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ABSTRACT

The NW lIberian continental margin has a complex structure, resulting from the succession of
several rifting episodes close to a ridge triple junction, and a superimposed partial tectonic
inversion stage. The wide-ranging physiography matches the diverse tectonic deformation
domains related to its evolution. Each deformation domain has a distinctive gravity signal, so
the detailed Bouguer anomaly map presented here is a good first approach to the regional
study of the whole margin. Moreover, as the presented chart is a complete Bouguer anomaly
map (including terrain corrections), its analysis and interpretation can be done in terms of
density, geometry and depth variations below the seafloor. This map is mainly based on the
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dataset obtained during seven one-month surveys carried out in the frame of the Spanish
Economic Exclusive Zone project, and also includes two 2 + 3/4D density models illustrating

the deep structure of the margin.

1. Introduction

The use of the potential field methods for the analysis
of the structure and geodynamics of the Earth’s interior
is widespread (e.g. Hinze, Von Frese, & Saad, 2013 and
references therein). The gravity method allows to infer
density distribution in the Earth’s interior, identifying
lateral variations (with density contrasts) resulting in
gravity anomalies (e.g. Hinze et al, 2013; Jacoby &
Smilde, 2009). In general terms, we consider a gravity
anomaly as the difference between the measured grav-
ity acceleration and the expected measure at a deter-
mined location, calculated from a theoretical model
of the density distribution in the Earth’s interior (e.g.
the Geodetic Reference System). In general, gravity
anomalies can be related to mass excess (positive
anomalies), such as dense rocks, basement highs, man-
tle rises, etc., or to mass deficit (negative anomalies),
such as sedimentary basins, thicker crust, etc. Thus,
gravity anomalies allow the discrimination between
continental and oceanic crustal domains, and can be
used as a first approach to the location of basins with
potential hydrocarbon reservoirs and the identification
of prospective ore deposits. Further advantage of this
method is that it allows the construction of 2D and
3D density models of the geometry and lateral density
variations in the subsurface, properly constrained by
other geophysical information like seismic data,

geological mapping or wells. At sea, where geological
and geophysical exploration expenses make difficult
to accomplish broad detailed studies, this kind of geo-
physical analysis allow a low-cost first approach to the
general structure of a region.

The sector of the NW Iberian continental margin is
connecting the hyperextended west Iberian margin
with the partially inverted margin to the north. The
west Iberian margin has been extensively studied
since the 80’s decade of the past century as an arche-
type of hyperextended margin (e.g. Boillot, Winterer,
& Meyer, 1988; Péron-Pinvidic, Manatschal, &
Osmundsen, 2013; Whitmarsh, Sawyer, & Klaus,
1996). Also, many studies have been carried out
along the north Iberian margin in order to understand
the mechanisms and magnitude of the Cenozoic partial
inversion (e.g. Alvarez-Marrén et al., 1996; Ferndndez-
Viejo, Gallastegui, Pulgar, & Gallart, 2011). However,
despite this, the transition between the west (exten-
sional) and the north (compressional) margins has
been scarcely studied to date (Druet et al., 2018).

The first gravity mappings in the NW Iberian mar-
gin were accomplished by Bacon, Gray, and Matthews
(1969) and Bacon and Gray (1970). They presented
Free-air anomaly maps, identifying diverse relative
minimum and maximum, related to localized struc-
tures of the margin. Later, in the frame of the Deep
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Sea Drilling Program, a new Free-air anomaly map was
published by Groupe Galice (1979), where they differ-
entiate the gravimetric signal of the main morphotec-
tonic regions of the continental margin. Nevertheless,
Free-air gravity anomaly maps have high bathymetry
(and topography) dependence and, for this reason, it
is not possible to achieve a direct interpretation from
them if the relief isn’t taken into account. Conversely,
using Bouguer anomaly maps offshore is much more
significant from a geological point of view, especially
if terrain corrections are applied (Jacoby & Silde,
2009). Only then, the Bouguer gravimetric anomalies
can be interpreted in terms of density, geometry and
depth variations of the different anomaly sources
below the water sheet (Ball, Eagles, Ebinger, McClay,
& Totterdell, 2013; Carbd, Mufioz, Llanes, & Alvarez,
2003). Recently, Druet et al. (2018) made a detailed
gravimetric analysis from the Bouguer anomaly data
of the NW Iberian margin, including spectral analysis,
Bouguer anomaly grid filtering, and gravity modeling.

