e′

In other words, a discriminating termD subsumes all positive examples and does not
subsume any negative example. Let us assume that training examplesE = E+ ∪ E− are
classified inM solution classesC1, . . . ,CM . The goal of INDIE in the discrimination task
is to build a hypothesisD for a solution classCk such thatD subsumes all the positive
examples and does not subsume any negative example. Positive examples of the solution
classCk are those training examples classified as belonging toCk and negative examples
of Ck are those belonging to solution classes different thanCk. We assume that the training
examples are correctly and uniquely classified.

Figure 8 shows the knowledge modelling of INDIE in the discrimination task. INDIE is
decomposed in two subtasks:induction andsimplification. Theinduction task uses
knowledge from positive and negative examples to obtain a hypothesis for a solution class.
Thesimplification task generalises as much as possible the hypothesis obtained by the
induction task using a heuristic method for feature elimination (explained in Section 5.3).
Thesimplification task is optional. Theinduction task is solved using thebottom-
up-inductionmethod. This is the heuristic bottom-up method that builds a hypothesis that
subsumes the positive examples and does not subsume the negative examples. This method is
made up of two subtasks:generalisation andspecialisation. Thegeneralisation
task uses theanti-unificationmethod explained in the previous section to obtain a most
specific generalisationD subsuming all the positive examples.

Figure 8. Decomposition of INDIE method for thediscrimination task.

INDUCTION OF FEATURE TERMS 271

If the hypothesisD obtained bygeneralisation task also subsumes some negative
examples, thespecialisation task is used to specialiseD. Specialisation (see Section 5.1)
is achieved by means of thechange-bias method that replacesD with a disjunction of
terms. This method decomposes in two subtasks:new-bias andinduction. Thenew-
bias task decides how many disjuncts are necessary using the L´opez de Mántaras distance
(López de Mántaras, 1991). For this purpose, theRLM-heuristic method (Section 5.2)
partitions the set of positive examples inN sets. Finally, theinduction task is newly
applied to each set of the partition in order to find a suitable discriminating hypothesis;
the result will therefore be a hypothesis formed by a disjunction of terms. This process is
repeated until a hypothesis that does not subsume negative examples is found.

5. Description of the INDIE algorithm

Given a set of training examplesE={e1, . . . ,en} and a set of solution classesC={C1, . . . ,

CM}, the goal of INDIE is to obtain a discriminating hypothesisD for each solution classCk.
Each exampleei is a feature term having a subset of featuresAi = {Ai 1, . . . , Aip | Ai j ∈ F}.
A hypothesisDk = {d j

k } represents a disjunction of feature terms describing the current
solution classCk since it subsumes all the positive examples ofCk. Eachd j

k subsumes
a subset of positive examples ofCk and does not subsume any negative example. In a
discrimination task, negative examples of a solution classCk are all those training examples
that do not belong toCk.

Given a set of positive examplesE+ for a solution classCk thebottom-up-induction
algorithm (figure 9) obtains, using the anti-unification operation, a most specific gener-
alisation Dk subsuming all the examples inE+. There are two possible cases: (1) the
anti-unification ofE+ is a unique feature term, or (2) the anti-unification ofE+ is a col-
lection of feature terms. This second case occurs when antiunification is not unique due
to the presence of set-valued features among the positive examples. To solve the first case
the specialisation function (figure 10) is used. The second case is solved using the

Figure 9. The Bottom-up-Induction function obtains a set of feature terms that do not subsume negative examples
for the current class.

272 E. ARMENGOL AND E. PLAZA

Figure 10. Specialisation function obtains a new disjunctive hypothesis that does not subsume negative examples.

specialisation function for each feature term inDk, and thus performing an exhaustive
search. Let us now analyse thespecialisation function. If the current hypothesisdk does
not subsume any negative example thendk is a correct hypothesis and INDIE’s goal has
been achieved. Ifdk subsumes some negative example it needs to be specialised. However,
dk is already a most specific generalisation of the positive examples; consequently, the only
way to specialisedk is to transform it into a disjunctive hypothesis. INDIE has to partition
E+ into a collection of sets of examples and then find a term for each of these sets that does
not subsume any element ofE−. In order to do so, INDIE selects a featuread and partitions
the examples ofE+ according to the sort of the value ofad in each example.

Thus, the main goal of the specialisation process is to determine the best feature to be
used to specialise the current hypothesis. This issue is addressed by an heuristic approach:
the López de Mántaras distance (L´opez de Mántaras, 1991). The L´opez de Mántaras (RLM)
distance calculates the distance between a partition over the examples defined by an attribute
and the correct partition. The correct partition in INDIE is formed by two sets, one containing
the positive examples and another with the negative examples. Each featureai ∈ AL induces
one or more partitions over the set of training examples, according to the sorts that the feature
ai takes on the examples (see Section 5.2 for a more detailed explanation). INDIE uses the
RLM-Heuristic function to select the most discriminating featuread. Such feature induces
a partitionPdis of the training examples such that the RLM distance betweenPdis and the
correct partition is minimal. Next, INDIE uses this most discriminating featuread ∈ AL

to induce a partitionPdis that hasm sets, wherem is the number of different sorts thatad

takes inE+. This partition is returned to thespecialisation function (figure 10) where
thebottom-up-induction function is recursively applied to each set of the partitionPdis.
At this level, INDIE will generate a disjunct of (at most)m terms (one for each partition
set) as new hypothesis. In general, one of these sets can be further partitioned into subsets
and thus the number of disjuncts may be greater thanm. This process is repeated until the
hypothesis does not subsume any negative example. The final disjunctive hypothesisD is
composed of several disjunctsdk some of which may be redundant, i.e. two termsdk anddj

in D can satisfy thatdk v dj . For this reason the last instruction of thespecialisation
function is the elimination of such redundant terms. In particular, whendk v dj the term
dj is eliminated.

INDUCTION OF FEATURE TERMS 273

Figure 11. A feature term describingFrancesca.

There is a special case in which the partition induced by featuread overE+ has only one
set; this is possible since RLM works on partitions overE, not onlyE+, and there may be a
partition ofE where all positive examples are in just one set. INDIE deals with this special
case by simply rejecting the currentad ∈ AL and using the next more discriminating feature
in AL to proceed.

