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Abstract

Data dependencies express the presence of structure in database relations, that can
be utilised in the database design process. The discovery of data dependencies can be
viewed as an induction process. Like in induction, we can distinguish between top-
down approaches and bottom-up approaches. In top-down approach, dependencies are
generated and then tested against the given relation. Since each test requires O(n2)

comparisons, where n is the number of tuples in relation, this can be computationally
costly. We propose an alternative approach which differs from the top-down approach
in that it starts with an analysis of the tuples in the relation: a bottom-up approach.

1 Introduction

Data dependencies are among the basic tools for modelling relational databases. They are
used for the representation of constraints on the possible relations that can be instances of

the relational scheme. Many types of data dependencies have been introduced and studied

in the last two decades [8]. Of these types, functional and multivalued dependencies are

the ones that are most commonly found in real environments. Consequently, functional
and multivalued dependencies are quite extensively studied and applied in the database

design process.

Usually, data dependencies are invented by the designer during the database design

process. In the first step of the database design, the choice of the relational schemes that

represent concepts in the Universe of Discourse is usually not influenced by the known data
dependencies. They are used as constraints that can guide the detailed design process of

the database conceptual scheme. In particular, data dependencies are used for checking

database consistency, and for eliminating redundancy by decomposing the relation into
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smaller relations that still preserve the original information and obey the given set of data
dependencies [8, 3].

In this paper, we concentrate on automating the construction of database dependencies
from data. Such automated discovery of data dependencies from the existing relations
can simplify the database design process and can be of a great help when relationships

among the attributes of the relation are not obvious, due to the complex structure of the
University of Discourse. Much work on the discovery of functional dependencies has been
done by Mannila and Raiha; see [5] for an overview.

Discovery of database dependencies can also be viewed as an induction process, where

the tuples in a relation represent instances of that relation, and dependencies represent

hypotheses about the relation. In [3] it was shown how inductive learning techniques
can be applied to the discovery of functional and multivalued dependencies. In [4] it was

described how such induced dependencies could improve the design of the database. In
[3], both types of dependencies are induced by a similar algorithm that incorporates the

notion of specialization of the data dependency, which can be compared to the refinement

operator as defined in the MIS [7]. Briefly, the algorithm starts with the set of the most
general dependencies. Each dependency that is contradicted by the relation is replaced

by the set of its specializations. One could call such an approach a generate-and-test or
top-down approach.

We found the serious disadvantage of the algorithm proposed by Flach to be the O(n2)

time complexity of the procedure for testing the validity of a given data dependency, where

n is the number of tuples in the relation. Since the upper limit of the number of generated

hypotheses grows exponentially with the number of attributes in the relation, this is a
serious limitation that prevents application of the algorithm on larger database relations
that usually appear in the real database environment.

In this paper, we propose an alternative approach which differs from the top-down

approach in that it starts with an analysis of the tuples in the relation: a bottom-up ap-

proach. We have worked out this approach for the case of functional dependencies, but the
idea is more general and can also be applied to multivalued dependencies. The basic idea

behind the new algorithm for the induction of functional dependencies from the relation

is derived from the fact, that all invalid dependencies that are contradicted by a given
relation, can be identified by considering all pairs of relation tuples. The set of identified

invalid dependencies can be represented by a cover for invalid dependencies, which includes
only the most specific invalid dependencies. In comparison with the approach taken by
Flach [3], the advantages of using the cover for invalid dependencies for the induction of

valid dependencies are twofold. First, the complexity for testing the contradiction of the

functional dependencies is reduced. Second, the specialization of the contradicted func-
tional dependency is improved, since it is based on the most specific invalid functional

dependency from the cover of invalid dependencies.

The paper is organised as follows. The Section 2 gives an overview of the concepts

from the theory of relational databases, introduces the notion of functional dependency and

defines the cover for valid dependencies. In the Sections 3 we define the cover for invalid
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dependencies and introduce the algorithm for calculating the cover for invalid dependencies
is presented. The complete algorithm for the induction of functional dependencies from

relations is described in the Section 4. The data structure intended for storing the cover
of valid and invalid dependencies is proposed in the Section 5. The performance of the

algorithm is analysed in the Section 6. We end the paper with some concluding remarks.

2 Preliminaries

Let the relation r be a subset of the Cartesian product of domains D1 × D2 x . .. x Dk.

