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Abstract

In this paper we are interested in how semantic segmen-

tation can help object detection. Towards this goal, we

propose a novel deformable part-based model which ex-

ploits region-based segmentation algorithms that compute

candidate object regions by bottom-up clustering followed

by ranking of those regions. Our approach allows every

detection hypothesis to select a segment (including void),

and scores each box in the image using both the traditional

HOG filters as well as a set of novel segmentation features.

Thus our model “blends” between the detector and segmen-

tation models. Since our features can be computed very effi-

ciently given the segments, we maintain the same complex-

ity as the original DPM [14]. We demonstrate the effective-

ness of our approach in PASCAL VOC 2010, and show that

when employing only a root filter our approach outperforms

Dalal & Triggs detector [12] on all classes, achieving 13%

higher average AP. When employing the parts, we outper-

form the original DPM [14] in 19 out of 20 classes, achiev-

ing an improvement of 8% AP. Furthermore, we outperform

the previous state-of-the-art on VOC’10 test by 4%.

1. Introduction

Over the past few years, we have witnessed a push to-

wards holistic approaches that try to solve multiple recog-

nition tasks jointly [29, 6, 20, 18, 33]. This is important

as information from multiple sources should facilitate scene

understanding as a whole. For example, knowing which ob-

jects are present in the scene should simplify segmentation

and detection tasks. Similarly, if we can detect where an ob-

ject is, segmentation should be easier as only figure-ground

segmentation is necessary. Existing approaches typically

take the output of a detector and refine the regions inside

the boxes to produce image segmentations [22, 5, 1, 14].

An alternative approach is to use the candidate detections

produced by state-of-the-art detectors as additional features

for segmentation. This simple approach has proven very

successful [6, 19] in standard benchmarks.

In contrast, in this paper we are interested in exploit-

ing semantic segmentation in order to improve object de-

tection. While bottom-up segmentation has been often be-

lieved to be inferior to top-down object detectors due to its

frequent over- and under- segmentation, recent approaches

[8, 1] have shown impressive results in difficult datasets

such as PASCAL VOC challenge. Here, we take advantage

of region-based segmentation approaches [7], which com-

pute a set of candidate object regions by bottom-up cluster-

ing, and produce a segmentation by ranking those regions

using class specific rankers. Our goal is to make use of these

candidate object segments to bias sliding window object

detectors to agree with these regions. Importantly, unlike

the aforementioned holistic approaches, we reason about all

possible object bounding boxes (not just candidates) to not

limit the expressiveness of our model.

Deformable part-based models (DPM) [14] and its vari-

ants [2, 35, 10], are arguably the leading technique to object

detection 1. However, so far, there has not been many at-

tempts to incorporate segmentation into DPMs. In this pa-

per we propose a novel deformable part-based model, which

exploits region-based segmentation by allowing every de-

tection hypothesis to select a segment (including void) from

a small pool of segment candidates. Towards this goal, we

derive simple features, which can capture the essential in-

formation encoded in the segments. Our detector scores

each box in the image using both the traditional HOG filters

as well as the set of novel segmentation features. Our model

“blends” between the detector and the segmentation models

by boosting object hypotheses on the segments. Further-

more, it can recover from segmentation mistakes by exploit-

ing a powerful appearance model. Importantly, as given

the segments we can compute our features very efficiently,

our approach has the same computational complexity as the

original DPM [14].

We demonstrate the effectiveness of our approach in

PASCAL VOC 2010, and show that when employing only a

root filter our approach outperforms Dalal & Triggs detec-

tor [12] by 13% AP, and when employing parts, we outper-

form the original DPM [14] by 8%. Furthermore, we out-

perform the previous state-of-the-art on VOC2010 by 4%.

1Poselets [4] can be shown to be very similar in spirit to DPMs
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We believe that these results will encourage new research

on bottom-up segmentation as well as hybrid segmentation-

detection approaches, as our paper clearly demonstrates the

importance of segmentation for object detection.

In the remainder of the paper, we first review related

work and then introduce our novel deformable part-based

model, which we call segDPM. We then show our experi-

mental evaluation and conclude with future work.

