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Abstract 

A study of the self-organisation of metallic nanoparticles into assemblies of interest to the 

metamaterials community has been conducted. A variety of colloidal nanochemistry techniques 

were developed to fabricate structures proposed by theoreticians working in the field. Spectroscopic 

techniques were then employed to fully probe the optical properties of these structures and 

evaluate the extent to which they could be used to advance metamaterials research. 

Large scale planar arrays of metallic nanoparticles were fabricated on a variety of functionalised 

substrates such as glass, silicon, polymers and transparent conducting oxides, using electrostatic 

interactions. Several means to control the overall filling fraction were also investigated. Arrays 

encapsulating a variety of densities, from extremely isolated nanoparticles through to closely packed 

structures approaching monolayers, were successfully fabricated. 

The construction of three-dimensional structures, one of the principal challenges faced by 

researchers attempting to fabricate metamaterials through more conventional top-down 

techniques, was then achieved. The deposition concepts referred to above were combined with the 

layer-by-layer deposition of charged polymer layers to build up multiple arrays of metallic 

nanoparticles. The distances between arrays could be accurately tuned, with almost nanometre 

precision, allowing the magnitude of the electromagnetic coupling, and therefore the optical 

properties, between separate arrays to be controlled. Only limitations of a practical nature restrict 

the overall number of metallic nanoparticle arrays and their relative separations. Several 

parameters, including array separation and nanoparticle size, were investigated using this system.  

A similar structure was also used to probe asymmetric coupling between gold and silver nanoparticle 

arrays. The optical properties of these structures were studied as a function of both the angle of 

incidence of the probing beam and, again using polyelectrolytes, array separation. 

Investigations with a view to applying these structures as potential surface enhanced Raman 

scattering (SERS) substrates were also conducted. The principal mechanism resulting in signal 

enhancement in SERS originates from the intense electric fields which can be applied to analyte 

molecules. These ‘hotspots’ exist between nanoparticles and as such the stratified arrays of metallic 

nanoparticles with tunable separation distances appear to be the perfect system on which to probe 

these properties. 

Studies of nanoparticle structures were not limited to nanospheres. The unique properties of 

metallic nanorods, which exhibit two plasmon resonances, one corresponding to the oscillation of 
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electrons along the length of the rod with the other describing the oscillation of electrons across the 

width of the rod, were also investigated. Coupled pairs of nanorods have been shown to exhibit 

magnetic resonances and as such deposition and reorganisation techniques were developed to 

fabricate such structures. 

The importance of magnetic resonances to the field of metamaterials also led to research on core-

shell nanoclusters. Prepared in an analogous fashion to the planar arrays described above, this 

research was motivated by several theoretical papers outlining the magnetic dipole moment that 

such spherical organisations of metallic nanoparticles should exhibit and the importance of this in 

preparing negative refractive index materials. These assemblies were fabricated both in solution and 

as large scale arrays on suitably functionalised substrates and were also investigated for their 

potential cloaking properties. 

In conclusion, a variety of techniques have been developed that enable the organisation of metallic 

nanoparticles into structures of interest to the field of metamaterials. These structures have 

undergone in-depth characterisation and the relevance of their properties to a diverse range of 

applications has been highlighted. 

  



xi 
 

Résumé en français 

Cette thèse est consacrée à la fabrication de métamatériaux optiques par auto-assemblage de 

nanoparticules métalliques. Différentes techniques de nano chimie colloïdale ont été mise en œuvre 

afin de réaliser plusieurs structures choisies pour leur propriétés optiques spécifiques dans le cadre 

d’une collaboration avec une équipe de théoriciens travaillant dans le domaine des métamatériaux. 

Leurs propriétés optiques ont été caractérisées par spectroscopie UV-Visible et confrontées à des 

résultats théoriques pour évaluer leur potentiel dans le champ des métamatériaux.  

Dans un premier temps, des monocouches de nanoparticules ont été déposés par adsorption 

électrostatique sur divers substrats (verre, silicium, polymères et oxydes transparents conducteurs) 

après modification de leur chimie de surface. Plusieurs méthodes ont été développées pour 

contrôler la densité de nanoparticules de ces couches et une série d’échantillons allant de 

nanoparticules extrêmement isolées jusqu'à une monocouche presque complète a été réalisée. 

La fabrication de métamatériaux massifs (i.e. tridimensionnelles) reste l’un des défis actuels les plus 

importants, la plupart des réalisations actuels ayant été fabriquées grâce des approches 

descendantes. Pour résoudre ce problème, les techniques de dépositions exposées brièvement au-

dessus ont été combinées avec la technique de déposition « couche par couche » (Layer-by-Layer) 

de polyélectrolytes permettant de réaliser un empilement de monocouches de nanoparticules. Cette 

méthode offre la possibilité de contrôler la distance entre deux couches successives avec une 

précision de l’ordre du nanomètre, ce qui nous a permis d’étudier précisément l’influence du 

couplage électromagnétique entre couches de nanoparticules adjacentes sur les propriétés optiques 

de ces multicouches. D’autres paramètres tels que la taille ou la composition des nanoparticules ont 

également été étudiés.  

Concernant ce dernier point, des structure bicouches alternant nanoparticules d’or et nanoparticules 

d’argent ont été réalisés afin d’étudier le phénomène de couplage asymétrique entre résonances 

plasmons de ces deux types de nanoparticules. Les propriétés optiques de ces échantillons ont été 

mesurées en fonction de l’angle d’incidence d’illumination et de la séparation entre nanoparticules 

en utilisant les polyélectrolytes comme précédemment 

Des études ont également été menées concernant l’utilisation de ces structures comme substrats 

pour la spectroscopie Raman. L’excitation des résonances plasmon dans ces systèmes s’accompagne 

d’une importante exaltation du champ optique, fortement localisée dans l’espace séparant deux 

nanoparticules adjacentes. Ces points chauds (« hot spots ») permettent d’exalter considérablement 



xii 
 

l’activité Raman de molécules localisées dans ces régions rendant cette technique d’analyse, 

généralement peu efficace particulièrement sensible. La possibilité de varier la séparation des 

nanoparticules, leur composition et leur taille en employant la méthode de déposition décrite 

précédemment nous a permis d’étudier de manière approfondie l’influence de ces différents 

paramètres sur le phénomène d’exaltation Raman.  

Outre les nanoparticules sphériques, les propriétés particulières des nanobâtonnets d’or qui 

possèdent deux bandes plasmoniques distinctes ont aussi été examinées. En particulier, nous avons 

examiné la possibilité de fabriquer des paires de nanobâtonnets selon les même méthodes d’auto-

assemblage. Ce type d’arrangement a un intérêt tout particulier pour la réalisation de 

métamatériaux, plusieurs études ayant démontré leur capacité à supporter des résonances 

magnétiques aux fréquences optiques. De telles résonances constituent  un ingrédient essentiel 

pour l’obtention d’un indice de réfraction négatif, objectif phare de la recherche dans ce domaine.  

L’importance de telles résonances nous a également conduits à étudier un autre type d’arrangement 

dans lequel les nanoparticules sont organisées selon une géométrie sphérique. Différents travaux 

théoriques ont montré que, de manière analogue aux paires de nanobâtonnets, le couplage entre 

nanoparticules sphériques organisées selon cette géométrie conduit à l’émergence d’une activité 

magnétique importante. Pour obtenir un tel arrangement, nous avons employé la même technique 

de fonctionnalisation de surface en remplaçant les substrats plats par des substrats sphériques, en 

l’occurrence des nanospheres de silice. L’étude de leurs propriétés optiques a confirmé l’existence 

des résonances magnétiques mentionnée précédemment. En collaboration avec des théoriciens 

nous avons également évalué le potentiel des structures pour des applications de camouflage. 

En conclusion un nombre de techniques ont été développés qui permettent l’organisation de 

nanoparticules métalliques dans les structures d’intérêt dans le domaine des métamatériaux. Ces 

structures ont subi une caractérisation détaillée et leur rapport à une gamme diverse d’applications 

a été mise en valeur. 



 

1. Introduction1 

The work that forms the bulk of this thesis was carried out as part of the Nanogold project – a 

Framework Programme 7 project funded by the European Commission. The project was extremely 

interdisciplinary in nature and comprised eight partner groups located throughout Europe, 

specialising in theory, fabrication and characterisation. The stated aim of the project was the 

fabrication and application of bulk electromagnetic metamaterials using bottom-up techniques and 

combined inorganic chemistry, organic macromolecular synthesis, the physics of electromagnetic 

resonances and liquid crystal technology in order to achieve this. The principal strategy used to 

accomplish this goal was the self-organisation of, as the title of the project suggests, nanoscale units 

composed of noble metals such as gold. By embedding and organising small resonant particles in 

dielectric materials it is possible to obtain materials with unprecedented properties that operate in 

the correct spectral domain for photonic applications. 

The field of metamaterials is, despite incorporating relatively novel concepts, extremely varied. At 

related congresses it is not uncommon to meet researchers from the disparate worlds of theoretical 

physics, materials science, organic chemistry, optics, electrical engineering and mechanics and it was 

as a result of this that the collaborative nature of the project came to the fore. The research 

conducted for this thesis essentially involved the fabrication and experimental characterisation of 

structures that were based upon designs proposed by theoreticians working in the field. The areas of 

research are extremely diverse and as a result the science underpinning this research incorporates a 

wide variety of concepts which in turn lead to a number of questions. Firstly, and fundamentally, 

what are metamaterials and why should we be trying to produce them? What structures are capable 

of producing these unprecedented electromagnetic effects and last but not least, why choose 

bottom-up methods and nanomaterials to fabricate them? These are questions which will be 

addressed in this introduction before the specific structures and systems that have been studied are 

described in more detail. 

1.1. What are metamaterials? 

The term metamaterial, with the prefix taken from Greek and meaning literally “beyond”, first 

appeared in literature around the beginning of the century with an early example being in the 

seminal paper published by Smith et al. which discussed a composite medium with simultaneously 

                                                           
1
 Some passages in this section will be published in the chapter entitled ‘Bottom-up organisation of metallic 
nanoparticles’ written by Alastair Cunningham and Thomas Bürgi contained in the book ‘Amorphous 
Nanophotonics’. Edited by Carsten Rockstuhl and Toralf Scharf, the book will be published in 2013 by Springer-
Verlag Berlin and Heidelberg GmbH & Co. KG. 
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negative permeability and permittivity in the microwave range of the electromagnetic spectrum.1 

While the literal definition of the term conjures up vague ideas of properties “beyond” those of 

normal materials a scientific definition that is universally accepted is harder to pin down. The term is 

often loosely used to describe materials which possess electromagnetic properties which do not 

exist in nature. As well as being unclear this has been shown to be untrue. Initially, the term 

metamaterials was used almost interchangeably with negative refractive index materials2 as, 

following on from the work of Smith et al.,1 this was the major focal point of the research conducted. 

However, it has since been found that certain natural materials, for example the compound eyes of 

some lobsters,3 are able to negatively refract light. In addition, and while this point may be slightly 

pedantic, it seems somewhat premature to state that certain properties do not exist in nature when 

there are an abundance of natural materials that are, as yet, unknown to man. The field of 

metamaterials has exploded since these earlier days and research is no longer focussed solely on 

producing negative index materials. Cloaking4 and perfect lensing5 have become equally important 

motivating goals, providing three ‘Holy Grails’ for researchers to pursue. In the intervening period 

journals dedicated to the topic have come into existence, several monographs6, 7, 8 have been 

written and novel pieces of research, which even a decade ago could have been dismissed as science 

fiction rather than science fact, have surfaced in the popular media.9 As they become increasingly 

important within scientific communities and even begin to invade everyday parlance it is necessary 

to classify exactly what constitutes a metamaterial.  

It is generally accepted that metamaterials are artificial structures whose properties depend not only 

on their composition, as tends to be the case with conventional materials, but also on the 

organisation of the constituent parts within the structure. Usually, metamaterials are composite 

structures, constructed from resonant units, also known as metaatoms and typically composed of 

metals and dielectrics, although some approaches have used other materials such as graphene.10 

While each component element maintains its individual properties it is the properties of the 

ensemble that are of interest. Whilst the properties of metamaterials are dependent on the 

organisation of the metaatoms contained within it is not mandatory that they have a periodic 

structure. Indeed, in many cases amorphous arrangements are often thought of as being highly 

desirable as they do not pose any problems in terms of spatial dispersion and anisotropy. By 

definition, the optical response of an amorphous arrangement of metaatoms will be independent of 

the direction of propagation of light – an obvious advantage for a variety of applications. These 

properties emerge upon interaction with electromagnetic radiation only when the structural units 

within the material, as well as their separation, are significantly smaller than the wavelength of the 

incident radiation – also known as the electrostatic limit. That the inhomogeneity scale is 
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considerably less than the wavelength of operation serves to separate metamaterials from other 

artificial structures such as photonic crystals,11 whose unit cells tend to be on a similar scale to the 

wavelength of visible light and therefore their optical response is dominated by interference and 

diffraction. It also sheds light on why the study and use of metamaterials is of interest to such a wide 

variety of disciplines.  

The fact that such a broad range of the electromagnetic spectrum is used by mankind, from radio 

waves with wavelengths of several hundred metres all the way down to gamma radiation with 

wavelengths less than the diameter of an atom shows that metamaterials could be applied at a huge 

variety of scales which necessitate an equally large variety of skills and experience. Taking the 

relative scale of the inhomogeneities in materials and their interaction with incident electromagnetic 

fields to be one part of the definition of metamaterials, it can readily be seen that, in all but name, 

they have been used for several decades in the field of microwave engineering.6 This only serves to 

highlight that when discussing metamaterials there are multiple facets that should be considered 

when seeking to construct an all inclusive definition. Indeed, using the above stipulations as a 

starting point it could be considered that one of the first metamaterials fabricated was the oft-cited 

Lycurgus Cup,12 a Roman cup that dates from the 4th century A.D. and which shows differing optical 

properties in reflection and in transmission. The properties derive from colloidal dispersions of gold 

and silver nanoparticles embedded in the glass which are around ten times smaller than the 

wavelength of light in the optical regime. A more modern example of what could still technically be 

termed as a metamaterial would be the metallic plate containing an array of holes that is found on 

the door of all microwave ovens. The holes which are comparatively large when considering the 

wavelength of visible light make it possible to see inside the oven but are much smaller that the 

wavelength of the microwave radiation (~12 cm) used to heat the contents of the chamber and 

cannot, therefore, penetrate the plate. 

That the active inclusions in metamaterials and their spatial organisation are much smaller than the 

wavelength of the electromagnetic radiation in question means that it is not able to probe any 

differences between, for example, a dielectric host and a metallic guest. The incident radiation ‘sees’ 

a homogeneous material that can be described using effective material parameters and described 

using approximations such as Bruggeman6, 13 or Maxwell Garnett14 theory. While producing 

architectures that possess unusual or advantageous properties for use in the radio wave regime may 

pose problems of an engineering nature, it can readily be seen that as the wavelength is reduced 

through the microwave and infrared regions and down into the visible the fabrication of these 

structures is fraught with ever increasing challenges of both a technical and scientific nature. As 
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many of the intriguing effects that have been proposed are most interesting, for obvious reasons, at 

optical frequencies, novel fabrication solutions should be sought in order to produce structures of 

ever decreasing size whilst maintaining the ability to achieve well defined geometrical parameters. A 

succinct overview of the advancements made in pushing metamaterials properties into the visible 

region through a combination of innovative structure design and down-scaling can be found in 

Reference 15. Although top-down techniques have made massive inroads into the down-sizing of 

structures, particularly in the domain of informatics, self-assembly fabrication methods open up a 

wealth of possibilities that would be otherwise unachievable. The potential contribution that 

metallic nanoparticle structures fabricated by bottom-up techniques have to make to this field is 

considerable and is only beginning to be tapped. This potential will be outlined in more detail in the 

following section. 

1.2. Why bottom-up? 

The term ‘nanotechnology’ was first coined in 197416 and since then the drive to produce 

structures of increasingly small dimensions and explore their unique properties has not abated. 

There are few aspects of modern life that do not rely on, at least in some part, the scientific 

breakthroughs in fabricating smaller structures that have been made in the last few decades, with 

nanotechnology now pervading our lives to an extent that very few, with some notable exceptions,17 

could have predicted. As well as being applied to metamaterials, the advances in down-scaling that 

have been made have been exploited in a wide range of disciplines, and have played a prominent 

role in the fields of information technology,18 renewable energy generation19 and medicine and 

health care.20 In general, the approaches to fabricate these structures can largely be divided into two 

categories; top-down and bottom-up techniques.21 The fast rate of down-scaling achieved over the 

last few decades, in some cases advancing at almost exponential rates, can largely be attributed to 

the top-down techniques, loosely defined as being the fabrication of structures from larger 

precursors. This can be thought of as being more of a sculpting approach, with  typical examples of 

top-down technologies including lithographic methods, the most technologically advanced of which 

is arguably electron beam lithography (EBL),22 and etching methods, which can vary from wet-

chemical etches23 to focused ion beam24 and laser ablation.25 While there is still an important role to 

be played by top-down methods, there are inherent limitations associated and these, if they have 

not been already, are on the verge of being reached. One notable drawback is the minimum feature 

sizes that are accessible using such techniques. In addition, such techniques tend to be cumbersome 

and slow, requiring prohibitively expensive equipment to produce small scale and, often uniquely, 

two-dimensional structures. This can cause particular problems in the fabrication of metamaterials 
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where, alongside the downscaling of structures, one of the major challenges currently facing the 

metamaterials community is the production of truly 3D materials allowing bulk material parameters 

to be assigned and eventually their incorporation into real devices. None of these disadvantages, on 

the other hand, are suffered by the more novel and versatile bottom-up techniques which are 

increasingly being applied to produce structures of even smaller scale and more complex 

architecture than has previously been achievable. As the name suggests, the bottom-up approach 

involves the fabrication of structures from smaller units, using the properties that they possess to 

induce their self-assembly in the desired manner. This building block approach to materials 

synthesis, often likened to the construction of objects with Lego, is still in its nascent stage and only 

the surface of what is potentially accomplishable has been scratched.  

Evidence for the power and efficacy of these techniques can be gathered through the observation of 

nature, which is also seen to follow a bottom-up approach. The organisation of molecules to form 

progressively larger structures, from cells and DNA up to, and including, metre scale biological 

organisms, in a hierarchical manner show the effectiveness that such approaches can provide. 

Indeed the entire field of biomimetics seeks to take advantage of structures found in nature which 

have evolved over a long period of time and, as the name suggests, use them as models or blue-

prints which can then be reproduced using innovative chemical methods. Biomimetics also 

introduces another interesting aspect of structure fabrication. In general, for useful functional 

structures, for example metamaterials, to be fabricated a degree of organisation must be available 

at two discrete levels; both at the nanoscale and at the mesoscale. After the initial self-assembly 

step which results in the formation of a unit, or in the particular case of metamaterials a metaatom, 

it is then typically necessary to induce, chemically or otherwise, the organisation of these units into 

an ordered structure which can then be used in applications. A whole host of techniques exist in the 

ever expanding toolkit of the materials scientist that permits both the fabrication of nanoscale 

materials and their organisation into larger scale architectures in a controlled manner. An exhaustive 

list of these is, due to the inter-disciplinary and fast-moving nature of the field, extremely difficult to 

produce and even more difficult to discuss in great detail. However an effort will be made in Section 

2.2.5 to provide an introduction to some of the more important bottom-up methods, with particular 

attention being paid to the organisation and application of metallic nanoparticle structures. These 

methods could be, and in some cases are already being, applied to fabricate bulk metamaterials at 

optical frequencies. 
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1.3. What structures can give metamaterials properties? 

Metamaterials were defined in Section 1.1 as being composite artificial materials that have unusual 

or advantageous electromagnetic properties which; (i) derive largely from the organisation of 

ensembles of resonant units embedded in dielectric matrices; (ii) exist in a wavelength range that is 

considerably larger than the size and separation of these metaatoms; (iii) and are not readily 

observed in nature. This definition could remain, however, somewhat vague to people who have 

little or no experience in the field and it would be instructive to introduce several of the structures 

that researchers target in order to achieve particular electromagnetic effects. Some of these 

architectures are shown in Figure 1 and will be described in more detail in this section. 

 

Figure 1 – Examples of metamaterials structures. Clockwise from top left; an array of split ring resonators that 

exhibit negative refractive indices in the microwave regime;
2
 regular arrays of cylindrical metallic structures 

which have been shown to exhibit optical negative refraction;
26

 a core-shell nanocluster that has potential 

applications as a cloaking device;
27

 layered arrays of metallic nanoparticles which have been proposed as 

facilitating sub-wavelength imaging;
28

 and a layered fishnet structure highlighting the magnetic moments (red 

arrows) associated with the ‘magnetic atoms’ contained within the structure.
29

 

Initial experimental work, developed around the turn of the century by Smith1, 2 and Pendry,30 was 

centred on arrays of split ring resonators (SRRs) - two broken concentric rings rotated in-plane 180° 

with respect to one another and one of the first structures to bear the name ‘metamaterial’. 

Essentially, the structure is the equivalent of a small capacitor with a specified capacitance and 

inductance. When embedded in a suitable host, it was proven that both the permittivity and 

permeability, and therefore the refractive index, of these structures, in some frequency domains at 

least, can be simultaneously negative. Negative refractive indices had never previously been 
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observed despite being first proposed several decades previously by Veselago.31 In addition, the 

precise optical properties of ensembles of SRRs can be tuned by altering the relative organisation 

and orientation of the individual structures.32 

At the outset this work was conducted in the microwave regime, the unit cells being on the order of 

5 mm – several times smaller than the wavelength of the incident radiation. Since then technological 

advances have permitted arrays of smaller SRRs to be produced which allow similar effects to be 

measured down into the infra-red.33 However, as outlined in Section 1.2 it becomes extremely 

challenging to fabricate three dimensional structures, which would be required, for example, to 

create a prism with which to measure negative refraction, using top-down techniques. In addition, 

complicated forms such as the SRR are currently outwith the capabilities of colloidal nanochemistry 

which is generally used to produce the metaatoms used in bottom-up fabricated metamaterials.  

Despite this there are alternative structures, not entirely dissimilar to the SRR, which also induce 

magnetic dipole moments. It can be shown using plasmon hybridisation schemes that when two 

metallic nanorods approach they couple with one another – the plasmonic modes mixing and 

splitting into hybridised resonances (for more details see Section 2.2.4). The antisymmetric mode of 

coupled metallic nanorod pairs in the transverse configuration gives a magnetic response - one of 

the fundamental building blocks of metamaterials - and provides researchers with a metaatom 

which is conceivably accessible using bottom-up techniques.32 This becomes evident when, 

considering advances in colloidal preparative techniques, it can be seen that metallic nanorods can 

be readily prepared with a variety of materials and dimensions in a controlled fashion.34 Several 

studies, using both top-down35, 36 and bottom-up26 fabrication techniques have investigated such 

systems with a view to producing negative index materials. On the other hand, while some research 

has been carried out examining the coupling properties between dimers of nanorods produced by 

colloidal methods37 very few studies exist where the full potential to construct bulk materials with 

effective properties using these methods has been tapped. 

The concept of using nanorod pairs to induce magnetic resonances was further developed and 

several studies now exist based on what is known as the ‘fishnet’ structure.29 As with the work 

conducted on SRRs, fishnet structures, which are essentially layered structures of metallic wires of 

differing thickness that intersect at right angles, have undergone a downscaling process which has 

gradually allowed the effects that they display to be pushed into smaller and smaller wavelength 

regimes. This design has facilitated higher figures of merit than could previously be achieved using 

the double wire system38 The cross-linked structure provides the necessary double wire pairs as part 

of a large scale array while at the same time consisting of long wires, thus giving rise to the negative 
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values of permeability and permittivity respectively. In addition there are many geometrical material 

parameters that can be tuned to give the most efficient structures. As with the SRRs, prisms can be 

fashioned from these structures and negative refractive indices observed in the optical regime.39, 40 

Despite the advantages afforded by this structure fishnet metamaterials are outwith current 

bottom-up capabilities and are limited by lithographic technologies.  

However, several other structures that incorporate resonant units into dielectric hosts are also 

accessible using bottom-up colloidal methods. One example, of particular interest to the 

metamaterials community, are spherical arrangements constructed from smaller plasmonic 

particles. Several studies, both of a theoretical and experimental nature, have shown that such 

architectures could be used in, amongst other things, cloaking devices27 and double negative 

materials.41 So called meta-metamaterials, that is spherical arrangements of metallic nanoparticles 

which have themselves been organised into a three-dimensional bulk material, have been shown to 

exhibit negative effective permeability in the visible domain.42 Similarly, other purely theoretical 

papers discuss spherical arrangements of nanoparticles such as core-shell nanoclusters which were 

shown to also display artificial resonant magnetism.41, 43 In addition, they offer an easier route to 

metamaterials from the perspective of fabrication.  It has also been shown that the scattering 

response of a dielectric sphere at the centre of a core-shell nanocluster can, at least to some extent, 

be cancelled by a shell of nanoparticles which scatter the incident electric field 180° out of phase 

relative to the core.27 While not providing 100% invisibility this could prove to be a first step towards 

this target and demonstrates why these structures are currently of such interest. 

It has also been thought that several practical metamaterials applications could arise from lamellar 

structures, alternating between arrays of ‘active’ inclusions and dielectric spacers. Several methods  

already exist, using for example block copolymers44 or polyelectrolytes (PEs),45 that allow structures 

such as these to be fabricated and allow several material parameters, including particle filling 

fractions and layer thicknesses to be controlled with a high degree of precision. This in turn allows 

the optical properties to be tuned for particular applications. Theoretical studies have proposed that 

stratified structures of metals and dielectrics could be used for sub-wavelength imaging at optical 

frequencies.28 Similar principles have also been used to experimentally demonstrate this effect, 

again in the optical regime.46 Here, alternating layers of metal and dielectric were organised in a 

cylindrical fashion to achieve sub-diffraction limit imaging, or hyperlensing. This can be accomplished 

by the metamaterial which is capable of recovering the evanescent waves that are lost in the far-

field – this being the cause of the diffraction limit of light.46 The colours in objects as diverse as 

butterfly wings, peacock feathers and gemstones originate from the same mechanism – Bragg 
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reflection – and it is possible to mimic this mechanism through the production of stratified arrays of 

small particles.47 By combining these structures with metallic nanoparticles to give plasmonic-

photonic hybrid materials adds an extra degree of complexity that allows optical properties, such as 

the position and strength of reflection peaks, to be further tuned.48  

Periodic arrays of metallic nanowires have also proved to possess several advantages over other 

materials that negatively refract light.26 Here, silver nanowires were electrodeposited in a porous 

alumina array resulting in a truly bulk metamaterial that has been shown to negatively refract a 

broad range of optical frequencies with relatively low losses. Additionally, negative refraction is not 

confined, as it is in some other materials, to two dimensions and occurs for all angles of incidence. A 

somewhat similar structure – linear chains of metallic nanoparticles – has also been proposed in the 

literature as being capable of superlensing.49 Architectures such as this could be accessible using 

bottom-up strategies50 and would open up one possible route to sub-wavelength imaging. 

This section has sought to provide a brief overview of some of the principal structures that are 

currently used to generate interesting electromagnetic properties. Of course, many other structures 

are used for specific applications and several variations and combinations of those introduced also 

allow a high degree of flexibility in terms of tuning the optical properties of the end product. The 

developments illustrated in this section also highlight the importance of collaboration in this field. 

Advancements in theory and computing power now allow material properties to be successfully 

predicted before they have been fabricated and some of the major theoretical principles that 

underpin the interaction of light with matter, with a particular focus on metamaterials, will be made 

in Section 2.1.1. By working in tandem, a feedback loop can be set up between theoreticians and 

materials scientists, allowing a balance to be struck between what is desirable from a theoretical 

point of view and what is technologically possible. One of the several advantages offered by this 

design process is that problems can be identified and potentially ironed out at an early stage and 

greater understanding of the structures involved can be attained. 



 

2. Theory2 

2.1. Metamaterials 

At a basic level, the properties of metamaterials can be reduced to, essentially, the interaction of 

light and matter - something that most of us take for granted in our everyday lives. Despite the field 

of metamaterials coming to the fore relatively recently, the interaction of light and matter has been 

studied and understood for well over a century. James Clerk Maxwell pioneered work in this area, 

describing for the first time the electromagnetic field in what is sometimes known as the second 

great unification of physics. The famous equations, for which Maxwell is perhaps best remembered, 

are equally as valid now as they were when first published in 1865 and form the basis of what 

modern day theoreticians use to predict and design the properties of metamaterials.51 Full 

descriptions of the Maxwell equations and their derivations can be found in most physics textbooks 

however for a more instructive understanding of the reasons why metamaterials possess the 

extraordinary properties they do it is worthwhile to look at some of the material parameters that 

appear in the equations in slightly more detail. 