In the next sections, we explain the bias used to select the set of features candidates
to partition the set of examples (Section 5.1) and how the most discriminating feature is
selected (Section 5.2).

5.1. INDIE’s specialisation bias

In order to determine the most discriminating feature INDIE uses two main biases on the
specialisation process. First, of all possible features inF , INDIE will consider only those
features present in the current hypothesisDk—i.e. the result of the anti-unification. As a
consequence, any feature that is not present in the current hypothesis will not be considered
by the RLM heuristic of Section 5.2.

The second bias is a depth threshold that determines the maximum depth at which a feature
can appear in a term in the hypothesis to be considered eligible by the RLM heuristic. For
this purpose we need first to define the notion of feature depth.

Definition(Depth of a feature). Thedepth of a feature fin a feature term9 with root X
is the number of features that compose the path from the rootX to f , including f , with no
repeated nodes.

Notice that this definition deals with feature depth and not with node depth. We’ll ex-
plain this notion using as example the term shown in figure 11. If we consider the
path Francesca@son we see that featureson has depth 1, while considering the path
Francesca@husband.wife we see that featurewife has depth 2. Notice that a particular
node can be reached by more than one path when there is a path equality. For instance, in
figure 11,Francescaoccurs in three places: at the root (the empty path), as value of path
Francesca@husband.wifeand as value of pathFrancesca@son.mother. For this reason
we do not define node’s depth but feature depth: depth is a property of paths and not of nodes.

274 E. ARMENGOL AND E. PLAZA

Lastly, the proviso in feature depth definition that the path should not contain repeated
nodes is included to avoid circularities. Let us consider the following path:π1= Francesca@
husband.wife.husband.wife. The value ofπ1 is Francesca. However, pathπ1 has an-
other occurrence of the node Francesca as the value of subpathπ2= Francesca@husband.
wife. According to the feature depth definition, the depth ofwife is determined only by
pathπ2 whereFrancescaoccurs only once.

Let us now transform feature depth into a bias. INDIE considers feature candidates for
specialisation only those features in the term produced by the AU operation. This second
bias restricts this set of candidates to those that are leaf features. INDIE has a specific
parameter called maximum feature depth,1, to control this bias.

Definition(Leaf feature). Given a particular maximum feature depth1, a leaf featureis
(1) a feature with depth1 or (2) a feature with lesser depth that has as value a node without
features.

Thus, the set of feature leavesL1 of the term in figure 11 with1 = 1 isL1 = {Francesca@
husband, Francesca@son, Francesca@hair}, with 1 = 2 it’s the setL2 = {Piero@
wife, Piero@hair, Marco@mother, Marco@father, Marco@wife, Marco@hair},
and with1 = 3 it’s the setL3 = {Piero@wife.husband, Piero@wife.son, Piero@
wife.hair, Marco@mother.husband, Marco@mother.son, Marco@mother.hair,
Marco@father.wife, Marco@father.hair, Mary@brother}. For a given depth and a
current hypothesisDk these biases defineAL , the set of candidate features to specialiseDk

that will be used by the RLM heuristic of the next subsection.

5.2. The RLM heuristic

In this section we explain the heuristic to select the most discriminating feature for special-
isation. Figure 12 shows the algorithm based on evaluating the distance between the correct
partition and the partitions induced by the features in the setAL obtained as explained in
previous section.

Let D be the hypothesis obtained from the anti-unification of the set of positive examples
E+ that also subsumes some negative example. Now INDIE has to transformD into a
disjunctive hypothesis. For this purpose, INDIE has to define a partition of the setE+

in subsetsE1, . . . , Es to which theBottom-up-induction algorithm will be recursively
applied. The RLM heuristic decides which specific partition will be used.

Let AL = {a1 . .an} be the set of features that can be used to induce a partition, as
determined by the bias explained in Section 5.1. INDIE selects a most discriminating
featuread ∈ AL using the López de Mántaras (RLM) distance (L´opez de Mántaras, 1991).
The partition is induced over the current training set, namelyE = E+∪E−, whereE+ is the
currently considered subset of positive examples andE− is the set of all negative examples.
Since each featureai ∈ AL induces a partitionPi over the training setE according to the
sorts thatai can take inE, the RLM heuristic is used to determine the feature that induces
a partition that is closer to the correct partition.

Basically, the partitionPi induced by a featureai is built according to the number of
“different values” thatai takes in the setE+. Thus, examples belonging to a set of the

INDUCTION OF FEATURE TERMS 275

Figure 12. Discriminating-partition function selects the most useful feature in a term leaf using the L´opez
de Mántaras distance.

partition Pi have the same value in the featureai . Since in feature terms values are sorted,
INDIE can consider values “equal” or “different” depending on whether they have or not a
sort in common. In other words, for each featureai several partitions{Pik} are generated.
Each partitionPik is induced according to different combinations of the sorts to which the
possible values ofAi belong.

Let us suppose that a featureai takes inE the valuesv1, v2 andv3 that have sortsS1,
S2, andS12 according to the hierarchy of sorts of figure 13 (notice thatv4 is not present in
the examples). In addition to the partition induced byv1, v2 andv3, INDIE considers the
following partitions:

r (S1, v2), i.e. the training set is partitioned in two groups, one containing examples whose
value in featureai has sortS1 and the other containing examples whose value in the
featureai is v2.r (v1, v3, S2), i.e. the training set is partitioned in three groups, one containing examples
whose value in featureai isv1; a second group whose value isv3, and a third whose value
in featureai has sortS2.

Figure 13. An example of sort hierarchy.

276 E. ARMENGOL AND E. PLAZA

r (S1, S2), i.e. the training set is partitioned in two groups. One group contains examples
whose value in featureai has sortS1, and the other whose value has sortS2.

Thus, for eachai ∈ AL , INDIE considers all the partitions{Pik} that are meaningful with
respect to the sort hierarchy. For each partitionPik INDIE computes the RLM distance of
Pik with respect to the correct partition. INDIE will consider the bestai as the feature with
a partitionPik that has the least distance to the correct partition.