1.1. Geological setting

The NW Iberian margin was originated by the north-
ward propagation of the North Atlantic Ocean open-
ing. Several rift pulses underwent in this margin from
Late Jurassic (~150 M.a.) to Early Cretaceous times
(~120 M.a.) (e.g. Murillas et al., 1990), including a
westward rift axis jump (Manatschal & Bernoulli,
1999), in the vicinity of a triple ridge junction connect-
ing the west and north Iberian margins. As a result of
this staged rifting, there is an along-strike segmentation
of the margin, as well as an across-strike succession of
the different deformation domains related to the rift
process (Druet et al, 2018). Since Late Cretaceous
(~85M.a.) to Oligocene-Miocene times (~23 M.a.),
the Alpine compressional stress field led to a partial
tectonic inversion of the north Iberian margin (De
Vicente et al, 2008; Thinon, Fidalgo-Gonzilez,
Réhault, & Olivet, 2001; Tugend, Manatschal, & Kusz-
nir, 2015). The effects of this later compressional epi-
sode clearly extend to the northern sector of the west
margin (Grimaud et al., 1982; Murillas et al., 1990),
partly overriding the former extensional deformation
domain succession (Druet et al., 2018).

The result of the complex tectonic history of the
margin is a wide-ranging physiography (Figure 1).
This intricate orography matches the succession of
the different tectonic deformation domains related to
the evolution of the margin. In this connection, along
the margin we can identify (Figure 1): (1) a marginal
basin (the Galicia Interior Basin) whose origin is
related to the former rift axis active during the first
extensional episode (e.g. Murillas et al., 1990; Pérez-
Gussinyé, Ranero, & Reston, 2003); (2) a seamounts
region, that is a horst area between the Galicia Interior
Basin aborted rift axis and the westward final rift axis

location, and locally uplifted (to the north) under the
later Alpine compressional regime (e.g. Druet et al.,
2018 and references therein); (3) the named Deep Gali-
cia Margin, where hyperextension and mantle exhuma-
tion occur (e.g. Whitmarsh, White, et al., 1996; Lymer
et al,, 2019); (4) a marginal platforms region to the
northwest of Galicia, resulting from the tectonic inver-
sion of former half-graben basins (Druet et al., 2018;
Murillas et al., 1990); (5) the Iberia abyssal plain, sur-
rounding the margin to the west, and (6) the Biscay
abyssal plain, to the north and northwest. These defor-
mation domains are related to different crustal thick-
ness and crustal type distribution, having distinctive
gravimetric signal along the margin (Druet et al,
2018). Thus, the detailed Bouguer anomaly chart that
we present here is a good first approximation to
address a regional study of the whole margin and to
characterize its deep structure.

2. Data set and methods
2.1. Data acquisition and processing

The systematic oceanographic surveys carried out in
the frame of the Spanish Exclusive Economic Zone
Project (SEEZ) provide an unprecedented detailed
mapping of the whole NW Iberian continental margin
and its adjacent abyssal plains. The marine datasets we
use here were obtained during seven one-month
cruises, carried out between 2001 and 2009
(ZEEE2001, ZEEE2002, ZEEE2003, ZEEE2006,
ZEEE2007, ZEEE2008, and ZEEE2009), onboard the
R/V Hespérides. A total amount of 16,620 nautical
miles were navigated with gravity data acquisition,
with more than 400,000 valid data points obtained
(Figure 2). As the main objective of the SEEZ surveys
is to obtain multibeam swath bathymetry with 100%
coverage of the seafloor, the survey lines are planned
according to the multibeam requirements. As a result,
the spatial distribution of the gravity measurements is
not uniform, with an irregular spacing and variable
orientation of the surveyed lines (Figure 2).

During the surveys, time and position information
was acquired via a differential GPS, using two TRIM-
BLE 4000 DL systems. Heading and velocity data
were provided by the vessel’s navigation system. Grav-
ity data were obtained with a Bell Aerospace Textron
BGM-3 marine gravity meter, with + 1 mGal accuracy,
mounted on a gyro-stabilized platform damping ship’s
movements. At each marine survey, the gravity data
were tied to the on land gravity network using the
first-order absolute gravity bases from the Instituto
Geografico Nacional of Spain, using two terrestrial
gravity meters: a Lacoste & Romberg (model G) and
a Worden Master. During the tying works for the
ZEEE2001, ZEEE2003 and ZEEE2003 cruises, both ter-
restrial gravity meters were used simultaneously.
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Figure 1. Structural sketch of NW Iberia, over the digital terrain elevation models from the EMODnet (offshore) and SRTM (onshore)
open databases. Modified from Groupe Galice (1979), Boillot et al. (1988; 1995), Grimaud et al. (1982), Murillas et al. (1990), Malod,
Murillas, Kornprobst, and Boillot (1993), Alvarez-Marrén et al. (1996), Ramirez et al. (2006), Vazquez et al. (2008), Druet (2018), and
Druet et al. (2018). Inset: Location of the study area represented on the Main Map.