2.1.1. Interaction of light and matter 

Metamaterials that exhibit negative refraction were discussed at length in the Introduction but what 

is actually meant by this term? Put simply, the refractive index of a material is the ratio of the speed 

of light in a vacuum to the speed of light in the material. At the interface, going from a medium of 

lower refractive index to one of higher refractive index, the incident beam will ‘bend’ towards the 

normal according to Snell’s Law. This is what causes the perceived location of, for example, a fish in a 

pond to be closer to the surface of the water than it actually is. The refractive index of a material is 

dependent on the wavelength of the incident light and this dispersion is what allows us to see the 

colours of a rainbow when light is reflected from the back of raindrops. In some cases it is perhaps 

more informative to describe refractive indices in terms of material parameters, such as the relative 

permittivity (also known as the dielectric constant) and the relative permeability, rather than the 

velocity of light inside the material. These two quantities appear in Maxwell’s equations and 

describe to what extent a material will interact with the electric and magnetic field components of 

the electromagnetic field respectively. They are effective material properties that describe the bulk 

of a material as a whole and while metamaterials are, in general, composite materials which have 

                                                           
2
 Some passages in this section will be published in the chapter entitled ‘Bottom-up organisation of metallic 
nanoparticles’ written by Alastair Cunningham and Thomas Bürgi contained in the book ‘Amorphous 
Nanophotonics’. Edited by Carsten Rockstuhl and Toralf Scharf, the book will be published in 2013 by Springer-
Verlag Berlin and Heidelberg GmbH & Co. KG. 
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components with vastly differing properties, the use of effective material parameters is still valid as, 

as was described in the introduction, the wavelength of incident light is so large, relative to the 

length scale of the inhomogeneities, that it is unable to probe the difference between the individual 

components. When combined, these two material parameters also yield the refractive index as 

shown in Equation 1: 

             [1] 

where  n = refractive index 

 ε = relative permittivity 

 μ = relative permeability 

Positive values of the relative permittivity (permeability) indicate that the electric (magnetic) fields 

propagate in the same direction in the material as the incident electromagnetic fields. At optical 

frequencies the relative permeability of most materials is very close to unity, meaning that the 

refractive index is essentially equal to the square root of the relative permittivity and it is this 

parameter that has a greater influence on the overall optical properties of the material. A positive 

relative permittivity means that both the electric and magnetic fields can propagate in the same 

direction and a common transparent dielectric will result. A negative value of the relative 

permittivity, on the other hand, indicates that the direction of the electric field within the material is 

in the opposite direction to that of the incident field, and the magnetic field, and as such no 

propagation is possible. Almost all of the incident light will be either absorbed or reflected giving 

what are commonly known as metals. The relationship between ε, μ and the properties that 

differing values of these induce is summarised in Figure 2 where a different class of material can be 

seen in each quadrant of the diagram.  
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Figure 2 – Parameter space showing classification of materials for differing (real) values of ε and μ.6 

As explained, most materials used in the world of optics can be placed in either the first or fourth 

quadrants however it is the third quadrant that most interests metamaterials researchers. That both 

ε and μ are negative in this quadrant gives rise to the term ‘double negative media’, one which is 

now synonymous with negative refraction, as in this quadrant both ε and μ are less than zero. By 

convention, the negative square root of their product should be taken to give the refractive index 

resulting in, again, negative values. This would indicate that both the electric field and the magnetic 

field should propagate in the material in the opposite direction to that of the incident field resulting 

in what are known as backward waves. It should be noted that in such materials Snell’s Law still 

applies, meaning that the angle of refraction, measured from the normal, remains constant, 

however the direction of propagation in the material is a mirror image of that which would be 

expected in a normal dielectric material, as can be seen in Figure 3. In a hypothetical pond 

containing water with a negative refractive index the perceived location of the fish discussed above 

would now be above the surface of the water! These materials are sometimes also known as ‘left-

handed’ and, as indicated in the Introduction, have rarely been observed in nature - clearly opening 

the door to a wide range of potential applications which would otherwise be unobtainable. 
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Figure 3 - Diagram showing paths taken by light, incident from a vacuum, in materials of both positive (a) and 

negative (b) refraction. Images taken from lecture on Plasmonic Metamaterials given by Tobias Utikal on the 

19
th

 of July 2011 at the École Polytechnique Fédérale de Lausanne. 

As explained, the relative permittivity of metals is negative at optical frequencies – which is one of 

the major reasons that they are used so prominently in the preparation of double negative media. 

However, a more significant challenge arises from achieving negative relative permeabilities. This 

can be attained through taking advantage of the coupling properties of metallic inclusions which 

occur when the inclusions are arranged in some of the specific geometries introduced in Section 1.3. 

Several other classes of materials exist in the parameter space shown in Figure 2. When both ε and μ 

are close to zero, zero index materials result.52 Where only one of the parameters is close, or equal, 

to zero the reflectance of the material tends to be very high. Zero index materials, as with double 

negative materials, can also be engineered through the combination of suitable components in the 

correct structure and it has been proposed that such metamaterials could enhance the efficiency of 

some waveguides by reducing reflections at junctions or bends.52 

For similar reasons that no wave propagation exists in the fourth quadrant of Figure 2 there is also 

no wave propagation in the second quadrant (where ε > 0 and μ < 0). No material exists with these 

properties at optical frequencies and as no propagating waves can be supported the refractive index 

becomes purely imaginary. Consequently, these materials will not be further considered here. 

The refractive index, the relative permittivity and the relative permeability are all complex functions 

and have real and imaginary parts. Large losses commonly occur for dielectric materials in the 

infrared and ultraviolet regions of the electromagnetic spectrum. These are as a result of absorption 

of phonons due to lattice vibrations and interband electron-hole transitions respectively and 

manifest themselves as peaks in the imaginary part of the relative permittivity. In-between these 

two peaks – in the visible regime – the imaginary part of the relative permittivity for dielectrics is 
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close to zero. The real part of the dielectric constant exhibits a Lorentz line shape around each of 

these resonances, as can be seen in Figure 4, but in the visible region is relatively constant and 

positive. The extent to which light is reflected or refracted at, for example, the interface between a 

vacuum and a dielectric is governed by the Fresnel equations. These equations, which depend solely 

on the refractive index of the two media, the angle of incidence and the polarisation state of the 

impinging light can also be adapted for use with metals. 

 

Figure 4 – Real and imaginary parts of the permittivity of a standard dielectric as a function of frequency. 

Lattice resonance in the infrared and electron transition resonance in the ultraviolet are marked at ω1 and ω2 

respectively.
6
 

Metals are readily identifiable due to their opacity and reflectivity and, as with dielectric materials, 

these optical properties are largely dependent on their relative permittivity which is in turn a 

function of the frequency of the incident light. Light which is not directly reflected from the surface 

of a metal is extremely efficiently absorbed over a very short distance also known as the skin-depth 

which tends to be on the order of 50 nm. This is because no band gap exists and all photons can 

transfer their energy to excite electrons. The optical properties of metals are governed largely by the 

interaction of light with the conduction electrons – a process that is very successfully described by 

the Drude free electron model6 which depicts the motion of electrons in metals and treats the free 

electrons and positive ions in metals as simple harmonic oscillators. However the Drude model does 

not completely reflect reality in that it only considers free electrons and at optical frequencies it is 

also possible to promote more tightly bound inner core electrons to higher energy levels. While it is 

the free electrons that dominate the optical properties of metals these inter-band transitions also 
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play an appreciable role and are in fact what causes the differences in appearance between silver 

and gold when exposed to light. These inter-band transitions contribute to the dielectric function, 

governing the frequencies at which light is absorbed or can be efficiently reflected. In the case of 

gold, blue and green light is absorbed more than in some other metals such as silver or aluminium 

and causes it to preferentially reflect longer wavelengths – the origin of its familiar ‘golden’ hues. As 

with dielectrics, absorption, or losses are governed by the imaginary part of the relative permittivity. 

The imaginary part of the relative permittivity for silver is close to zero across the full visible 

spectrum and, in this respect at least, renders it more attractive for use in metamaterial designs 

than other metals such as gold which displays much greater losses. The real part of the relative 

permittivity is negative across the full visible spectrum for metals but becomes positive at higher 

frequencies. The point at which it becomes positive is known as the plasma frequency, ωp, a bulk 

material parameter corresponding to the frequency at which the electron gas oscillates. Neglecting 

damping and using the Drude model the plasma frequency can be connected to the localised surface 

plasmon resonance (LSPR) , which will be discussed at length in Section 2.2.3, as in Equation 2: 

                 [2] 

where  ω = frequency of plasmon resonance 

 ωp = plasma frequency 

 εh = relative permittivity of host medium 

The optical properties of metals are also extremely size dependent. As the dimensions of metals are 

reduced into the nanoregime, for example, the movement of electrons within the metal is limited by 

the physical boundaries presented at the extremities of the structure. This results in a chain of 

consequences – reducing the mean free path of the electrons and affecting the damping parameter 

which in turn influences the dielectric function of the metal. That the optical properties of metals are 

a function of size is of central importance to this thesis, and the concept of localised resonances that 

occur only in nanoscale metallic structures will be introduced in Section 2.2.3. 

As a result of the pioneering work of Maxwell the interaction of light with both dielectric materials 

and metals, the principal components of the majority of metamaterials, can be accurately modelled. 

However, metamaterials are composites of the two, with the inhomogeneity scale being much 

smaller than the wavelength of the incident light thus rendering it unable to probe the two distinct 

components. Applying Maxwell’s equations to large scale arrays of metallic inclusions in dielectric 

host media would be practically impossible due to the complicated boundary conditions. As such, a 
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means of modelling the response of, and assigning material parameters to, such composite materials 

is required. This means can be found in the overarching field of effective medium theory which 

incorporates a variety of schemes which are able, with differing levels of accuracy depending on 

variables such as filling fractions, to predict parameters such as the relative permittivity. The 

majority of these schemes can be traced back, at least to some extent, to the Clausius-Mossotti 

relation which first appeared in 1850.53 

The Maxwell-Garnett theory, introduced in 1904, describes the bulk permittivity of a solid in terms 

of the permittivity of the inclusions in a host of a given dielectric constant and the volume ratio of 

these two components.14 It was formulated by James Clerk Maxwell Garnett who, being the son of 

Maxwell’s scientific demonstrator at Cambridge, was named after the great physicist.54 However, 

Maxwell-Garnett theory can only be applied in the case where the volume of the inclusions is 

significantly lower than the overall volume of the system. 

Bruggeman was able to improve the Maxwell-Garnett theory by overcoming this limitation and 

developing the theory to allow two-phase composites of any ratio to be considered.55 Indeed, since 

the theory treats each component equally it is also possible to extend it to include any number of 

components. The effective medium theory developed by Bruggeman in 1935, and shown in Equation 

3, is arguably still the most widely used model today and is commonly known as the effective 

medium theory. 

                                   [3] 

where  f1 = filling fraction of inclusion 1 

 ε1 = relative permittivity of inclusion 1 

 ε = relative permittivity of composite material 

 f2 = filling fraction of inclusion 2 

 ε2 = relative permittivity of inclusion 2 

Additionally, Bruggeman’s effective medium theory also predicts a critical filling fraction for metallic 

particles, referred to as the percolation threshold, above which a continuous conducting pathway 

will be formed. This insulator to metal phase transition is not predicted by the Maxwell-Garnett 

theory which describes the effective permittivity of a composite as a linear function of the filling 

fraction. It is also possible to use the effective medium theory to calculate the relative permittivity of 
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nanoparticles rather than the composite. This technique is commonly carried out in nanocrystal 

research whereby measuring the permittivity of the composite material makes it possible to work 

backwards and determine the particle permittivity.56 

The effective medium theory depicted in Equation 3 is only valid for spherical inclusions in a three 

dimensional material however both this, and the Maxwell-Garnett theory can be modified to 

accommodate for non-spherical particles and lower dimensional metamaterials such as thin films of 

metallic nanoparticles embedded in dielectric hosts. 

The manner in which electromagnetic radiation interacts with matter, in particular metals, 

dielectrics and composites of the two, underpins the whole field of metamaterials. However, in 

order to fully understand what gives metamaterials their particular properties it is necessary to 

delve slightly deeper and consider the nanoscale metallic inclusions in these materials in more 

detail. 

2.2. Nanoparticles 

2.2.1. Nanoparticle properties 

Despite metallic nanoparticles possessing a range of very specific properties they also share a range 

of attributes that, in a very general manner, can be applied to small particles of any composition. 

The properties of a material, when reduced in dimension from the bulk through to the atomic or 

molecular scale, become drastically different. Nanoparticles form a bridge between these two 

extremes. Unlike bulk materials, whose properties should be constant regardless of size, 

nanomaterials can have vastly varying, and often unique, optical,57 electrical58 and mechanical59 

traits when their size is changed by even small amounts. The changes in properties that are observed 

at the nanoscale can, in broad terms at least, be ascribed to a number of differing factors. The 

massive increase of surface area that is observed upon reduction of scale results in unrecognisable 

properties when a nanomaterial is compared to its bulk counterpart. A simple calculation can show 

that decreasing the radius of a sphere from 1 mm to 1 nm will result in a 1012 fold increase of surface 

area if the overall mass of the sample is kept constant. This can have significant effects on reaction 

rates and is of particular importance for catalytic applications.60 Another root of the differences 

between bulk and nanoscale materials is quantum confinement. The restriction of motion of sub-

atomic particles such as electrons can result in vastly differing properties, one notable example 

being the increasing size of the band-gap as semiconductor particles become smaller.61 At the 

nanoscale, which can be loosely defined as the intermediate size scale between molecular and bulk 



Theory  

18 
 

matter, the individual energy states of molecules and continuous energy bands of solids become 

discrete – their energy separations displaying a strong dependence on the dimensions of the 

material.62 Another of the major distinctions that can be made between the macro and the 

nanoscale is the effect that gravity has on matter. Gravity essentially becomes negligible at this scale 

and other forces begin to dominate. The formation of stable colloids, with each particle undergoing 

Brownian motion rather than sedimenting at the bottom of a liquid, for example, is evidence of this. 

At this scale attractive interactions between particles in solution, governed by van der Waals forces, 

and repulsive interactions, governed by electrostatic forces, compete with one another. This forms 

the basis of DLVO theory which was named after Derjaguin and Landau, who first proposed the 

theory in 1941,63 and Verwey and Overbeek, who independently arrived at the same conclusion 

seven years later.64 It describes the stability of colloidal solutions as a function of the two competing 

forces as is shown in Figure 5.  

Van der Waals forces are concerned with the interaction of dipoles, permanent or otherwise, on 

differing particles in solution. This is generally measured as a function of the distance between the 

two particles with the strength of the attractive forces, shown as the red trace in Figure 5, becoming 

extremely large at shorter distances. At larger separations repulsive interactions set up between the 

electrostatic double layers (EDLs) which surround each of the particles have more of an influence. 

These repulsive interactions are represented by the blue trace in Figure 5.  Of course each situation 

should be studied on individual basis but in general, when the two forces are combined, an energy 

barrier, seen as the peak of the green trace in Figure 5, can be ascertained. When particles maintain 

a separation further apart than the position of the energy barrier the colloid remains stable. If the 

particles approach to within distances closer than that found at the energy maximum, however, the 

attractive forces overshadow the repulsive ones and irreversible aggregation of the particles tends 

to result. Modifications to this theory, for example based on specific information such as salt 

concentration, can be made and result in changes in the profile of the net energy trace. The 

introduction of secondary minima in such traces shows the particle separation range where 

reversible aggregation can occur. 
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Figure 5 – Graphical representation of DLVO theory showing free energy as a function of particle separation. At 

low particle separation the Van der Waals forces (red trace) dominate over the electrostatic repulsion (blue 

trace) causing the net energy (green trace) to be lower than zero. In this regime the particles are attracted to 

one another and tend to aggregate. 

The EDL, which exists at the surface of all charged particles in solution, serves to stabilise the 

particles and inhibits their aggregation. Depicted in Figure 6, the EDL is composed of solvent 

molecules and ions that are attracted to the charged surface of a nanoparticle in order to maintain 

charge neutrality. It can be defined as the volume of solvent at the surface of an object that contains 

an excess of counterions and a corresponding depletion of coions when compared with the bulk and 

this thickness defines the extent to which, and over what range, particles can interact through 

electrostatic forces. The characteristic length of the EDL, known as the Debye length, is shown in 

Figure 6, along with the Stern layer, which refers to the layer of oppositely charged ions physisorbed 

at the surface. 
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Figure 6 – Diagrammatical representation of the electrostatic double layer showing the excess of ions of 

opposite charge to that of the surface in this zone. 

Clearly the extent to which the EDL extends into the bulk of the solution is extremely dependent on 

the concentration of ions in solution. As the concentration of ions is increased, through the addition 

of salt for example, the EDL ‘collapses’ and particles have to approach to within much shorter 

distances in order to interact electrostatically. Conversely, the removal of ions from solution, 

through purification techniques such as centrifugation or dialysis, causes the EDL to expand into the 

bulk of the solution and particles interact at greater separations. Many theoretical models, 

principally describing the interaction between colloidal particles, have been developed and modified 

over the last 150 years and are now able to describe interactions between particles of various sizes, 

shapes and compositions.65 In general, however, the EDL can be thought of as consisting of two 

distinct regions; the Stern layer which refers to the layer of counterions adsorbed at the solvent 

interface and the diffuse layer which is so-called because the excess of ions found in this region are 

not anchored to the particle but are free to diffuse in and out of the bulk, electrostatic attraction 

being to some extent balanced by the somewhat random forces of thermal motion. The Debye 

length, Κ-1, is inversely proportional to the square root of the ion concentration as in Equation 4: 
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     [4] 

where  Κ-1 = Debye length 

 ε = dielectric constant 

 R = ideal gas constant 

 T = temperature 

 F = Faraday constant 

 q = charge number 

 C = ion concentration 

In addition to being able to tune the Debye length by controlling the concentration of ions in 

solution it is also possible to influence the electrostatic properties of the system by altering the pH. 

Surface charge density is strongly dependent on pH. The point of zero charge, the pH at which the 

surface charge density is zero, is of fundamental importance to the electrostatic nature of colloidal 

systems where H+/OH- are the potential determining ions. As the pH is increased from this point the 

particles exhibit an increasingly negative charge, the converse being true when the pH is decreased. 

Despite being an extremely useful tool that can be used to model and explain a host of different 

situations the standard EDL model described above does deviate slightly from the actual situation 

resulting in certain limitations. For example, ions in solution, which can be within an order of 

magnitude of the charged object itself, are effectively modelled as point charges with interactions 

being of a purely Coulombic nature.65 In addition the dielectric constant is assumed to be constant 

throughout the solution which is virtually never the case with large variations normally existing 

between the particles and solvent.65 These factors can combine to give inaccurate values for the ion 

distribution around a charged nanoparticle. 

While electrostatic repulsion, as described by the EDL model, can be used to stabilise particles this 

can also be achieved through coating the particles with physical barriers such as polymers or SiO2 

layers which prevent aggregation. 



Theory  

22 
 

2.2.2. Synthesis of metallic nanoparticles 

As previously described metallic nanoparticle assemblies fabricated using bottom-up methods 

possess several advantages over their top-down counterparts. As well as offering design benefits 

such as smaller feature sizes and more ready access to 3D materials, two of the major challenges 

currently facing the metamaterials community, these techniques are, in general, cheaper and 

quicker, this being of prime importance for the eventual application of this technology. As such, over 

the last decades a significant amount of research effort has gone into the fabrication of metallic 

nanoparticles using colloidal nanochemistry. This field, despite being relatively mature, is constantly 

being updated and particles of a wide variety of shapes, sizes and composition can now be readily 

produced.66 This large catalogue of materials, exhibiting an LSPR at optical frequencies,67 is becoming 

of increasing importance to the burgeoning field of optical metamaterials. When using such particles 

to prepare structures with advantageous optical properties it is typically necessary to induce their 

organisation, normally through the exploitation of particle-substrate and interparticle interactions, 

into specific architectures that have been proposed by theoreticians. The development of novel and 

innovative methods combined with the manipulation of pre-existing ones allows this to be done. 

While the field is too large to give a comprehensive review of all of the bottom-up methods used to 

both prepare metallic nanoparticles and assemble them into structures that could be useful to the 

field of metamaterials, an attempt will be made in this section to introduce some of the primary 

techniques that have been used in this newly developing domain. 

Due to their superior optical properties and their ease of handling the majority of metamaterial 

structures use either silver or gold, respectively. Where bottom-up techniques are concerned, these 

nanoparticles are generally fabricated by reducing a salt of the metal in solution. One of the most 

common methods used to produce metallic nanospheres is known as the Turkevich method which 

was first developed in 195168 and essentially involves the reduction of chloroauric acid by sodium 

citrate.69 The citrate molecules play two roles in the synthesis; first reducing the metal ions to form 

the nanoparticles and secondly forming a capping layer at their surface which imparts a 

characteristic negative charge on them and stabilises them in solution, preventing them from 

aggregation. The ratio of gold to citrate in solution defines the size of the particles and allows their 

diameters to be accurately controlled.69 The Lee-Meisel method, in essence analogous to that 

described above, can be used to produce charged silver nanospheres.70 Another technique used to 

prepare metallic nanospheres is the Brust-Schiffrin technique, a two-phase method which yields 

metallic nanoparticles in an organic solvent.71 In addition to spheres, metallic nanorods can readily 

be synthesised using a seed-mediated method that involves the addition of small ‘seed’ particles to a 
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growth solution containing a surfactant which stimulates preferential growth along certain crystal 

facets, resulting in elongated particles. Here, through the careful control of the growth conditions it 

is possible to tune the aspect ratio, and therefore the plasmonic properties, of the particles. Whilst 

being used less often in the assembly of bottom-up metamaterials, more exotic metallic 

nanoparticle geometries such as nanoshells,72 nanostars and cubes,73 nanoprisms74 and many other 

forms66, 72 can readily be prepared using colloidal nanochemistry techniques. 

2.2.3. The localised surface plasmon resonance 

The wide ranging catalogue of metallic nanoparticles which can now be routinely prepared, and in 

many cases are now commercially available, has garnered increasing interest as their use in a broad 

variety of applications has become apparent. This is largely due to their particular optical properties, 

more specifically the fact that they support an LSPR. This property is observable only in particles 

which fall under a certain size and as such can be distinguished from propagating plasmon 

resonances which relate to larger scale systems, that have at least one dimension that approaches 

the excitation wavelength.75 There are two limiting factors connected to size in relation to the LSPR. 

The particles should be smaller than the depth to which optical radiation penetrates the material 

under study, also known as the skin-depth. This is on the order of 50 nm in the visible range for the 

coinage metals, the principal materials used in the field of plasmonics.76 At the other extreme the 

particles should be larger than the distance that an electron with Fermi velocity (approximately 2 × 

106 ms-1) can travel during one optical oscillation. This distance, also known as the non-locality 

length, equates to about 2 nm considering that the oscillation period of the electrons is on the order 

of 2 femtoseconds.76 

The principal materials used in plasmonics include gold and silver, because of their ease of 

manipulation and superior optical properties respectively. To a lesser extent heavily doped 

semiconductors and other coinage metals such as copper, palladium, aluminium and tungsten can 

also be used. The latter two examples are notable due to the plasmon resonance being pushed into 

the UV and NIR regions of the electromagnetic spectrum. 

 The plasmon resonance, which has been widely studied and documented,67 describes the coherent 

dipolar oscillation of the free electrons present in a nanoparticle when excited by electromagnetic 

radiation of a particular frequency. The electric field of an incident light wave induces a polarisation 

of the surface electrons with respect to the much heavier ionic core of a spherical nanoparticle. A 

net charge difference is experienced only at the surface of the nanoparticle. The charge difference 

then acts as a restoring force, creating a dipolar oscillation of the electrons. This process is depicted 
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schematically in Figure 7. Particles that support LSPRs experience a uniform electric field as their 

dimensions are much smaller than the wavelength of the light that excites them.75 This manifests 

itself as a strong extinction of the incident radiation which, depending on the material, exists in the 

visible part of the electromagnetic spectrum.  

 

Figure 7 – Schematic of the plasmon resonance showing the displacement of the conduction band electrons 

relative to the ionic core of a spherical metallic nanoparticle that occurs upon incident electromagnetic 

radiation of a resonant frequency.
77

 

The effect was first modelled by Gustav Mie in 1908 who solved Maxwell’s equations for light 

interacting with spherical metallic nanoparticles. His equation, shown below, which includes both 

scattering and absorption, holds true when dipolar oscillations of the conduction electrons are 

considered in the limiting case where the wavelength of the incident radiation is significantly greater 

than the size of the metallic nanoparticles. 

                                     [5] 

where Cext = extinction cross-section 

R = particle radius 

εm = dielectric constant of the surroundings 

ε = ε1 + iε2 = complex dielectric constant of bulk metal 

λ = wavelength of incident radiation 

As can be seen in Equation 5, the maximum extinction occurs when ε1 = -2εm, also known as the 

Fröhlich condition,78 thus defining the position of the LSPR peak. The pioneering work which Mie 

executed is not limited to nanospheres and can also be modified to describe nanoparticles of other 

geometries such as rods.79  



Theory  

25 
 

These optical properties have made the use of gold nanoparticles attractive to a number of fields 

interested in exploiting their potential. For example, as shown in Equation 5, the position of the LSPR 

peak is altered depending on the dielectric constant of the surrounding material. As such the 

particles can be thought of as probes that can accurately return information, observed as red or 

blue-shifts of the LSPR peak, on the refractive index, and therefore composition, of their surrounding 

medium. A host of sensing applications, where colour changes observed in the metallic 

nanoparticles can indicate trace changes in the concentration of analytes, can be envisaged with 

many already both in use and development.80 A comprehensive review of nanostructured plasmonic 

sensors can be found in Reference 81. 

The position of the plasmon resonance is also closely related to both the size and the shape of the 

nanoparticles. As can be seen in Equation 5 there is a strong size dependence between the overall 

extinction cross-section and the radius of the spherical particles. At smaller sizes this extinction is 

dominated by absorption however as the particles become larger scattering plays an increasingly 

important role. When non-spherical metallic nanoparticles are considered then additional plasmon 

resonances are induced. For example nanorods exhibit two plasmon resonances; the longitudinal 

plasmon resonance corresponds to the oscillation of the surface electrons along the length of the 

rod and occurs at longer wavelengths while the transverse plasmon resonance is related to the 

oscillation of the surface electrons across the breadth of the rod and can be found at higher 

frequencies. The exact position of these extinction peaks can be tuned by altering the aspect ratio of 

the rods which can be controlled through the adjustment of certain reaction conditions.34, 82 The 

extent to which the position of the longitudinal LSPR peak can be tuned was described by Brioude et 

al. who modelled the relationship between peak position and aspect ratio as shown in Equation 6:83 

                    [6] 

where λmax = peak position of longitudinal LSPR peak 

 AR = aspect ratio 

When this equation is considered in combination with the fact that particles with an aspect ratio of 1 

(spheres) up to ~20 can now be routinely realised in a controlled manner it can clearly be seen to 

how great an extent it is possible to tune the optical properties of nanoparticle systems.84 

As a result of advances made in recent years a wide range of other particle geometries are now 

accessible using bottom up growth methods. Each of the range of particle shapes introduced in 
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Section 2.2.2 possess particular plasmonic properties with peaks of differing strengths found at a 

variety of frequencies.  

An additional approach to controlling the plasmonic properties of nanoparticle systems is by 

supplying, or removing, electrons to or from the nanoparticles.78 The frequency of oscillation of the 

surface electrons is heavily dependent on their concentration. Taking gold nanoparticles as an 

example, each atom within the particle is capable of supplying one electron (from the 6s shell) that 

will participate in the resonant oscillation that forms the plasmon resonance. By applying a potential 

to a system of plasmonic nanoparticles it is possible to supply extra electrons to these systems, or 

conversely to deplete them, resulting in shifts of the plasmon resonance. The extent to which it is 

possible to use this method to control the peak position is dependent on the initial carrier 

concentration. Materials, such as metals, which have high carrier concentrations to begin with, will 

not be affected as much as, for example, semiconductor particles where the carrier concentration is 

initially relatively low. In these cases it is even possible to tune the position of the plasmon 

resonance from the infra-red into the visible. The degree to which the resonance can be 

manipulated, and the reasoning behind larger shifts being observed for low carrier density materials, 

is outlined in Equation 7:78  

                  [7] 

where λf = final LSPR wavelength 

 λf  = initial LSPR wavelength 

 ni = initial electron concentration 

 nf = final electron concentration 

The carrier concentration in plasmonic semiconductor particles can also be tuned by altering the 

ratio of the constituent elements. This affords an added level of control which is not available when 

working with metallic particles. For example, varying the concentration of tin in indium tin oxide 

(ITO) nanoparticles by just a few percent can result in massive shifts of the LSPR band of several 

hundred nanometres.85 The overall number of conduction electrons in a nanoparticle is known as 

the oscillator strength, f, and is typically in the range of ~105.76 In comparison, the oscillator strength 

of an organic dye or semiconducting quantum dot is, in general, about 1. When it is considered that 

the absorption cross-section is directly proportional to f and the scattering cross-section is 
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proportional to f2, the gains in efficiency offered through the use of plasmonic particles can clearly 

be seen.76 

Some factors that affect the frequency of the plasmon resonance are maybe not as obvious and are 

sometimes overlooked. It is well-recognised that LSPR peaks are highly sensitive to sharp edges and 

protuberances however atomic scale protrusions on gold nanorods, resulting from lattice defects, 

stacking faults or perhaps simply from the faceting of the surface atoms that is required to form 

particular geometries, have been observed using high resolution transmission electron microscopy 

(TEM)86 and have been shown to have a strong bearing on the position of the LSPR.87 Acting as local 

‘hot-spots’ increasing the surface roughness can result in red-shifts of the longitudinal LSPR peak of 

gold nanorods of several tens of nanometres. These additional edges and vertices can affect the 

electrostatic distribution of charges within the particle, resulting in differing resonant frequencies 

and providing another possible means of controlling the optical properties of metallic nanoparticle 

systems. 