The RLM measures the distance betweenPi and the correct partition as follows: Given
two partitionsPA and PB of a setX, the RLM distance between them is computed as
follows:

RLM(PA, PB) = 2− I (PA)+ I (PB)

I (PB ∩ PA)
whereI (PA) = −

n∑
i=1

pi log2 pi ,

pi = |X ∩ Ci |
|X|

I (PA ∩ PB) = −
n∑

i=1

m∑
j=1

pi j log2 pi j ,

pi j = |X ∩ Ci ∩ Cj |
|X|

whereI (PA) measures the information contained in the partitionPA; n(m) is the number
of possible values of the feature inducingPA(PB); pi is the probability of occurrence of
classCi in the set of examplesX, i.e. the proportion of examples inX that belong toCi ;
I (PA ∩ PB) is the mutual average information of two partitions; andpi j is the probability
of occurrence of the intersectionCi ∩ Cj , i.e. the proportion of examples inX that belong
to Ci and toCj .

Given two partitions, the RLM heuristic provides the following relation among features:

Definition (More discriminating feature). Let Pc be the correct partition, andPj and Pk

the partitions induced by featuresaj andak respectively, we say that featureaj is more
discriminating thanfeatureak iff RLM (Pc, Pj) < RLM(Pc, Pk).

In other words, when a featurea1 is more discriminating than another featurea2 the partition
thata1 induces over the set of examples is closer to the correct partitionPc than the partition
induced bya2. Therefore, the RLM-Heuristic returns the featuread inducing a parti-
tion with the least distance to the correct partition.

5.3. Simplification post-process

After INDIE has induced a discriminating class hypothesisD, an optional post-processing
step can be used. This post-process is similar to the one used by FOIL (Quinlan, 1990). Since
INDIE is a bottom-up induction method, the disjunctive hypothesisD = {d j

k } obtained for

INDUCTION OF FEATURE TERMS 277

Figure 14. TheAttribute-elimination algorithm that eliminates features from a current hypothesis obtained
using the INDIE method.

a classCk is a most specific generalisation forCk that does not subsume examples of
other classes. The hypothesis can be further generalised in so far as no negative example is
subsumed. The generalisation algorithm for post-processing is shown in figure 14. For each
feature termd j

k in the hypothesisD, the algorithmAttribute-eliminationuses the L´opez
de Mántaras distance to rank all the features belonging tod j

k . The features are considered
from the least discriminating to the most discriminating. Following this order, one step
in the algorithm considers a new term generated by eliminating the least discriminating
feature from termd j

k . If the new term does not subsume negative examples then the least
discriminating feature can be eliminated, and the new term substitutes the oldd j

k . All the
features are explored in this order, and the final result is a term containing the features that
are necessary to identify the examples of the current classCk. The resulting hypothesis is one
of the most general discriminating hypotheses that describe the current solution classCk.

Finally, from the obtainedD = {d j
k }where eachd j

k has been simplified, when a simplified
d j

k subsumes another termdi
k ∈ D thendi

k is eliminated fromD.

5.4. About INDIE’s complexity

The formalism of feature terms is a generalisation of “feature structures” where features
may be set-valued. The introduction of sets as values of features increases the expressive
power on the formalism in representing relations. This fact effectively allows full relational
learning in INDIE. On the other hand, subsumption among “feature structures” is linear
on the number of nodes (Carpenter, 1992) while this is not the case for feature terms.
The introduction of set-valued features equalises feature-based formalisms with relational
representations (like Horn clauses) and the complexity of subsumption now is the same as
that of other relational formalisms, e.g.θ -subsumption for ILP.

It is interesting to summarily compare the complexity results known for Horn formalisms
with feature terms. Following (Kietz & L¨ubbe, 1993) we know thatθ -subsumption (using
Buntine’s definition) is NP-complete in general, whileD vθ C is polynomial whenD is

278 E. ARMENGOL AND E. PLAZA

determinate with respect toC. Moreover these authors identify a category of situations,
calledk-locals, where the worst-case does not apply and they show subsumption for deter-
minatek-local Horn clauses to be polynomial. Another usual provision in ILP is restricting
the hypothesis toi j -determinate Horn clauses. As shown in (Lavrac & Dzeroski, 1994)
i j -determination depends on the training examples, the background knowledge, and the
ordering of literals in a clause. The goal ofi j -determination is to assure that there is only
oneθ -substitution for a clause. Under this hypothesis an efficient treatment of subsumption
is achieved since the subsumption complexity arises from the multiplicity ofθ -substitutions
possible in the general case.

Concerning feature terms, the increase in complexity is clearly caused by the presence
of sets of values in a feature. More specifically, the situation where worst case complexity
may appear is when feature terms haveembedded sets. Letψ ::= X : s[f1 =̇91 . . fn =̇9n]
be a term where9i is a set, and letψ ′ ∈ 9i be a termψ ′ ::= X′ : s[f ′1 =̇9 ′1 . . f ′n =̇9 ′n];
if 9 ′j is a set we say that9 ′j is a setembeddedin set9i and thatψ hasembedded sets.
Subsumption of two terms with embedded sets in the same features give rise to exponential
complexity. Indeed, “feature structures” have linear subsumption because there is only
one possible variable substitution from one term to the other (Carpenter, 1992). In feature
terms, subsumption among sets of values has to deal with a multiplicity of possible variable
substitutions, reintroducing the worst case complexity. When a domain can be represented
using feature terms without set-valued features, the subsumption behaves efficiently (in
fact, its complexity is lineal).

This fact allows the designer of a particular system to be aware of the complexity intro-
duced when modelling a domain in a certain way: e.g. using the set-valued featureparents
introduces more complexity than using themotherandfatherfeatures. As a further example,
while modelling the domains used to evaluate INDIE in Section 6 we found that almost all
of them did not require set-valued features; we know thus the complexity we may expect
and also that these relational domains were probably designed having in mind the avoidance
of the worst case complexity. In our experience, this worst case situation is most of times
avoidable (or minimizable) if a domain is modelled carefully.

Concerning anti-unification, the complexity also is caused by the presence of set-valued
features and is the same as in other relational formalisms like Horn logic. As before, we
know the problems are circumscribed to the features with sets of values and that for the rest
of the features the process is efficient. Again, the cause of the complexity is the multiplicity
of variable substitutions—present only in set valued features. Anti-unification of “feature
structures” is unique while anti-unification of feature terms is not unique: there may be
more than variable substitution that gives a most specific subsumer. The multiple variable
mappings possible between sets of values is the responsible for the increase of complexity, as
before, but is also circumscribed to set-valued features and, the worst case, to the embedded
sets case.