The relational scheme R is defined by the list of attributes R = (A1, A2,..., Ak), where

the domain of the attribute Ai is Di. Therefore, the relation is the set of ordered tuples
{tl,t2,...,t,~}, where the value of the i-th component of the tuple tj is tj[Ai].

In general, attributes are denoted by the uppercase letters A,B,... and the set of

attributes by the uppercase letters from the end of the alphabet X, Y, Z, .... Relations are
denoted by the lower-case letters r, p, .... Tuples are denoted by the lower-case subscripted

letters tl, t2, ....

The functional dependency X ~ Y defines the constraint on the relation r, that has to
be obeyed by each pair of relation tuples. The functional dependency X --* Y is valid or X

".functionally determines" Y, if for each pair of tuples tl,t2 E r it is not possible that the
tuples agree on the components from the set of attributes X (tl [X] = t2[X]) and disagree
on the components from the set of attributes Y (tl[Y] ~ t2[Y]). The dependency is invalid,

if it is contradicted by two or more tuples of the relation r. The functional dependency

will be in the following text denoted by dependency, since functional dependencies are the

only type of dependencies considered in the paper.

Let r be a relation over the relational schema R and let F and G be the sets of
dependencies that are satisfied by r. The sets F and G are equivalent, if any dependency

in F can be deduced from the dependencies from G using Armstrong axioms [8] and vice
versa. In other words, sets are equivalent, if the deductive closures of sets F and G are

equal. Therefore, any set of functional dependencies that are satisfied by the relation r
can be represented by an equivalent set of dependencies that is called a cover of the set

of dependencies. The cover is minimal [8] for the set of dependencies F, if it is equivalent
to the set of dependencies F and there is no redundant dependency with respect to the

Armstrong axioms.

The more-general-then and the more-special-then relationships can be defined among

functional dependencies with the equal right side of the dependency. Relationships can be

effectively used in the algorithm for the induction of functional dependencies. As it will
be shown latter, the more-general-then relationship is used as a clue for the enumeration

of the hypotheses for dependencies.
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Definition 1 Let be X and Y sets of attributes such that X C_ Y, then the dependency

X ---* A is more-general-then the dependency Y --. A or Y --. A is more-specific-then

X---* A.

Note, that if the dependency FD1 is more general than the dependency FD2, then we

can conclude that FD2 is valid for a given relation r, if FD1 is valid and the opposite,

the dependency FD1 is invalid if FD2 is invalid. For the purpose of the presentation
of our algorithm for the induction of functional dependencies, we are interested in the

construction of the cover, which is milfimal considering the more-general-then relationship.
Such cover will be denoted by the positive cover. The construction of the minimal cover
for valid dependencies of the relation r, requires further work and is not the subject of

this paper. The definition of the positive cover is the following.

Definition 2 The set of dependencies F is a positive cover for the relation r iff

1. every FD E F is in the form of X ~ A, where A is a single attribute,

2. for every valid dependency of the relation r, there exists the more general depen-

dency that is an element of the positive cover.

3 Cover for invalid dependencies

The validity of a dependency can be checked by searching for a pair of victim tuples, that
contradict given dependency. Searching the contradicting pair of tuples in the relation r

can be accomplished in time O(n2), which means that it is a time consuming operation

when inducing dependencies from large relations.

To reduce the time complexity we introduce the notion of a negative cover, that include
the set of invalid dependencies from which all dependencies that are contradicted by the

given relation can be deduced. Analogous to the construction of the positive cover, the
negative cover can be minimized using the more-specific-than relationship, which provides

an ordering of the set of invalid dependencies with the same attribute on the right side.
In this way, only the most specific invalid dependencies need to be stored in the negative

cover. The negative cover can now be defined as follows.

Definition 3 The set of invalid dependencies is the negative cover for the relation riff

1. every right side of an invalid dependency is a single attribute,

2. for every invalid dependency that is contradicted by the relation r, there exists the

more-specific invalid dependency that is an element of the negative cover.

The contradiction test for the given dependency can now be accomplished by searching
the negative cover for more specific invalid dependency. This is explained in the Section 4.
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procedure find_invalid_fds ;

begin

invalid_fds := D;

for each pair TI, T2 from r do begin

split( TI, T2, X, Z );

for each A in Z do

if not exists_specialization( invalid_fds, X. Y, A ) then

add( invalid_fds, X, A );

end;

end ~find_invalid_fds};

Figure 1: The procedure for the construction of the negative cover

The invalid dependencies of a given relation r can be identified by examining each pair

of tuples and by constructing invalid dependencies that are contradicted by each of the
selected pairs of tuples. Invalid dependencies are constructed from a pair of tuples tl and

t2 by splitting the set of attributes of the relation r into two sets. The first set of attributes
Z includes those attributes A, where tx[A] ~ t2[A] and thesecond set X collects those
attributes B, where q[B] = t2[B]. Invalid dependencies constructed from a given pair of

tuples are dependencies of the form X--, A, where A E Z.