2. Related Work

Deformable part-based model [14] and its variants have

been proven to be very successful in difficult object detec-

tion benchmarks such as PASCAL VOC challenge. Several

approaches have tried to augment the level of supervision

in these models. Azizpour et al. [2] use part annotations

to help clustering different poses as well as to model oc-

clusions. Hierarchical versions of these models have also

been proposed [35], where each part is composed of a set

of sub-parts. The relative rigidity of DPMs has been alle-

viated in [10] by leveraging a dictionary of shape masks.

This allows a better treatment of variable object shape. De-

sai et al. [13] proposed a structure prediction approach to

perform non-maxima suppression in DPMs which exploits

pairwise relationships between multi-class candidates. The

tree structure of DPMs allows for fast inference but can suf-

fer from problems such as double counting observations.

To mitigate this, [27] consider lateral connections between

high resolution parts.

In the past few years, a wide variety of segmentation

algorithms that employ object detectors as top-down cues

have been proposed. This is typically done in the form of

unary features for an MRF [19], or as candidate bounding

boxes for holistic MRFs [33, 21]. Complex features based

on shape masks were exploited in [33] to parse the scene

holistically in terms of the objects present in the scene, their

spatial location as well as semantic segmentation. In [26],

heads of cats and dogs are detected with a DPM, and seg-

mentation is performed using a GrabCut-type method. By

combining top-down shape information from DPM parts

and bottom-up color and boundary cues, [32] tackle seg-

mentation and detection task simultaneously and provide

shape and depth ordering for the detected objects. Dai et al.

[11] exploit a DPM to find a rough location for the object

of interest and refine the detected bounding box according

to occlusion boundaries and color information. [25] find

silhouettes for objects by extending or refining DPM boxes

corresponding to a reliably detectable part of an object.

DPMs provide object-specific cues, which can be ex-

ploited to learn object segmentations [3]. In [24], masks

for detected objects are found by employing a group of seg-

ments corresponding to the foreground region. Other object

detectors have been used in the literature to help segmenting

object regions. For instance, while [4] finds segmentations

for people by aligning the masks obtained for each Poselet

[4], [23] integrates low level segmentation cues with Pose-

lets in a soft manner.

There are a few attempts to use segments/regions to im-

prove object detection. Gu et al. [17] apply hough trans-

form for a set of regions to cast votes on the location of

the object. More recently, [28] learn object shape model

from a set of contours and use the learned model of con-

tours for detection. In contrast, in this paper we proposed a

novel deformable-part based model, which allows each de-

tection hypothesis to select candidate segments. Simple fea-

tures express the fact that the detections should agree with

the segments. Importantly, these features can be computed

very efficiently, and thus our approach has the same com-

putational complexity as DPM [14].

3. Semantic Segmentation for Object Detection

We are interested in utilizing semantic segmentation to

help object detection. In particular, we take advantage

of region-based segmentation approaches, which compute

candidate object regions by bottom-up clustering, and rank

those regions to estimate a score for each class. Towards

this goal we frame detection as an inference problem, where

each detection hypothesis can select a segment from a pool

of candidates (those returned from the segmentation as well

as void). We derive simple features, which can be computed

very efficiently while capturing most information encoded

in the segments. In the remainder of the section, we first dis-

cuss our novel DPM formulation. We then define our new

segment-based features and discuss learning and inference

in our model.

3.1. A Segmentation-Aware DPM

Following [14], let p0 be a random variable encoding the

location and scale of a bounding box in an image pyramid

as well as the mixture component id. As shown in [14] a

mixture model is necessary in order to cope with variabil-

ity in appearance as well as the different aspect ratios of

the training examples. Let {pi}i=1,··· ,P be a set of parts

which encode bounding boxes at double the resolution of

the root. Denote with h the index over the set of candi-

date segments returned by the segmentation algorithm. We

frame the detection problem as inference in a Markov Ran-

dom Field (MRF), where each root filter hypothesis can se-

lect a segment from a pool of candidates. We thus write the

score of a configuration as

E(p, h) =

P
∑

i=0

wT
i · φ(x, pi) +

P
∑

i=1

wT
i,def · φ(x, p0, pi) +

+wT
segφ(x, h, p0) (1)

where h ∈ {0, 1, · · · , H(x)}, with H(x) the total number

of segments for this class in image x. Note that h = 0 im-
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Figure 1. The box-segment features: φseg−in and φseg−out, encourage the box to contain as many segment pixels as possible. This pair

of features alone could result in box hypotheses that “overshoot” the segment. The purpose of the second pair of features, φback−in and