6. Evaluation of INDIE

The purpose of this section is to evaluate INDIE showing that is capable to find correct
hypotheses for several relational datasets. We have selected datasets commonly used in the

INDUCTION OF FEATURE TERMS 279

Figure 15. Robots used as input in the Robots dataset.

literature to evaluate relational learning systems. We show that INDIE is capable to obtain a
correct hypothesis for all them, even for datasets for which some relational learning systems
have problems. We also compare INDIE’s results with those of the original systems to show
how differences in biases and search strategies used by the systems result in finding different
correct hypotheses.

6.1. Robots dataset

The domain of Robots (Lavrac & Dzeroski, 1994) consists of a description of six robots
that belong to two solution classes:friendly andunfriendly(see figure 15). Each robot is
described using five features:smiling, holding, has-tie, body-shape andhead-
shape. Robots are described using an attribute-value representation. However, using the
feature term formalism, INDIE obtains a relational hypothesis for thefriendlyclass:

Friendly= X : robot

[
body-shapė=Y : shape

head-shapė=Y : shape

]
Notice that the value of featuresbody-shape andhead-shape is the same variableY for
sort shape. Variable equality, or in other words, path equality, in this hypothesis means
that a robot is in thefriendly class if it has a head whose shape is any shape but is equal
to the shape of its body. Path equality is based on the semantics of subsumption(v) in
Section 2. Examples R1 and R2 are subsumed by theFriendly term above because both
have the required path equality; the rest of the examples are not subsumed by theFriendly
term since they do not satisfy the variable equality constraint present in the subsumer and
required by the definition of subsumption. In other words, thefriendly class hypothesis
corresponds to the graph:

The subsumption relation holds only for those examples whose graphs also contain the
same path equality (for a particular subsort ofshape).

LINUS obtains the following rule as description of thefriendlyclass:

Friendly= [(smiling= yes) ∧ (holding= balloon)]

∨[(smiling= yes) ∧ (holding= flag)]

280 E. ARMENGOL AND E. PLAZA

Lavrac and Dzeroski (1994) describe how background knowledge can be introduced in
attribute-value learning. In addition to attributes describing domain objects, they suggest
that the description of domain objects can include attributes representing relations between
other attributes. These new attributes are like functions in the sense that their value istrue
or false. In particular, descriptions of robots can include a new attribute calledsame-shape
that istrue if both body and head have the same shape andfalseotherwise. According to
this new description LINUS obtains the same description for thefriendlyclass that INDIE
obtains directly.

For theunfriendlyclass INDIE obtains a hypothesis that is a disjunction of two feature
terms:

Unfriendly= X1 : robot [has-tie=̇ no]

∨
X2 : robot [holding=̇ sword]

i.e. a robot isunfriendlywhen either it wears no tie or it holds a sword. LINUS using any
of learners that it includes (NEWGEM, ASSISTANT or CN2) obtains the following rule:

Unfriendly= [(smiling= no)] ∨ [(smiling= yes) ∧ (holding= sword)]

It is worth noting that (smiling= no) plays the same role as the feature [has-tie= no] on
INDIE’s hypothesis. During INDIE’s simplification process, features contained in the not yet
simplified hypothesis are ranked according to their relevance using the L´opez de Mántaras
distance. For theunfriendlyclass the featuressmiling andhas-tie have the same value
for the distance, and for this reason INDIE randomly chooses one of them to be eliminated.
In other words, INDIE can also obtain, with the current biases, the following hypothesis:

Unfriendly= X1 : robot [smiling=̇ no]

∨
X2 : robot [holding=̇ sword]

The other disjunct obtained by LINUS, (smiling= yes)∧ (holding= sword) is more specific
than the one obtained by INDIE. Finally, let us note that introducing the attributesame-
shape, LINUS obtains that a robot belongs tounfriendlyclass if the attributesame-shape
has as valuefalse, i.e. body and head do not have the same shape.

6.2. Drugs dataset

The domain of Drugs consists of descriptions of several drugs (see in figure 16 some of
the descriptions) and has been used by the KLUSTER system (Kietz & Morik, 1994).
KLUSTER uses a representation language based on KL-ONE to represent generalisations
(class descriptions) and domain objects (instances). From these descriptions KLUSTER

INDUCTION OF FEATURE TERMS 281

Figure 16. Some of the drug descriptions used by the KLUSTER system (Kietz & Morik, 1994).

can classify an instance in one of several classes, i.e. active substance, monodrug, sedative
substance, etc. KLUSTER builds hypotheses describing each class (i.e. active substance,
monodrug, combidrug, etc.) by searching for a most specific generalisation (MSG) from
positive examples. If MSG covers negative examples KLUSTER follows a particular algo-
rithm to specialise MSG by means of introducing newat-most andat-least predicates
in the feature descriptions.

The hypotheses obtained by KLUSTER formonodrugandcombidrugclasses are the
following:

monodrug := drug andat-least(1, contains-active) andat-most (1, contains-active)

combidrug := drug andat-least(2, contains-active)

In other words, KLUSTER considers that a drug belongs to themonodrugclass if it
contains only one active substance and a drug belongs to thecombidrugclass if it contains
at least two active substances.

The hypotheses obtained by INDIE for these classes are similar to those obtained by
KLUSTER. The main differences are due to the different representation formalism. INDIE
uses anti-unification to find a most specific hypothesis that subsumes positive examples
(similarly to KLUSTER since both follow a bottom-up strategy). However, the speciali-
sation in INDIE is achieved by the introduction of a disjunction of hypotheses following
the distance-based heuristic. INDIE obtains the following hypothesis formonodrugand
combidrugclasses:

Monodrug= X : drug

[
effects=̇Y : drug-effect

contains=̇ Z : active-substance [affectṡ=W : symptom]

]
Combidrug= X : drug

[
contains=̇Y : active-substance

Z : active-substance

]
The hypothesis of themonodrugclass means that a substanceX is a monodrug when it has
some effectY and it contains an active substanceZ affecting some symptomW. A substance
X is acombidrugwhen it has two active substancesY andZ. Thecombidrughypothesis
subsumes also a drug with three active substances because of the definition of subsumption
(Section 2.1). The reason is that the subsumption definition interprets variablesY and Z
as being distinct (i.e.Y 6= Z) and requiring thus that the examples to be subsumed have at
least two different active substances on thecontains feature.