Meanwhile, for the ZEEE2006, ZEEE2007, ZEEE2008
and ZEEE2009 cruises, only the Worden Master terres-
trial gravity meter was used for this issue. Depending
on the origin and arrival ports, the first-order absolute
gravity bases used were those located in La Coruna,
Vigo, Santander and Cartagena, following the pro-
cedure described by Carbo et al. (2003). The error esti-
mations during the tying works were always below
0.5 mGal.

Dataset reduction was executed with the GRS67.
The Eo6tvos effect was corrected taking into account
the navigation data (date, time, speed, course...)
during the marine gravity acquisition. Solid Earth-
tide effects, due to the moon and sun tidal accelera-
tions, were corrected using Longman’s formulations
(Longman, 1959). For the water slab correction, we
have followed Nettleton’s procedure (Nettleton,
1976), using 1.03 g/cm’ for the water density. The
gravity effect related to the sea-bottom relief must be
corrected also, especially in areas with large bathy-
metric variations, so that the final Bouguer anomaly
reflects the density distribution at the sea bottom,

without the bathymetry variations influence. The sea-
bottom correction was applied using the dedicated
software LANZADATF (Carbo et al., 2003). Sea-bottom
correction was carried out up to a distance of 22 km
from the gravity measure, using a 2 km-gridded digital
terrain model (Sandwell, Miiller, Smith, Garcia, &
Francis, 2014). In order to correct herringbone effects
and intersection errors related to the systematic acqui-
sition during the oceanographic surveys, a statistical
leveling correction was also applied using the Geophy-
sics Leveling extension of the Geosoft Oasis Montaj" ™
software. Here on, it should be noted that when we use
the term ‘Bouguer anomaly’ we refer to a complete
Bouguer anomaly, as sea-bottom and topographic cor-
rections have been included.

Where no ship gravity data are available offshore, we
have used the satellite altimetry-derived Global Gravity
Model data (Sandwell et al., 2014). The parameters
used to reduce satellite derived data have been those
used in the corrections made to marine data. In order
to compare the accuracy of the marine and satellite alti-
metry derived datasets, and to evaluate the resolution
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Figure 2. Ship navigation lines with gravity data acquisition during the different surveys, and on land station locations, over the
shaded relief model obtained from EMODnet (offshore) and SRTM (onshore) open datasets. Modified from Druet et al. (2018).

improvement when using marine gravity data, a coher-
ency analysis was performed (Druet et al, 2018). It
showed that, for wavelengths lower than 20 km, the
coherence between both datasets diminish, and satellite
altimetry derived dataset loose in accuracy.

In order to prepare the complete map off the NW
Iberian margin, we have included onshore gravimetric
data from the Instituto Geografico Nacional of Spain,
the Empresa Nacional de Residuos Radiactivos of
Spain, the Bureau Gravimétrique International, and
the Instituto Geoldgico y Minero de Espana databases
(Ayala et al., 2016; Alvarez, 2002) (Figure 2). Finally,
ship, on land, and satellite-derived data were jointly
processed and included in a georeferenced database.
The final regular grid was calculated with the continu-
ous curvature splines in tension method (Smith &
Wessel, 1990) using GMT software (Wessel, Smith,
Scharroo, Luis, & Wobbe, 2013), with a tension par-
ameter of 0.25 and 2 min interval regular grid. The
map presented here covers an area of 306,000 km*
between parallels 40° 17" N and 45° 11’ N and meri-
dians 7° 13" W and 14° 29’ W.

Additionally, in order to facilitate the Bouguer
anomaly map interpretation, two 2+ 3/4D density

models have been performed from Bouguer anomaly
profiles. They are partially constrained by refraction
and reflection seismic data (Clark, Sawyer, Austin,
Christeson, & Nakamura, 2007; Druet et al, 2018;
Ercilla et al, 2008; Gonzalez, Cdérdoba, & Vales,
1999; Murillas et al., 1990; Sibuet et al., 1995; Reston,
Krawczyk, & Klaeschen, 1996; Whitmarsh, White,
et al.,, 1996). These density distribution models have
been calculated using the Geosoft GM-SYS profile
modeling software. For the conversion from seismic
velocities to densities, we have used the empiric
relationship curves by Ludwig, Nafe, and Drake
(1970), Barton (1986), Christensen and Mooney
(1995) and Brocher (2005).