The algorithm for the construction of the negative cover is presented in the Figure 1.

Each invalid dependency constructed from the relation r is added to the negative cover, if

it is not more general than an invalid dependency that is already in the negative cover. The
existence of the more specific dependency in the negative cover for invalid dependencies

is checked by the call of the procedure ezists_speeialization. For now, we suppose that the
set of inyalid dependencies is represented by the list data structure. More efficient data

structure for the representation of the set of dependencies is described in the Section 6.

After the execution of the procedure find_invalid_fds there can still be some redundant
dependencies in the constructed cover for invalid dependencies. They can be eliminated

by filtering the cover, that results in the negative cover containing only the most specific
invalid dependencies.

The time complexity of the given algorithm is O(n ̄  (n 1)/2 ¯ h ¯ nc), where n is the

number of tuples in the relation, h is average number of constructed dependencies from

one pair of tuples and ne is time needed for searching the negative cover for more specific
dependency. Here, the unit of computation is the construction of one invalid functional

dependency, which is multiplied by the time needed for checking the negative cover for
the existence of a more specific dependency.
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procedure find_positive_fds( X: attribute_set; A: attribute );

begin

if exists_specialization( invalid_fds, X, Y, A ) then

for each attribute Ai do

if not (Ai in Y) and (Ai <> A) 

find_positive_fds( X + JAil, A 

else

if not exists_generalization( valid_fds, X, A ) then

add( valid_fds, X, A );

end {find_positive_fds};

Figure 2: The procedure for the construction of the positive cover

4 Construction of the positive cover

The algorithm for the construction of the positive cover for valid dependencies is composed

of two parts: hypothesis generation, and checking the validity of the hypothesis. The

positive coyer includes only the most general valid dependencies. An approach that is
used for the generation of hypothesis is in order from the most general to more specific
dependencies. The process of hypothes|s specialization ends when the hypothesis is valid

for a given relation.

Checking the validity of the dependency is realized using the negative cover. The

dependency is invalid, if it is the generalization of an invalid dependency. Therefore,
checking the consistency of the dependency is converted to the searching for the more
specific dependency in the negative cover.

If the dependency is found to be invalid, it should be specialised by adding additional
attributes to its left hand side. For example, the invalid dependency A1 "+ A4, can be
specialized by adding attributes A2 or A3 to the left side of the dependency. In this way,

newly generated hypothesis are dependencies A1, A2 "* A4 and A1, A3 -"+ A4.

The specialization of the contradicted dependency is guided using the invalid depen-

dency that is an element of the negative cover and was used for the contradiction of the
given dependency. In this way, not all possible spedalizations of the contradicted depen-

dency are generated, since it is not reasonable to generate specializations that are still
generalizations of the invalid dependency that is used for the contradiction of the previ-
ous hypothesis. In terms of previous example, if A1, A2 ~ A4 is the invalid dependency

from the negative cover that contradicts the hypothesis A1 --+ A4, there is no reason for
generating the hypothesis Ax, A2 --* Aa.

The procedure find_positive_fds constructs the set of valid dependencies for a given right

side of the dependency A. The algorithm is presented in the Figure 2. The parameters
of the procedure are initially set to the most general dependency [] ~ A, which is then

checked and specialized by recursive calls. First, the validity of the functional dependency

X --+ A is checked by searching the negative base for the more specific invalid dependency.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 179



If the hypothesis is contradicted, then it is specialized considering the invalid dependency
Y --* A, which is the part of the negative cover. In the case that the hypothesis is the

valid functional dependency, the existence of more general valid dependency in the cover
for valid dependencies is checked. If the hypothesis is not covered by the positive cover,

than it is added to the cover.

After processing the procedure .find_positive_fds there can still be some redundant de-
pendencies in the constructed cover. The process of filtering the constructed positive cover

is accomplished by examination of each dependency and removing those dependencies that

are the specialization of the dependency from the cover.