φback−out, is the opposite: it tries to minimize the number of background pixels inside the box and maximize its number outside. In

synchrony these features would try to tightly place a box around the segment.

plies that no segment is selected. We will use S(h) to denote

the segment that h indexes. As in [14], we employ a HOG

pyramid to compute φ(x, p0), and use double resolution to

compute the part features φ(x, pi). The features φ(x, h, p0)
link segmentation and detection. In this paper, we define

features at the level of the root, but our formulation can be

easily extended to include features at the part level.

3.2. Segmentation Features

Given a set of candidate segments, we would like to en-

code features linking segmentation and detection while re-

maining computationally efficient. We would also like to be

robust to over- and under- object segmentations, as well as

false positive or missing segments. Towards this goal, we

derive simple features which encourage the selected seg-

ment to agree with the object detection hypothesis. Most

of our features employ integral images which makes them

extremely efficient, as this computation can be done in con-

stant time. We now describe the features in more details.

Segment-In: Given a segment S(h), our first feature

counts the percentage of pixels in S(h) that fall inside the

bounding box defined by p0. Thus

φseg−in(x, h, p0) =
1

|S(h)|

∑

p∈B(p0)

{p ∈ S(h)}

where |S(h)| is the size of the segment indexed by h, and

B(p0) is the set of pixels contained in the bounding box

defined by p0. This feature encourages the bounding box to

contain the segment.

Segment-Out: Our second feature counts the percentage

of segment pixels that are outside the bounding box,

φseg−out(x, h, p0) =
1

|S(h)|

∑

p/∈B(p0)

{p ∈ S(h)}

This feature discourages boxes that do not contain all seg-

ment pixels.

Background-In: We additionally compute a feature

counting the amount of background inside the bounding box

as follows

φback−in(x, h, p0) =
1

N − |S(h)|

∑

p∈B(p0)

{p /∈ S(h)}

with N the size of the image. This feature captures the

statistics of how often the segments leak outside the true

bounding box vs how often they are too small.

Background-Out: This feature counts the amount of

background outside the bounding box

φback−out(x, h, p0) =
1

N − |S(h)|

∑

p/∈B(p0)

{p /∈ S(h)}

It tries to discourage bounding boxes that are too big and do

not tightly fit the segments.

Overlap: This feature penalizes bounding boxes which

do not overlap well with the segment. In particular, it

computes the intersection over union between the candidate

bounding box defined by p0 and the tighter bounding box

around the segment S(h). It is defined as follows

φoverlap(x, h, p0) =
B(p0) ∩B(S(h))

B(p0) ∪B(S(h))
− λ

with B(S(h)) the tighter bounding box around S(h), B(p0)
the bounding box defined by p0, and λ a constant, which is

the intersection over union level that defines a true positive.

We employ in practice λ = 0.7.

Background bias: The value of all of the above features

is 0 when h = 0. We incorporate an additional feature to

learn the bias for the background segment (h = 0). This

puts the scores of the HOG filters and the segmentation po-

tentials into a common referential. We thus simply define
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φbias(x, h, p0) =

{

1 if h = 0

0 otherwise.

Fig. 1 depicts our features computed for a specific

bounding box p0 and segment S(h). Note that the first two

features, φseg−in and φseg−out, encourage the box to con-

tain as many segment pixels as possible. This pair of fea-

tures alone could result in box hypotheses that “overshoot”

the segment. The purpose of the second pair of features,

φback−in and φback−out, is the opposite: it tries to mini-

mize the number of background pixels inside the box and

maximize its number outside. In synchrony these features

would try to tightly place a box around the segment. The

overlap feature has a similar purpose, but helps us better

tune the model to the VOC IOU evaluation setting.