This definition of subsumption implies that a simplermonodrughypothesis would also
subsumecombidrugexamples—since they have at least one active substance. For this reason

282 E. ARMENGOL AND E. PLAZA

Figure 17. Training examples of the Arch dataset.

INDIE reaches amonodrughypothesis that, in addition to thecontains feature, has two
more discriminating features (effects andaffects).

6.3. Arch dataset

Winston (1975) introduced the Arch domain. The Arch Dataset consists of two examples
of thearchconcept and two counter-examples (figure 17). Each arch is composed by three
pieces (two verticals and one horizontal). As negative examples, there are two objects also
composed of two vertical pieces and one horizontal piece but they do not form an arch.
Authors that have used this domain (Quinlan, 1990; Lavrac & Dzeroski, 1994) represent
background relations as Horn clauses.

The arch hypothesis obtained by LINUS and FOIL (both using the closed world assump-
tion) is the following:

arch(A, B,C)← left-of(B,C), supports(B, A), not touches(B,C)

The predicatesupports means that a block has another block on top of it; the predicate
touches means that a block has a lateral contact with a second block; and he predicate
over means that a block is on top of another block. Lavrac and Dzeroski (1994) noticed
that the hypothesis obtained by LINUS and FOIL is correct with respect to the positive and
negative examples in figure 17 but it is not correct because it covers unseen examples such
as those in figure 18 that are not arches.

Thus, LINUS and FOIL need to include both objects as negative examples in order to
obtain a correct description ofarch. However, using the training set of figure 17, INDIE

Figure 18. Two negative examples ofarchcovered by the description obtained by FOIL and LINUS.

INDUCTION OF FEATURE TERMS 283

obtains the following hypothesis that does not subsume the unseen examples in figure 18:

Arch= X : figure

left =̇Y : brick

left-to=̇ T : brick

 right-to=̇Y
supports=̇ Z
touches=̇ no-one

supports=̇ Z : block

[
over=̇ T

Y

]
touches=̇ no-one

This hypothesis states that anarch is an objectX having abrick Y (brick is a subsort of
block) satisfying the following conditions: (1)Y is left to a brick T, (2)Y supports a block
Z, and (3)Y does not touch any brick (touches feature has valueno-one). In turn, the
block Z has to be over bricksT andY. Finally, brickT is to the right ofY, supports block
Z and does not touch any brick. Notice that the hypothesis above obtained by INDIE does
not subsume the unseen negative examples in figure 18, since both vertical bricks have to
support the central blockZ.

6.4. Families dataset

This domain, defined by Hinton (1989), consists of the definition of two families having
twelve members each (see figure 19). Several relational learning systems have been tested
using this domain. In particular, LINUS obtains the following hypotheses for themother
relation:

mother(A, B)← daughter(B, A), not father(A, B) (1)

mother(A, B)← son(B, A), not father(A, B) (2)

The rules obtained by FOIL to describe the mother relation are the following:

mother(A, B)← daughter(B, A), not father(A,C) (3)

mother(A, B)← son(B, A), not father(A,C) (4)

Notice that FOIL obtains more specific hypothesis than LINUS since (3) and (4) use a
new variableC. This new variable means that “A is not the father of anybody”, whereas in

Figure 19. Training set of the Families dataset.

284 E. ARMENGOL AND E. PLAZA

descriptions (1) and (2) “A is not the father ofB” (i.e. A could be the father of a person
different thanB).

INDIE obtains the following hypothesis for mother:

mother= X : female [son=̇Y : male]

This hypothesis is equivalent to descriptions (2) and (4) above since the relationnot father
(used by LINUS and FOIL) is equivalent to defining a person of sortfemaleas INDIE does
(both rule out the same collection of examples). Notice that including in the hypothesis
only theson feature (and not thedaughter feature) is sufficient since in the training set all
mothers have one son—and, also, one daughter. INDIE obtains only one disjunct because
the hypothesis obtained by anti-unification already subsumes all positive examples and
does not subsume any negative example—thus no specialisation step was needed. After
the simplification post-process only theson feature remains. During the post-process, two
features,sonanddaughter, have the same RLM distance; because of this any of them could
have been eliminated, and INDIE has randomly chosen the elimination of thedaughter
feature.

Using INDIE to obtain a hypothesis for classunclethe result is the following:

uncle= X : male [niece=̇Y : female]

That is to say, an uncle is a male that has (at least) a niece. As before, during the simplification
post-process, two features,niece andnephew, have the same RLM distance, therefore
INDIE has randomly chosen the elimination of thenephew feature.

6.5. Trains dataset

This domain was introduced by Michalski (1980) to test the INDUCE system. Domain
objects are 10 trains (see figure 20) having different numbers of cars with various shapes
carrying loads of different forms.

The task is to distinguish betweeneastboundandwestboundtrains. Learners that use
attribute-value representation have a great difficulty to solve this task due to the variability
in the number of structures and substructures present in the domain objects (e.g. trains have
a variable number of cars). LINUS needs the introduction of an artificial variable (namely,
the number of cars) to obtain theeastbounddescription (see Lavrac, Dzeroski, & Grobelnik,
1991). Using ASSISTANT, LINUS obtains a hypothesis consisting of 19 Prolog clauses
that after post-processing is reduced to one clause that is the same obtained by FOIL and
INDUCE:

eastbound(A)← has-car(A, B),¬ long(B),¬ open-top(B)

Concerning westbound trains, we have no information about the LINUS results. The FOIL
system obtains the following hypothesis for thewestboundtrains:

westbound(A)← has-car(A, B), long(B), 2- wheels(B),¬ open-top(B)

INDUCTION OF FEATURE TERMS 285

Figure 20. Training examples of the Trains Dataset. In this training set, the solution classes areeastboundand
westboundtrains.