That different shaped nanoparticles possessing several plasmon resonances can now be readily 

prepared in a controlled fashion introduces the prospect of selectively exciting specific LSPR peaks. 

This can be achieved by either modulating the frequency or the polarisation state of the incident 

light. Taking a single gold nanorod as an example; when exposed to unpolarised white light both the 

longitudinal and transverse plasmon modes will be excited. However if the light source were to be 

replaced with a monochromatic source with a wavelength corresponding to that of the longitudinal 

(transverse) plasmon band the electrons will only be driven into oscillation along (across) the length 

(breadth) of the nanorod. If a linear polariser were to be placed in front of the original white light 

source and the orientation of the resultant polarised light is aligned with one of the two nanorod 

axes then it is also possible to selectively excite only one of the two resonances. This means of 

selecting the plasmon band becomes more complicated as more nanoparticles are considered. In 

addition to aligning the light source with the particle it becomes necessary to also ensure that all of 

the particles are, themselves, aligned. This is particularly challenging when bottom-up approaches 

are used as long range order is more difficult to achieve and amorphous structures tend to 

dominate. 

In addition to the oscillator strength, which measures the number of conduction electrons available 

to contribute to the plasmon resonance, there are other means of expressing the relative attributes 

of surface plasmon resonances. The quality factor, Q, can be defined as the frequency of the 

plasmon resonance divided by the full width at half maximum of the peak and is a measure of the 

number of oscillations that a surface plasmon undergoes before it decays.75 In essence a higher 
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quality factor denotes less damping and a stronger plasmon resonance and in general should have a 

value greater than ten for most plasmonic applications.75 A formula for the quality factor based upon 

the real and imaginary parts of the dielectric constant of the metal in question is shown in equation 

8: 

                        [8] 

where ω = frequency 

 εr = real part of dielectric constant 

 εi  = imaginary part of dielectric constant 

 It also describes the increase in local field amplitude that accompanies the excitation of the plasmon 

resonance. The square of the quality factor, which ranges between 10 and 100 for noble metals 

depending on the frequency being considered, indicates the enhancement of the absorption and 

emission rates of molecules adsorbed at the surface of the nanoparticles.76 The enhancements that 

are seen in surface enhanced Raman scattering (SERS) are proportional to Q4 – explaining the huge 

enhancements that have led to single molecule sensitivity.76, 88 Silver is the metal which displays the 

highest quality factor across the majority of the visible spectrum making it one of the most 

promising materials for plasmonic applications.75 Another term that can be used in the description of 

surface plasmon resonances is the modal volume, Vm, which refers to the volume in which the 

conduction band electrons oscillate.76 In a nanoparticle whose dimensions are smaller than the skin-

depth the modal volume is approximately equal to the volume of the particle itself and it is partially 

this sub-wavelength confinement of the optical energy that results in such a wide range of 

applications for plasmonic nanostructures. 

Electronic motion in the nanoparticles can be damped through two distinct loss mechanisms – 

radiative and nonradiative and, in general, plasmon relaxation times are on the order of 10 

femtoseconds.76 Radiative processes encompass both elastic and inelastic scattering of incident light 

and for particles smaller than ~100 nm scale as the square of the volume of the particle.89 The 

scattering of light into the far field caused by nanoparticles can be measured by standard dark field 

microscopy and its contribution to the overall extinction is included in Mie theory. Nonradiative 

decay, also included in the Mie equation, refers to the decay of the plasmon oscillation through the 

transformation of absorbed energy into heat which is caused by collisions between the oscillating 

electrons and the lattice ions and can be measured by photothermal imaging.89 The excitation of the 

plasmon resonance results in local heating of the particle which sets up a high temperature gradient 
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between the particle and its surroundings to where the energy is then transferred. The increase in 

temperature of the surroundings can cause local changes in the refractive index which, as discussed, 

can result in shifts of the LSPR peak.89 The nonradiative properties of plasmonic particles can be of 

particular use in applications such as cancer therapy where nanoparticles, which have been 

selectively bound to cancerous cells, can be irradiated at the plasmon frequency and kill only these 

cells.90 By shifting the plasmon resonance into the near infrared, a region of the electromagnetic 

spectrum where human tissue does not efficiently absorb, it is possible, using this technique, to 

avoid invasive surgery.90  

The above discussion refers solely to the plasmonic properties of isolated particles. However one of 

the most interesting, and indeed useful, techniques of tuning the spectral position of the plasmon 

resonance is by inducing two or more of these particles, by chemical means or otherwise, to 

approach to within short distances of one another. 

2.2.4.  Plasmon coupling and hybridisation theory 

Metallic nanoparticles undoubtedly have many applications, both current and future. The majority 

of these applications rely on the LSPR that the particles support, allowing them to, amongst other 

things, sense, heat, catalyse and image. The position of the LSPR peak, as discussed above and 

formulated in Equation 5, is dependent on a number of factors including the particle size and shape 

as well as the refractive index of the surrounding medium localised at the surface of the particle. 

However one important factor that is not considered in the equation, which analyses only a single 

particle, is the effect that other particles have on one another. This effect, also known as coupling, 

can be exploited by finding means, chemical or otherwise, to order metallic nanoparticles into 

specific configurations or structures. This is an additional, more flexible, method of fine-tuning the 

optical properties of systems and will be examined in more detail in the following discussion.  

Coupling between metallic nanoparticles is very well summed up by plasmon hybridisation theory. 

This physically intuitive method, developed in 2003 by Peter Nordlander et al.,91 uses similar 

constructs to those used in molecular orbital theory to describe the optical changes that occur when 

two metallic nanoparticles are brought together to the extent where they begin to interact. The 

plasmonic response of a more complex structure is constructed from the interactions that exist 

between its constituent elements, forming hybridised modes in much the same manner that 

molecular orbitals are composed from the atomic wave-functions of the individual atoms that form 

molecules. This interaction can be considered in its simplest form as the coupling of two nearby 

dipoles, although depending on the size of the nanoparticles and their distance of approach higher 



Theory  

30 
 

order multipole moments can also be considered. Hybridisation theory predicts two distinct classes 

of eigenmodes for a structure of two strongly coupled metallic spheres, i.e. a dimer. The first is 

associated with an in phase oscillation of the electric dipole in both spheres and is therefore termed 

a ‘bright’ eigenmode since it can radiate into the far field. The second class requires a 180° out of 

phase oscillation of the electric dipoles of both spheres. These eigenmodes are termed ‘dark’ since 

they cannot radiate into the far field and play an important role in the field of metamaterials as the 

out of phase oscillation of electric dipoles can be related in some cases to a magnetic dipole moment 

which is the key component in many predicted applications of metamaterials. 

The method of constructing hybridised plasmonic modes through the combination of two or more 

resonant elements is illustrated in the plasmon hybridisation diagram shown in Figure 8 and depicts 

the theory applied to a dimer of two metallic nanospheres. 

 

Figure 8 - Schematic showing hybridisation of plasmons of two approaching metallic nanoparticles. Red crosses 

indicate dark modes that only offer a weak excitation for the present configuration. 

Shown are the individual nanoparticles with the dipoles that they support, the directions of which 

are dependent on the direction and polarisation of the incident electromagnetic fields which drives 

the free electrons of the metal into resonance. Similarly to molecular orbital theory these dipoles are 

combined in bonding and anti-bonding fashions and result in the splitting of the modes to give 

hybridised modes of lower and higher energy respectively. The interaction of two equal spheres 

results in four hybridised plasmonic modes in the coupling regime. Because of symmetry 

considerations, only two of these modes display a net dipole moment and will show a strong 

scattering of light into the far-field at relevant frequencies and angles of incidence. Conversely, both 
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the antibonding mode for incident light parallel to the main axis of the dimer (σ*) and the bonding 

mode for incident light perpendicular to the main axis of the dimer (π) have no net dipole moment 

and are known as dark modes (noted in Figure 8 with red crosses) that can only be observed by 

breaking the symmetry of the system and for large spheres with extremely small interparticle 

distances. These dark modes contribute predominately to the absorption of the system because the 

resulting quadrupole moments offer only a weak coupling to the far field. 

Plasmon hybridisation theory can be used to model systems both quantitatively and qualitatively 

and has proven to be an invaluable tool both in explaining the optical changes observed, for example 

spectroscopically, and in designing new systems which should have specific optical properties. It is in 

no way restricted to simply describing nanospheres and has been applied to nanoparticles of a wide 

range of different forms such as asymmetric dimers, thin metallic films, systems of metallic 

nanoshells, nanorods and nanostars.66 

2.2.5.  Bottom-up organisation of metallic nanoparticles 

The large potential for using bottom-up methods to organise metallic nanoparticles into assemblies 

that could be used as functional materials with practical applications has meant that a significant 

amount of research effort has been focussed in this direction in recent years. Exploiting the coupling 

properties that metallic nanoparticles possess and fabricating materials with tailored optical 

properties is one of the major motivations driving material scientists to finding novel means to 

induce their self-assembly. The versatility of the nanoparticles, largely resulting from the wide-

ranging surface chemistry that can be used to cap them, means that a huge amount of techniques 

originating from disparate areas of chemistry can be used to this end. The assembly of metallic 

nanoparticles relies on surface chemistry and self-assembly principles using (bio-)molecules, 

surfactants, mesogens or polymers and makes use of intermolecular (interparticle) interactions. It is 

therefore logical that the bottom-up organisation of metallic nanoparticles is a research area where 

the border between physics and chemistry needs to be crossed. 

Self-assembly is closely linked with the liquid-crystalline state of matter and it is therefore not 

surprising that liquid crystals have been used in order to organise gold nanoparticles. The inherent 

order that is present in liquid crystal systems can be used to impart organisation on the 

nanoparticles themselves, resulting in arrays of resonant guests in the host material.92 This can be 

achieved by using one of two general strategies; either by simple mixing of the two species,93 or 

modifying the surface chemistry of the particles and functionalising them with liquid crystalline 

ligands.94 Whilst these techniques work to a large extent they suffer from the relatively low 



Theory  

32 
 

solubilities of the nanoparticles in the host and the maximum size of the particles that it is possible 

to incorporate, although it has been reported that particles of up to 7 nm in diameter, large enough 

to support LSPRs, have been included in such systems.94 

One of the most important examples of self-assembly exhibited in nature, that of the double helix 

structure of DNA, can also be used to organise metallic nanoparticles. The formation of ordered 

structures in such a way, using DNA as a molecular substrate for nanoparticle deposition, has 

facilitated the production of a number of different metallic nanoparticle architectures. One early 

example was the formation of dimers and trimers which was achieved through the functionalisation 

of gold nanocrystals with single stranded DNA oligonucleotides of defined length and sequence and 

assembling them on a complementary single stranded DNA template.95 This work introduced the 

possibility of using oligonucleotides to self-organise metallic nanoparticles into well-defined and 

homogeneous structures. Similarly, Chen et al. used a chemically modified peptide to reduce a gold 

salt, resulting in a left-handed arrangement of gold nanoparticles along the peptide backbone.96  The 

introduction of chirality to the organisation of metallic nanoparticles produces optically active 

materials and gives an additional means to tune the optical properties of such systems. More 

recently metallic nanoparticle heterodimers comprising both gold and silver nanoparticles fabricated 

in a similar manner were shown to be SERS active.97 Precise nanogap engineering was achieved 

through the controlled growth of silver layers on top of the original gold nanoparticles and single 

molecule sensitivity was shown when dyes were analysed using SERS. This advance is further 

evidence of such work being of fundamental importance to several fields of scientific research. 

Another possibility for the use of macromolecules in the ordering of metallic nanoparticles includes 

the creation of pseudo block copolymer systems.50 Gold nanorods selectively functionalised at their 

ends with polymer chains, resulting in a ‘pom-pom’ structure reminiscent of an ABA tri-block 

copolymer, can be induced to organise the nanorods either end to end or side by side. This 

interchangeable organisation can be controlled by altering the molecular weight of the polymer 

chains or by simply altering the percentage composition of the solvent. The different affinities that 

the polymers at the ends of the gold nanorods and the cetyltrimethylammonium bromide (CTAB) 

molecules along their lengths have for different solvents provokes the redistribution of the polymer 

chains and stimulates the organisation of the nanorods in different manners as the concentration of 

water in the predominantly organic solvent is increased. A more in-depth discussion of the 

ramifications that such differing organisations of gold nanorods have on the optical properties, 

considered from the perspective of plasmon hybridisation theory, can be found in Reference 98. 
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Additional degrees of order compared with the systems previously discussed arise from the 

formation of binary nanoparticle superlattices from colloidal crystallisation methods which can 

result in crystals containing metallic nanoparticle inclusions.99 Here, steric repulsion and van der 

Waals, electrostatic, and substrate - particle interactions, amongst others, all combine to determine 

the crystal structure with the type of control over particle size, shape and composition outlined 

previously allowing materials with tunable physical and chemical properties to be manufactured. 

It would be easy to assume, on the other hand, that less ordered systems would result from the 

agglomeration of nanoparticles. In general this is true and such aggregation, which can occur for a 

variety of reasons, is normally to be avoided. However the controlled aggregation of colloidal gold 

nanospheres has been used to selectively produce dimers and trimers, which were subsequently 

used to catalyse the formation of ZnO nanowires in solution.100 The aggregation, occurring as a result 

of a reduction of the EDL, is achieved through the addition of HCl and the particles are 

simultaneously stabilised by encapsulating polymers. An optimal pH for dimer formation was found 

to exist and high yields could be isolated upon enrichment by density gradient centrifugation.  This 

control over the aggregation kinetics provides a route to the fabrication of ensembles with well-

defined nanoparticle inclusions. 

Several theoretical studies have shown that spherical arrangements of metallic nanoparticles are of 

significant interest to metamaterials research due to the possibility of introducing magnetic 

resonances, a necessary building block of negative refractive indices.27, 41-42 By replacing the citrate 

capping shell that stabilises gold nanoparticles fabricated using the Turkevich method with 11-

mercaptoundecylether it is possible to provoke the self-organisation of the particles into spherical 

units of around 1 µm in diameter.101 These spheres, in turn, were also observed to assemble into 

larger structures, forming hierarchical arrangements of metallic nanoparticles that closely resemble 

structures that have been proposed as possible negative refractive index materials.42 Other means, 

for example using oil-in-water emulsion technology, have also been used to produce spherical 

arrangements of metallic nanoparticles by bottom-up methods.102 Due to this unambiguous 

association with the excitation of magnetic dipole resonances, by confining suitably functionalised 

particles to an oil phase that has been dispersed as small spherical globules in a non-miscible solvent 

such as water it is possible to create another possible building block for use in the fabrication of bulk 

metamaterials at optical frequencies. 

By combining top-down and bottom-up techniques it is also possible to exploit the advantages of 

both, resulting in substrates with metallic nanoparticles that self-assemble into structures that also 

exhibit long range order. Two-dimensional square arrays of gold nanoparticle clusters can be 
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prepared, for example, by inducing their template directed self-assembly into holes prepared by 

laser interference lithography.103 These hybrid techniques can be implemented when required and 

provide an additional layer of flexibility when it comes to preparing structures of a particular design. 

This introduction has given a small snapshot of some of the principal bottom-up self-assembly routes 

towards nanoparticle organisation and is by no means comprehensive. As shown, the field of 

bottom-up assembly of metallic nanoparticles is already highly developed in terms of what is 

achievable and the wide range of methods that exist to accomplish design goals set. Of course, one 

of the principal advantages of the bottom-up approach is its flexibility and often a combination or 

variation of one or more of the techniques discussed above is required to achieve the desired 

results. Indeed, one could argue that problems of either a scientific or practical nature should be 

considered on a case by case basis when searching for bottom-up solutions. The continual 

introduction of new techniques and their combination with existing ones means that this is an 

extremely fast moving area of research that is continually making notable advances. This means that 

only the surface has been scratched in terms of what can be achieved with respect to metallic 

nanoparticles structures and highlights both the power and versatility of the techniques discussed. 

2.2.6. Applications of metallic nanoparticles 

The optical properties outlined in Section 2.2.3 have made the use of metallic nanoparticles 

attractive to a number of fields interested in their application. As shown in Equation 5, the position 

of the LSPR peak is shifted upon changes in the dielectric constant of the surrounding material. As 

such the particles can be thought of as probes that can accurately return information, observed as 

red or blue-shifts of the plasmon peak, on the refractive index, and therefore composition, of their 

surrounding medium. A host of sensing applications, where colour changes observed in the metallic 

nanoparticles can indicate trace changes in concentration of analytes, can be envisaged with many 

already both in use and in development.80 A comprehensive review of nanostructured plasmonic 

sensors can be found in Reference 81. 

One specific area of interest where sensing and metallic nanoparticles are concerned is in the field of 

SERS. This effect was discovered in 1974 by Fleischmann104 and relies on the extremely strong 

electromagnetic fields that exist in the nanogaps between metallic nanoparticles. This facilitates 

massive enhancements of the Raman signal, as high as 1014 – 1015 times more than that observed 

under normal conditions,66 which is sufficient to allow the detection of single molecule analytes. This 

is extremely useful as the Raman signal can return detailed information on the vibrational levels of 

the analyte, allowing the technique to be used for both detection and structure determination.80 
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SERS has now developed to the extent that spectra can be measured in vivo.105 In principle this could 

facilitate faster acquisition times and was a significant breakthrough for the use of metallic 

nanoparticles in medical and biological applications. A more detailed discussion of the enhancement 

mechanism observed and specific SERS applications can be found in Refserences 106 and 107. In a 

similar manner the enhanced E-field that exists at the surface of, and particularly in the nanogaps 

between, nanoparticles is also capable of enhancing the efficiency of infrared absorption and 

fluorescence emission processes resulting in equivalent surface enhanced spectroscopic 

techniques.108 

Biomedical studies of metallic nanoparticles began in the 1970s following the discovery of 

immunogold labelling.109 Since then a wide array of biological sensing applications have been 

developed.110, 111 Gold nanoparticles used for medical diagnostics have even become commercialised 

where they form an integral part of certain pregnancy tests which are currently on the market. 

However metallic nanoparticles are not limited to sensing applications. One major reason for the 

wide-spread use of gold nanoparticles for biomedical applications is their relatively low cytotoxicity 

which makes them particularly suitable for in vivo applications such as drug delivery,112 bioimaging113 

and cancer therapy.90 An innovative form of cancer therapy involves suitably modified gold 

nanoparticles, functionalised with antibodies that recognise antigens expressed by cancerous cells 

and allows them to specifically bind to these cells.90 The excitement of the LSPR through irradiation 

with a suitable source results in the fast conversion of the absorbed energy to heat which, as the 

particles are localised at the cancerous cells, is sufficient to destroy these cells whilst leaving healthy 

ones undamaged. In addition to the control over the surface chemistry that is required it is also 

necessary to push the LSPR of the nanoparticles into the infrared region of the electromagnetic 

spectrum as otherwise the incident radiation used to excite the LSPR would be absorbed by the first 

few millimetres of skin. Infrared radiation, on the other hand, can penetrate significantly further and 

facilitates the excitement of the plasmon resonance of particles that are located at the cancerous 

cells. By using gold nanorods, the position of whose longitudinal plasmon resonance can be readily 

tuned in the growth process through altering the aspect ratio of the particle, this problem can be 

overcome.  

As well as being able to use nanoparticles in diagnostics and in the treatment of medical conditions 

they have also found a niche application in measuring nanoscale distances, particularly in biological 

samples, and can be thought of as being ‘plasmonic rulers’.114 The system is based on the strength of 

the coupling between a pair of metallic nanoparticles which is itself strongly dependent on the 

distance between them. Stronger and weaker coupling manifests itself as red and blue shifts of the 
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LSPR peak respectively and after adequate calibration it is possible to correlate these shifts in the 

optical properties to the separation of the nanoparticles. Dynamic separations of up to 70 nm can be 

monitored allowing information on both distance and configuration to be elucidated.114 A number of 

advantages exist over other methods used to determine molecular distances such as Förster 

resonance energy transfer measurements. Here, low and fluctuating signal intensities along with 

limited observation times and upper measurement limits of approximately 10 nm mean that 

plasmonic solutions such as the ones described may be more appropriate in certain situations.114  

However, certain issues, including the extent to which the adsorption of nanoparticles to 

biomolecules affects their overall structure have not been unequivocally resolved. Despite this, the 

power and potential that plasmonic rulers possess with respect to structure elucidation is clear to 

see. 

An equally important field which makes use of metallic nanoparticles is that of catalysis. Despite 

being historically considered as merely a chemically inert metal, supported gold nanoparticles were 

first found to reduce the activation energy for the oxidation of CO around two decades ago.60 The 

high surface area, and therefore number of active sites, provides obvious advantages. There exists a 

strong dependence of catalytic activity on particle size, with a large decrease in activity for particles 

larger than 6 – 10 nm being observed.60 Therefore one of the major challenges facing the field is 

finding a means to maintain particle stability under the reaction conditions required. A more recent 

study, directly using the plasmonic properties of metallic nanoparticles, researches the catalytic 

properties that are induced upon the localised heating produced when the particles are in 

resonance.115 Here, a solvent mixture of ethanol and water was passed through a microfluidic cell 

constructed with an array of gold nanoparticles. When excited with a low power laser the heat 

produced at the surface of the particles was sufficient to catalyse the breakdown of the solvents and 

the formation of CO2, CO and H2.
115  

Plasmonic structures can also be used to increase the efficiencies of photochemical and 

photoelectrochemical processes.116 A number of mechanisms resulting in the increased efficacy of 

these reactions have been proposed. For example it has been suggested that accelerated reaction 

rates occur due to the enhanced electromagnetic fields that exist at the surfaces of, and particularly 

in the nanogaps between, metallic nanoparticles by elevating the molecules involved in the 

reactions to excited electronic states. The metallic nanostructures essentially act as optical antennas 

that harvest photons and then concentrate the electromagnetic field produced to excite target 

molecules in the vicinity. It has also been proposed that other effects associated with excited 

plasmon resonances such as localised heating and mechanical oscillation may also play a role in 



Theory  

37 
 

increasing the efficiency of these reactions.116 The first experimental observation of this effect was 

reported in 1983117 and in more recent studies remarkable enhancements of molecular excitement 

have been reported.118 Such systems have potential applications in the development of organic solar 

cells and photoelectrochemical biosensing devices.118  

An additional application of metallic nanoparticles structured by bottom-up techniques, and one 

that has been described at length in earlier sections, is in the field of metamaterials, where they are 

of fundamental importance. The potential contribution that metallic nanoparticles could make to 

this field is only beginning to be tapped and with the obvious benefits that the use of such methods 

would entail, increasing efforts are currently being made to further develop the application of 

metallic nanoparticles.  

2.2.7. Nanoparticle safety 

No chemicals are 100% safe and with the ever increasing influence that nanomaterials have on 

modern technology it is inevitable that concerns are raised as to the effect that these substances 

may have on human health and the environment.  This is wholly justified as several examples exist of 

materials which were once considered to be safe, and indeed advantageous, but whose effects on 

living organisms were not fully understood and are now regarded as being highly toxic. Asbestos, 

thin fibrous crystals of silicate minerals, for example, were at one time considered to an excellent 

material due to their fire-retardant properties and were widely used in the construction industry. 

When broken up into smaller particles, however, they are now recognised as being highly toxic, 

causing numerous lung illnesses. This example of a large difference in toxicity, dependent on the size 

of the material, leads to serious concerns as to the safety of nanomaterials. 

Nanoparticles are of such great interest principally as a result of the special properties that they 

display and these properties exist uniquely at the nanoscale. As such, it is reasonable to assume that 

they may also possess significantly differing toxicity levels from their bulk counterparts. The 

properties of nanomaterials are themselves often size and shape dependent and samples of 

nanoparticles generally display a distribution of both parameters. This can also have a knock-on 

effect on the toxicological profile of the sample.  As a result, nanoparticles should be subject to 

thorough testing and stringent controls ensuring, to the greatest possible extent, that their potential 

harm is fully understood. Several review articles exist giving an overview of what is now a not 

insubstantial body of work that has been carried out in this area.119, 120, 121, 122 While it is encouraging 

that such work is now being carried out more extensively it is difficult to draw specific conclusions 

for a variety of reasons. Not least of which is the apparent lack of standardisation of testing methods 
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and terminology which would allow direct comparisons to be drawn.62 Nevertheless several general 

pieces of information have been abstracted from the literature by Ozin et al. in their book 

‘Nanochemistry – A Chemical Approach to Nanomaterials’62 and are listed below: 

i) Nanostructures should be prevented from dissolving into the organism. Even iron 

oxide nanocrystals can elicit toxicity if their surface is unprotected. 

ii) Surface coatings greatly limit the dissolution of the nanostructure. 

iii) Organic coatings on the nanoparticles often determine the majority of the toxicity as 

the employed molecules can be themselves toxic. 

iv) Surface-charged nanocrystals are more toxic than neutral nanocrystals. Cationic 

ones especially. 

v) Toxicity is often bound to internalisation of the nanostructure by the cells. 

vi) Colloidal nanostructures often aggregate leading to their accumulation in the liver 

and spleen. Colloidal stability and probably the hydrodynamic radius are key to the 

successful excretion of the nanostructures. 

The effect that nanomaterials can have on human health is of paramount importance but it is not 

the only issue that has to be considered. Nanoparticles can also have deleterious effects on the 

environment and their ubiquity in modern life, from UV blocking titania particles in sun cream to 

anti-bacterial silver nanoparticles in socks, means that their potential impact is of ever increasing 

importance. Governmental bodies throughout the world are beginning to recognise both the 

potential benefits and possible harm entwined with novel technologies that use nanoscale 

substances and several guidelines now exist detailing what exactly constitutes a nanomaterial and 

the special risk assessments and controls that should be carried out prior to their production and 

use. This can be considered as a step in the right direction but clearly much remains to be done in 

terms of further research and standardisation of procedures and terminology to ensure both safety 

and public perception of safety in this field. 

2.3. Polyelectrolyte multilayers                                      

The use of electrostatic forces to assemble metallic nanoparticles, and indeed other nanoscale 

materials such as polymers,123 semiconductors57 and oxides124 to name but a few, has proven to be 

one of the most versatile techniques available to materials scientists endeavouring to prepare 

superstructures from these smaller units. Electrostatic interactions between two charged species 

can be either attractive or repulsive and both the strength and range can be controlled by regulating 

the density of the charges on the species, altering the concentration of ions in solution or adjusting 
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the dielectric constant of the surrounding solvent.65 In nanoparticulate systems the origin of the 

charge derives predominantly from one of two sources; charged or dipolar functionalities contained 

within the molecular capping layer which coats the particles or the EDL which is set up in the volume 

surrounding the particles and which was discussed in greater detail in Section 2.2.1. As a result of 

this charge the nanoparticles lend themselves to self-assembly methods governed by electrostatic 

forces. Self-assembly techniques using these forces were first reported in 1966 by Iler, who 

assembled oppositely charged silica particles,125 however it was not until the 1990s that these 

methods rose to prominence with the advent of PE multilayers.123  

The layer-by-layer assembly of PEs – polymers with high densities of charged units built into the 

structure – allows the construction of thin films of dielectric materials and is one of the most flexible 

and widely used techniques for self-assembly.123 While studies of the layered adsorption of 

molecular species have existed for several decades, perhaps most notably using Langmuir-Blodgett 

or chemisorption techniques,126 several advantages exist when using charged polymers to build up 

structures fabricated from defined numbers of distinct layers. No special equipment is required and 

the method is quick, cheap and applicable to a host of different situations. For example, unlike other 

coating systems, it is possible to implement the technique on an industrial scale – coating 

macroscopic samples while at the same time maintaining control over the composition of the 

coatings at a molecular level. The assembly of PE multilayers is an exceptionally environmentally 

friendly process, being predominantly aqueous based, and can be applied to substrates of almost 

any shape or form – from planar surfaces through to colloidal nanoparticles and porous solids. The 

process essentially involves the deposition, on a charged substrate, of a polymer of opposite charge 

using nothing more than electrostatic interactions. After a washing step another polymer layer, 

again of opposite charge, can be deposited. The second polymer not only compensates the charge 

on the layer below but overcompensates it – allowing the repetition of the deposition process in a 

cyclic manner as many times as is required for the purpose at hand. While a periodic structure 

results there is still an appreciable degree of interpenetration between subsequent layers.127 With 

the majority of polymer systems that are suitable for this technique, including the two ‘classic’ PEs 

poly(4-sodium styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), the structures of 

which are shown in Figure 9,  film thicknesses increase linearly as a function of the number of layer 

pairs deposited.128 However, in certain systems supralinear film growth has been observed.129 The 

exponential growth of film thickness as a function of the number of depositions allows thicker films 

to be assembled in significantly less time. Materials such as silicon, glass and poly(dimethylsiloxane) 

(PDMS), selected for their electronic, optical and mechanical properties respectively, can be 
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functionalised in a facile manner in order to induce the electrostatic interactions that are required 

for the use of this method.130  

 

Figure 9 – Chemical structures of the ‘classic’ polyelectrolytes. On the left is the negatively charged poly(4-

sodium styrene sulfonate) and on the right is the positively charged poly(allylamine hydrochloride). 