3.3. Efficient Computation

Given the segments, all of our proposed features can be

computed very efficiently. Note that the features have to

be computed for each segment h, but this is not a problem

as there are typically only a few segments per image. We

start our discussion with the first four features, which can

be computed in constant time using a single integral image

per segment. This is both computationally and memory ef-

ficient. Let φint(h) be the integral image for segment h,

which, at each point (u, v), counts the % of pixels that be-

long to this segment and are contained inside the subimage

defined by the domain [0, u] × [0, v]. This is illustrated in

Fig. 2. Given the integral image φint(h) for the h-segment,

we compute the features as follows

φseg−in(x, h, p0) = φbr(h, p0)− φtr(h, p0)

−φbl(h, p0) + φtl(h, p0)

φseg−out(x, h, p0) = |S(h)| − φseg−in(x, h, p0)

φback−in(x, h, p0) = |B(p0)| − φseg−in(x, h, p0)

φback−out(x, h, p0) = (N − |S(h)|)− φback−in(x, h, p0)

where as shown in Fig. 2, (φtl, φtr, φbl, φbr) indexes the

integral image of segment S(h) at the four corners, i.e., top-

left, top-right, bottom-left, bottom-right, of the bounding

box defined by p0.

The overlap feature between a hypothesis p0 and a seg-

ment S(h) can also be computed very efficiently. First, we

compute the intersection as:

B(p0) ∩B(S(h)) =

max
[

0,min(x0,right, xS(h),right)−max(x0,left, xS(h),left)
]

·

max
[

0,min(y0,bottom, yS(h),bottom)−max(y0,top, yS(h),top)
]

Note that the overlap will be non-zero only when each of the

terms is larger than 0. Given that the segment bounding box

B(S(h)) is fixed and the width and height of p0 at a partic-

ular level of the pyramid are fixed as well, we can quickly

φint(h)segment S(h) integral image

segment

rootfilter

s

filte

h

p0

φseg−in(x, h, p0) =

φbr(h, p0)− φtr(h, p0)

− φbl(h, p0) + φtl(h, p0)

φbr(h, p0)

φtr(h, p0)

φbl(h, p0) φtl(h, p0)(h ) φ(

Figure 2. Segment feature computation via integral image.

compute the bounds of where in the image the feature needs

to be computed (i.e., when the feature is different than 0).

The denominator, B(p0) ∪ B(S(h)), can then be simply

computed as the sum of the box areas minus the overlap.

3.4. Inference

Inference in our model can be done by solving the fol-

lowing optimization problem

max
p0

(

P
∑

i=0

wT
i · φ(x, pi) +

P
∑

i=1

max
pi

(wT
i,def · φ(x, p0, pi)) +

+max
h

(wT
seg · φ(x, h, p0))

)

Note that this can be done efficiently using dynamic pro-

gramming as the structure of the graphical model forms

a tree. The algorithm works as follows: First, we

compute maxh w
T
segφ(x, h, p0) as well as maxpi

(wT
i,def ·

φ(x, p0, pi)) for each root filter hypothesis p0. We then

compute the score as the sum of the HOG and segment score

for each mixture component at the root level. Finally, we

compute the maximum over the mixture components to get

the score of an object hypothesis.

3.5. Learning

We learn a different weight for each feature using a la-

tent structured-SVM [15]. Allowing different weights for

the different segmentation features is important in order to

learn how likely is for each class to have segments that un-

dershoot or overshoot the detection bounding box. We em-

ploy as loss the intersection over the union of the root fil-

ters. As in DPM [14], we initialize the model by first train-

ing only the root filters, followed by training a root mixture

model. Finally we add the parts and perform several addi-

tional iterations of stochastic gradient descent [14].