This hypothesis covers three of the five westbound trains. FOIL is not capable of obtaining a
complete hypothesis due to the encoding length heuristics. INDUCE can obtain a hypothesis
covering all the westbound trains because it uses constructive induction that introduces a
new predicate: the number of cars of a train. Thus, thewestboundclass is described by
INDUCE as follows:

westbound(A)← car-count(A) = 3

westbound(A)← has-car(A, B), jagged-top(B)

Using feature terms INDIE avoids the problem of the variability in the number of structures
and substructures and is capable of obtaining a hypothesis for botheastboundandwestbound
trains without introducing new predicates. Theeastboundhypothesis obtained by INDIE is
the disjunction of the following term:

eastbound= X1 : train [wagons=̇Y1 : closed-car [lengtḣ= short]]

i.e. the eastbound trains are characterised by having one wagon that is a closed car which
is short. This description of the eastbound trains is equivalent to that obtained by FOIL and
INDUCE. Notice that INDIE obtains that the wagon is short whereas FOIL and INDUCE
obtain the negation of the predicate “long”.

Thewestboundhypothesis obtained by INDIE is also a disjunction of three feature terms:

westbound= X1 : train [wagon2=̇Y1 : open-car [form-caṙ= openrect]]

∨
X2 : train [wagon2=̇Y2 : open-car [from-caṙ= ushaped]]

∨
X3 : train [wagon3=̇Y3 : open-car [load-seṫ= rectanglod]]

286 E. ARMENGOL AND E. PLAZA

Now theform-car feature, in addition to theload-set feature, are the most relevant to
describe thewestboundclass.

6.6. Discussion

INDIE is capable of inducing correct hypotheses for relational domains commonly used in
the literature. This section shows that INDIE provides correct results in robots, drugs, fami-
lies and arch domains and that they are comparable to those obtained by FOIL, KLUSTER,
INDUCE and LINUS. Notice that in the Robots domain INDIE obtains a relational hypoth-
esis forfriendlyclass (i.e. a robot belongs to thefriendlyclass if it has the same shape of head
and body). This same hypothesis is obtained by LINUS only after manually introducing a
new predicate representing thesame-shape relation. INDIE also obtains better results than
FOIL, INDUCE and LINUS when it is applied to the arch domain, since INDIE does not
need additional negative examples to find a correct description of arch. Results obtained
by INDIE over the trains domains are comparable albeit different from those obtained by
FOIL, INDUCE and LINUS. One reason for the different description foreastboundclass
is that INDIE does not use negation. On the other hand, both FOIL and INDUCE systems
have some difficulties in obtaining a description for thewestboundclass: FOIL cannot
obtain a description covering the five westbound trains and INDUCE has to introduce a
new predicate in order to achieve it. Instead, INDIE obtains a hypothesis composed of the
disjunction of three terms forwestboundclass without needing predicate invention.

7. Application of INDIE to the marine sponges domain

The identification of specimens is a very common task in biological research. There are
several types of biological studies that need a taxonomic analysis of organisms, for instance
environmental studies. Frequently, an error in the identification of the organisms invalidates
the whole study. The identification of marine sponges is especially complex and often the
support of an expert is necessary. Moreover, sponges are genetically much more diverse than
other marine invertebrates. They also have high variability in form within a species due to
their plastic ability to adapt to environmental conditions. As an example of the complexity
in the identification of marine sponges, we want to remark that some researchers have
assumed the discovery of a new species whereas it was really a morph of an already known
species. The taxonomic classification of any group of organisms has the aim of establishing
a hierarchical organisation of taxa.

Commonly, the identification of specimens is made from the descriptions of the taxa.
Therefore, given a sponge specimen, a strategy for identification is to explore the taxon-
omy and to find, for each taxonomy level, one taxon in which this new specimen can be
classified. To follow this strategy, it is necessary to known the taxa descriptions, but there
is no agreement among the experts about which are the characteristic features of the taxa.
Nevertheless, there are many sponges whose identification is not discussed, so they could
be used to identify new sponges. Our purpose is to use an inductive learning method like
INDIE to induce the descriptions of the taxa from the already classified sponges and later
verify the obtained hypotheses with an expert marine biologist. Notice that the sponge

INDUCTION OF FEATURE TERMS 287

Figure 21. Browser showing a description of a sponge specimen.

identification process is a multi-layered classification task since each specimen is classified
in five taxonomic levels:class, order, family, genusandspecies. Consequently, we need to
apply INDIE to each of these levels in order to achieve a discriminating description for the
classes (taxa) of each level.

In this section we explain the use of INDIE to obtain hypothesis characterising genus
of sponges. A sponge is represented by a feature term of root sortsponge, an example of
which is shown in figure 21. Most descriptions of sponges in our dataset are not complete,
i.e. often values of relevant features are unknown. The reason for having partial descriptions
lies in the incompleteness of the original reports on sponge specimens, often due to the fact
that biologist work with pieces of sponges.

In the experiment reported here we use a training set containing 26 marine sponges
correctly classified in thegenuslevel. At this level, the sponges can belong to one of five
genus:caminus, erylus, isops, pachymatismaandgeodia. INDIE has been used to find a
discriminating hypothesis for each genus. Let us to analyse the obtained hypothesis.

There are three specimens in the training set belonging to genuscaminus. Two of these
have a detailed description (around 12 features) whereas the other is described using only
3 features, a clear case of partial information. Figure 22 shows the feature term that INDIE
(with the simplification post-process) has built for thecaminusgenus. The hypothesis states

Figure 22. Hypothesis obtained by INDIE (with the simplification post-process) for thecaminusgenus.

288 E. ARMENGOL AND E. PLAZA

Figure 23. Browser showing a disjunct of two feature terms obtained for the genuserylus.

that the skeleton is of sort spiculate, in which there are big spicules (called megascleres,
shown as the sortmegasin figure 22), and there are two kinds of megascleres (shown as the
megas feature), namely strongyle and orthotriaena.

Nine of the specimens in the training set belong to genuserylus. Each specimen is de-
scribed usually by around 6 features, but few features are common to all them. The first
step of INDIE obtains a first hypothesis by anti-unification. Since it is not discriminating,
INDIE specialises it and then finds the disjunction of two terms in figure 23. One of these
terms states that the skeleton is of sort spiculate, in which there are small spicules (called
microscleres), of two kinds (oxyaster and sterraster), and where the form of this last one is
flat. The second term states that a specimen iseryluswhen it has no peduncle.