It is generally accepted that certain properties of PE multilayer films are wholly dependent on the 

last deposited layer or species. The surface potential, wettability, as well as certain biological 

properties (the film could act as a pro or anticoagulant)131 all depend entirely on the polymer layer at 

the film interface. Despite the importance of the surface layer to the properties of the film there are 

also a number of factors that can affect the final form and bulk properties of the PE multilayer film. 

It has been shown that drying the film between subsequent depositions can increase the surface 

roughness and therefore the overall thickness of the film.132 However it must be noted that the 

extent to which this plays a role is dependent on the choice of PE and the effect is not always 

observed. The polydispersity of polymer chains also plays a significant role for the stability of PE 

multilayer films. It has been reported that such films, when exposed to an NaCl salt solution, will 

etch to a greater extent when they are constructed from polymers possessing a higher polydispersity 

index.133  

Film stability can also be improved by crosslinking separate PE layers, forming covalent bonds 

between them and thus increasing the overall mechanical strength of the film and reducing its 

sensitivity to external stimuli. This can, of course, only be carried out when suitable polymers are 

used, with polymers containing carboxyilic acid and amino groups particularly lending themselves to 

this process due to the relatively facile formation of amide bonds.127 This can be carried out, for 

example, by simply heating the film to 130 °C134 or by incubating the film in a solution of 

carbodiimide.135 In the heat assisted method the extent of crosslinking, which can be measured 

using infra-red techniques, can be increased by further raising the temperature used to cure the 
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sample. The formation of the covalent network throughout the bulk of the film completely changes 

its properties – a notable example being the reduction of the permeability of films to FeCN6
3- 

complexes by several orders of magnitude.134 

Another means of tuning PE multilayer film properties is through the construction of films that are 

not based on only two components. With each polymer having its own specific properties derived 

from its chemical structure it is possible to create a system that incorporates several of these in a 

multilayer system. There is also the potential to create blends of two or more polyanions or 

polycations within a single layer which would allow for the continuous change of properties 

throughout a film by gradually altering the molar fractions of each component within the blend.127 In 

the majority of cases where such blended films have been produced it has been found that there is a 

strong preferential deposition of one component over another meaning that the molar fraction of 

each in solution is not necessarily the same as that in the eventual film.127 This however can be 

tuned to a large extent allowing the desired composition in the film to be achieved. 

Additionally, the assembly of PE multilayers can be carried out by a variety of different means – each 

one having attributes that make it suitable for particular situations. By far the most common method 

is simple dip-coating, allowing the layers to self-assemble on the substrate in solution. Both the 

adsorption and washing process can be carried out in around two minutes and can be relatively 

easily automated using a simple dip-coater. However these polymers can also be spin-coated136 and 

even sprayed137 onto substrates, resulting in even faster depositions. This can even be considered as 

another means of tuning the properties of PE multilayers. Studies have shown that films prepared by 

spin or spray-coating tend to be thicker, more stratified and less rough than their dip-coated 

counterparts.138, 139  

A wide variety of analytical techniques can be used to measure the growth of PE multilayers. The 

adsorption of distinct layers can be directly measured using techniques such as UV-vis140 and 

infrared spectroscopy, as well as quartz crystal microbalances.132 X-ray45 and neutron scattering141 

techniques have also been used to determine the thickness and interpenetration of individual 

polymer layers. Non-direct techniques such as ellipsometry can also be employed to model 

parameters such as layer thicknesses and refractive indices of the thin films.128 

PE multilayer films have found uses in a diverse range of applications, predominantly in four 

principal domains; biomaterials coatings, electronic devices, membrane technology and ultrastrong 

coatings.127 In the biological domain there is much promise that they could be used in drug delivery 

systems142 while conductive polymers have been used to create light emitting diodes143 and more 
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recently dye sensitised solar cells.144 The fact that PE multilayer films can incorporate ions gives rise 

to possible applications as ion selective membranes145 and the possibility of incorporating materials 

such as clays or carbon nanotubes into PE multilayer films has opened up the possibility of preparing 

structures that mimic that of high strength biocomposites like bone.146 

Several theoretical studies describing a variety of aspects such as; hypothesised growth models;147 

the interpenetration of consecutive PE layers148 and the threshold level for short-range attraction 

strength required for multilayer formation149 have also aided the development of a fuller 

understanding of thin film fabrication using PE multilayer techniques. 

The combination of the optical properties given to the material by the nanoparticle inclusions with 

the stimuli responsivity of certain polymers that can be incorporated into PE multilayers leads to a 

wide range of potential ‘smart’ materials. For example, selected polymers are capable of swelling or 

contracting upon changing ionic or pH conditions, interacting with incident light or electromagnetic 

fields, undergoing conformational changes upon increases or decreases of temperature and can be 

sensitive to mechanical or electrochemical stimuli.127 Active materials such as these, already in 

existence, represent the future of PE multilayer research – moving the field from a novel means of 

preparing thin films to their incorporation in functional devices in an extremely rapid timeframe. 

2.4. Characterisation of metamaterials and metallic nanoparticles 

The versatility in fabrication that is offered by bottom-up techniques requires that an equally diverse 

array of characterisation techniques should be used in order to accurately describe both the 

structural parameters of assemblies and any properties that they may possess. Of course 

researchers, working from a design predicted to have advantageous properties, will already have a 

good idea of what the structure of any prepared assembly should look like. However it is important 

to be able to verify this and structural organisation can be studied through a variety of direct and 

indirect techniques. When preparing structures at the nanoscale the characterisation of the 

structure can be particularly challenging and often highly advanced techniques must be applied to 

obtain topological information.  

One such technique is electron microscopy which can be broadly sub-divided into scanning electron 

microscopy (SEM) and TEM. SEM allows images of a sample surface to be produced by scanning it 

with a high energy beam of electrons in a raster pattern. Commonly either back-scattered or 

secondary electrons are collected by detectors placed above the sample surface. High quality images 

of sample surfaces are achievable, with magnifications of up to 5 x 105 times allowing features in the 
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order of 1 – 5 nm to be resolved. In addition, the technique can also return accurate information on 

the chemical composition of samples due to the dependence of the intensity of back-scattered 

electron signal on the atomic number of the point of the sample being scanned. TEM, on the other 

hand, works on a different principle and forms an image from electrons that are transmitted through 

a sample. TEM gives access to higher resolution images than SEM, in some cases allowing individual 

atomic layers and columns to be resolved. However as only transmitted electrons are detected 

sample thickness is limited to around 100 nm. Whilst this is useful to obtain detailed images of 

individual metaatoms and, in certain cases, ultrathin slices that have been prepared from larger 

samples, the use of this method is restricted by these limitations. 

Atomic force microscopy (AFM) offers the possibility of imaging surfaces with demonstrated 

resolution of fractions of a nanometre. Rather than scanning a fine beam of electrons across a 

sample, as in SEM, a fine tip attached to a cantilever is used. When the tip is brought into close 

proximity of the sample and scanned across its surface forces between the two cause the tip to 

move up and down with the form of the surface. Laser light is focussed on the cantilever and 

reflected onto a detector. It is possible to use the deflection of the beam on the detector to return 

information on the profile of the sample. As well as providing a two-dimensional image of a sample 

surface, variations in height are also determined allowing a detailed impression of the three-

dimensional profile of a sample to be constructed. In addition to AFM other scanning probe 

microscopy techniques, such as scanning near-field optical microscopy (SNOM), are also used in the 

characterisation of nanostructured surfaces. 

Other means, such as X-ray diffraction, can be used to reveal in detail the structure of 

metamaterials. One particular example of such techniques includes grazing incidence small angle X-

ray scattering (GISAXS) which is particularly useful when characterising self-assembly in thin films. In 

essence, a thin film sample, ranging in thickness from a few to several hundreds of nanometres, is 

struck with a beam of X-rays, incident at a small angle – close to that of total external X-ray 

reflection.  The diffuse scattering from the sample is detected and the diffraction pattern used to 

reconstruct an accurate impression of the organisation of the units within the sample that scatter 

the radiation. The technique combines the accessible length scales of small-angle scattering with the 

surface sensitivity of grazing incidence diffraction. 

Although structural information can also be extrapolated from other  less direct techniques, for 

example a red-shift of the surface plasmon resonance indicating two plasmonic nanoparticles 

moving closer together, these methods are primarily used to return information on the 

electromagnetic properties of the assemblies under study. 
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As electromagnetic characteristic parameters cannot be measured directly alternative means must 

be found to acquire this information. Fortuitously it is possible to retrieve such parameters, normally 

ε and μ which were introduced in Section 2.1.1, through the post-processing of measured data. The 

extraction of these parameters from the reflection and transmission coefficients of a sample can be 

carried out using the classical procedure known as the Nicolson-Ross-Weir method.150 This is now 

the most common method of electromagnetic characterisation of composite media and was first 

applied to metamaterial layers in 2002.151 However in optics the technique requires difficult 

precision measurements of the phase of optical signals and other methods, namely spectroscopic 

and ellipsometric, can be employed in its place to measure the electromagnetic properties of 

structures. 

As has been previously discussed metamaterials are increasingly being fabricated from nanoscale 

metallic inclusions. Due to their exhibition of a plasmon resonance in the visible region of the 

electromagnetic spectrum UV-vis spectroscopy, in both reflectance and transmission, is a vital tool in 

their characterisation. Despite being a relatively simple and cheap technique a surprisingly large 

amount of structural information, as well as the optical properties mentioned above, can be inferred 

from such measurements. For example, it is possible to determine both the size and composition of 

metallic nanoparticles from the position of the plasmon resonance and the full width at half 

maximum will give an idea of the size dispersity. By analysing the form of a UV-vis spectrum the 

geometry of the particles under study can be determined, with rod-like particles exhibiting two 

plasmon peaks compared with only one for spherical particles. In addition, when coupled 

nanoparticle systems are being studied UV-vis spectra can be interpreted to reveal information on 

the organisation of assemblies and even interparticle separation. Moreover, when the technique can 

be combined with an integrating sphere the extinction spectra can be resolved into their absorption 

and scattering components which is of particular importance for some cloaking applications.27 

In addition to the experimental techniques described above it must also be noted that theory, and 

the computing power that supports it, has advanced to the extent that it is now possible to predict 

the optical properties of structures before they have been fabricated and characterised by 

measurements. Consequently, this now not only forms an integral part of the design process but 

also gives a means of verifying results obtained by experimental measurements. 

Rather than returning any structural information on metamaterials under study, SERS is a 

characterisation technique that is enabled by metallic structures with features on the nanoscale. 

SERS, which was discussed in greater detail in Section 2.2.6, essentially involves the enhancement of 

the Raman scattering from molecules adsorbed on nanoscale metallic surfaces. Raman scattering 
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refers to the inelastic scattering of photons incident on a material and is an inherently weak process. 

Only one in ten million photons loses energy to, or gains energy from, the material under study, 

resulting in Stokes and anti-Stokes Raman scattering respectively. The presence of the nanoscale 

metallic surfaces enhances this process to the extent where single molecules can be detected and 

allowing practical applications to be found for the technique. 

Whilst being by no means comprehensive this section provides a brief overview of some of the key 

characterisation techniques, all of which were used during the research carried out as part of this 

thesis, that are employed to analyse metamaterials prepared and enabled by the bottom-up 

organisation of metallic nanoparticles. A host of other techniques, many being combinations of 

several or subtle variations on one another, exist in order to give as full a picture as possible of both 

the structural detail and electromagnetic properties of such assemblies. 



 

3. Experimental 

Unless stated otherwise all chemicals were purchased from Sigma-Aldrich and all solutions were 

prepared using Milli-Q water (18.2 MΩ-cm). 

3.1. Preparation of metallic nanoparticles 

3.1.1. Preparation of gold nanospheres 

Gold nanospheres with a diameter of approximately 20 nm were prepared according to the well-

known Turkevich method.69 Briefly, 500 mL of an aqueous solution of HAuCl4 (0.25 mM), under 

constant magnetic stirring, was heated to 100 °C in an oil bath. The gold was then reduced through 

the addition of 12.5 mL of an aqueous solution of sodium citrate (0.03 M). A series of colour changes 

was observed before a deep-red solution was produced and after 15 min the reaction vessel was 

removed from the oil bath and allowed to cool to room temperature. 

By altering the ratio of gold salt to sodium citrate it is possible to tune the size of the gold 

nanospheres.69 As such, larger gold nanospheres were prepared in much the same manner as 

described above – simply adding 4 mL of an aqueous solution of sodium citrate (0.039 M) in place of 

the volume and concentration mentioned above. These larger particles, however, come at the 

expense of both shape and monodispersity. 

3.1.2. Preparation of silver nanospheres 

Silver nanospheres can be prepared in an analogous fashion to that described above for gold 

nanospheres, simply replacing the gold salt for a silver based one, in what is known as the Lee-

Meisel method.70 1 mL of sodium citrate (0.039 M) in water was added to 25 mL of an aqueous 

solution of AgNO3 (1 mM) which had been heated to boiling. The solution was left under magnetic 

stirring for one hour before cooling to room temperature. This resulted in predominantly spherical 

particles with an average diameter of approximately 40 nm.152 

Smaller silver nanospheres (~ 6 nm diameter), still stabilised by citrate molecules but using a 

different reducing agent were prepared by first cooling 196 mL of water in an ice-bath. 2 mL of 

aqueous solutions of AgNO3 (25 mM) and sodium citrate (25 mM) were added under vigorous 

magnetic stirring before the reducing agent, 600 μL of an aqueous solution of NaBH4 (0.1 M) was 

introduced in a dropwise fashion. The solution was left stirring in the ice-bath for a period of two 
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hours to allow the reaction to achieve completion before the silver nanospheres were stored in a 

fridge. 

3.1.3. Preparation of gold nanorods 

Gold nanorods were prepared according to the well-documented seed-mediated growth method.153, 

154 which involves the addition of small seed particles to a growth solution which induces anisotropic 

growth.  

For the growth solution; 250 mL of an aqueous solution of CTAB (0.2 M) was added to a round-

bottomed flask kept at 27 °C in an oil bath to ensure that the CTAB does not precipitate out of 

solution. 12.5 mL of AgNO3 (4 mM ) in water and 250 mL of an aqueous solution of HAuCl4 were 

added to the flask. Three minutes after the addition of the gold salt solution 3.5 mL of an aqueous 

solution of ascorbic acid (79 mM) was measured into the flask.  

The seed solution, again due to the presence of CTAB, was prepared at 27 °C in an oil bath. 5 mL of 

an aqueous solution of HAuCl4 (0.5 mM) and 5 mL of an aqueous solution of CTAB (0.2 M) were 

mixed before adding 0.6 mL of freshly prepared, ice-cold NaBH4 (1 mM). The solution was stirred for 

a further two minutes and left to stand for a duration of five minutes before 0.8 mL of the seed 

solution was introduced into the growth solution. The reaction was left for a period of around 12 

hours upon which the growth of the nanorods was complete. 

After the growth of the nanorods is complete it is then necessary to remove excess CTAB in solution. 

This is achieved through two rounds of centrifugation at a rate of 14000 relative centrifugal force 

(RCF) for 30 minutes using a Kühner Sigma3-18K centrifuge. After each stage the supernatants, 

containing the excess CTAB, were removed and the nanorods were redispersed in the same volume 

of water – ensuring that their concentration remained constant throughout. 

3.2. Functionalisation of substrates 

3.2.1. Glass and silicon 

3.2.1.1. Planar substrates 

Glass and silicon substrates, used for spectral measurements and electron microscopy, respectively, 

were prepared according to the same method. They were first rinsed with water and ethanol before 

being dried under a stream of compressed air. The surfaces were then cleaned and hydroxylated 

through immersion in a piranha solution (3:1 mixture of concentrated sulphuric acid to 30% 
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hydrogen peroxide) for 30 minutes. Piranha solution is strongly acidic and highly oxidising and 

should be handled with caution. The substrates were next rinsed with copious amounts of water and 

again dried under a stream of compressed air. Subsequently, the surface chemistry was altered 

through the functionalisation with an organosilane.130 Here, the substrates were immersed in a 5% 

(v/v) solution of N-[3-(trimethoxysilyl)propyl]ethylenediamine in ethanol for 30 minutes before 

being rinsed with water, dried, and set in an oven at 120 °C for a further 30 minutes. 

3.2.1.2. Spherical substrates 

Uniform silica microspheres with a mean diameter of 260 nm were purchased from Bangs 

Laboratories, Incorporated. 0.5 mL of the as-bought microspheres was added to 2 mL of a 5% (v/v) 

solution of N-[3-(trimethoxysilyl)propyl]ethylenediamine in ethanol and mixed under magnetic 

stirring for 30 minutes. Excess organosilane was removed by centrifuging the solution at 2000 RCF 

for 10 minutes before removing the supernatant and redispersing the now functionalised silica 

microspheres in 2 mL of ethanol. 

The same microspheres, when already deposited on planar substrates (as described in Section 3.3.1), 

could be functionalised by exposing to a 5% (v/v) solution of N-[3-

(trimethoxysilyl)propyl]ethylenediamine in ethanol for 30 minutes before rinsing with water and 

drying under a stream of compressed air. 

3.2.2. Polydimethylsiloxane 

The surface chemistry of PDMS, prepared and supplied by colleagues, can also be functionalised 

using similar reactions to those described above for silica and silicon. The substrate was first exposed 

to a low power air plasma for 90 seconds before being immersed in a 1% (v/v) aqueous solution of 

(3-aminopropyl)triethoxysilane for 30 minutes. It was then washed in copious amounts of water 

before being dried under a stream of compressed air. 

3.3. Deposition 

3.3.1. Nanoparticles 

3.3.1.1. Silver and gold nanosphere arrays 

Both silver and gold nanospheres were deposited on planar substrates (silicon, silica, PDMS or silica 

microspheres adsorbed on a planar substrate) either functionalised with amino groups or a 

positively charged PE layers  by immersing them in a solution of the nanoparticles for a period of two 
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and a half hours. The substrates were then washed with water and dried under a stream of 

compressed air. 

3.3.1.2. Core-shell nanoclusters 

Core-shell nanoclusters were prepared by adding 10 μL of functionalised SiO2 microparticles (260 nm 

diameter) to 40 mL of as prepared gold nanospheres under vigorous magnetic stirring. 

3.3.1.3. Gold nanorod arrays 

A functionalised substrate coated in a single layer of PSS (see Section 3.3.2) was immersed in a 

solution of gold nanorods which had been adjusted to have a concentration of 200 mM of NaCl. The 

substrate was left in the solution overnight to maximise surface coverage before being removed, 

washed in water and dried under a stream of compressed air. 

3.3.1.4. Silica microparticle arrays 

Large area arrays of SiO2 microspheres (150 nm diameter) were deposited on functionalised glass or 

silicon substrates by immersing the substrates in a solution of the particles which had been adjusted 

to pH 5 through the addition of a dilute solution of HCl. The substrate was then removed, washed 

with water and dried in a stream of compressed air. 

3.3.2. Polyelectrolytes 

PE layers were deposited from 5 mg/mL solutions of PAH and PSS in a solution of sodium chloride in 

water (0.1 M). The structure of both of these polymers can be seen in Figure 9. PE layers were 

deposited for 1 minute before being rinsed with water and dried under a stream of compressed air. 

The electrostatic nature of the fabrication process allows for the cyclic build-up of multiple gold 

nanoparticle and PE layers. Where a large number of polymer layers were to be assembled a 

purpose built dip-coater was used. 

Rather than using electrostatic interactions to build up a series of polymer layers, hydrogen bonding 

can also be exploited in layer-by-layer deposition techniques.127, 155 Poly(acrylic acid) (PAA) and 

poly(ethylene glycol) (PEG) layers were deposited on functionalised glass substrates by immersing 

them in 2 mg / mL aqueous solutions of the polymers which had been adjusted to pH 2 through the 

addition of dilute HCl. The construction of these polymer layers was carried out using a purpose built 

dip-coater and all washing steps were conducted using water which had also been adjusted to pH 2. 
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3.4. Nanoparticle density 

The citrate capping molecules at the surface of metallic particles organised into arrays can be 

replaced by exposing the array to a solution of thiol molecules which have a particularly high affinity 

for gold. This results in the mobilisation and reorganisation of the particles at the substrate surface. 

Arrays of gold nanoparticles were exposed to an ethanolic solution of dodecane-1-thiol overnight 

before being gently rinsed with ethanol and dried in a stream of compressed air. With further gold 

nanoparticle deposition in-between the process can be repeated in a cyclic manner allowing several 

reorganisation steps to be carried out. 

3.5. Characterisation 

3.5.1. UV-vis spectroscopy 

UV-vis spectra were primarily measured on a Cary Varian 50 Bio UV-Visible spectrophotometer. 

3.5.2. Scanning electron microscopy 

Scanning electron micrographs were primarily acquired on a JEOL JSM-7600F scanning electron 

microscope. 

3.6. Miscellaneous 

3.6.1. Optical lithography 

The positive photoresist AZ® 1518 was diluted in a 1 : 1 ratio with AZ® 1500 Thinner (both chemicals 

supplied by Microchemicals) and spin-coated at speeds of 1000 – 3000 r.p.m. in order to achieve a 

film thickness of 500 nm onto pre-functionalised (see Section 3.2.1.1) silicon substrates. The 

substrate was then baked at 40 °C for 30 minutes before increasing the temperature to 50 °C for a 

further 30 minutes. The pattern of choice was then set into the resist by exposing it through a 

chromium mask for 1 to 5 seconds on a MABA 8 machine from Süss Microtech. Development of the 

photoresist was then carried out through exposure to AZ® 351B which had been diluted in the ratio 

1 : 8 with water. 

3.6.2. Surface enhanced Raman scattering 

1 μL of an aqueous solution of Nile blue (0.1 mM) was dropcast on the samples and allowed to dry at 

under standard conditions.  
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The SERS spectra were recorded with a WiTEC GMbH Raman microscope using 633 nm laser light as 

the excitation source. The laser was focussed on the sample using a 100x microscope objective, 

giving a resultant power of 0.5 mW incident on the samples. A CCD camera operating at -65 °C was 

used to detect the scattered Raman radiation. 



 

4. Results and discussion3 

4.1. Planar arrays of metallic nanoparticles 

4.1.1. Introduction 

For the reasons expounded in Section 1.3, not least of which being their potential application in sub-

wavelength imaging,28 stratified arrays of metallic nanoparticles are of significant interest to 

metamaterials researchers. While top down methods can be used to prepare metallic 

nanostructures on planar substrates it is not trivial to extend these structures into the third 

dimension meaning that, in general, only in-plane interactions between the structures can be 

studied. Geometry can often be tailored to unprecedented precision using techniques such as EBL 

however resolution, in terms of structure separation for example, remains limited by resist 

materials, proximity effects and electron beam width. In addition, the perfect order that is normally 

observed in samples prepared by top down procedures can, in certain cases, introduce strong spatial 

dispersion which hampers the unambiguous designation of effective material parameters.156 

Bottom up techniques, on the other hand, offer solutions to many, if not all, of the above problems. 

Metallic nanoparticles can be grown with a large degree of control over a variety of material 

parameters such as particle shape, size, composition and surface chemistry. Polymer materials 

present the perfect foil to metallic nanoparticles when looking to make such layered arrays by 

bottom up techniques. As dielectric spacers they allow metallic nanoparticles to be separated by 

exceptionally low distances that could not be achieved using top down methods. Samples are no 

longer restricted to two-dimensions and, in general, bottom up methods result in amorphous arrays 

of particles which do not result in spatial dispersion. 

As a result, combinations of nanoparticles and polymers were chosen as ideal systems with which to 

study a wide range of material properties. The flexibility of fabrication allows factors such as 

interparticle separation, particle size effects and coupling properties between particles, amongst 

others, to be characterised with high precision. Such systems also have the additional advantage 

that samples can be readily fabricated at comparatively large scales (cm2). This allows them to be 

characterised using standard spectroscopic techniques and in the long-term raises the chances of 

applications being developed and their incorporation into functional devices. 

                                                           
3
 Some passages in this section will be published in the chapter entitled ‘Bottom-up organisation of metallic 
nanoparticles’ written by Alastair Cunningham and Thomas Bürgi contained in the book ‘Amorphous 
Nanophotonics’. Edited by Carsten Rockstuhl and Toralf Scharf, the book will be published in 2013 by Springer-
Verlag Berlin and Heidelberg GmbH & Co. KG. 
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A variety of methods that facilitate the preparation of such samples exist, each having their own 

beneficial and detrimental attributes. For example, the interactions between different polymer 

blocks and the ligands capping the nanoparticles control the selective spatial distribution of the 

nanoparticles in particular block copolymer microdomains or, alternatively, the interface between 

two blocks. This difference in affinity has been shown to induce their organisation into, depending 

on the relative ratio of each polymer component, lamellar arrays or hexagonally packed cylinders.157 

The fabrication process, involving spin-coating of solutions onto substrates, allows for the facile 

application of this technology. Macroscopic samples can readily be produced using infrastructure 

that is already well developed. However it can be difficult to achieve thin films where only a single 

layer of nanoparticles are found in each array. Additionally, the area over which organisation of the 

block copolymers, and therefore nanoparticles, exists is generally limited to smaller ordered 

domains. 

The use of PE multilayers, introduced in Section 2.3, offers an alternative route to stratified metallic 

nanoparticle arrays. Like the block copolymer technique described above, spin-coating can be 

applied to create large scale substrates.158, 159 As previously, due to its widespread use in a variety of 

industries, for example the manufacture of compact discs, this technique lends itself to the mass 

production of samples. It was also found that the density of nanoparticles adsorbed is strongly 

dependent on the deposition time allowing high density films to be prepared.158 However it is 

difficult to judge what deposition time is required for full surface coverage with longer times 

possibly resulting in defects and inhomogeneities at the film surface.  

One, perhaps more elegant, solution which results in almost absolute control over the geometrical 

parameters and the optical properties of such structures would be to allow the components to self-

assemble at the surface of the substrate resulting in the true bottom-up assembly of metallic 

nanoparticle and polymer composites.45, 160 While possibly more time consuming than spray or spin-

coating techniques this method retains the ability to be translated to large scale systems and as such 

is not limited to laboratory scale applications. Structures prepared by these methods will be 

discussed in more detail in this section (4.1). 

4.1.2. Single array 

The construction of metallic nanoparticle and charged PE multilayers occurs purely as a result of 

electrostatic interactions between the relevant components. To deposit an array of gold 

nanoparticles, which are inherently negatively charged at pHs above their point of zero charge, on a 

substrate it is first necessary to functionalise that substrate in order to render it positively charged. 
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This process was fully described in Section 3.2.1. Once functionalised it suffices simply to immerse 

the substrate in a solution of the particles and allow them to self-assemble at the surface as a result 

of the attractive electrostatic forces that exist between the two. The time taken for complete surface 

coverage is dependent on a number of factors such as the concentration of the nanoparticle solution 

and whether or not the solution is mechanically agitated. The overall density of the final film is 

determined largely by the extent of the electrostatic repulsion between individual nanoparticles 

which prevents a second particle from closely approaching one that is already adsorbed at the 

surface. 