Note that we expect the weights for φseg−in(x, h, p0),
φback−out(x, h, p0) and φoverlap(x, h, p0) to be positive, as
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we would like to maximize the overlap, the amount of fore-

ground inside the bounding box and background outside the

bounding box. Similarly, the weights for φseg−out(x, h, p0)
and φback−in(x, h, p0) are expected to be negative as we

would like to minimize the amount of background inside

the bounding box as well as the amount of foreground seg-

ment outside. In practice, as the object’s shape can be far

from rectangular, and the segments are noisy, the sign of the

weights can vary to best capture the statistics of the data.

3.6. Implementation Details

We use CPMC [7] to get the candidate segments. In par-

ticular, for most experiments we use the final segmentation

output of [7]. For each class, we find all connected compo-

nents in the segmentation output, and remove those that do

not exceed 1500 pixels. Unless otherwise noted, we do not

use the score of the segments. On average, this gives us one

segment per image. We also provide one experiment where

we used more segments (5 on average per image), which we

describe in Sec. 4.

4. Experimental Evaluation

We first evaluate our detection performance on val sub-

set of PASCAL VOC 2010 detection dataset, and compare

it to the baselines. We train all methods, including the base-

lines on the train subset. We use the standard PASCAL

criterion for detection (50% IOU overlap) and report aver-

age precision (AP) as the measure of evaluation.

As baselines we use the Dalal&Triggs detector [12]

(which for fairness we compare to our detector when only

using the root filters), the DPM [14], as well as CPMC [7]

when used as a detector. To compute the latter, we find all

the connected components in the final segmentation output

of CPMC [7], and place the tightest bounding box around

each component. To compute the score of the box we utilize

the CPMC ranking scores for the segments.

The comparison with [12] and our approach (segDPM)

without parts is shown in the top Table 1, while the bot-

tom table compares CPMC-based detector, DPM and our

approach with parts. We significantly outperform the base-

lines: Dalal & Triggs detector by 13% and the CPMC base-

line by 10%. Our model also achieves a significant boost

of 8% AP over the DPM, which is a well established and

difficult baseline to beat. Importantly, we outperform DPM

in 19 out of 20 classes. The main power of our approach is

that it blends between DPM (appearance) and segmentation

(CPMC). When there is no segment, the method just scores

a regular DPM. When there is a segment, our approach is

encouraged to tightly fit a box around it. However, in cases

of under- or over- segmentation, the appearance part of our

model can still correctly position the box. Note that our

results well demonstrate the effectiveness of using blended

detection and segmentation models for object detection.

Fig. 4 depicts examples illustrating the performance of

our approach. Note that our approach is able to both retrieve

detections where there is no segment as well as position the

bounding box correctly where there is segment evidence.

We evaluate our approach on VOC 2010 test in Ta-

ble 2. Here, we trained CPMC [7], as well as our model on

VOC trainval. We compare segDPM with DPM with-

out the post-processing steps, i.e., bounding box prediction

and context-rescoring, in the top of Table 2. In the bot-

tom of Table 2 we compare our full approach with existing

top scoring approaches. For the full approach, we show re-

sults when typical context-rescoring approach is used (same

as in DPM), which we refer to as segDPM+rescore. We

also show results when we rescored the detections by us-

ing the classification scores for each class, kindly pro-

vided to us by [9]. The classification (presence/absence

of class in an image) accuracy measured by mean AP

on VOC2010 is 76.2%. We refer to this approach with

segDPM+rescore+classif. We outperform the competitors

by 3.6%, and achieve the best result in 13 out of 20 classes.

We also experimented with using more segments, on the

VOC 2010 train / val split. In particular, among 150
segments per image returned by [8], we selected a top-

ranking subset for each class, so that there was an average of

5 segments per image. The results are reported in Table 3.

We compare it to CPMC when using the same set of seg-

ments. One can see that with more segments our approach

improves by 1.5%. As such, it outperforms DPM by 10%.