The worst-case time complexity of the presented algorithm for the induction of the
functional dependencies is O(k ¯ 22"k-2), where k is the number of relation attributes. As

wilt be seen in the following sections the complexity of searching more-specific-than or

more-general-than dependency in the cover can be considerably reduced.

5 Data structure for the representation of the dependency

cover

l

In the previous sections we supposed that the cover for valid and invalid functional de-
pendencies are represented simply by the list of dependencies. Since every hypothesis

(functional dependency) is checked for its validity by searching the negative and positive
cover, better representation of the set of dependencies is of significant importance for the
performance of the algorithm for the induction of functional dependencies.

To describe the data Structure for the representation of the set of dependencies, we

first introduce the attribute-tree. We suppose that attributes are ordered, so that for each
pair of attributes Ai, A i E R we can state that either Ai is higher than Aj or the opposite.

Definition 4 The attribute-tree is a tree with the following properties:

1. Every node of the tree, except the root node, is an attribute.

2. The children of the node Ai are higher attributes.

3. The children of the root are all attributes.

The attribute-tree can be used for the representation of the set of dependencies with

the same right side of the dependency. The left side of each dependency is represented by

the set of nodes, that are the elements of the path from the root of the tree to the one of
its leaves. The tree representing the set of dependencies, which have the attribute A on

the right side of the dependency, is denoted by the A-subtree. Note, that the single root
represents the empty set.

The set of dependencies with different right sides of dependencies is represented by
FD-tree, where the nodes that belong to the particular A-subtree are labeled by the
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Figure 3: An example of tree representing the set of dependencies.

attribute At. Therefore, every FD-tree node is labeled by the set of attributes. The
FD-tree is defined as follows.

Definition 5 The FD-tree is an attribute-tree, where each dependency is represented as

following:

1. Left side of the dependency X ~ A is represented by the path from the root to the

leaf of the A-subtree and

2. each node from the path is labeled by the attribute A.

Note, that the dependencies composing A-subtree, can be identified in the FD-tree

by visiting a subtree of nodes that are labeled by attribute A.

An example of the FD-tree which is used for the representation of the set of functional
dependencies {{X1, X2} ---* X3, {Xl, )(3, Xs} --~ X2, {X1, )(4} --~ X3, {X2, )(4, Xs} 

{X3, Xs} --* X1} is presented in the Figure 3.

There are two important operations on the FD-tree, that are used when generating the

positive and negative cover. The first operation can be defined as follows. Given the arbi-

trary dependency, search for the more specific dependency in the FD-tree. If the operation

completes successfully, the result of the operation is the more specific dependency found
in the set of dependencies. The second operation is similar; given arbitrary dependency, it

searches in the FD-tree for dependency that is more general than the input dependency.
The first operation is called exists_specialization and the second exists_generalization.
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function exists_specialization( Tnode, X, Y, A ): boolean;

begin

exists_specialization := false;

if Tnode <> NIL than

if X is empty then

Y := Y + [ Path from Tnode to the arbitrary A-subtree leaf ];

exists_specialization := true;

exit;

else

X1 := first attribute from the list X;

Y1 := last attribute on the list Y;

for each Atr labeled from label(Yl)+l to label(X1) 

if Air = Xl then

X := X-IX1];

if exists_specialization( Tnode.child[ Air ], X, Y+[Atr], A) then

Y := Y+[Atr];

exists_specialization := true;

exit;

od;

fi;

fi;

end ~exists_specialization};

Figure 4: The procedure exists_specialization

Since both procedures operate in a similar manner and for the reason of the space
limitations, only the procedure exists_specialization is described in the following subsection.

The detailed description of the operation exists_generalization can be found in [6].

The procedure exists_specialization searches the FD-tree for the dependency Y ---* A,
that is more specific than the input dependency X --* A. Suppose that the left side

of the input dependency is composed of attributes X1,X2,...,Xk and the left side of
the dependency Y -* A is composed of attributes Y1,Y2,...,Yt. The search process is

completed, if the path from the root to the particular leaf of the A-subtree is found, such

that the set of attributes Y forming the path, includes the set of attributes X.

The procedure is presented in the Figure 4. The core of the procedure can be described

as follows. Suppose that each attribute from the set X1,..., Xi-1 match one of the nodes

on the path from the root of the A-subtree to the node I~-1. In this step, the algorithm
searches for the descending node of the node 1~-1 that would form the next attribute in
the path Y. Only attributes in the range from Yj-1 to the attribute Xi are considered.