The adsorption of gold nanoparticles on planar functionalised substrates can be modelled using the 

random sequential adsorption (RSA) model.161 This model, as the name suggests, describes the 

adsorption of a species at a random location on a substrate surface in a sequence of ‘events’ that 

proceed linearly with time. In the model, a species will adsorb if no prior adsorption event has 

already taken place within a radius that would overlap with the successful adsorption of the 

incoming body. In this manner the percentage coverage of the surface of the substrate, also known 

as the filling fraction, increases, at first rapidly before decreasing in rate as the number of potential 

adsorption sites diminishes.  The maximum filling fraction predicted by the standard RSA model, also 

known as the jamming limit, is 0.55 assuming that there is no interaction between the spheres and 

that they are allowed to contact each other. This is considerably lower than what would be observed 

if perfect hexagonal close-packing of equally sized spheres were to be achieved (0.91) and highlights 

one of the effects that disorder can have on a system.162 Several variations of this model, each with 

differing levels of complexity and describing differing situations, exist. While the standard model 

describes irreversible adsorption, modifications, including the possibility of reversible desorption 

based on kinetics and sticking coefficients, allow equilibrium states to be more accurately 

modelled.163 Other similar models include the ballistic deposition (BD) model which allows the 

incoming particle to ‘roll over’ a pre-adsorbed species, if the deposition event involves overlap 

between the two, and follow the path of steepest descent to the surface.164 This has a dramatic 

effect on the probability that a specific event will result in the successful adsorption of an additional 

species and is perhaps again a means of more accurately modelling the true situation as more than 

one preadsorbed particle is required to block the adsorption of another. Another outcome found 

when using the BD model is that the density of particles at saturation coverage increases to 0.61 

when compared to the standard RSA model.164 This is as a result of the rolling mechanism that 

allows, at least to some extent, a degree of surface rearrangement.  Other, more advanced, 

developments have allowed the deposition of liquid particles, complete with incorporation and 

coalescence events, to be modelled.162 While perhaps not quantitatively reflecting the final density 



Results and discussion 

55 
 

achieved, this model at least reasonably accurately describes the process of gold nanoparticle 

adsorption at the surface of a planar substrate.  

An example of a glass microscope slide that has been suitably functionalised and coated in a 

complete array of well dispersed and approximately equally spaced gold nanoparticles can be seen 

in Figure 10a. It displays a characteristic pink colour which originates from the strong extinction peak 

that exists at around 520 nm – the LSPR wavelength. The colour is surprisingly strong, given that only 

a single layer of nanoparticles, with a diameter of around 20 nm, has been adsorbed at a relatively 

low density or filling fraction. The particles, which are, at least to some extent, mobile at the surface, 

are capable of rearranging to find an organisation representing a low energy state. This is why, post-

deposition, we observe the particles at reasonably well defined distances from one another, as can 

be observed in the SEM micrograph shown in Figure 10b. No long range order, however, is perceived 

which, as can be expected, is due to the random adsorption processes described above. The only 

limitations in terms of overall substrate size that can feasibly be coated are of a practical nature. The 

arrays are virtually defect free and as such this technique quite easily lends itself to applications on 

relatively large scales. 

 

Figure 10 - a) Photograph of single array of gold nanoparticles deposited on a functionalised glass microscope 

slide. b) Corresponding SEM micrograph showing organisation of a single array of gold nanoparticles (~20 nm 

diameter) on a Si substrate which had been previously functionalised. 

Detailed analysis of the SEM micrograph shown in Figure 10b using image processing programs such 

as ImageJ
165 enable such arrays to be more fully characterised. It is possible to count thousands of 

particles over relatively large areas to achieve accurate average values for important material 

parameters such as particle density and size. Such an analysis reveals that the particles deposit at 

the surface with an average density of around 850 particles / μm2 which equates to a filling fraction 

of 27%.160 That this is significantly lower than the jamming limit predicted by the RSA model is no 
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surprise as the particles are not able to approach to within contact distance due to the citrate 

capping molecules that induce electrostatic repulsion. Taking this into account, it is reasonable to 

assume that a modified RSA model could accurately predict the filling fraction experimentally 

observed. 

Figure 11 shows the extinction spectra of an array of gold nanoparticles immobilised on a 

functionalised glass microscope slide (blue trace, left-hand axis) and the solution of gold 

nanoparticles from which they were deposited (red trace, right-hand axis).  

 

Figure 11 – Extinction spectra of an array of gold nanoparticles with a diameter of approximately 20 nm 

adsorbed at the surface of a functionalised substrate (blue trace, left-hand axis) and a solution of gold 

nanoparticles with the same diameter (red trace, right-hand axis). 

Comparing the optical properties in such a manner reveals that there is only a slight shift in the 

plasmon resonance, which occurs at 513 nm for the array deposited on the substrate and at 521 nm 

for the gold nanoparticles in solution. The slight discrepancy in the precise position of the surface 

plasmon resonance can be explained by the differences in environment in which they were 

measured. While the gold nanoparticles in the array are also in contact with the substrate they are 

predominantly exposed to air which has a refractive index close to that of vacuum (n = 1). In solution 

the gold nanoparticles are completely surrounded by water which, due to its higher refractive index 

(n = 1.33), is sufficient to cause the shift in surface plasmon resonance observed, as was discussed in 

Section 2.2.3. Metallic nanoparticles must approach to within the order of the diameter of a single 

particle in order to interact with each other to an appreciable extent.37 That only a slight shift in 

plasmon resonance is perceived demonstrates that the array of nanoparticles is not of a high enough 

density to induce strong coupling between the nanoparticles within the plane. When considered 
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alongside the SEM image shown in Figure 10b, it becomes even more evident that the nanoparticles 

are not close enough to couple with one another. This, for certain situations, has significant 

advantages. In the case where a second array of metallic nanoparticles were to be deposited on top 

of the first, with a dielectric spacer in-between, any changes in the optical properties can be solely 

attributed to the interaction of gold nanoparticles from separate arrays. Such interactions will be 

discussed in more detail in Section 4.1.4. 

While the fabrication of such large scale amorphous arrays of metallic nanoparticles is certainly 

extremely useful, not least in terms of the lack of spatial dispersion and ease of which the 

technology could be developed into potential applications, in some cases a degree of order is 

required when preparing such structures. This can be readily achieved when the above 

functionalisation and deposition techniques are combined with photolithography. By coating a 

functionalised substrate, glass or silicon, with a photoresist and exposing this to light through a 

suitably designed mask it is possible to recreate the form of the mask in the resist. Either positive or 

negative photoresists, which after exposure to light become soluble or insoluble to developing 

solutions respectively, can be used to create patterned surfaces. After this process, only certain 

areas of the functionalised substrate, when immersed in a solution of metallic nanoparticles, will be 

exposed to the solution and will form nanoparticle arrays. Examples of this work, which was carried 

out in collaboration with Toralf Scharf and Irène Philipoussis Fernandez of the École Polytechnique 

Fédérale de Lausanne, can be seen in Figure 12. 
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Figure 12 – SEM images of a striped array of gold nanoparticles (~20 nm diameter) deposited on 

functionalised Si substrates pre-patterned using optical lithography techniques. Images at four different 

magnifications are shown: a) 80000×, b) 33000×, c) 8000× and d) 500×. 

As can be seen, the samples exhibit extremely good line sharpness and very few defects over large 

areas. The extent to which large areas can be easily coated with patterned arrays of metallic 

nanoparticles can be seen in Figure 13, where nanoparticles have been deposited in certain areas 

that show up as white in the SEM image, which shows a total area of approximately 5 mm2. Figure 

13 also shows that arrays prepared by combining lithographic and bottom-up self assembly 

techniques are not limited to regular patterns and that arrays of any form, dependent solely on the 

mask in use, can be fabricated. 
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Figure 13 – SEM image showing patterned array of gold nanoparticles (~20 nm diameter) deposited on 

functionalised Si substrates pre-patterned using optical lithography techniques. 

The resolution of structures prepared by photolithography, despite massive advances in the 

technology, remains significantly lower than that achievable by other means, one notable example 

being EBL. In principal the same procedure described above could be applied using this more 

powerful technique to write even smaller structures into resists which have been coated on 

functionalised substrates. This could allow individual nanoparticles, which in Figure 12 and Figure 13 

are larger than the achievable resolution of the writing technique, to be placed in essentially any 

order and pattern desired.166 This has obvious benefits in the preparation of metamaterials at optical 

frequencies. Whereas some of the architectures introduced in Section 1.3, such as SRRs and fishnet 

structures, are inaccessible using pure bottom-up techniques this hybrid approach could lead to 

their fabrication while all of the benefits resulting from bottom-up techniques are maintained. In 

addition to the potential advancements in the field of metamaterials using the more sophisticated 

lithographic techniques, other applications, such as plasmonic waveguides and diffraction gratings, 

could also be envisaged from structures, such as the ones shown above, prepared by optical 

lithography. 

The planar arrays of gold nanoparticles discussed above, patterned or not, all have a filling fraction 

of approximately 27%. While such a relatively low surface coverage can result in a strong colouration 

of substrate, and in many respects results in several advantages, there may be instances whereby it 

could be desirable to have surfaces that were coated to either a greater or lesser extent. For 

example some simulations102 suggest that for a sufficiently high dispersion in the effective 

permittivity to be achieved the filling fraction of arrays of metallic nanoparticles, such as the ones 
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under discussion here, should be higher than 30%. For smaller filling fractions the large magnitude of 

the permittivity, necessary to observe Mie-resonance for sufficiently small spheres, is not achieved. 

Consequently a reliable means must be found to control the density of nanoparticles deposited in 

such arrays of metallic nanospheres. 

4.1.3. Controlling nanoparticle density 

4.1.3.1. Deposition time and concentration 

The most obvious way to control nanoparticle density on a planar substrate is to alter either the 

deposition time or the concentration of the solution from which the nanoparticles are deposited. 

Decreasing the deposition time from the point at which complete surface coverage is achieved will 

result in lower density arrays of nanoparticles. When considered in terms of the RSA model set out 

in Section 4.1.2. it can be seen that this can be equated with  decreasing the number of deposition 

events that are allowed to occur. Similarly, decreasing the concentration of the nanoparticle solution 

will result in lower density arrays when compared to substrates immersed in more concentrated 

solutions for the same length of time. Again, considering the RSA model, this can be likened with 

simply decreasing the rate of the deposition events. It is clear, however, that either of these 

techniques can only be used in order to tune the density of the particles up to the point at which 

surface coverage is complete and will not aid in preparing the higher density arrays that are required 

for some applications. 

4.1.3.2. Controlling the electrostatic double layer 

Given that the prime limiting factor governing the final density of metallic nanoparticles in an array 

is the charge that exists on the particle surface, it is clear that in order to prepare higher density 

arrays this charge must be, at least to some extent, mitigated. As introduced in Section 2.2.1, the 

repulsion between two nanoparticles in solution is a consequence of the EDL. The Debye length, 

being inversely proportional to the square root of ion concentration, can be decreased through the 

addition of salt to the solution, thus allowing the closer approach of particles in both solution and on 

surfaces. 

Figure 14 shows SEM images of arrays of gold nanoparticles, approximately 20 nm in diameter, that 

have been deposited from solutions containing different concentrations of NaCl. The solution of gold 

nanoparticles used to fabricate the arrays shown in Figure 14a had been dialysed to remove any 

excess sodium citrate. The solutions from which the samples shown in Figure 14b and Figure 14c had 

been deposited had NaCl added to a final concentration of 1 mM and 10 mM respectively. The 
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increase in nanoparticle density as the concentration of salt is increased, measured using ImageJ and 

tabulated in Table 1, can also clearly be seen in the SEM images in Figure 14. In the sample that 

underwent a dialysis process the EDL is extended and the close approach of individual nanoparticles, 

either in solution or at the surface of the substrate, is inhibited. On the other hand, when NaCl is 

added to the solution the Debye length diminishes and the nanoparticles are free to approach one 

another to a greater extent. However, if too much salt is added the electrostatic repulsion between 

particles is no longer great enough to ensure particle stability and they can be seen to aggregate, as 

is the case in Figure 14c. 

Sample Filling fraction Nanoparticles / μm2 

Dialysed 0.13 420 

1 mM NaCl 0.37 1180 

10 mM NaCl 0.47 1450 

Table 1 – Table showing filling fraction and nanoparticle density for gold nanoparticle arrays 

deposited from solutions containing different concentrations of NaCl.  
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Figure 14 – SEM images showing gold nanoparticle (~20 nm diameter) arrays deposited from solutions with 

varying NaCl concentrations. a) – Dialysed sample, b) – solution containing 1 mM NaCl, c) – solution containing 

10 mM NaCl (corresponding to data in Table 1). 

4.1.3.3. Thiol wash process 

Rather than reducing the mutual repulsion between nanoparticles by regulating the distance that 

the EDL extends from their surface an additional approach is the removal, at least to some extent, of 

the citrate molecules that cause this repulsion in the first instance. One means of realising this is 

through making use of the strong sulphur – gold bond and the high affinity that thiol molecules have 

for gold.167 When an array of gold nanoparticles is exposed to a solution of thiol molecules a 

proportion of the citrate capping molecules, largely dependent on the relative concentrations of the 

two ligands, will be replaced in an exchange reaction. As such, the pre-existing negative charge on 

the particles is, at least partially, removed along with the barrier to closer approach and 

reorganisation at the surface.168 This part replacement of the citrate molecules which previously 

formed a protective shell at the surface of the nanoparticles results in a number of changes in terms 

of the organisation and morphology of the gold nanoparticle array. Disadvantageously, a number of 

gold nanoparticles are solubilised and desorb from the surface as their electrostatic attraction to the 
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substrate is diminished. This, due to the high affinity that the thiol molecules have for gold, is 

unavoidable.  

However, the same removal of charge which causes this desorption of a small proportion of the 

nanoparticles also induces a reorganisation of the ones that remain at the surface. This has a 

number of consequences in terms of changing the optical and morphological characteristics of the 

sample as well as opening up a number of possibilities with respect to flexibility of structure 

fabrication and meeting design goals. Where previously, as shown in Figure 10b, an array of well-

separated gold nanoparticles is formed, when the barrier to reorganisation has been removed the 

particles increase in mobility and tend to aggregate into small chains and clusters of around 5 – 10 

particles. This process is thought to be driven by the energetically favourable formation of bilayers of 

the relatively long alkyl chains that form the second functionality of the thiol molecules employed in 

this work, namely 1-dodecanethiol. Crucially, any coalescence of the particles is prevented by the 

bilayers of the thiol molecules that are formed as they are drawn together which is essential in 

terms of maintaining the plasmon resonance that they exhibit. The thiol molecules, or more 

importantly the length of the alkyl chain, also determine the closest distance to which the gold 

nanoparticles can approach one another which in this case is on the order of 1 – 2 nm. A by-product 

of forming these clusters, along with the desorption of a limited number of particles, is the 

appearance of large areas of void space at the surface of the substrate. Previously the particles were 

well-dispersed and equally spaced indicating that a steady state had been reached and a maximum 

surface coverage, under these particular conditions, had been reached. After exposure to the thiol 

solution this is now clearly not the case. It is possible, as the void areas at the surface remain 

functionalised with the silane compound, to subject the substrate to a second deposition process. 

This second round of adsorption will fill in these gaps with arrays of well-spaced particles similar in 

form to that of the original. The new array will in turn, if exposed to the same thiol solution, undergo 

an identical mobilisation and reorganisation process, forming larger clusters of closely packed gold 

nanoparticles. This process can be easily followed using SEM, as shown in Figure 15, and if repeated 

several times results in a much higher density array of gold nanoparticles which, in small domains at 

least, are organised in a close-packed manner. This is clearly a significant step towards achieving 

higher density arrays of metallic nanoparticles which are required, in some cases, to give specific 

optical properties.  
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Figure 15 - SEM micrographs depicting various stages of the deposition and reorganisation process as 

described in the main body of the text. Shown are the morphology that could be expected after a) the first 

deposition, b) the first reorganisation, c) the second deposition, d) the second reorganisation, e) the third 

deposition and f) the fourth deposition. An increase in particle density as well as the introduction of a degree 

of order can clearly be observed. All scale bars 100 nm. 

The increase in filling fraction and order after this process is carried out is clear to the eye when SEM 

images are compared and contrasted. However, it is also possible to quantify these changes by 

analysing the micrographs using ImageJ.165 Figure 16a shows the radial distribution function for a 

low density array of gold nanoparticles before it has undergone the reorganisation and deposition 

process while Figure 16b shows the radial distribution function after 5 cycles of reorganisation and 

refilling have been completed. In both cases the corresponding SEM image is shown in the inset. The 

radial distribution function is a means of measuring the correlation between particles within a 

system or, more specifically, a measure of the probability of finding a particle at a distance r away 

from a given reference particle. A peak indicates an increased prospect of finding particles at that 

given distance from a central reference particle while an intensity of 1 corresponds to the average 

particle density. An intensity of less than one reveals that there is a diminished probability of finding 

a particle at this distance.  

Focussing on the low-density situation shown in Figure 16a, and considering moving radially away 

from a central reference particle, several important features can be noted. Firstly, the trough at 

short distances indicates that, as expected, there is a low probability of finding particles, due to the 

strong electrostatic repulsion involved, close to others. One prominent peak, at a distance which 
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corresponds to the average separation between any given particle and its nearest neighbours, is 

then observed before another trough corresponding to a second region of reduced probability is 

seen. Outwith this radius the distribution function tends to 1, showing that no additional order can 

be discerned. Two important differences can be noted, however, in Figure 16b. Again moving 

radially away from a central reference particle it can be seen that the first peak occurs at a much 

smaller distance. This is a mark of closer packing and a good indicator of overall filling fraction. 

Secondly, several, perhaps as many as 5, peaks can now be discerned, showing that there is a 

considerable increase in the order observed in this sample. 

 

Figure 16 - Radial distribution functions a) before and b) after reorganisation and deposition processes. The 

corresponding SEM micrographs are shown in the insets. 

The morphological changes described, at each stage of the process, result in significantly differing 

optical properties that can be tracked by UV-vis spectroscopy. A typical example is shown in Figure 

17. The initial array of gold nanoparticles, with a diameter of approximately 20 nm, can be seen in 

the lower blue trace. Here, as described in Section 4.1.2, the individual particles are suitably well-

separated and have no significant influence over one another. The strength of coupling decreases 

exponentially as two resonant particles are moved away from one another and an appreciable 

interaction is only observed when they are brought to within a distance of approximately one 

particle diameter. As such, in the low density case the optical properties of the array are not 

substantially different from that of an individual particle. Upon exposure to the thiol solution a large 

red-shift of the surface plasmon resonance is induced, as can be seen in the lower red trace. This 

corresponds to a reorganisation of the particles at the substrate surface with nanoparticles being 

brought to within the coupling limit - therefore altering the optical properties. Successive deposition 

(blue traces) and reorganisation (red traces) steps are shown in Figure 17, steadily progressing to 
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higher extinction coefficients. Overall the process results in a substantial red-shift of the LSPR of 

approximately 100 nm over five reorganisation steps as well as the concomitant increase in 

extinction that would be expected from the deposition of a higher volume of material. 

 

Figure 17 – Extinction spectra of gold nanoparticle arrays that have undergone several reorganisation and 

additional deposition steps. Deposition steps are shown as blue traces, progressing from low extinction 

coefficients to higher extinction coefficients while reorganisation steps are shown as red traces, again 

progressing from low coefficients to higher extinction coefficients. 

4.1.4. Extending into 3rd dimension – the bulk-assembly of polyelectrolyte layers 

and multiple gold nanoparticle arrays4 

As has been shown, a significant amount of control is afforded over the organisation of gold 

nanoparticles within a single planar array. However, for a variety of applications it is also extremely 

desirable to extend these gold nanoparticle arrays into the third dimension. Using the same 

electrostatic interactions that were exploited to create the single gold nanoparticle arrays discussed 

in Section 4.1.2 it is possible to build upon this base and deposit layers of  

PEs and additional gold nanoparticle arrays resulting in structures such as the one shown in Figure 

18. Here, it can be seen that two gold nanoparticle arrays are separated by several PE layers. The 

only requirement placed on the number of polymer layers being that an odd integer number should 

be used in order to maintain an electrostatic attraction between the constitutive elements. 

                                                           
4
 Much of the work presented in this section appeared in: Cunningham A.; Mühlig S.; Rockstuhl, C.;  Bürgi, T.: 

Coupling of Plasmon Resonances in Tunable Layered Arrays of Gold Nanoparticles. J. Phys. Chem. C 2012, 115 
(18), 8955-8960. 
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Further advantages offered by this method include that unlike the Langmuir-Blodgett technique,126 

for example, the deposition of PEs can be applied to surfaces of virtually any topology and that the 

deposition occurs extremely quickly, over a period of seconds. In addition, similarly to the size of the 

initial substrate functionalised, only practical limitations exist both in terms of how many gold 

nanoparticle arrays are deposited and their relative separations.  Other than that the system is 

extremely flexible and a variety of differing sample architectures, with as many nanoparticle arrays 

as desired separated by tunable distances, can be easily and inexpensively fabricated on a large 

scale. 

 

Figure 18 – Diagrammatical representation of two gold nanoparticle arrays separated by five polyelectrolyte 

layers. 

To determine the distance between gold nanoparticle arrays, and therefore the thickness of an 

individual PE layer, GISAXS were carried out on samples with varying degrees of array separation by 

Xiangbing Zeng and Feng Lui of the University of Sheffield. Measurements were conducted with the 

incident angle just above the critical angle in order to exclude total reflection at the interface 

between the sample and the substrate. Very similar diffraction patterns, shown in Figure 19, were 

observed for each of the four samples investigated. Each sample, comprising two gold nanoparticle 

arrays separated by 5, 11, 15 and 21 PE layers (Figure 19a-d respectively), displayed a ring-like 

feature which is determined by the size and shape of the nanoparticles. Assuming that the 

nanoparticles are spherical with a uniform density throughout, the diameter was found to be 13.0  

0.5 nm. Additionally, the two streaks observed at either side of the meridian indicate that the 

average distance between two particles within a single array is approximately 31 nm. While the data 

retrieved for the average diameter of the nanoparticles is slightly lower than that shown in SEM 

images (~17 nm, Figure 10) it is still in the correct range. The separation determined is also 

comparable with that shown in Figure 16a and, importantly, provides further supporting evidence 

that the particles within a single array are separated to the extent that there is no appreciable 

interaction between them. This shows that any shifts in the optical properties observed upon the 
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deposition of a second gold nanoparticle array must, necessarily, be as a result of coupling between 

the two distinct arrays. 

 

Figure 19 - GISAXS patterns made at low angle of incidence for samples with (a) 5, (b) 11, (c) 15 and (d) 21 

polymer layers in-between two gold nanoparticle arrays. 

Information concerning the separation between the two nanoparticle arrays is better elucidated 

when using higher angles of incidence. This results in the splitting of the two streaks found at either 

side of the meridian as can be seen in Figure 20. Again, Figure 20a-d refer to the samples separated 

by 5, 11, 15 and 21 PE layers respectively. The splitting was barely discernible in Figure 20a, 

indicating that the two gold nanoparticle arrays, while still separated from each other, cannot be 

thought of as existing in two discrete planes. Here a significant amount of overlap between the two 

arrays exists. On the other hand, separations of 40, 49 and 65 nm can be resolved in the other three 

samples, assuming the nanoparticle diameter of 13 nm determined in Figure 19. This corresponds to 

an average thickness of 2.5 nm for an individual PE layer which ties in extremely well with figures 

quoted in related literature.45, 128 The best correlation is found in the samples with more PE layers 

deposited in-between the nanoparticles. One possible explanation is that additional PE layers 

gradually smooth out the unevenness that originates from the form of the nanoparticles. This can be 

seen clearly in the sketch of the system shown in Figure 18. While it remains a basic diagrammatical 

representation of the true situation it is, nevertheless, rather informative and shows how the 

polymer layers can be thought of as depositing on top of and in-between the gold nanoparticles. 
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Figure 20 – GISAXS patterns made at higher angles of incidence for samples with (a) 5, (b) 11, (c) 15 and (d) 21 

polymer layers in-between two gold nanoparticle arrays. Array separation, where discernible, is highlighted in 

the Figures. 

Interestingly, it is also possible to investigate both the geometrical form of gold nanoparticle arrays 

and the extent to which they are separated in samples with varying number of PE layers by SEM. 

Four SEM micrographs of two gold nanoparticle arrays that have 1, 5, 11 and 31 separating PE layers 

in-between can be seen in Figure 21a-d respectively. While the technique cannot be used to return 

accurate information on the separation between two gold nanoparticle arrays it is particularly 

instructive in revealing the differing forms of samples as additional PE layers are deposited between 

the arrays. This information can then be used to determine the point at which the system can 

actually be considered as being constructed from distinct arrays. Appreciable differences can be 

seen in the SEM images shown below.  
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Figure 21 – SEM images showing two gold nanoparticle arrays (~20 nm diameter) with (a) 1, (b) 5, (c) 11, (d) 

31 polyelectrolyte layers higher in-between. 

While it is clear that gold nanoparticles will remain separate and will not be able to physically 

contact one another when even a single PE layer has been deposited it can be seen in Figure 21a 

that in no way could such a structure be considered as consisting of two distinct gold nanoparticle 

arrays as depicted in Figure 18. Neither is it possible to ascertain which particles originate from 

which nanoparticle deposition; the first or the second. Instead a rather amorphous structure results 

whereby small aggregates, predominantly in the form of chains containing approximately 5 – 10 

particles take shape. For the most part these chains of nanoparticles are adsorbed directly at the 

surface of the substrate with only isolated particles, identifiable in Figure 21a as brighter, whiter 

dots, being present out of this plane. That this is the case is not surprising given that the first PE 

layer is only capable of coating the nanoparticles themselves. When the second gold nanoparticle 

deposition takes place the incoming particles are attracted to both this PE layer at the surface of the 

nanoparticles and also to the uncovered gaps at the surface of the functionalised substrate. As such, 

the most energetically favourable position for an incoming particle to take, maximising its 

interactions with oppositely charged surfaces, would be in contact with one or more nanoparticles 

and the substrate surface. The mobility of the particles, which has already been shown in Section 

4.1.3.3, allows reconstruction of the surface structures and the formation of chains and other more 
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irregular aggregates which maximise the interactions between oppositely charged species. Such 

structures lead to interesting optical characteristics which will be discussed at length later in this 

section. 

In Figure 21b, in line with the conclusions drawn from the GISAXS experiments summarised in Figure 

20a, it can be seen that increasing the number of separating PE layers from 1 to 5 does not result in 

distinct stratified arrays of gold nanoparticles. While a larger proportion of particles than in Figure 

21a can be seen out of the plane of the substrate surface it is clear that a significant number from 

the second deposition continue to find energetically more favourable positions closer to the 

substrate surface. The continuing presence of chain-like aggregates also indicates that 5 PE layers 

are not sufficient to adequately separate the gold nanoparticles into two distinct arrays. 

When the number of PE layers separating two gold nanoparticle arrays is increased to 11, as can be 

seen in Figure 21c, it can be seen that two irregular arrays of particles, each similar to that which is 

present after a single nanoparticle deposition (Figure 10b), can be discerned. The absence of the 

chain-like aggregates, along with the differences in brightness of the particles – indicating their 

position in the upper or lower arrays – show that 11 PE layers are sufficient to separate two arrays. 

Increasing the degree of separation to 31 polymer layers, as shown in Figure 21d, only serves to 

enhance the extent to which the two separate arrays can be distinguished. Each particle in this 

image can be unambiguously attributed to either the upper or lower array and no aggregates of any 

description can be perceived. 

The evolution of the SEM images shown in Figure 21a-d demonstrate that as an increasing number 

of PE layers are used to separate two gold nanoparticle arrays a transition from amorphous chain-

like aggregates to distinct stratified arrays occurs. After this transition, which can be thought of as 

taking place when around 7 PE layers are deposited, the separation of the arrays becomes 

increasingly apparent. This is as a result of the surface roughness of the exposed surface gradually 

decreasing. As the polymer layers built up on the comparatively rough gold nanoparticle array fill in 

the gaps more planar surfaces result. Of course the number of PE layers required to fill in these gaps 

is a function of the surface roughness which is itself dependent on a variety of factors. For instance, 

the use of larger gold nanoparticles than those under study in this work would result in a greater 

surface roughness and presumably more polymer layers would be required to prepare a near-planar 

surface on which to deposit a second nanoparticle array. On the other hand, surface roughness can 

also be seen to be a function of nanoparticle density. Comparing a high density array, such as one of 

the ones discussed in Section 4.1.3.3, with the standard array seen in Figure 10b, it can be seen that 

there are far less gaps in-between the nanoparticles in the array of higher density. It would be 
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expected that this comparatively low surface roughness would require fewer polymer layers to fill in 

these gaps and present a relatively planar surface upon which a second, wholly distinguishable 

nanoparticle array could be deposited. 

While it is principally the changes in optical properties that arise from the coupling between the 

nanoparticles in two distinct arrays that are of interest it should be noted that the deposition of PE 

layers also causes relatively large shifts in the plasmon resonance. This, as outlined in Equation 5, is 

due to the change in local refractive index surrounding the particles as air is gradually replaced with 

polymeric material. The extent to which the deposition of PE layers can affect the optical properties 

of a gold nanoparticle array are shown in Figure 22. The wavelength of the LSPR as a function of the 

number of PE layers deposited on top is illustrated with both experimental (blue diamonds) and 

simulated (red squares) data shown. All simulations related to this work, the details of which can be 

found in Reference 160, were carried out by Stefan Mühlig and Carsten Rockstuhl of the Friedrich-

Schiller-Universität Jena. 