5. Conclusion

In this paper, we have proposed a novel deformable part-

based model, which exploits region-based segmentation by

allowing every detection hypothesis to select a segment (in-

cluding void) from a pool of segment candidates. We derive

simple yet very efficient features, which can capture the es-

sential information encoded in the segments. Our detector

scores each box in the image using both the HOG filters as

in original DPM, as well as a set of novel segmentation fea-

tures. This way, our model “blends” between the detector

and the segmentation model, by boosting object hypotheses

on the segments, while recovering from making mistakes

by exploiting a powerful appearance model. We demon-

strated the effectiveness of our approach in PASCAL VOC

2010, and show that when employing only a root filter our

approach outperforms Dalal & Triggs detector [12] by 13%

AP and when employing parts, we outperform the original

DPM [14] by 8%. We believe that this is just the beginning

of a new and exciting direction. We expect a new genera-

tion of object detectors which are able to exploit semantic

segmentation yet to come.
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plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv Avg.

VOC 2010 val, no parts

Dalal [12] 29.1 36.9 2.9 3.4 15.6 47.1 27.1 11.4 9.8 5.8 6.0 5.0 24.8 28.4 27.5 2.2 18.4 9.2 27.4 23.2 18.1

segDPM (no parts) 52.4 43.1 20.9 15.7 18.6 55.8 33.2 43.9 10.7 22.0 14.8 31.1 40.9 45.1 33.6 11.1 27.3 22.0 42.5 31.7 30.8

VOC 2010 val, with parts

CPMC (no score) [7] 49.9 15.5 18.5 14.7 7.4 35.0 19.9 41.4 3.9 16.2 8.5 24.4 26.0 32.1 18.9 5.7 15.3 14.1 29.8 18.7 20.8

CPMC (score) [7] 53.3 19.5 22.8 15.7 8.1 42.7 22.1 51.3 4.3 18.9 10.5 28.1 30.5 38.3 20.9 6.0 19.2 18.6 35.4 21.1 24.4

DPM [14] 46.3 49.5 4.8 6.4 22.6 53.5 38.7 24.8 14.2 10.5 10.9 12.9 36.4 38.7 42.6 3.6 26.9 22.7 34.2 31.2 26.6

segDPM (parts) 55.7 50 23.3 16.0 28.5 57.4 43.2 49.3 14.3 23.5 17.7 32.4 42.6 44.9 42.1 11.9 32.5 25.5 43.9 39.7 34.7

Table 1. AP performance (in %) on VOC 2010 val for our detector with parts, the DPM [14], and the CPMC-based detector [7].

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv Avg.

VOC 2010 test, no post-processing

DPM no postproc. [14] 47.2 50.8 8.6 12.2 32.2 48.9 44.4 28.1 13.6 22.7 11.3 17.4 40.4 47.7 44.4 7.6 30 17.3 38.5 34.3 29.9

segDPM no postproc. 56.4 48.0 24.3 21.8 31.3 51.3 47.3 48.2 16.1 29.4 19.0 37.5 44.1 51.5 44.4 12.6 32.1 28.8 48.9 39.1 36.6

VOC 2010 test, with post-processing

segDPM+rescore+classif 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4

segDPM+rescore 58.7 51.4 25.3 24.1 33.8 52.5 49.2 48.8 11.7 30.4 21.6 37.7 46.0 53.1 46.0 13.1 35.7 29.4 52.5 41.8 38.1

NLPR HOGLBP [34] 53.3 55.3 19.2 21.0 30.0 54.4 46.7 41.2 20.0 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3 36.8

MITUCLA HIERARCHY [35] 54.2 48.5 15.7 19.2 29.2 55.5 43.5 41.7 16.9 28.5 26.7 30.9 48.3 55.0 41.7 9.7 35.8 30.8 47.2 40.8 36.0

NUS HOGLBP CTX [9] 49.1 52.4 17.8 12.0 30.6 53.5 32.8 37.3 17.7 30.6 27.7 29.5 51.9 56.3 44.2 9.6 14.8 27.9 49.5 38.4 34.2

van de Sande et al. [30] 58.2 41.9 19.2 14.0 14.3 44.8 36.7 48.8 12.9 28.1 28.7 39.4 44.1 52.5 25.8 14.1 38.8 34.2 43.1 42.6 34.1