The training set has 8 sponges belonging to the genusgeodia. These sponges are described
by a number of features varying between 5 to 10. This variability among the descriptions
accounts for the difficulty in finding a set of discriminating features common to all thegeodia
specimens. Thus, INDIE needs several specialisations of the hypothesis obtained from the
anti-unification of the specimens ofgeodiain order to build a discriminating description.
Figure 24 shows the disjunction of 5 terms obtained by INDIE to describe the genusgeodia.

There are only two specimens in the training set that belong to the genuspachymatisma.
Both specimens have very similar descriptions. In fact they only differ in that thespiculate-
skeletonterm in one specimen has a feature calledspicarch whereas this feature is not
present in the other one. The hypothesis obtained from the anti-unification of these two
specimens has the same features and values as the description of the second one. Since
this hypothesis does not subsume negative examples it is correct. After the simplification

Figure 24. Disjunction of 5 terms for the genusgeodia.

INDUCTION OF FEATURE TERMS 289

Figure 25. Feature term obtained for the genuspachymatisma.

post-process the hypothesis is the one shown in figure 25. This hypothesis characterises the
pachymatismagenus by the presence of a coloured ring that is, in fact, the feature giving
name to the genus. This example shows the utility of the heuristic used in the simplification
post-process, eliminating the less discriminating features, since the most discriminating
feature is the one remaining in the simplified hypothesis.

The descriptions obtained using INDIE have been presented to a marine biologist expert
in this domain that has considered these descriptions to be accurate. However, the focus of
INDIE, as most other relational learners, is in finding the simplest hypothesis that is correct.
For instance the description provided by INDIE for genuspachymatisma(figure 25) is very
short (it contains only the featurecolour-ring). Our expert, in the task ofexplaininga
genus, would provide descriptions having more features; in fact, she tended to produce
a “prototype”-based description—i.e. a description based on the most common (typical)
values. Nonetheless, after some case studies, she agreed that the descriptions obtained by
INDIE with the simplification post-process were not only correct but they also contained
those essential features in which a expert focuses her attention to classify a specimen, that is
to say for the task ofidentifyingthe genus of a sponge (Domingo, personal communication).

8. Application of INDIE to the diabetes domain

This section shows an application of INDIE to learn to discriminate among levels of risk
incurred by diabetic patients. Diabetes is a metabolic disease characterised by hypergly-
caemia and the short-term and long-term symptoms related to it. Long-term symptoms are
the more important ones since they affect the life quality of the diabetic patient. The chronic
nature of diabetes is associated with the risk of developingcomplications(like blindness and
vascular problems) and, once the complication is developed, with the risk ofprogressionof
their dangerous effects. In turn, these complications depend on the diabetes evolution and
on the hyperglycaemia degree.

INDIE’s application’s goal is, for each associated complication, to induce a class hypoth-
esis for each level of risk—namelyunknown, low, moderate, high, very-high both for
(1) risk of developing a complication and (2) risk of progression for a developed complica-
tion. In particular we will show examples for two complications: (a) global macrovascular
complications and (b) stroke, a specific macrovascular complication. INDIE’s learning is
performed over records of diabetic patients taken from the DiabData database. DiabData
contains the data considered as necessary for the clinical purposes defined in the DiabCare
project. DiabData patient records are currently gathered in 17 European countries on the
basis of the St. Vincent Declaration, a document agreed by representatives of Government
Health Departments, patient organisations, and diabetes experts from all European coun-
tries. In this document they agreed upon the recommendations about the diabetes treatment
(more information is online athttp://diabcare.de/dimeu.html). Figure 26 shows the
basic information sheet of a diabetic patient in the DiabData format.

290 E. ARMENGOL AND E. PLAZA

Figure 26. Data of a diabetic patient as it is agreed in the Saint Vincent declaration.

INDUCTION OF FEATURE TERMS 291

Figure 27. Representation of a diabetic patient using feature terms.

We have translated the data in DiabData format into the feature term representation
shown in figure 27. A patientcasehas three kinds of information: personal information
(patient-fixed-data), information gathered during a consultation (info-patient-
consultation), and a brief assessment of the patient situation (assessment-patient-
db). The two first kinds hold data coming from DiabData database (see the information
sheet in figure 26). Moreover, the patient situation assessment is a brief summary that is
shown to the doctor to help him in determining the patient risks.1 The patient situation
assessment transforms numerical data into meaningful qualitative values, assess changes
between the last consultation and the present one, and summarises which complications are
presented by a patient—but does not determine or assess any kind of risk for the patient. For
instance theleg-macro-compl? feature (see figure 27) ascertains the presence or absence
of macrovascular complications on the legs of a patient whileBlindness? ascertains
whether or not the patient is considered blind.

We have applied INDIE to 100 cases containing the aforementioned data for estimating
different patient risks: macro and microvascular complications, stroke, amputation, blind-
ness, nephropathy, and polyneuropathy. We will presently show two examples of the induced
hypotheses, one for progression risk and another for development risk.

Concerning patients with stroke complication we are interested in learning discriminating
hypotheses for the different levels of progression risk—namelyunknown, low, moderate,
high, very-high. Let us now consider the class of patients with low progression risk:
after furnishing INDIE with the patients in this class as positive examples and the rest as
negative examples the hypothesis obtained is that of figure 28. This hypothesis states that

292 E. ARMENGOL AND E. PLAZA

Figure 28. Hypothesis characterising the class of diabetic patients with a low risk of stroke progression.

Figure 29. Hypothesis characterising the class of diabetic patients with a low development risk of global
macrovascular complications.

progression risk of stoke is low when macrovascular complications are present and the blood
pressure (R-Bp) is low. Similar hypotheses were found for the classes of moderate and high
risk in which blood pressure (R-Bp) is respectively moderate and high. These hypotheses
are correct with respect to the 100 training patients used and corroborated by the expert
diabetes doctor since it is known that blood pressure is highly correlated to stroke risk for
these kind of patients.