 

Figure 22 - LSPR wavelength of a single array of gold nanoparticles (~20 nm diameter) on a glass substrate as a 

function of the number of covering PE layers deposited. Both experimental (blue diamonds) and simulated 

(red squares) data are shown. 

It can be seen that, as expected, replacing the air surrounding the gold nanoparticles within the 

array results in a red-shift of the plasmon resonance. As is clear from Figure 22 this shift is 

comparatively greater for the layers that are closer to the surface of the nanoparticles. This is a 

result of the exponential decrease in influence that changing the refractive index of the surroundings 

of a metallic nanoparticle has on its optical properties as the distance from its surface is increased.37 

It can also be seen that above a certain number of deposited layers the effect saturates and the 
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addition of more polymer layers does not further influence the optical properties of the gold 

nanoparticle array. This is again due to the exponentially diminishing effect that changing the 

refractive index of the surrounding material has on the peak position of the plasmon resonance. 

While technically this effect extends to infinity, in practice only changes 1 – 1.5 nanoparticle 

diameters distant from the surface will make a measurable difference.37 As a result the number of 

polymer layers required to fill the volume which can have a bearing on the position of the plasmon 

resonance, shown in Figure 22 to be approximately 13 for particles with a diameter of ~20 nm, is 

also dependent on the nanoparticle diameter itself. The optical properties of an array of larger gold 

nanoparticles will continue to be affected by the adsorption of polymer layers after the 13th layer has 

been deposited, while the shift induced in arrays composed of smaller gold nanoparticles will 

saturate before this point.  

Another interesting feature of Figure 22 is that larger red-shifts of the plasmon resonance can be 

discerned when the negative PE layers (even numbers), rather than the positive ones (odd numbers), 

are deposited. As the refractive indices of the two polymers, PAH and PSS shown in Figure 9, are 

very similar (1.38 and 1.395 respectively)169, 170 it is reasonable to assume that the larger shifts 

caused by the deposition of the negative polymers are as a result of thicker layers. The thicknesses 

of PE layers depend on a number of factors, including the molecular weight of the polymer and the 

structure of the repeating unit, and thicker layers, taking up a proportionally larger volume around 

the nanoparticle, will have a greater influence on the optical properties. 

The extent to which the shifts shown in Figure 22 actually change the optical properties of an array 

of gold nanoparticles can be seen in Figure 23 which shows a series of functionalised glass 

microscope slides upon which a single array of gold nanoparticles (~20 nm diameter) and differing 

numbers of PE layers have been deposited. Moving from left to right the samples have had 0, 1, 3, 5, 

7, 11, 21, 31 and 41 PE layers deposited and, according to Figure 22, the change in colour perceived 

corresponds to a red-shift of approximately 30 nm. That such an impressively strong colour 

originates from a single, low-density array of nanoparticles and that the precise position of the 

plasmon peak can be accurately tuned depending on the number of PE layers deposited on top 

serves to highlight the potential that such systems have. The possibilities for use in sensing 

applications are particularly well illustrated by this example. 
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Figure 23 – Photograph of functionalised glass microscope slides coated in a single array of gold nanoparticles 

(~20 nm diameter) and, left to right; 0, 1, 3, 5, 7, 11, 21, 31 and 41 polyelectrolyte layers. 

The colour changes perceived as PE layers are progressively deposited on an array of gold 

nanoparticles only takes into account one facet of their local surroundings. The other aspect which 

should not be forgotten is, of course, the substrate. Different substrates have different refractive 

indices and this can also have a bearing on the position of the plasmon resonance. Certain 

substrates, such as ITO-coated glass for example, may also provide a route to actively controlling the 

optical properties of an array of metallic nanoparticles through the application of a potential which 

would see the withdrawal or donation of electrons from the nanoparticles and a red or blue shift in 

the position of the plasmon resonance respectively. 

As well as red-shift of the plasmon resonance that is observed resulting in a significant change in 

colour it is also evident from Figure 23 that the overall intensity of the extinction increases. This is 

quantified in Figure 24 where in addition to the overall red-shift that is seen as polymeric material 

gradually replaces air as the medium surrounding the nanoparticles an extremely large increase in 

extinction is also observed. This increase in extinction, in a similar manner to that seen for the shift 

in plasmon position in Figure 22, is seen to saturate after approximately 15 polymer layers have 

been added. 

One explanation for this could be that the imaginary part of the permittivity of gold, which controls 

the absorption, is dispersive and as the resonance position is shifted across the spectral domain the 

particles will incur different losses. Increases in extinction as dielectric materials of increasing 

thickness are placed around metallic nanoparticles are not unprecedented. Similar observations 

were made by Okamoto who showed that coating gold particles in silica shells caused both a red-

shift in the plasmon resonance as well as an increase in the absorption cross-section.171 An 

additional explanation could be an increase in scattering which could result from an increase in size 



Results and discussion 

75 
 

of the entities at the substrate surface or that the polymer layers themselves are not completely 

transparent at the frequencies under consideration. While it is difficult to determine the dominating 

factor any of these explanations could, to varying extents, contribute to the effect observed. 

 

Figure 24 – Extinction spectra of an array of gold nanoparticles (gold trace) upon which positive (red traces) 

and negative (blue traces) polyelectrolyte layers have been deposited. Nanoparticles have a diameter of ~20 

nm. 

When two metallic nanoparticles approach they can interact and shift the frequency of the LSPR. 

The extent to which they interact is strongly related to the distance between them. Outwith the 

coupling limit, this interaction is negligible however the strength increases exponentially as the 

particles approach within this range. Due to the flexibility of the fabrication process this effect can 

be measured by separating two gold nanoparticle arrays by a series of PE layers. That the thickness 

of a single PE layer is on the nanometre scale allows accurate and reproducible measurements to be 

carried out using dimensions that would be inaccessible using top-down techniques. 

The results of this study are summarised in Figure 25 which shows the red-shift of the LSPR peak as a 

function of the number of PE layers separating two gold nanoparticle arrays. Experimental (solid 

points) and simulated data (dashed lines) are shown for arrays of ~20 nm (blue plots) and ~40 nm in 

diameter (red plots). In order to accommodate the additional red-shift, originating from the 

deposition of the PE layers and highlighted in Figure 22, Figure 23 and Figure 24, the shift in 

resonance due to coupling was extracted by subtracting the plasmon resonance wavelength of the 

first gold nanoparticle array after the deposition of a finite number of PE layers from that of the 

second gold nanoparticle array after the deposition of the same number of polymer layers. 
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Figure 25 – Red-shift of localised surface plasmon peak of two gold nanoparticle arrays as a function of the 

number of polyelectrolyte layers separating them. Experimental (solid points) and simulated data (dashed 

lines) are shown for arrays of ~20 nm (blue plots) and ~40 nm in diameter (red plots). 

Focussing on the smaller nanoparticle arrays, it can be seen that the exponential trend expected is 

observed with much higher red-shifts observed for gold nanoparticle arrays separated by lower 

numbers of PE layers. From Figure 25 it is also possible to discern the point at which the two gold 

nanoparticle arrays are removed to the extent whereupon they no longer couple with one another. 

In the case of the nanoparticles with a diameter of ~20 nm this point occurs when approximately 15 

PE layers have been deposited in-between the arrays, tying closely matching the value provided in 

Figure 22.  

Figure 25 also shows the effect that particle size has on systems such as these with larger particles, 

~40 nm in diameter, being used to fabricate the same structure. It can be seen that the interaction 

between particles, as would be expected from theoretical studies,37 is even stronger and extends 

further for larger particles. This is a result of coupling limits essentially being a function of particle 

size. A more pronounced red-shift is observed for comparable separations when larger particles are 

used and further distances are required, in the order of 35 PE layers, to remove the particles to the 

point at which they no longer couple. 

In each case the experimental results were seen to agree excellently with simulations, which were 

provided by Stefan Mühlig and Carsten Rockstuhl of the Friedrich-Schiller-Universität Jena. The 

simulations, the full details of which can be found in Reference 160, do not consider the coupling 

between two large scale gold nanoparticle arrays but rather two single nanoparticles, more 

commonly known as a dimer. As has been shown by UV-vis spectroscopy (Figure 11), the 
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characterisation of SEM images (Figure 16 and Figure 21d) and GISAXS measurements (Figure 19) the 

distance between nanoparticles within a single gold nanoparticle array is too great for the particles 

to appreciably interact with one another. On the other hand the thickness of PE layers, in the order 

of the nanoscale, allows the extremely close approach, with a high degree of control, of two 

nanoparticles. As such it is clear that the optical response of two stacked gold nanoparticle arrays 

separated by PE layers should be dominated by the interaction of particles from different arrays. As 

a consequence, the structure considered in the simulations was reduced to an isolated dimer.  

Strong agreement between the experimental results and the simulations confirm the validity of this 

approach. 

While a good indication of the degree of control afforded over the optical properties, simply through 

the coupling of gold nanoparticles in two separate arrays, is given by Figure 25 it is perhaps more 

instructive to consider the actual spectra to gain an overall impression of the extent to which it is 

possible to induce shifts in the spectral position of the plasmon resonance. This information is shown 

in Figure 26 which allows the comparison of a single array of gold nanoparticles (black trace, left-

hand axis) with two gold nanoparticle arrays separated by 11, 21 and 41 PE layers (blue, red and 

green traces respectively, right-hand axis). The nanoparticles in the arrays depicted in Figure 26 have 

a diameter of ~40 nm. The addition of PE layers and a second gold nanoparticle array results in a 

large increase in extinction as well as the shift in spectral properties. That the precise position of the 

plasmon resonance can be tuned over such a wide range and with such high precision is one of the 

principal advantages offered by this system. 
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Figure 26 – Extinction spectra of a single gold nanoparticle array (black trace, left-hand axis) and two gold 

nanoparticle arrays separated by 11, 21 and 41 polyelectrolyte layers (blue, red and green traces respectively, 

right-hand axis). Nanoparticles have a diameter of ~40 nm. 

As outlined in Section 2.2.4, the coupling of two spheres can be described with the principles of 

plasmon hybridisation theory, shown schematically in Figure 8. The addition of a second array of 

gold nanoparticles results in a splitting of the single resonance into two, where the dominant one is 

strongly red-shifted. As the optical response within a single gold nanoparticle layer was dominated 

by the LSPR of a single sphere, this red-shifted resonance is governed by the mutual coupling of 

spheres from distinct gold nanoparticle arrays.  

When gold nanoparticle array separation is extremely small, for example by depositing only a single 

PE layer between two arrays, the rather amorphous structure, shown in Figure 21a, containing a 

variety of dimer orientations relative to the incident wave vector results. In such a configuration, all 

of the bonding and antibonding eigenmodes can be excited.172
 Importantly, only the eigenmodes 

with a resulting dipole moment dominate the extinction spectra. As a consequence, both such 

modes should be simultaneously excited and the plasmon peak should split into two individual and 

resolvable resonances. This has been both observed experimentally and predicted by simulation as 

can be seen in Figure 27.160 Both eigenmodes with a resulting dipole moment, π* and σ in Figure 8, 

can be observed with the π* (σ) coupled plasmon being observed at shorter (longer) wavelengths. 
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Figure 27 - Experimental (blue trace) and simulated (red trace) extinction spectra of two gold nanoparticle 

arrays separated by 1 polyelectrolyte layer. Nanoparticles have a diameter of ~20 nm. 

As outlined in the Introduction the stated aim of the Nanogold project was the fabrication of bulk 

electromagnetic metamaterials. While it is difficult to classify what exactly is meant by this term one 

definition which is generally thought of as being reasonable is that the smallest length scale should 

be on the same order as, or larger than, the wavelength of light of interest. When working with 

structures assembled from gold nanoparticles then the smallest dimension of a material should be 

on the order of 500 nm, the position of the plasmon resonance. The structures discussed thus far, 

despite covering several square centimetres, do not approach anything like these sizes in the third 

dimension. For example, two gold nanoparticle arrays, using nanoparticles with a diameter of ~20 

nm, separated by 11 PE layers will form a film with a maximum thickness of around 65 nm. However 

this value is likely to be, on average, significantly lower as it would require two nanoparticles to 

deposit directly in line with one another and for there to be no interpenetration or compression of 

the PE layers in-between. 

One solution that could be employed in order to overcome this problem would be the construction 

of multiple layers of gold nanoparticles. The only requirement of the extremely flexible fabrication 

process is that a depositing species should exhibit the opposite charge to that which is exposed at 

the surface of the structure under assembly. This allows for virtually any conceivable architecture of 

layered arrays of metallic nanoparticles. There are few practical limitations to the number of either 

metallic nanoparticle arrays or PE layers used to separate them which can be deposited and after 

the assembly of a sufficiently high number of strata the thickness of the film will be great enough in 

order to meet the condition outlined for bulk materials. It must be noted that one possible limitation 
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to using this technique would be that, upon the deposition of too many metallic nanoparticle arrays, 

the overall extinction of a sample could become too great and the sample would appear black – 

essentially not letting any light pass. However, where larger numbers of PE separating layers are 

used this should not pose a problem before bulk dimensions are reached. An alternative to simply 

using larger numbers of PE layers to separate individual gold nanoparticle arrays would be to use 

these larger numbers of polymer layers to separate coupled arrays. By moving several strongly 

coupled arrays outwith the coupling limit of each other it would be possible to build up bulk 

metamaterials which possess the desired functionality without overly increasing the overall 

absorption of the system. It should be noted that when discussing the assembly of high numbers of 

metallic nanoparticle arrays that the size of the nanoparticles used should also be considered – 

larger particles providing thicker layers but at the same time scattering incident light to a much 

greater extent. 

The extinction spectra of assemblies of gold nanoparticles (~20 nm diameter) can be seen in Figure 

28. This work, carried out by Brittany Cindric of the University of Geneva within the framework of an 

internship and under the supervision of Alastair Cunningham, represents the first steps towards 

developing the structures discussed previously in this section into what could be considered as bulk 

metamaterials. Many of the features observed in the simpler systems containing only two gold 

nanoparticle arrays can also be seen here. The splitting of the plasmon resonance into two separate 

eigenmodes, as was shown previously in Figure 27, is still seen when additional arrays are added. 

However, interestingly, the longer wavelength resonance becomes increasingly prominent in 

relation to the shorter wavelength resonance (Figure 28a). Figure 28b and Figure 28c also display an 

interesting, and somewhat unexpected, trend. The plasmon resonance initially shifts to longer 

wavelengths upon the deposition of additional gold nanoparticle arrays as would be expected and as 

was observed in all of the samples with only two arrays. However at a certain point this resonance 

begins to shift back to higher frequencies. This behaviour is more pronounced in the sample where 

the nanoparticle arrays were separated by 5 PE layers and the reasons behind this remain, as yet, 

unexplained. It should not be confused with the blue-shifts that are seen throughout Figure 28 

between a sample coated in PE layers and the subsequent gold nanoparticle array. These two 

spectra cannot be legitimately compared as in one the uppermost gold nanoparticle array is coated 

in several layers of polymer while in the other the uppermost gold nanoparticle array is exposed to 

air. This difference in refractive index between the two materials causes the position of the 

resonance to shift back and forth. The degree of separation between the gold nanoparticle arrays 

represented by the extinction spectra shown in Figure 28d is large enough to preclude any 
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substantial coupling between separate arrays and as such no significant shift in plasmon resonance, 

other than that caused by the deposition of the PE layers, is observed. 

 

Figure 28 – Extinction spectra of assemblies constructed from multiple gold nanoparticle (~20 nm diameter) 

arrays and polyelectrolyte layers. Gold nanoparticle arrays are separated by a) 1 polyelectrolyte layer, b) 5 

polyelectrolyte layers, c) 11 polyelectrolyte layers, d) 25 polyelectrolyte layers. In each case the spectra taken 

directly after the deposition of the gold nanoparticle arrays (red solid traces) and the requisite number of 

polyelectrolyte layers (blue dashed traces) are shown. 

4.1.5. Compositionally asymmetric arrays of metallic nanoparticles5 

The concept of bright and dark eigenmodes considered within the bounds of plasmon hybridisation 

theory, introduced in Section 2.2.4., plays an important role in the field  of metamaterials since the 

out of phase oscillation of electric dipoles can be related in some cases to a magnetic dipole moment 

-  a key component in many predicted applications. One way to excite dark eigenmodes is to use 

structures that exhibit a considerable amount of asymmetry. Until now the study of metallic 

nanoparticle structures which show asymmetry in either size, shape, or composition has been 

limited to discussions, both theoretical173, 174, 175 and experimental,176 relating to interactions 

                                                           
5
 Much of the work presented in this section appeared in: Cunningham A.; Mühlig S.; Rockstuhl, C.;  Bürgi, T.: 

Exciting Bright and Dark Eigenmodes in Strongly Coupled Asymmetric Metallic Nanoparticle Arrays. J. Phys. 

Chem. C 2012, 116 (33), 17746-17752. 
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between low numbers of isolated particles. For example, using asymmetric structures Brown et al. 

demonstrated Fano resonances and optical nanodiode effects176 while the observation of both 

bright and dark eigenmodes along with coupling between plasmonic modes and interband 

absorption transitions was seen by Sheikholeslami et al..177 Lithographically produced dimers of gold 

and silver nanodisks have also recently been shown to act as nanoantennas for directional colour 

routing, which opens the door to a variety of different applications.178 Other work concerning 

heterodimers has shown the possibility of using such structures as nanolenses.179 

While this relatively small scale research is capable of providing interesting insights into the 

properties of asymmetric systems the development and application of the fabrication techniques 

that have been introduced in Sections 4.1.2 and 4.1.4 would allow these properties to be probed on 

a scale that could be incorporated into functional devices. The flexibility of these fabrication 

techniques, requiring only that the incorporated species are charged, easily allow arrays of metallic 

nanoparticles, incorporating a degree of asymmetry, to be developed. Initially it was thought that 

this asymmetry could be achieved through the construction of arrays of gold nanoparticles of 

differing size.177 However it was found that, while in theory this should have resulted in asymmetric 

coupling, the shift in resonance between the nanoparticles of different size was not sufficient to 

make any effect observable. As a result, structures composed of large scale arrays of strongly 

coupled gold and silver nanoparticles, separated by layers of PEs, were investigated. A 

diagrammatical representation of this structure can be seen in Figure 29. 

 

Figure 29 - Diagrammatical representation of silver and gold nanoparticle arrays separated by five 

polyelectrolyte layers. 

The required asymmetry of the system is induced due to the vastly different plasmon resonance 

frequencies of silver nanoparticles and gold nanoparticles which is highlighted in the plasmon 

hybridisation diagram shown in Figure 30. Unlike the plasmon hybridisation diagram of the 

homodimer shown in Figure 8, where the dipole moments of the individual particles completely 
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cancel in two of the four hybridised modes, the asymmetry introduced means that this is no longer 

the case. Heterodimers, such as that represented in Figure 30, display a net dipole moment in each 

of the four hybridised eigenmodes and it is due to this broken symmetry that all modes can be 

excited at normal incidence, unlike in the previous case. 

 

Figure 30 - Plasmon hybridisation diagrams showing the coupling between, and the dipole moments on silver 

and gold nanospheres set up in a dimer configuration. 

Due to the success achieved in modelling the gold nanoparticle arrays separated by dielectrics by 

considering them as a dimer160 a similar approach was adopted by Stefan Mühlig and Carsten 

Rockstuhl of the Friedrich-Schiller-Universität Jena and applied to this system. Full details of the 

simulations performed can be found in Reference 152. 

There were, however, several challenges that made both the fabrication of the samples and the 

interpretation of the results more demanding than in the previous work. As before, the separation 

between the gold nanoparticles within the lower array was shown to be considerably larger than 

that between distinct arrays, thus precluding any lateral interactions and meaning that all coupling 

observed is between arrays that are separated by a distinct number of PE layers. This can be seen in 

Figure 31 where the smaller gold nanoparticles form a standard array. However, the silver 

nanoparticles, also seen in Figure 31, tended to coat the substrate in a less homogenous fashion, 

with both isolated particles and small aggregates being observed. In addition, as can also be readily 

observed in Figure 31, silver nanoparticles produced by the Lee-Meisel method exhibit a wider range 

of particle sizes and shapes when compared to the Turkevich method used for gold nanoparticles, 
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thus making the spectral interpretation of the ensembles more challenging. Nevertheless, the 

dominating resonances of the system can be fully described by considering a dimer consisting of one 

gold nanoparticle and one silver nanoparticle from each array. In other words, the structure under 

investigation can be thought of as an amorphous arrangement of heterodimers that consists of one 

gold and one silver nanoparticle. 

 

Figure 31 - SEM image showing an array of gold nanoparticles (~18 nm diameter) and an array of silver 

nanoparticles (~43 nm diameter) separated by seven polyelectrolyte layers. Because of the difference in 

height, the gold nanoparticles, which are underneath, appear slightly out of focus. 

The spectra corresponding to single arrays of gold nanoparticles and silver nanoparticles shown in 

Figure 31 along with the simulated spectra of single nanospheres of each metal can be seen in Figure 

32. In the simulations isolated spheres were considered whereas the measurements were 

performed on single layers of gold and silver nanoparticles with a filling fraction of 27 and 23 % 

respectively. The morphological differences between the two arrays have a large effect on their 

optical properties. A single peak, at the same frequency as an individual particle, is observed for the 

well separated gold nanoparticles while two peaks, that of the isolated particles and that of the 

aggregates, are discernible in the case of the silver nanoparticles. The small aggregates, on average 

comprising 3 – 4 particles, result in a significantly red-shifted peak that, in addition, is somewhat 

broadened owing to the variety of both the number of the particles in the aggregates and the size of 

the particles that form them. With the exception of the aggregates in the silver nanoparticle array 
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discussed above, the principal source of coupling in the final structure results from inter-array 

interactions. The coupling of spheres in one layer can either be neglected (in the case of the gold 

nanoparticle array) or only weakly contributes to the optical response of the entire structure (in the 

case of the silver nanoparticle array) meaning that any observable phenomena are dominated by the 

mutual coupling of the particles from separate arrays. 

 

Figure 32 - Extinction spectra of single arrays of gold (red traces) and silver (blue traces) nanoparticles. Both 

experimental (solid lines) and simulated (dashed lines) are shown. 

It was shown in Section 4.1.4 that the adsorption of a second gold nanoparticle array on top of 

another induces a red-shift of the LSPR peak. This shift is dependent on the degree of separation, 

defined by the number of PE layers, between the two arrays. When compositionally asymmetric 

structures are fabricated the dominant resonances observed are the bonding modes. However, as 

can be seen in the extinction spectra shown in Figure 33 other peaks are also perceived. For reasons 

of clarity only two samples are shown in the figure, corresponding to gold and silver nanoparticle 

arrays that are separated by 1 (blue trace) and 21 (red trace) PE layers. Two peaks can clearly be 

distinguished at approximately 380 and 395 nm, which correspond to the σ* and π* modes outlined 

in Figure 30, for the samples with greater degrees of separation. In this case it is difficult to 

conclusively identify which peak corresponds to which mode due to their relatively low separation 

and the potential influence of coupling between the plasmonic modes and interband absorption 

processes which has been noted in literature177 as being capable of disrupting the order of the 

hybridised modes shown in Figure 30.  For the trace relating to the two arrays that are separated by 

only one PE layer, two longer wavelength peaks can also be observed at approximately 510 and 600 

nm, corresponding to the π and σ bands shown in Figure 30. This represents, to the best of our 
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knowledge, the largest scale observation of all four bonding and anti-bonding modes that presently 

exist in coupled systems of asymmetric metallic nanoparticles.  

 

Figure 33 - Extinction spectra of arrays of gold and silver nanoparticles separated by 1 (blue trace) and 21 (red 

trace) polyelectrolyte layers. 

Following the observance of all four hybridised plasmon resonances an in-depth study was 

conducted into their behaviour as a function of metallic nanoparticle array separation. Several 

samples were fabricated with a variety of differing array separations, achieved by altering the 

number of PE layers in-between. Taking the stronger of the two long wavelength peaks as an 

example it can clearly be seen that as the number of PE layers separating the two nanoparticle 

arrays is decreased it undergoes a significant red-shift. As can be seen in Figure 34, the observed 

red-shift follows the expected exponential trend, falling to zero at the point at which the two arrays 

are no longer able to interact due to the distance between them being too great. This shows that the 

near-field coupling between compositionally asymmetric metallic nanoparticle arrays is strongly 

dependent on, and can be tuned simply by controlling, the inter-array distance. 



Results and discussion 

87 
 

 

Figure 34 - LSPR peak positions of σ mode of two separated arrays of gold and silver nanoparticles as a 

function of array separation. 

In addition to being able to control the frequency of the individual resonances it is also possible to 

control their relative extinctions. This can be achieved through exciting the sample at oblique angles 

of incidence. By rotating the sample the geometrical configuration of the two arrays relative to the 

incident beam is altered with the two transverse modes, corresponding to light polarised 

perpendicularly to the main dimer axis becoming increasingly important. As the sample is rotated 

and the transverse modes become more dominant in the spectral analysis the longitudinal modes, 

those corresponding to light polarised along the main dimer axis, become correspondingly less 

prevalent. What essentially results is an angular dependent extinction of light whereby certain 

modes can be preferentially excited over others depending solely on the angle of incidence of the 

impinging radiation. This is outlined in Figure 35 which shows the extinction spectra of the samples 

with both 1 (a) and 21 (b) separating PE layers with incident light at both 0 ° (blue trace) and 70 ° 

(red trace) to the plane of the sample. It can be seen from these two figures that there is a 

significant change in the relative extinction intensity between the resonances that are excited by 

transverse and longitudinal polarisation. This ratio is plotted in Figure 35c and Figure 35d (for the 

samples separated by 1 and 21 PE layers respectively) as a function of the angle of incidence of the 

impinging light beam. Here, it can be seen that in both cases there is a smooth transition as the 

transverse modes are, in each case, increasingly excited. 
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Figure 35 - a) Extinction spectra of gold and silver nanoparticle arrays separated by 1 polyelectrolyte layer at 0 

° (blue trace) and 70 ° red trace. b) Extinction spectra of gold and silver nanoparticle arrays separated by 21 

polyelectrolyte layers at 0 ° (blue trace) and 70 ° red trace. c) Ratio of σ mode peak intensity to π mode peak 

intensity for gold and silver nanoparticle arrays separated by 1 polyelectrolyte layer. d) Ratio of π* mode peak 

intensity to σ* mode peak intensity for gold and silver nanoparticle arrays separated by 21 polyelectrolyte 

layers. 

Rotating the polarisation state of the incident light will similarly induce the preferential excitation of 

either the transverse or longitudinal modes and is another means of observing this effect. In contrast 

to work by other groups pertaining to symmetry breaking in heterodimers which concentrates solely 

on single dimers,177 rather than the more complex ensembles studied here, it is not possible to 

‘switch off’ specific modes depending on the angle of incidence or polarisation state of the incident 

radiation. This is as a result of a number of different nanoparticle dimer orientations existing over a 

large surface area which partially averages out the observed polarisation and orientation 

dependence. 

4.1.6. Surface enhanced Raman scattering applications 

As outlined in Section 2.2.6, one of the principal applications of metallic nanoparticles is currently in 

the field of SERS. The large increase in electric field observed between metallic nanoparticles results 

in massive enhancements of the Raman signal and opens up the technique of Raman spectroscopy 
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for a variety of uses. Recent investigations have highlighted the importance of arrays of both silver 

and gold nanostructures to the advancement of these techniques.180 As such, it was considered that 

the stratified arrays developed in the previous sections would form an ideal prototypical structure 

from which to study enhancements measured as a function of several material parameters. For 

instance, the magnitude of the hotspots, and in principal therefore the enhancement, decreases 

with particle separation. This, along with other factors such as particle size and composition can 

easily be examined with the layered arrays of metallic nanoparticles. 

Samples were prepared and sent to Dana Cialla and Karina Weber of the Institute of Photonic 

Technology, Jena, who carried out all measurements to determine potential enhancements of the 

Raman signal. A standard fluorescent dye used in SERS experiments, Nile blue, was used as the 

analyte and samples were excited using a laser with a wavelength of 633 nm. Measurements were 

conducted on two series of samples. Each series was constructed from two arrays of nanoparticles, 

of either 20 nm in diameter and 40 nm in diameter, and separated by a range of PE layers. 

Shown in Figure 36a are the trends in SERS enhancements that would be expected from two gold 

nanoparticle arrays with a diameter of 20 nm separated by a number of differing PE layers. It can 

clearly be seen that the greatest enhancement would be expected for two gold nanoparticle arrays 

separated by a single PE layer. At greater separations there is a large drop off in terms of the 

enhancements anticipated upon which there appears to be a quasi-exponential decline in the 

enhancements (shown in greater detail in the inset of Figure 36a). These simulations, along with the 

ones presented in Figure 37 and Figure 38, were supplied by Stefan Mühlig and Carsten Rockstuhl of 

the Friedrich-Schiller-Universität Jena. As can be seen from Figure 36b there are two major 

discrepancies between the predicted results and the actual measured enhancements. Firstly, the 

absolute values of the simulated enhancements are significantly lower than those of the measured 

enhancements. This is due to the units in the experimental measurements being completely 

arbitrary. As such only the general trends seen in the simulations and experiments can be compared. 