UOCTTI LSVM MDPM [31] 52.4 54.3 13.0 15.6 35.1 54.2 49.1 31.8 15.5 26.2 13.5 21.5 45.4 51.6 47.5 9.1 35.1 19.4 46.6 38 33.7

Gu et al. [16] 53.7 42.9 18.1 16.5 23.5 48.1 42.1 45.4 6.7 23.4 27.7 35.2 40.7 49.0 32.0 11.6 34.6 28.7 43.3 39.2 33.1

UVA DETMONKEY [30] 56.7 39.8 16.8 12.2 13.8 44.9 36.9 47.7 12.1 26.9 26.5 37.2 42.1 51.9 25.7 12.1 37.8 33.0 41.5 41.7 32.9

UVA GROUPLOC [30] 58.4 39.6 18 13.3 11.1 46.4 37.8 43.9 10.3 27.5 20.8 36 39.4 48.5 22.9 13 36.8 30.5 41.2 41.9 31.9

BONN FGT SEGM [8] 52.7 33.7 13.2 11.0 14.2 43.1 31.9 35.6 5.7 25.4 14.4 20.6 38.1 41.7 25.0 5.8 26.3 18.1 37.6 28.1 26.1

Table 2. AP performance (in %) on VOC 2010 test for our detector with parts and the DPM [14], without post processing (top table), and

comparison with existing methods (only top 11 shown), with post-processing (table below).
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[19] P. Krähenbühl and V. Koltun. Efficient inference in fully connected

crfs with gaussian edge potentials. In NIPS, 2011. 1, 2

[20] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Graph cut based

inference with co-occurrence statistics. In ECCV, 2010. 1

[21] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr. What,

where and how many? combining object detectors and crfs. In

ECCV, 2010. 2

[22] V. Lempitsky, P. Kohli, C. Rother, and B. Sharp. Image segmentation

with a bounding box prior. In ICCV, 2009. 1

[23] M. Maire, S. X. Yu, and P. Perona. Object detection and segmentation

from joint embedding of parts and pixels. In ICCV, 2011. 2

[24] A. Monroy and B. Ommer. Beyond bounding-boxes: Learning object

shape by model-driven grouping. In ECCV12. 2

[25] R. Mottaghi. Augmenting deformable part models with irregular-

shaped object patches. In CVPR, 2012. 2

[26] O. Parkhi, A. Vedaldi, C. V. Jawahar, and A. Zisserman. The truth

about cats and dogs. In ICCV, 2011. 2

[27] M. Pedersoli, A. Vedaldi, and J. Gonzlez. A coarse-to-fine approach

for fast deformable object detection. In CVPR, 2011. 2

[28] P. Srinivasan, Q. Zhu, and J. Shi. Many-to-one contour matching for

describing and discriminating object shape. In CVPR, 2010. 2

[29] E. Sudderth, A. Torralba, W. T. Freeman, and A. Wilsky. Learning

hierarchical models of scenes, objects, and parts. In ICCV, 2005. 1

329732973299



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = aeroplane val 2010

 

 

Dalal, AP=29.1

CMPC, AP=53.3

DPM, AP=46.3

Ours−wo parts, AP=52.4

Ours−parts, AP=55.7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = bicycle val 2010

 

 

Dalal, AP=36.9

CMPC, AP=19.5

DPM, AP=49.5

Ours−wo parts, AP=43.1

Ours−parts, AP=50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = bird val 2010

 

 

Dalal, AP=2.89

CMPC, AP=22.8

DPM, AP=4.79

Ours−wo parts, AP=20.9

Ours−parts, AP=23.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = boat val 2010

 

 

Dalal, AP=3.39

CMPC, AP=15.7

DPM, AP=6.4

Ours−wo parts, AP=15.7

Ours−parts, AP=16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = bottle val 2010

 

 

Dalal, AP=15.6

CMPC, AP=8.1

DPM, AP=22.6

Ours−wo parts, AP=18.6

Ours−parts, AP=28.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = bus val 2010

 

 