The reason for choosing the lower bound of the range is obvious, since descending nodes
describe higher attributes. Similarly, there is no reason for investigating nodes that are

higher than the attribute X/, since the attribute X/would be missing in such a path. If

the next attribute on the path Y is the attribute X/, than the next attribute from the
list X (X/+I) is considered in the next step of the algorithm. In the case that the next
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attribute on the path Y is not the attribute Xi, it is assumed that the matching with the
attribute Xi would occur later in the subtree.

6 Performance

In this Section the performance of the procedure exists_specialization is analysed by study-
ing the worst-case time complexity of the procedure. Second, the empirical results of run-

ning the program for the induction of functional dependencies on some real-world domains
are presented.

6.1 Complexity of the operation exists_specialization

For the worst-case time complexity analysis of the operation exists_specialization we sup-

pose that the FD-tree is complete i.e. it includes all subsets of a given set of attributes
R = {AI,...,Ak}. Given the input functional dependency X1,X2,...,XI --~ B, the
procedure exists_specialization searches for the more specific dependency in the FD-tree.

The set of attributes {X1,X2,...,Xt} are ordered. The position of the attribute Xi in

the orderifig is denoted by p(Xi). Only the results of the time complexity analysis are
presented. The complete analysis can be found in [6].

The maximal number of visited FD-tree nodes, during the execution of the procedure

exists_specialization is specified by the following formula.

Since we can suppose that p(Ai) = i, we can see that in the worst case the procedure

searches complete FD-tree for the input dependency with the attribute At on the left side
of the dependency. If the left side of the input dependency is the complete set of relation

attributes {A1, A2,..., Al}, the number of visited vertices is 1 + 1, since the root of the
FD-tree is also included.

The empirical results showed that the average time needed for the operation ex-

ists_specialization does not exceed O(c. k), where k is the number of the relation attributes

and e is a constant. The average value of the constant c was in our experiments always

around 1. The experiments were made on negative and positive covers for the relations
that are presented in the following paragraphs.

6.2 Experimental results

The algorithm is implemented in the VAX Pascal programming language. It contains

about 1500 lines of code. The domains that have been used for experiments include large
number of attributes and tuples, so that they are comparable to real-world domains. The

results of experiments are presented in the Figure 5. To reduce the number of induced
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Domain I Irl I IRI I IXI ct tl(CPU) t (cPu) ] 
Rheumatology 462 17 17 0 18min 27min 1191

Rheumatology 462 17 17 5 18min 23min 972
Rheumatology 100 17 17 0 lmin 33min 2453
Rheumatology 100 17 17 5 lmin 17min 1552
Rheumatology 10O 17 7 5 lmin 10min 1523

Lymphography 150 19 19 0 2min 16min 1248

Lymphography 150 19 10 0 2min 14min 1226

Lymphography 150 19 7 0 2min 7rain 641

Lymphography 150 19 19 2 2min 7min 780

Figure 5: Experimental results

dependencies, the following two parametres can be set by the user. First, the number of

attributes on the left side of dependencies, that are discovered by the program, can be
limited. Secondly, since medical domains are noisy, the number of permited contradicting
pairs of tuples can be set by the user.

Observed parameters are the following: the name of the domain, the number of relation
tuples Irl, the number of attributes IRI describing the relation, the maximal number of

attributes on the left side of the discovered dependencies X ~ A, denoted by IXI, the

number of permited contradicting pairs of tuples ct, the CPU time used for the construction
of the negative cover tl, the complete CPU time used by the program t2 and the number

of discovered dependencies N.

7 Concluding remarks

The algorithm for the induction of the functional dependencies from relations was pre-
sented. The algorithm improves the performance of the algorithm proposed by Flach [3],

by improving the part of the algorithm that checks the functional dependency for contra-

diction. For this purpose, the notions of invalid dependency and of negative cover were
introduced. The improved performance of the algorithm allows its use in the real database

environment.

Problems that require further work are the following. One of the most important
problems concerns the large number of induced dependencies. Only some of the induced

dependencies are meaningful and useful in the design process of the conceptual scheme of

the modelling environment. Our further work will require the study of criteria that could
eliminate useless functional dependencies. Another problem that is also closely connected

to the elimination of the useless dependencies, is the elimination of the dependencies that
can be deduced by the use of the Armstrong axiom expressing the transitivity property of

the functional dependencies.
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