2.2. Data plot

The Bouguer anomaly map of the NW Iberian conti-
nental margin and the adjacent abyssal plains (see
Main Map) is a composite sheet made of three maps
(a main map, and two auxiliary maps), and two 2 +
3/4D gravity models representative of the deep struc-
ture of the margin.
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The main map represents the Bouguer anomaly at
a 1:750,000 scale, color shaded with an artificial illu-
mination from an azimuth of 315° and an elevation
of 45°. The first of the two complementary maps
(Figure 2) shows the track lines with gravity data
acquisition during the marine surveys, and the
onshore gravity stations, over a composite digital ter-
rain model constructed from the European Marine
Observation and Data Network (EMODnet, offshore)
and Shuttle Radar Topography Mission (SRTM,
onshore) open databases. Besides, the second auxili-
ary map shows the Bouguer anomaly grid (colored)
over the same shaded relief, with the tectonic
interpretation of the main features (see tectonic
interpretation on Figure 1).

The first gravity model, A-A" (see location on the
main Bouguer anomaly map), crosscuts the west Iber-
ian margin from West to East, and is representative of
the deep structure of this hyperextended margin (Druet
et al., 2018). The second one, B-B’ (see location on the
main Bouguer anomaly map) is a North to South
model crossing the margin from the Biscay abyssal
plain north of the seamounts region, showing the par-
tial tectonic inversion in this area, to the hyperextended
margin of south the Iberia abyssal plain (Druet et al.,
2018).

3. Brief Bouguer anomaly map description
and interpretation

Bouguer anomaly values range from -105mGal
(onshore) to 385 mGal (offshore, on the Iberia abyssal
plain region). On the whole, there is a progressive rise
of the Bouguer anomaly values to the north and to the
west, that is to say, from the continental crust region to
the oceanic crust regions of the Iberia abyssal plain and
the Biscay abyssal plain (commonly over 300 mGal).
The 100 mGal contour approximately matches the
continental shelf break. Along the Galicia Interior
Basin, a relative Bouguer anomaly high is found (up
to 250 mGal), linked to the thinned continental crust
and the related mantle rise in this region (Druet
et al., 2018; Pérez-Gussinyé et al., 2003), where exten-
sional tectonics focused during the first rifting stages
(Murillas et al., 1990). Westwards, the seamounts
region is linked to a relative minimum of less than
150 mGal, due to its relatively thicker continental
crust. The transition to the domains of Deep Galicia
Margin and the Iberia abyssal plain, where necking
and hyperextension domains are well developed, is
marked by steep Bouguer anomaly gradients ranging
from 2.8 to 3.6 mGal/km. Conversely, the transition
to the Biscay abyssal plain oceanic domain is staggered
and complex, with Bouguer anomaly gradients ranging
from 0.7 to 1.2 mGal/m, due to the effects of the com-
pressional tectonics in this area (Druet et al., 2018; Gri-
maud et al, 1982). These compressional tectonics
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effects include oceanic crust thrusting at the foot of
the slope to the N and NW of the seamounts region,
the generation of foredeep basins, and the partial tec-
tonic inversion of half-graben basins in the marginal
platforms region.

4, Conclusions

The new Bouguer anomaly map of the NW Iberian con-
tinental margin and the adjacent abyssal plains presented
here is built upon an improved gravity database, bringing
together marine, on land, and satellite-derived gravity
measurements. The map is represented at a 1:750,000
scale, using a 2 min-interval squared regular grid.

This Bouguer anomaly map covers a high geological
interest area, with the best accuracy ever attained to
date. A great advantage of gravity anomaly maps as
this one is the continuous nature of the information
that they show. This allow mapping geological domains
and regions at different scales, including deformational
domains as those occurring along the hyperextended
and partially tectonically inverted NW Iberian conti-
nental margin.

The use of this new Bouguer anomaly map enables
geoscientists from academia, research institutions and
industry to perform a first approach to interest zones,
following the evident relationship between the main
deformation domains in the margin and the observed
Bouguer anomaly.

Software

Marine gravity data were corrected using the dedicated
software LANZADAF (Carb¢ et al., 2003) and Oasis
Montaj™ from Geosoft. The marine dataset was
merged with the onshore and satellite-derived data to
calculate a final regular grid using GMT software
(Wessel et al.,, 2013). The three maps showed on the
final chart (Main Map and complementary ones)
were constructed using ArcGIS, with a customized
rainbow color-coded scale to represent Bouguer
anomaly values. Gravity modeling was accomplished
using Geosoft GM-SYS software. The final layout was
performed with CorelDraw.

Data availability statement

NW_Iberia_BouguerAnomaly_2019.tif is a download-
able geotiff file of the Bouguer anomaly (mGal) infor-
mation, with a 2’ x 2’ cell spacing in a UTM 29N
projection (WGS84 datum).

Geolocation information

The map and dataset presented are located between
parallels 40° 17" N and 45° 11’ N and meridians 7°
13’ W and 14° 29’ W.
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