Dalal, AP=47.1

CMPC, AP=42.7

DPM, AP=53.5

Ours−wo parts, AP=55.8

Ours−parts, AP=57.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = car val 2010

 

 

Dalal, AP=27.1

CMPC, AP=22.1

DPM, AP=38.7

Ours−wo parts, AP=33.2

Ours−parts, AP=43.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = cat val 2010

 

 

Dalal, AP=11.4

CMPC, AP=51.3

DPM, AP=24.8

Ours−wo parts, AP=43.9

Ours−parts, AP=49.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = chair val 2010

 

 

Dalal, AP=9.83

CMPC, AP=4.27

DPM, AP=14.2

Ours−wo parts, AP=10.7

Ours−parts, AP=14.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = cow val 2010

 

 

Dalal, AP=5.81

CMPC, AP=18.9

DPM, AP=10.5

Ours−wo parts, AP=22

Ours−parts, AP=23.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = diningtable val 2010

 

 

Dalal, AP=6.05

CMPC, AP=10.5

DPM, AP=11

Ours−wo parts, AP=14.8

Ours−parts, AP=17.7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = dog val 2010

 

 

Dalal, AP=5.03

CMPC, AP=28.1

DPM, AP=13

Ours−wo parts, AP=31.1

Ours−parts, AP=32.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = horse val 2010

 

 

Dalal, AP=24.8

CMPC, AP=30.5

DPM, AP=36.4

Ours−wo parts, AP=40.9

Ours−parts, AP=42.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = motorbike val 2010

 

 

Dalal, AP=28.4

CMPC, AP=38.3

DPM, AP=38.7

Ours−wo parts, AP=45.1

Ours−parts, AP=47.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = person val 2010

 

 

Dalal, AP=27.5

CMPC, AP=20.9

DPM, AP=42.7

Ours−wo parts, AP=33.6

Ours−parts, AP=42.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = pottedplant val 2010

 

 

Dalal, AP=2.19

CMPC, AP=6.03

DPM, AP=3.61

Ours−wo parts, AP=11.1

Ours−parts, AP=11.9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = sheep val 2010

 

 

Dalal, AP=18.4

CMPC, AP=19.2

DPM, AP=26.9

Ours−wo parts, AP=27.3

Ours−parts, AP=32.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = sofa val 2010

 

 

Dalal, AP=9.21

CMPC, AP=18.6

DPM, AP=22.7

Ours−wo parts, AP=22

Ours−parts, AP=25.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = train val 2010

 

 

Dalal, AP=27.4

CMPC, AP=35.4

DPM, AP=34.2

Ours−wo parts, AP=42.5

Ours−parts, AP=43.9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

class = tvmonitor val 2010

 

 

Dalal, AP=23.2

CMPC, AP=21.1

DPM, AP=31.2

Ours−wo parts, AP=31.7

Ours−parts, AP=39.7

Figure 3. Precision-recall curves on PASCAL VOC 2010 val. Note that our approach significantly outperforms all baselines.

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv Avg.

VOC 2012 val, more segments

CPMC (1 seg) [7] 53.3 19.5 22.8 15.7 8.1 42.7 22.1 51.3 4.3 18.9 10.5 28.1 30.5 38.3 20.9 6.0 19.2 18.6 35.4 21.1 24.4

CPMC (5 seg) [7] 59.8 27.6 27.1 19.6 12.7 53.1 31.2 56.6 8.2 25.6 17.5 34.8 39.8 42.3 25.9 10.3 29.8 26.6 46.7 33.4 31.4

segDPM (1 seg) 55.7 50.0 23.3 16.0 28.5 57.4 43.2 49.3 14.3 23.5 17.7 32.4 42.6 44.9 42.1 11.9 32.5 25.5 43.9 39.7 34.7

segDPM (5 seg) 56.1 49.0 22.9 18.2 34.0 58.9 42.9 49.8 15.4 25.0 22.7 32.3 46.2 45.6 39.2 13.6 33.3 30.6 46.7 41.5 36.2

Table 3. AP performance (in %) on VOC 2010 val for our detector when using more segments.
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