Let us now consider the class of patients that may develop global macrovascular com-
plications in the future. In particular, for those patients whose development risk islow the
hypothesis obtained by INDIE is shown in figure 29. The hypothesis states that the future
risk of developing macrovascular complications is low for patients that (1) have a known
value for major symptoms of type-2 diabetes, (2) do not present the polyneuropathy com-
plication, (3) have a known value for LDL-cholesterol, (4) have a low value of albumin,
(5) are insulin-dependent (because he’s been treated with insulin since a certain date
indicated by the number in the featurebefore?), and (6) have not had any treatment
for hypertension (indicated by thefalse value of the featurebefore? of hypertension
treatment).

In two places above, in order to describe the hypothesis, we have said that a “value is
known”, like when we said that it has a known value for major symptoms of type-2 diabetes.
In fact, we mean that featuremajor-symptoms-type2 has a value of sortmajor-symptom;
since this sort has some subsorts (long diabetes duration, moderate or high cholesterol,
high blood pressure, age higher than 55, high body-mass index, and smoking) what the
hypothesis reveals is that all the positive examples have (at least) one of these symptoms.
Similarly, the value of LDL-cholesterol being of sort number reveals that some numeric
value is known for all positive examples.

INDUCTION OF FEATURE TERMS 293

9. Conclusions

INDIE is a heuristic bottom-up inductive learning method that uses feature terms to represent
domain objects and the hypotheses it builds. We have seen on several common relational
problems that INDIE is capable of finding hypotheses at a level comparable to FOIL, LINUS
and INDUCE. The differences between INDIE’s hypotheses and those of the other systems
are explained by the bias in searching the hypothesis space and on the representational
bias of the hypothesis language of each system. The representational bias of INDIE can be
summarised in that it makes an intensive use of sorts and sort hierarchy, and in that it does
not use negation but focuses on detecting path equalities.

Path equality, embodying variable equality in the hypothesis space, is a powerful con-
struct for capturing regularities in data, and is one of the main properties of feature terms
(Carpenter, 1992). A precedent, although not direct, of path equality for Machine Learning
is the relational pathfinding technique (Richards & Mooney, 1992). Relational pathfinding
explores however a smaller hypothesis space than INDIE since it can only find hypotheses
expressible as combinations of path equalities. However, it is a distinct, ad hoc technique
(to be included in a wider learning system like Richards and Mooney’s FORTE system)
while in the framework of feature terms path equality is part and parcel of the representation
scheme, present in the definitions of subsumption and anti-unification.

A second precedent is KLUSTER, an inductive system for description logics that we
have commented on Section 6.2 for the drugs dataset, the only one reported to be used
(Kietz & Morik, 1994). Both KLUSTER and INDIE follow a bottom-up strategy (thus
using anti-unification from positive examples) but KLUSTER’s overgeneral hypothesis are
specialised by introducing new specific predicates (at-most andat-least) while INDIE
can use any predicate (feature) and chooses the one selected by the RLM distance heuristic.
KLUSTER uses a KL-ONE-like representation where it is known that introducing path
equality together with the usual description logic constructs (like negation and cardinality
constraints) increases the complexity of subsumption to intractability. On the other hand,
feature terms do not incorporate negation and it focuses around the notion of path equality—
nonetheless it is able to deal with the datasets taken from relational learning literature and
shown in Section 6. The introduction of sets as values of features results in the expected
increase in complexity; however, this is a worst case bound and, for the datasets in Section 6,
there has been no problems in tractability in spite of a heavy use of the subsumption
operation. As a result, we know when feature term representation can be efficiently used
for learning in domains where relational representation is adequate: for domains we can
model with no set valued features—since then subsumption is linear—or few set valued
features—since then the complexity is manageable in practice.

Acknowledgments

This work has been developed in the context of the SMASH project supported by the Spanish
Project CICYT TIC96-1038-C04-01. Authors thank Marta Domingo, Albert Palaud`aries
and Ana Ma Monteiro for their collaboration in developing marine sponges and diabetes
applications.

294 E. ARMENGOL AND E. PLAZA

Note

1. The patient situation assessment module uses expert domain knowledge and has been developed by Ana Ma

Monteiro in the context of the Systems of Multi-agents for Medical Services in Hospitals (SMASH) project.

References

Armengol, E. & Plaza, E. (1998). INDIE: A bottom-up method inducing feature terms. IIIA Research Report.
Aı̈t-Kaci, H. & Podelski, A. (1993). Towards a meaning of LIFE.Journal Logic Programming, 16, 195–234.
Carpenter, B. (1992). The logic of typed feature structures.Tracts in Theoretical Computer Science. Cambridge,

UK: Cambridge University Press.
Hinton, G. E. (1989). Connectionist learning procedures.Artificial Intelligence, 40, 185–234.
Kietz, J. U. & Lübbe, M. (1993). An efficient subsumption algorithm for inductive logic programming. InPro-

ceedings of the Tenth International Conference on Machine Learning(pp. 130–138).
Kietz, J. U. & Morik, K. (1994). A polynomial approach to the constructive induction of structural knowledge.

Machine Learning, 14, 193–217.
Lavrac, N. & Dzeroski, S. (1994).Inductive Logic Programming. London: Ellis Horwood Limited. Ellis Horwood

Series in Artificial Intelligence.
Lavrac, N., Dzeroski, S., & Grobelnik, M. (1991). Learning non-recursive definitions of relations with LINUS. In

Lecture Notes in Artificial Intelligence, Vol. 482:Proceedings of the 5th European Working Session on Learning.
Y. Kodratoff (Ed.). Springer-Verlag.

López de Mántaras, R. (1991). A distance-based attribute selection measure for decision tree induction.Machine
Learning, 6, 81–92.

Michalski, R. S. (1980). Pattern recognition as rule-guided inductive inference.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2, 349–361.

Mitchell, T. M. (1997).Machine Learning. McGraw-Hill. McGraw Hill Series in Computer Science.
Muggleton, S. & De Raedt, L. (1994). Inductive logic programming: theory and methods.Journal of Logic

Programming, 19, 20, 629–679.
Quinlan, J. R. (1990). Learning logical definitions from relations.Machine Learning, 5, 239–266.
Richards, B. L. & Mooney, R. J. (1992). Learning relations by pathfinding. InProceedings of the AAAI(pp. 50–55).
Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. Winston (Ed.),The Psychology of

Computer Vision. New York: McGraw-Hill.

Received October 26, 1998
Accepted March 20, 2000
Final manuscript March 20, 2000