The second difference, which is perhaps more interesting in terms of understanding the 

enhancement and self-assembly processes involved, is that the measured enhancement for two gold 

nanoparticles arrays separated by only a single PE layer is lower than that of the samples with 

greater separation. The simulations, on the other hand, forecast that the sample with the lowest 

separation should exhibit by far the greatest enhancement. A number of potential reasons for this 

exist. One hypothesis could be that the intense electric fields that exist between two resonant 

nanoparticles separated by only one PE layer are sufficiently high to cause the degradation of the 

analyte molecules. While this is plausible it would suggest that the PE between the nanoparticles 
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would also be susceptible to such breakdown and throughout the course of this research no 

indications pointed towards this. A more likely explanation can be constructed through electrostatic 

arguments. Given that only a singular positively charged PE layer is present between the two gold 

nanoparticle arrays, and that the analyte molecule, Nile blue, is itself slightly positively charged, it is 

conceivable that electrostatic repulsion between the polymer and the dye result in the exclusion of 

the dye from the nanogaps between the metallic particles. As the volumes where the highest 

enhancements would be expected are directly between the nanoparticles this could result in the 

lower than expected enhancements observed. 

 

Figure 36 – a) Simulated enhancement of Raman signal of Nile blue as a function of the number of 

polyelectrolyte layers between two gold nanoparticle arrays (20 nm diameter). b) Experimental enhancement 

of Raman signal of Nile blue as a function of number of the number of polyelectrolyte layers between two gold 

nanoparticle arrays (~20 nm diameter). 

Disregarding this anomaly, the magnitude of the Raman enhancement can be seen to decline 

exponentially as a function of nanoparticle array separation. A contributing factor to this decrease in 

enhancement is likely to be the diminishing magnitude of the electric field between the 

nanoparticles as they are moved to greater separations. An additional explanation for the magnitude 

of the enhancement decaying in such a manner, other than the strength of the ‘hot-spot’ decreasing 

at greater degrees of separation is the overlap of the laser radiation used to excite the analyte, 

which has a wavelength of 633 nm, with the plasmon band of the gold nanoparticle structures. This 

can be seen in Figure 37a where the simulated extinction spectra of two gold nanoparticle (~20 nm 

diameter) arrays with differing numbers of PE layers in-between are shown. The extinction at 633 

nm for each of these spectra is plotted as a function of the number of PE layers in-between the 

arrays in Figure 37b. While the effect is not as dramatic as that shown in Figure 36a it can clearly be 

seen that for each of the samples there is a difference in the overlap between the extinction spectra 

and the wavelength of light used to excite the analyte molecule. This means, therefore, that in each 
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sample the plasmonic resonance, which is essentially the mechanism that bestows the enhancement 

effect seen, is present to differing extents. While this does not help to explain the discrepancy 

between the anticipated and observed results in the sample where only a single PE layer is 

employed it does aid in the explanation of the overall decrease in enhancements seen in all of the 

other samples. 

 

Figure 37 - a) Simulated extinction spectra of two gold nanoparticle (~20 nm diameter) arrays separated by 

(from right to left) 1, 3, 5, 7, 9, 11, 13 and 15 polyelectrolyte layers. The dashed vertical line is drawn at 633 

nm.  b) The extinction coefficient of each of the simulated spectra in a) at 633 nm. 

Similar trends can be observed in the samples where larger nanoparticles were used. Shown in 

Figure 38a are the simulated enhancements that would be expected from two arrays of gold 

nanoparticles (~40 nm diameter) when the overlap between the extinction spectra of the samples 

and the excitation wavelength (633 nm) is taken into account. This overlap between the excitation 

wavelength and the extinction spectra for each of the samples is shown both qualitatively and 

quantitatively in Figure 38c and Figure 38d respectively. In this case, the plasmon resonance of the 

sample separated by only a single PE layer is red-shifted to such an extent that the cross-section of 

extinction at 633 nm is relatively low. Consequently, the surface electrons of the metallic 

nanoparticles are not driven into resonance at this frequency and very little enhancement is 

expected. This is mirrored in the experimental results shown in Figure 38b where, as with the 

samples constructed from the smaller nanoparticles, there is considerably less enhancement 

measured in the sample with the lowest separation between the arrays. Of course, as could be seen 

in the samples fabricated with smaller nanoparticles, the overlap between the plasmon resonance 

and the wavelength of the incident laser radiation does not tell the full story and it is expected that 

the other factors discussed above, for example the exclusion of the analyte molecules due to 

electrostatic repulsion will also play a role in this case. In addition, while it can be seen that an 

overall trend of decreasing enhancements at greater nanoparticle array separations is observed it is 
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also clear that this is not as smooth as in the series with the smaller nanoparticles. In general, 

throughout the course of this research, it was found that the most homogeneous arrays were 

achieved with nanoparticles of around 20 nm in diameter. This is one possible reason for this small 

incongruity between the two series of samples. 

 

Figure 38 - a) Simulated enhancement of Raman signal of Nile blue as a function of the number of 

polyelectrolyte layers between two gold nanoparticle arrays (~40 nm diameter). b) Experimental 

enhancement of Raman signal of Nile blue as a function of number of the number of polyelectrolyte layers 

between two gold nanoparticle arrays (~40 nm diameter). c) Simulated extinction spectra of two gold 

nanoparticle arrays (~40 nm diameter) separated by (from right to left) 1, 3, 5, 7, 9, 11, 13 and 15 

polyelectrolyte layers. The dashed vertical line is drawn at 633 nm. d) The extinction cross-section measured at 

633 nm as a function of the number of polyelectrolyte layers between two (~40 nm diameter) gold 

nanoparticle arrays. 

It must also be taken into account that while the simulations refer to a single dimer, and as such 

represent and idealised situation, the experimental measurements were conducted on samples 

fabricated from two large scale arrays of amorphously arranged nanoparticles covering several 

square centimetres. There is no direct correlation between the positioning of the particles from 

different arrays, resulting in a number of different configurations being measured and 

enhancements being averaged out. Additionally, as was shown in the GISAXS and SEM data 

presented in Section 4.1.4, gold nanoparticle arrays separated by only a few PE layers cannot be 
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considered as existing in two separate planes and rather form chains and small aggregates at the 

surface of the substrate. This could also be a contributing factor to any discrepancies seen between 

simulations and experimental data. 

The work described above involved the drop casting of the Raman active dye on top of the 

nanoparticle structure, allowing it to penetrate into the volume between the particles. The 

imprecise nature of this process, with no means of controlling or discerning the exact location of the 

dye molecules at the time of measurement could also lead to inconsistencies between simulated 

and measured data. 

This potential source of error motivated the conception and fabrication of alternative structures. The 

block copolymer poly(fluorescein isothiocyanate allylamine hydrochloride) is composed of both 

positively charged and fluorescent units in the ratio of 50:1 respectively. It was initially thought that 

the ability to precisely and reproducibly adsorb this polymer layer at specified distances between the 

two nanoparticle arrays would allow the enhancement effects discussed above to be more 

accurately measured. This was, unfortunately, found not to be the case as an adequately strong 

Raman signal could not be detected from the chromophore incorporated into the polymer. However 

the only requirement for a more in-depth investigation of this system is a Raman active compound, 

not necessarily polymeric, which, in addition, exhibits the multiple charges essential for the 

assembly process. 

The systems investigated did not exhibit the astonishing enhancements reported by some groups. 

However, through the optimisation of certain parameters such as particle composition and size it is 

believed that significant improvements could be made. Additionally, one of the major challenges 

facing researchers working on SERS is the reproducibility of results. It is thought that using large 

scale arrays of amorphously placed nanoparticles could be one means of achieving this through the 

averaging out of the uncertainties which cause these problems. 

Despite the discrepancies highlighted above the general trends shown above in the simulations and 

experimental results are certainly consistent with one another. That certain limitations in agreement 

between the two occur only serves to demonstrate that a number of factors, some of which are yet 

to be fully understood, can be probed using these systems and that a great deal of research 

opportunities remain unexplored in this branch of science. 
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4.1.7. Polymeric substrates 

Due to their transparency at visible wavelengths glass substrates are adequate for the vast majority 

applications involving metallic nanoparticles. However the rigidity that they possess imposes 

limitations and restricts several potential functionalities that could otherwise be achieved. PDMS 

substrates on the other hand are extremely flexible and exhibit a high degree of elasticity – the 

result of an extremely low glass transition temperature. In addition they display a number of other 

qualities, such as their low cost, ease of fabrication, optical transparency and their high levels of 

thermal and oxidative stability.181 As a result of these impressive physical properties it would be of 

significant interest to prepare gold nanoparticle arrays on PDMS substrates with a wide array of 

potential applications envisaged. PDMS is already extensively used in the construction of 

microfluidic devices however the combination with metallic nanoparticles opens up routes to optical 

strain detectors,182 SERS substrates183 or microchip electrophoresis,184 for example. 

Metallic nanoparticles could either be deposited on the surface of the PDMS substrates, as in the 

work outlined in previous sections, or alternatively incorporated into the bulk of the material 

itself.185 Several means, ranging from metal layer coatings to surfactant treatments, exist to modify 

PDMS surfaces181 however one of the most practical involves the functionalisation of the surface 

with a tri-functional organosilane in much the same manner to that used for glass and silicon 

substrates. Prior to this it is first necessary to modify the surface of the PDMS by a plasma treatment 

which creates the Si-OH bonds at the surface required for the functionalisation step.181 One 

challenge faced when using this technique, however, is that of hydrophobic recovery which is caused 

by the migration of uncured PDMS oligomers towards the surface and the replacement of the Si-OH 

functional groups created by the plasma procedure. This can result in instability of the modified 

layer but does not pose significant problems if direct functionalisation is carried out. 

An example of functionalised PDMS substrates that have been decorated with arrays of gold 

nanoparticles is seen in Figure 39. Similarly to that which was seen previously with the glass and 

silicon substrates the gold nanoparticles completely cover the surface of the substrate and, by eye at 

least, appear to form relatively homogeneous arrays. After a single array has been adsorbed at the 

surface it is again possible to assemble PE layers and additional nanoparticle arrays. Samples 1-3 are 

constructed from two gold nanoparticle (~20 nm diameter) arrays separated by 21, 11 and 5 PE 

layers respectively while sample 4 represents a single gold nanoparticle array. These samples were 

prepared with a view to investigating any potential changes in optical properties that may be 

observed upon stretching of the substrates. As has been extensively shown in Section 4.1.4 the 

position of the surface plasmon resonance of a metallic nanoparticle array is strongly dependent on 
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the strength of coupling between the individual nanoparticles which is, in turn, a function of the 

distance between the particles. It was thought that by stretching the substrates the positions of the 

nanoparticles would alter sufficiently for a shift in plasmon resonance to be observed. One particular 

structure that was of interest was that containing two gold nanoparticle arrays separated by PE 

layers. It was anticipated that stretching of this structure in the plane of the arrays could result in the 

two arrays approaching each other and would result in a red-shift of the plasmon resonance. 

Unfortunately this was not found to be the case and no reproducible trend could be discerned. 

 

Figure 39 – Gold nanoparticle (~20 nm diameter) arrays on PDMS. Samples 1-3 are constructed from two gold 

nanoparticle arrays separated by 21, 11 and 5 polyelectrolyte layers respectively. Sample 4 is a single gold 

nanoparticle array. 

Shown in Figure 40 are the extinction spectra corresponding to the samples shown in Figure 39. The 

blue trace represents a single gold nanoparticle array while the red, green and purple traces show 

two gold nanoparticle arrays separated by 21, 11 and 5 PE layers respectively. As would be expected 

the optical properties follow very similar trends to those observed for similar structures prepared on 

glass. There is a significant increase in extinction from the sample with a single gold nanoparticle 

array to those with two. In addition, the position of the plasmon resonance follows a similar trend to 

that seen previously with less separating PE layers resulting in further red-shifts. An additional peak 

can be observed in all of the samples at around 700 nm. This is assumed to be caused by small scale 

aggregation of gold nanoparticles. While this is not significant and the optical properties are 

dominated by the principal resonance at approximately 520 – 550 nm these small areas of 

aggregation can, nevertheless, be seen in the photograph of the samples in Figure 39. 
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Figure 40 – Extinction spectra of gold nanoparticle (~20 nm diameter) arrays on PDMS substrates. The blue 

trace represents a single gold nanoparticle array while the red, green and purple traces show two gold 

nanoparticle arrays separated by 21, 11 and 5 polyelectrolyte layers respectively.  

4.1.8. Layer-by-layer film lift-off technique 

For certain specific applications the use of substrates such as glass, silicon or PDMS as a base on 

which to fabricate layered arrays of metallic nanoparticles is sufficient. However, if this technology 

were to be developed to the extent that it could be incorporated into some form of functional 

device then it is easy to imagine that it would be necessary to make it applicable to a wider range of 

situations. A clear example of this is in the display industry where device weight and thickness are of 

crucial importance. The need for a bulky glass substrate, several orders of magnitude thicker than 

the nanoparticle arrays that it supports, becomes disadvantageous in such circumstances. As such, a 

means of fabricating stand alone polymer films with metallic nanoparticle inclusions would be 

desirable. This can be achieved, again, through the application of the layer by layer assembly of 

polymeric species.  

In addition to the methods based upon electrostatic interactions used to assemble polymer layers 

introduced in Section 2.3 and applied in Section 4.1.4 it is also possible to utilise other principles to 

prepare multilayers of polymers. One example is the exploitation of hydrogen bonding between two 

different polymer species in order to create the multilayers in an analogous process to that 

described for the electrostatic systems. Of course, by their very nature, hydrogen bonds are 

intrinsically pH sensitive and as such changes in pH can lead to film decomposition once a critical 
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value is reached. This critical value is extremely dependent on the system of polymers used to 

fabricate the multilayers. While films that decompose may not at first glance appear to be extremely 

useful, many applications, particularly in the field of controlled drug delivery, can be conceived.186 

Some polymers possess the ability to form multilayers through either hydrogen bonding or the more 

conventional electrostatic processes. As a result it is possible to combine these two techniques and 

fabricate hybrid structures. By first depositing the pH sensitive layers and then the layers assembled 

by electrostatic techniques it is possible to alter the pH to break the hydrogen bonds and release a 

stable stand alone composite polymer film.155 It has been shown that self-supporting PE multilayer 

membranes with thicknesses of 55 to several hundred nanometres and areas of a few square 

centimetres could be prepared.155 

The polymers chosen to achieve this were PAA and PEG which, in combination, have a critical pH of 

3.6.127 On top of this were deposited PAH and PSS layers, the standard PEs used throughout this 

work. Of course, the deposition of the PE multilayers must also be carried out at reduced pH in order 

that the hydrogen bonds are not prematurely broken. Exposure to a solution of gold nanoparticles 

serves two purposes. Firstly the nanoparticles adsorb at the surface of the PE thin film, creating a 

nanoparticle array at the surface similar to those presented in Section 4.1.2. Simultaneously, the 

nanoparticle solution, whose pH is above the critical pH of the PAA / PEG system, slowly induces the 

breakdown of the hydrogen bonds contained within these layers and releases the PE / gold 

nanoparticle thin film. Examples of these self-standing films can be seen in Figure 41 with the pink 

colour originating from the LSPR of the gold nanoparticles clearly visible in the inset image. 
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Figure 41 - Photograph of a stand alone PAH / PSS multilayer film with gold nanoparticles (~20 nm diameter) 

incorporated. 

4.1.9. Arrays of rods 

As was outlined in Section 2.2 spherical nanoparticles, while perhaps the most commonly used, are 

by no means the only form available. In certain cases, depending on the application or the desired 

effect, other forms such as nanorods provide considerable advantages over the more basic spherical 

particles. The introduction of anisotropy, the enhanced extinction coefficients and the wide range of 

tunability of the longitudinal plasmon resonance are just some of the benefits afforded by the use of 

nanorods over nanospheres. 

While the fabrication of structures such as SRRs through bottom-up techniques is outwith current 

capabilities, analogous structures, exhibiting similar properties, can be produced using gold 

nanorods. As with spherical nanoparticles two nanorods, in close proximity, will strongly couple with 

one another and, following plasmon hybridisation theory, form new modes – one with a symmetric 

alignment of the two electric dipoles and one with an antisymmetric alignment.32 Unlike the 

situation with nanospheres, however, there are a variety of differing geometrical configurations that 

the two nanorods can adopt and these configurations can drastically affect the coupling properties.37 

The antisymmetric mode of two nanorods in the transverse, i.e. side to side, configuration is also 

known as the ‘magnetic resonance’ as the antisymmetric currents in the two particles, when 

considered in conjunction with the displacement currents between them, can lead to a resonant 

excitation of a magnetic dipole moment, the consequence of which being the overall system 
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displaying a magnetic response.32 As a result, two nanorods stacked together in a transverse manner 

can be considered as a ‘magnetic atom’ – one of the fundamental building blocks of metamaterials.32 

Indeed there is no reason why such magnetic atoms are restricted to nanorod dimers and while the 

plasmon hybridisation diagrams become significantly more complicated for larger structures 

constructed from trimers, tetramers or higher oligomers these structures also possess modes which 

can be interpreted as magnetic resonances.187 

One potential approach to structures such as these would be to deposit an array of nanorods on a 

functionalised substrate and then induce their reorganisation in much the same manner as that 

employed in Section 4.1.3.3. In order to use electrostatic forces to deposit an array of gold nanorods 

on a substrate it is necessary to render that substrate negatively charged. This is due to the positive 

charge originating from the CTAB bilayer that caps the particles. The substrate can be rendered 

negatively charged simply by functionalising in the usual manner and then depositing a single layer 

of negatively charged PE. It was also found that in order to facilitate the adsorption of an array of 

gold nanorods on these substrates, and increase their density to a sufficient level, it was necessary 

to add NaCl to the solutions from which they were deposited. This can be seen in Figure 42 with the 

photograph showing arrays of gold nanorods deposited from solutions made up to a variety of 

differing concentrations of NaCl. The corresponding extinction spectra are also shown and it can 

clearly be seen that there is an optimum salt concentration that provides high density arrays of gold 

nanorods. Both plasmon peaks; the longitudinal, at around 660 nm, and the transverse, at around 

520 nm, can be discerned, as well as a third peak in the two more optically dense samples at around 

780 nm. This, in all likelihood, originates from coupling between particles in small aggregates or 

between particles that are simply in close proximity in the higher density arrays. 
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Figure 42 – Photograph showing arrays of gold nanorods deposited from solutions with varying concentrations 

of NaCl along with the corresponding extinction spectra. 

Subjecting arrays such as these to the same repeated reorganisation and deposition process 

described in Section 4.1.3.3 should also, in principle, form aggregates of the particles. As with 

previously, the thiol molecules used will exhibit a strong affinity for the gold particles and will, to 

some extent at least, replace the CTAB molecules that form a capping layer at the surface. This can 

mobilise the particles and permit their reorganisation at the substrate surface. It is thought that the 

principle driving force for this reorganisation is the formation of energetically stable bilayers of the 

long alkyl chains of the thiol molecules. Given that there will be a significantly higher number of 

interactions between these thiol chains were the nanorods to align side to side rather than end to 

end it was thought that this would be the more favourable and therefore more likely configuration 

upon reorganisation. This was, in fact, seen to be the case – as shown in the SEM images in Figure 

43. Figure 43a shows a gold nanorod array after the first deposition. All of the nanorods are well 

spaced out and no dimers or higher order structures can be seen. A number of nanosphere 

impurities, which originated from the growth process are also present. After exposure to the thiol 

solution the gold nanorods are seen to reorganise and form some dimers in the transverse 

configuration (Figure 43b). This deposition and reorganisation process can be repeated several times 
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and results in the formation of increasingly higher proportions of nanorod aggregates ordered in a 

transverse fashion. Figure 43c is a typical image of the structures formed after a second 

reorganisation step. While some individual nanorods can still be detected the majority of particles 

have reorganised into larger structures composed of two, three or more particles. This is even more 

evident in Figure 43d which shows the typical structures that could be expected after a fourth 

deposition step. Here, virtually no solitary nanorods can be seen and the organisation of the 

particles is overwhelmingly seen to be in the transverse configuration. This strongly supports the 

hypothesis that the driving force for the formation of the aggregates is the establishment of bilayers 

of the alkyl chains of the thiol molecules. 

 

Figure 43 – SEM images of gold nanorods deposited on functionalised substrates depicting various stages of 

the deposition and reorganisation process as described in the main body of the text. Shown are typical 

morphologies observed after a) the first deposition, b) the first reorganisation, c) the second reorganisation 

and d) the fourth deposition. An increase in particle density as well as the lateral organisation of the nanorods 

can clearly be observed. Gold nanorods were deposited from solutions with an NaCl concentration of 200 mM. 
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It is also possible to follow this process by UV-vis spectroscopy, as can be seen in Figure 44. 

Successive deposition (blue traces) and reorganisation (red traces) steps are shown, steadily 

progressing to higher extinction coefficients. The most important feature of these spectra is that 

upon each reorganisation step a significant blue shift of the LSPR is perceived. This is indicative of 

lateral coupling and is further evidence of the preferential organisation of the nanorods in a 

transverse fashion. 

 

Figure 44 – Extinction spectra of gold nanorod arrays that have undergone several reorganisation and 

additional deposition steps. Deposition steps are shown as blue traces, progressing from low extinction 

coefficients to higher extinction coefficients while reorganisation steps are shown as red traces, again 

progressing from low coefficients to higher extinction coefficients. 

Two negative aspects of this work are very clearly observable from the SEM images in Figure 43. 

Firstly, the nanosphere impurities form an increasingly large proportion of the particles at the 

substrate surface as successive deposition steps are carried out. These will both affect the optical 

properties of the samples and could, additionally, hamper the formation of ordered nanorod 

domains. It would, therefore, be desirable to repeat this work without these nanosphere impurities. 

Another notable negative point is the fact that while this process is clearly capable of reorganising 

nanorods into transverse configurations these are limited to relatively small domains. Each 

organised structure is independent of the next and there is no overall alignment of the nanorods. In 

such a situation the advantages introduced through the use of anisotropic particles are largely 

cancelled out unless only these small domains are taken into account. This is particularly 

disadvantageous when it is considered that one of the major benefits of the bottom-up techniques 

used is the inexpensive fabrication of large scale samples. As such, if this work is to be further 

developed it would be of high interest to find a means to not only organise the nanorods 
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preferentially in a transverse manner but also in terms of their global alignment. This could be 

carried out, for example, by combining these deposition techniques with the substrate patterning 

techniques introduced in Section 4.1.2. By confining the nanorods to certain areas which have a 

width shorter than the nanorod length these rods would, by necessity, adsorb in the direction of the 

functionalised strip. Another possibility for the alignment of the nanorods would be the application 

of a strong magnetic field during the deposition process. This technique has been shown as being 

capable of inducing the lateral organisation of nanorods and polarised optical measurements 

suggest that this can also impart an overall alignment to the sample.188 Although the process is not 

completely understood it is presumed that the induction of the magnetic dipoles present in these 

transverse arrangements of the particles is the driving force.188 

4.2. Core-shell nanoclusters 

4.2.1. Introduction 

As outlined in Section 1.3, it is not only planar organisations of metallic nanoparticles which are of 

interest to the metamaterials community. Spherical arrangements, otherwise known as core-shell 

nanoclusters, have also stimulated a great deal of discussion in the literature, both of a theoretical27, 

and experimental nature. Such materials have garnered intense interest as they have highly tunable 

optical properties and it has been proposed that they will enable advancements towards materials 

with double negative properties at optical frequencies.41 While structures showing similar properties 

can be fabricated by top-down techniques,40, 189 the disadvantages which this entails, not least of 

which are the difficulties involved in creating bulk materials and assigning effective material 

parameters, indicate that bottom-up techniques should be considered as a means more likely to 

allow progression in the field. 

To fully understand the electromagnetic properties that make core-shell nanoclusters of such great 

interest to metamaterials research it is perhaps beneficial to first consider a simplified version of the 

structure. It has been shown in simulations that several metallic nanoparticles, organised into the 

form of a ring, could exhibit a resonant magnetic dipole in the visible region of the electromagnetic 

spectrum.43 This magnetic response is an important aspect as far as many further applications are 

concerned.190 The same nanoparticles that provide this magnetic response can also exhibit a 

resonant electric dipole and when these two properties are combined a potential path towards left-

handed materials in the optical domain could be created.43 In the subwavelength ring of 

nanoparticles the plasmon resonance of each nanoparticle induces a displacement current around 

the loop.43 This is in contrast to SRRs where it is the conventional conduction current that produces 
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the magnetic dipole moment. It was also shown in this theoretical study that, again unlike the SRRs 

which are used more commonly in the microwave regime, the size of the ring is not the most 

important factor in determining the frequency of the induced dipole moment but rather the LSPR 

frequency of the constituent nanoparticles. Core-shell nanoclusters essentially function on the same 

principal as the rings of metallic nanoparticles discussed above – the prime difference being that the 

principal is expanded into a third dimension. When the particles are organised around a spherical 

core many potential rings in which propagating currents exist can generate a magnetic dipole 

moment can be envisaged – in this case the displacement current circulates in a plane perpendicular 

to the polarisation of the incident magnetic field.102 In addition, developing the concept of this 

planar organisation of metallic nanoparticles into the core-shell nanocluster is sufficient for the 

fabrication to be considered conceivable using current bottom-up nanochemistry techniques. 

Core-shell nanoclusters possess a variety of advantages over other structures that have been 

proposed as potential metamaterials. The majority of the other structures introduced in Figure 1, 

such as the fishnets and SRRs, exhibit a high degree of geometrical anisotropy. The strongest 

magnetic response in these structures exists in one specific direction of propagating light while in 

certain other directions no magnetic response can be observed at all. Core-shell nanoclusters on the 

other hand, due to their geometry and small size relative to the wavelengths of light of interest, are 

completely isotropic and any magnetic response observed should exist in all directions. In theoretical 

studies of these structures it has been reported that in order to obtain the strongest 

electromagnetic response, and achieve negative permeabilities, the number of nanoparticles per 

structure should be as high as possible while still ensuring no contact between them.41 This number 

can be calculated, assuming knowledge of certain geometrical material parameters, according to 

Equation 9:41 

                              [9] 

where Ntot = number of metallic nanoparticles on core sphere 

 a = radius of sphere 

 ap  = radius of metallic nanoparticle 

 d = edge to edge distance between nanoparticles on core sphere 
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In order to control the filling fraction of nanoparticles at the surface of the core spheres it is possible 

to apply the same manipulations introduced in Section 4.1.3. In principal, as the fabrication process 

employed is essentially analogous to that used for the planar arrays, simply replacing the large 

planar substrates with smaller scale spherical ones, these procedures should function equally well 

when applied to these very similar structures. 

Depending on the orientation of the electric field of linearly polarised incident light with respect to 

the polarisation of the nanoparticles either the electric dipole or the magnetic dipole of the 

nanocluster will dominate. These processes occur at different frequencies. While it is the magnetic 

resonance that is primarily of interest, both originate from the plasmonic resonance of an individual 

nanoparticle. As described above, the many rings of nanoparticles, which form around the 

circumference of the sphere, facilitate the formation of a magnetic dipole moment - much like the 

effect observed for the single ring in Reference 43. The wavelength of this magnetic resonance 

should be strongly red-shifted compared to the frequency of the plasmon resonance of a single 

metallic nanoparticle. This is as a result of the strong coupling between the ensemble of 

nanoparticles at the surface of the dielectric sphere. That such a strong red-shift is observed 

originates from the multiple possibilities of rings of nanoparticles, in each direction, around the core 

sphere.41 Other factors, such as the presence of the dielectric core, can also contribute to the overall 

magnitude of this red-shift. 

There are several methods available to form spherical assemblies of metallic nanoparticles, each 

with their own advantages and disadvantages. For example, microfluidic techniques can be 

employed to prepare ‘nanoislands’, of metals, which can be grown to different sizes, on colloidal 

silica particles.72 This technique allows precise control over reagent mixing and dispensing as well as 

ensuring reproducibility and straightforward upscaling. However, the dominant presence of 

microchannel walls which can lead to rapid and irreversible particle deposition can cause the quality 

of the products to degrade over time.72  

An alternative method, exploiting electrostatic interactions, involves the self-assembly of silica-

encapsulated gold nanoparticles on polystyrene core spheres coated in 

poly(diallyldimethylammonium chloride).191 As with the work introduced in Section 4.1.4, this 

assembly process can be conducted in a layer-by-layer manner – allowing potentially very high 

packing densities. In addition, if the samples are calcined the silica shells can form a solid network 

while at the same time the polystyrene cores thermally degrade -  permitting hollow spherical 

metallic nanoparticle structures to be formed and the optical properties to be further tuned.191 
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Rather than core-shell clusters, where the metallic inclusions encase a dielectric sphere, other 

approaches result in complete spherical assemblies of nanoparticles. However these structures have 

been shown to interact with electromagnetic radiation in a very similar manner.42 One preparative 

route entails the confinement of metallic nanoparticles to oil droplets in an oil in water emulsion.102 

It can, however, be challenging to control the size of such assemblies. A similar approach, although 

achieved entirely in aqueous solution, entails the use of a flocculation process involving PEs and 

multivalent ions to form ‘nano-bags’ and ‘micro-pouches’ of nanoparticle assemblies.192 Magnetic 

resonances were also measured in smaller nanoparticle assemblies prepared by Fan et al.193  Here 

the gold nanoparticles were protected by thiolated polymers which define the separation between 

nanoparticles in the clusters and in turn establishes the magnitude of interparticle electromagnetic 

coupling. The optical properties of the clusters, prepared by simply drying droplets of the particles, 

were then measured by dark-field spectroscopy.193 

As shown above, several bottom-up methods are available to fabricate spherical assemblies of 

metallic nanoparticles. Given all of the advantages related to electrostatic self-assembly outlined in 

previous sections, perhaps the most facile and flexible method is an extension of that used to 

construct planar arrays of gold nanoparticles.194, 195 By simply replacing the large-scale planar 

substrates with smaller scale spherical ones it is possible to create solutions of such core-shell 

nanoclusters. It is also possible to apply the principles described in these syntheses to other systems, 

for example those including semiconductor and magnetic nanoparticles thus adding to the flexibility 

offered by this method. As with the research shown in the previous section, the only prerequisite to 

self-assembly is that the species in question exhibit a charge. 

In order to induce this electrostatic attraction between substrate and particle it is first necessary, as 

before, to functionalise the surface of the substrate. It is possible to carry this out using the same 

reaction as was described in previous sections for planar glass or silicon substrates, albeit under 

slightly different conditions.196 This colloidal nanochemistry approach requires additional purification 

steps, such as centrifugation, however large parallels remain between the two methods.  

4.2.2. Optical properties6 

Figure 45 shows an SEM image of a core-shell nanocluster that has been fabricated by such a 

method.196 It can be seen that the dielectric sphere is decorated with a large number of isolated, 

non-touching gold nanoparticles. As described above, the organisation of the gold nanoparticles 

                                                           
6
 Much of the work presented in this section appeared in: Mühlig, S.; Cunningham, A.; Scheeler, S.; Pacholski, 

C; Bürgi, T; Rockstuhl, C.; Lederer, F: Self-Assembled Plasmonic Core–Shell Clusters with an Isotropic Magnetic 
Dipole Response in the Visible Range. ACS Nano 2011, 5 (8), 6586-6592. 
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results in large changes in the optical properties when compared to isolated units which are 

uncoupled to others. 

 

Figure 45 – SEM image of an isolated SiO2 microsphere (~270 nm diameter) decorated with an array of gold 

nanoparticles (~20 nm diameter), also known as a core-shell nanocluster. 

The changes in optical properties are shown in Figure 46 which highlights both experimental (a) and 

simulated (b) results.196 Simulations were carried out by Stefan Mühlig and Carsten Rockstuhl of the 

Friedrich-Schiller-Universität Jena. All traces in Figure 46 are normalised to their respective maxima 

in the region under study. 
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Figure 46 - a) Measured extinction spectrum of fabricated core-shell clusters in solution (red trace). For 

comparison, the extinction spectrum of a solution of gold nanospheres is shown (blue trace). b) Simulated 

extinction spectra of core-shell clusters in solution (red dashed trace) and a single gold nanosphere (blue 

dashed trace). 

Immediately apparent in the experimental spectra shown in Figure 46a is the large red-shift, from 

around 520 nm to around 670 nm, of the LSPR that is induced upon the organisation of the gold 

nanoparticles (solid blue trace) into a spherical geometry (solid red trace). This is in excellent 

agreement with the simulated spectra shown in Figure 46b where the extent of the red-shift from a 

single gold nanoparticle (blue dashed trace) to a spherical organisation (red dashed trace) is 

reproduced almost exactly. Any slight deviations could be explained by the fact that in the 

simulations only a single core-shell nanocluster is considered, compared to the situation in the case 

of the experimental work where a large ensemble in solution are measured spectroscopically. Here, 

there will be a certain degree of polydispersity in relation to both the dielectric core and metallic 

shell spheres. Additionally the organisation of the metallic nanoparticles, while to a large extent 

comparable, is not identical on each of the individual structures. These slight differences in 

geometrical parameters can clearly not be taken into account in a simulation of a solitary core-shell 

nanocluster. Despite any discrepancy between the experimental and simulated spectra, with respect 

to the strongly red-shifted resonance, the agreement is convincing. However, one major difference 

between the two traces can be discerned. A peak in the experimental spectra at the same 

wavelength as the LSPR of an isolated particle is not reproduced in the simulations. This is caused by 

excess gold nanoparticles in solution which result from the fabrication process. In order to ensure 

the cores remain covered it is thought that an excess of ‘free’ gold nanoparticles must be present. 

This could be as a result of an equilibrium existing between the gold nanoparticles at the surface of 

the dielectric cores and those in solution. These particles are not considered in the simulations and 

account for this difference between the experimental and simulated data. 



Results and discussion 

109 
 

As explained in the introduction to this section, such structures exhibit a strong isotropic magnetic 

response.41 This magnetism can be explained by assuming that the shell of metallic nanospheres 

acts, in effect, as a medium with an extremely high permittivity at wavelengths slightly above the 

collective plasmonic resonance. The large permittivity in turn evokes Mie resonances. For the lowest 

order one, the electric displacement field rotates in a plane perpendicular to the polarisation of the 

incident magnetic field, meaning that this mode can be associated with a magnetic dipole 

contribution. That the core-shell nanoclusters exhibit artificial isotropic magnetism was confirmed 

through simulations, again carried out by Stefan Mühlig and Carsten Rockstuhl of the Friedrich-

Schiller-Universität Jena. These simulations, shown in Figure 47, decompose the extinction spectra 

into its respective multipole moments and examine the contribution of each to the total scattered 

field of the structures. These simulated spectra were normalised such that their sum is equal to the 

total scattering cross-section, thus allowing their relative contribution to be quantitatively analysed. 

Higher order multipoles, while present, do not appreciably affect the overall outcome and as such 

were not considered in Figure 47. While this quadrupole moment only weakly influences the 

scattering cross-section it does, however, result in increased absorption at slightly higher 

frequencies than the scattering cross-section peak. This explains the small difference between the 

peak position observed in Figure 46 and Figure 47. 
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Figure 47 – Simulated contributions of the relevant multipole moments to the scattering cross section of a 

core-shell nanocluster. Purple trace – total scattering cross section, red trace – magnetic dipole contribution, 

blue trace – electric dipole contribution and green trace – electric quadrupole contribution. 

It is clear from Figure 47 that the most significant contribution to the red-shifted peak of the total 

scattering cross-section (purple trace) comes from a resonant magnetic dipole moment (red trace) 

which dominates in the relevant spectral region. 

The fabrication of these structures is extremely flexible and a number of possibilities to fine tune the 

architecture, and therefore the optical properties, are available. For instance, a wide range of sizes 

of both the dielectric core and the surrounding gold nanoparticles can be accessed. Additionally, 

while the fabrication above relates to a coating of gold nanoparticles on a SiO2 core sphere different 

elements can be brought together in a similar manner. Structures using polymer, or metallic, core 

spheres coated with nanoparticles of a variety of different materials and functionalities can be 

envisaged. The only prerequisite for their fabrication is that an attraction, of either a physical or 

chemical nature, exists between the two. In this work the widespread applicability of electrostatic 

interactions has been highlighted. 

4.2.3. Large scale arrays  

This electrostatic approach can also be used to produce large-scale arrays of core-shell nanoclusters 

deposited on planar substrates. Such a step is required if systems like this are to be incorporated 

into functional optical devices. In addition, pre-depositing functionalised SiO2 cores on a planar 

substrate prior to their coating with metallic nanoparticles could prove to be a promising route to 

reducing or eliminating the excess particles in solution which existed in the previous fabrication 
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approach. Shown in Figure 48a are the extinction spectra of an array of silica microspheres on a glass 

substrate before (blue trace) and after (red trace) the deposition of gold nanoparticles at their 

surfaces. The deposition of the spheres, which are charged positively after a functionalisation step, 

self-assemble at the glass substrate surface which has itself been coated in a negatively charged 

polymer. The arguments, given previously, for the exhibition of a strong isotropic magnetic response 

and for the large red-shift of the LSPR, when compared to that of an isolated particle, remain 

unchanged. However, the large step that has been taken, from structures that exist purely in 

colloidal form to the formation of large scale single layers show the versatility and applicability of the 

bottom-up techniques used. The two SEM images shown in Figure 48b give an impression of what is 

achievable. The larger image shows that arrays can be created on a suitably large scale while the 

image in the inset shows that, at least in small domains, a degree of order can be achieved. 

Additionally, it should also be possible to combine such methods with the layer by layer assembly 

outlined previously, allowing the construction of truly bulk optical materials. In this case, due to the 

large size of the core spheres bulk materials could be achieved after a relatively small number (2 – 3) 

of layers of the core-shell nanoclusters. 

 

Figure 48 - a) Extinction spectra showing an array of SiO2 microspheres deposited on a charged glass substrate 

both pre- (blue trace) and post- (red trace) functionalisation with gold nanoparticles. b) SEM micrographs of an 

array of core-shell nanoclusters deposited on a charged silicon substrate. 

4.2.4. Cloaking device 

Cloaking, along with negative refractive indices and perfect lensing, is often used as one of the 

achievable goals that is used to promote metamaterials research. Rather than merely camouflaging 

– a ‘technology’ that certain plants and animals have evolved over thousands of years in order to 

hide them from predators or, alternatively, their prey, metamaterials could be used to actually  

make objects invisible. To this end, several approaches have been adopted. One of the more lauded 
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theoretical means is known as transformation optics197 which involves the redirection of 

electromagnetic fields. It essentially results in the ‘bending’ of rays of light around an object in such 

a manner that on the far side of the object the rays will appear as if no object is present. The method 

can be simply summed up by two steps; the deformation of space around an object by coordinate 

transformation and then finding a medium with the correct properties and structure to mimic this 

curved space. The second step, although considerably more challenging, remains one possible 

means of achieving cloaking. Such theory has been applied to cloak objects in the microwave 

regime.198 However, it must be stated that while the object being cloaked would appear invisible to 

an observer on the outside, no light can either pass in or out of the object and an observer on the 

inside would perceive everything as black. Other structures, known as carpet cloaks, have been both 

theoretically proposed199 and experimentally demonstrated200 at optical frequencies. The prime 

disadvantage of this approach is that it is limited to cloaking objects on flat substrates.  

An alternative route to cloaking involves the use of plasmonic materials, such as nanoparticles, to 

render small dielectric objects nearly invisible.201 As with many metamaterials applications, 

experimental studies of these effects have been conducted at longer wavelengths,202 however the 

real challenges lie in adapting the technology for optical frequencies. One approach designed to 

achieve this involves coating small dielectric spheres in a shell of silver nanoparticles. Such a 

structure has been shown by simulations to drastically reduce (by around 70%) the scattering 

response of the core spheres. 27 The mechanism involves tuning the scattering response of the shell 

to be 180° out of phase with that of the core, effectively cancelling out any scattering from the core 

itself. The simulations conducted showed that the structure is relatively robust to changes in 

geometry – such changes resulting primarily in slight shifts in the frequency of operation.27 By 

treating the shell as an effective medium it is possible to select at which wavelength the cloaking 

device operates simply by tuning the relative sizes of the core and shell and / or the density of the 

nanoparticle array. Another advantage of this approach, evident from the discussions in Section 

4.2.2, is that such structures should be readily accessible using bottom-up fabrication methods. 

There are, however, some challenges common to all cloaking applications. These chiefly include 

difficulties faced when trying to prepare broadband and low loss cloaks. 

As can be seen from the SEM image in Figure 49 such structures were successfully fabricated. This 

was significantly more challenging than the structures discussed in Section 4.2.2, primarily due to 

the requirement that silver nanoparticles be used rather than gold. While silver nanoparticles have 

superior optical properties fabricating monodisperse solutions is not a trivial process, as can be seen 
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in Figure 31. In addition due to their relative reactivity, their handling is more complicated than in 

the case of the gold particles. 

 

Figure 49 – SEM image showing an array of core-shell nanoclusters composed of SiO2 cores and a shell of silver 

nanoparticles. 

It can be seen from this image that the nanoparticles form a complete array at the surface of each of 

the silica core spheres. They are reasonably equally spaced and do not form aggregates or leave any 

areas bare. While, due to the slightly different fabrication technique, the silver nanoparticles used in 

this work are far more monodisperse than those used in Section 4.1.5 the silica core spheres are 

significantly more polydisperse than the core-shell work presented in Section 4.2.2. To ensure any 

potential cloaking effect observed occurred at optical frequencies, and to accurately construct the 

structure proposed in Reference 27, the core-shell clusters must remain under a certain size. While 

SiO2 microspheres can be synthesised with very high levels of monodispersity this becomes 

increasingly difficult as the size regime is reduced and explains the range of sizes seen in the 

structures in Figure 49. While the majority of the structures seen in Figure 49 lay well within a 

narrower range structures from 115 to 165 nm in diameter can be discerned. In addition, an array of 

silver nanoparticles can be observed at the surface of the substrate. Despite repeated attempts 

using a number of strategies this base array of nanoparticles was found to be unavoidable. It was 

thought that these particles could potentially interfere with any measurements conducted to verify 

the existence of a cloaking effect. However additional simulations, supplementary to those seen in 
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Reference 27, were carried out by Stefan Mühlig and Carsten Rockstuhl of the Friedrich-Schiller-

Universität Jena and were able to confirm that the effect was robust against both the polydispersity 

of the structures and the presence of the background silver nanoparticle array. 

As the structure prepared is designed to cloak exclusively the scattering response of the central 

dielectric core, optical measurements were conducted on samples using a setup including an 

integrating sphere used to capture diffuse light. This allows each component of the overall extinction 

(total transmission, diffuse transmission, total reflectance and diffuse reflectance) to be measured 

and in turn means that both the scattering and the absorption of the samples can be determined. A 

sketch of the experimental setup used for measurements is shown in Figure 50. 

 

Figure 50 – Experimental setup showing the position of the sample relative to the integrating sphere required 

to measure each of the properties defined. Figure supplied by José Dintinger of the École Polytechnique 

Fédérale de Lausanne. 

Total scattering (including specular reflection) is calculated through the addition of the diffuse 

transmission and the total reflectance. The direct transmission is calculated through the subtraction 

of the diffuse transmission from the total transmission. As it is impossible to tell from the SEM image 

(Figure 49) whether or not the reverse side of the silica cores are coated with silver nanoparticles or 

not it was chosen to orientate the samples as is shown in Figure 50, with the incident light impinging 

on the uncovered side of the glass plate. In the case where only the upper hemisphere is covered 

with nanoparticles simulations have shown that the cloaking effect should still be in place if the 

propagation of the incident light is in this direction relative to the sample. 
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As can be seen in Figure 51a a dip in the scattering of the core-shell structure (blue trace) when 

compared to an array of the undecorated core spheres (red trace) was indeed observed. However, 

as is shown in Figure 51b, the core-shell cluster (blue trace) also displays an absorption peak which is 

not present in the sample prior to silver nanoparticle deposition (red trace). This peak occurs at the 

same wavelength as the scattering dip whereas in the simulations these two features were well 

separated. It is therefore impossible to unambiguously relate any measured reduction in scattering 

to the cloaking effect that had been proposed. Any effect observed is significantly less than that 

predicted by the simulations. Initially it was thought that the nanoparticles used to create the shell 

were too small and were therefore not efficient scatterers of light. However the experiments were 

repeated with larger silver nanoparticles and similar results were found. Another possible reason for 

the discrepancy between the measured and simulated spectra is that the substrate, a standard 

microscope slide, is not considered in the simulations and could possibly result in such deviations. 

This theory is currently being tested by more rigorous simulations carried out by Vassilis Yannopapas 

of the University of Patras. 

 

Figure 51 – a) Total scattering (including specular reflection) for an array of silica spheres (red trace) and an 

array of core-shell nanoclusters constructed with silver nanoparticles (blue trace). b) Direct transmission of an 

array of silica spheres (red trace) and an array of core-shell nanoclusters constructed with silver nanoparticles 

(blue trace). 



 

5. Conclusions 

As outlined in the Introduction, the stated aim of the Nanogold project was to investigate methods 

that permit the fabrication and application of bulk electromagnetic metamaterials at optical 

frequencies using bottom-up techniques.  

Despite the concept of metamaterials research being relatively new, it has rapidly grown in 

importance and has attracted interest from a variety of differing fields. However, prior to the start of 

the investigation, which began at the same time as three other similar projects also funded primarily 

by the 7th Framework Programme for Research, very little literature existed specifically detailing 

attempts to fabricate metamaterials using bottom-up approaches. This can be considered as being 

simultaneously advantageous and disadvantageous since whilst progress can be more difficult when 

starting from scratch a wider variety of paths can be taken in order to achieve the goals established 

at the outset.  Throughout the duration of the project the domain of bottom-up metamaterials 

rapidly grew. Presentations at conferences and workshops, outlining the latest advances made, 

became increasingly prevalent and fruitful discussions could be had on a more regular basis with 

fellow researchers working towards similar objectives. Growth in the field can be expected to 

continue as it firmly establishes itself under the umbrella of metamaterials research in general. The 

publishing of studies will also serve a variety of purposes. In addition to disseminating current 

research to a wider audience it will also encourage others to further develop concepts, identify new 

avenues for research and generally stimulate interest in the field. 

The research undertaken as part of this thesis has contributed to the advancement of knowledge in 

the field in a variety of manners. An in-depth study of the deposition of metallic nanoparticles on 

planar substrates such as glass and silicon was conducted. Substrates were suitably functionalised 

and homogeneous arrays of metallic nanoparticles, over several square centimetres, were fabricated 

by exploiting electrostatic interactions between them. It was shown that both the density and the 

organisation of these particles could be controlled through a variety of techniques. By replacing the 

capping agent at the surface of the nanoparticles, for example, it was shown that high density arrays 

of gold particles with small ordered domains could be produced. The optical characteristics of these 

assemblies were studied throughout and were shown to exhibit a significant degree of tunability, 

allowing particular geometrical arrangements coupled with specific optical properties to be 

fabricated. The deposition of metallic nanoparticles was not limited to glass or silicon substrates 

with adapted techniques being used to create similar structures on PDMS and ITO-coated glass. This 

gave access to a wider variety of potential studies allowing the effects of substrate stretching or the 
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application of potentials to nanoparticle coated substrates to be studied. It was also shown that 

arrays of nanoparticles could be produced using stand alone polymer films as substrates. These 

structures, which have a thickness in the sub-micron range, can also be prepared over relatively 

large areas. In a world where several technologies are driven by constant pressure to reduce device 

weight, thickness and cost, the development of these techniques has obvious advantages. 

This initial work was also used as the base upon which to build up structures into the third 

dimension. This was achieved largely through the application of the layer by layer assembly of 

charged polymer layers, or PEs. This process allows the cyclic deposition of oppositely charged 

polymer layers, each with a thickness on the order of 2 nm. As with the deposition of the 

nanoparticles described above, the build-up of the polymer layers takes advantage of electrostatic 

attractions. It is this synergy between the two methods that enables a powerful means of creating 

nanoparticle assemblies with a great degree of control over a number of geometrical parameters to 

be realised. This in turn affords the same degree of control over the optical properties of the 

structures. Distinct nanoparticle arrays, separated by tunable distances that are dependent solely on 

the number of polymer layers employed, can be assembled. Regulation of the distance between two 

distinct nanoparticle arrays is naturally accompanied with variations in the electromagnetic coupling 

between individual particle pairings within each array resulting in shifts of the plasmon resonance. It 

was shown that, depending on the size of the nanoparticles and on their filling fraction, the shifts in 

optical properties observed could be attributed uniquely to interactions between particles within 

individual arrays and that no appreciable coupling between particles within a single array contribute. 

In line with well established theory, a red-shift of the LSPR was observed as two metallic 

nanoparticle arrays were brought closer together. This effect became more pronounced at both 

shorter separations and when larger nanoparticles were used. This work was supported by rigorous 

simulations conducted by colleagues within the framework of the Nanogold project. The research 

outlined here is, of course, not limited to studies pertaining to two distinct gold nanoparticle arrays. 

One of the challenges facing the metamaterials community at large is the fabrication of three 

dimensional materials. The technique described above, assembling nanoparticle / polymer 

composite structures, lends itself particularly well to this goal. No limits, other than practical ones, 

inhibit the construction of multiple stratified nanoparticle arrays and as such studies of these 

multilayered structures were also conducted.  

Similar structures were also investigated with a view to probing the nature of asymmetric coupling 

between metallic nanoparticles. Here, planar arrays of both silver and gold nanoparticles were again 

separated by discrete numbers of PE layers and an in-depth study of symmetry breaking in complex 
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nanoparticle structures was conducted. It was found that all four hybridised eigenmodes, according 

to the plasmon hybridisation scheme, were observable and that they could be selectively excited, 

altering their relative magnitudes, simply by varying the angle of incidence of the probing beam. 

The application of these structures as potential SERS substrates was also investigated. While 

relatively modest enhancements were observed the flexibility of geometrical and compositional 

parameters allows a wide range of theoretical aspects to be probed. It was found, for the analyte 

and excitation wavelength used,  that higher degrees of separation between two gold nanoparticle 

arrays leads to lower enhancements of Raman signals. 

Analogous techniques to those described above were used to prepare spherical assemblies of 

metallic nanoparticles. The large scale planar substrates were replaced with micro-scale spherical 

ones to allow the nanoparticles to be organised in this manner. Such structures are of intense 

interest to the metamaterials community, largely due to the isotropic magnetic response that they 

exhibit in the visible region of the electromagnetic spectrum. This, it is hoped, could lead to greater 

control over the permeability of matter and open up a route towards negative refractive index 

materials at optical frequencies. Such structures were prepared and their optical properties analysed 

both experimentally and, by colleagues, theoretically. The existence of an artificial isotropic 

magnetic dipole moment in the visible spectral domain was thus discerned. 

Similar structures were proposed as potential cloaking devices at the frequencies where the 

scattering response of the nanoparticle shell is 180° out of phase with that of the core. Several 

factors, including reduced size, the requisite use of silver nanoparticles rather than gold, and the 

need to prepare samples on substrates suitable for subsequent analyses, made the fabrication of 

these structures more challenging. However these challenges were largely overcome and 

investigations, the results of which are at this time inconclusive, were carried out to probe any 

potential cloaking properties present. 

A wide variety of clearly identifiable advancements summarised above and laid out in more detail in 

the main body of the thesis, have been made throughout the course of this work. As a result of the 

work carried out many questions have been answered and it is hoped that a greater understanding 

of a small section of an ever expanding field has been achieved. It is also hoped that some of the 

work contained in this thesis may form a base upon which others can build to one day realise true 

bottom-up metamaterials that have practical applications and can benefit everyday lives. 



 

6.  Outlook 

While much was achieved during the course of this research it became clear that similar techniques 

could be applied to such a wide variety of systems and that, due to time constraints, many potential 

avenues would have to remain unexplored. The systems developed in this thesis readily lend 

themselves to characterisation by standard spectroscopic techniques and an extensive range of 

prospective applications and potential areas for further development can be foreseen.  

For example, one possible application of the stratified metallic nanoparticle arrays would be the 

exploitation of the hotspots that exist between them to investigate enhanced fluorescence. By 

incorporating fluorescent units into the dielectric spacer, either as part of the polymers themselves 

or as separate charged entities, an enhancement of the fluorescence can be measured.203, 204 The 

magnitude of this enhancement is dependent on a number of factors such as the size and 

composition of the nanoparticles and the separation distance between them and the chromophores. 

The structures developed in this thesis provide the perfect platform from which to perform an in-

depth study of all of these factors. The expansion of these concepts into non planar systems, in 

much the same manner to that seen with the core-shell nanoclusters, could also be envisaged. 

Fluorescent spheres of a range of sizes and absorption / emission wavelengths are commercially 

available. Decorating these in a shell of metallic nanoparticles could result in the enhancement of 

the fluorescence as well as the induction of an isotropic magnetic response at optical frequencies 

and potential cloaking properties. 

Other interesting applications could also arise from a theoretical study investigating chains of 

metallic nanospheres. If the particles gradually decrease in size and separation it has been proposed 

that such structures could act as efficient nanolenses.205 When the plasmon resonance of the 

particles in the chain is excited this theoretical study claims that due to the multiplicative, cascade 

effect of the geometry a ‘hottest spot’ will develop in the gap between the two smallest particles 

with local fields enhanced by orders of magnitude.205 Similar structures could be prepared in an 

extension of the work conducted on stratified arrays of metallic nanoparticles. It would, of course, 

be impossible to form precise chains of particles. However, larger scale analogues could be 

fabricated using the techniques examined and developed in this thesis. A wide range of gold 

nanosphere diameters are accessible by the Turkevich method and by depositing differing numbers 

of PE layers between the nanoparticle arrays it would be possible to gradually diminish the distance 

between them. The theory could then be tested, for example, by incorporating SERS active 
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compounds or fluorescing molecules in each of the gaps between successive arrays and measuring 

the extent to which the relevant signals are enhanced. 

An additional effect that could possibly be measured from the layered arrays of metallic 

nanoparticles is Bragg reflection. In principle, the periodic variation of refractive indices, as is seen in 

these samples, offers the prototypical structure of a Bragg reflector.206 These structures are widely 

used in waveguides and the ease with which the distance between subsequent nanoparticle arrays 

can be controlled allows for either constructive or destructive interference to be achieved. While 

waveguide technology is relatively mature, plasmonic structures that can be tuned to determine 

both the extent to which incident light is reflected and the range of wavelengths that are efficiently 

reflected, also known as the photonic stopband, could be employed in niche applications. 

Lasing effects, proposed theoretically but yet to be fully explored experimentally, would be another 

potentially exciting application of multiple layered arrays of metallic nanoparticles separated by 

dielectric slabs.207 The dielectric cavities were shown to act as resonant cavities where lasing action, 

dependent on the thickness of the cavities, could occur if there is an introduction of gain.207 That the 

separation of the nanoparticle arrays can be tuned with almost nanometre precision using differing 

numbers of PE layers brings such applications one step closer to realisation. 

Recent research describing the plasmoelectronic effect – the influence of macroscopic flows of 

charge through plasmonic excitation – has opened up an exciting new field which could be, for 

example, used in energy and sensing applications.78 While novel prototype devices are already in 

existence the application of the particle growth, deposition and organisation techniques outlined in 

this thesis could well provide researchers with the means to fabricate new systems with 

advantageous properties. 

As was described in Section 2.2.3 the supply or removal of electrons from metallic nanoparticles will 

result in changing optical properties. This could be achieved, for example, through the application of 

potentials to arrays of nanoparticles deposited on electrically conducting substrates or alternatively 

by chemical means. Coating arrays of metallic nanoparticles, such as those discussed at length in this 

thesis, with electroactive compounds like poly(ferrocenyl silane)208 would allow the simultaneous 

measurement of both the optical properties of the gold nanoparticles and the redox properties of 

the system in general. Such structures could prove to have extremely useful sensing applications. 

Again, these concepts are not limited to planar structures. Poly(ferrocenyl silane) microspheres can 

be prepared and through chemical oxidation processes can be rendered positively charged.209 

Combination with negatively charged metallic nanoparticles should lead to core-shell clusters with 
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redox properties. The addition of this functionality to the pre-existing properties of the core-shell 

clusters discussed at length in Section 4.2 and the ability to organise these spheres using external 

magnetic fields make such structures of potential interest for a variety of applications. 

The particular properties of metallic nanorods were investigated to some extent in this thesis, 

however many potential avenues remain unexplored. One such avenue would be the selective 

excitation of different plasmonic bands, using sources of different wavelengths, and of particles with 

particular orientations, using polarised light, could lead to the performance of chemical reactions at 

the surface of only specific nanoparticles. This, given that similar techniques to those seen in Section 

4.1.4 can readily be used to fabricate layers of nanorods, means that such structures could lead to 

high density systems for information storage.210 

It can be seen, by the volume of potential concepts and applications related to similar systems to 

those described in this thesis that, by no means, has this area of research been fully exhausted. A 

variety of largely disparate hypothetical applications have been presented in this section and while 

some of these are not necessarily connected to the field of metamaterials, this only serves to show 

the versatility of the techniques developed and the wide-ranging applicability of plasmonic 

nanoparticles organised in specific forms. It is clear that only the surface of what is potentially 

achievable using these materials has been scratched. 
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