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Abstract 

A novel set of non1inea.r fluid equations for mirror-trapped electrons is de- 

veloped which differs from conventional fluid equations in two main respects: 

1) the trapped-fluid moments average over only two of three velocity space 

dimensions, retaining the ful l  pitch angle dependence of the trapped electron 

dynamics, and 2) closure approximations include the effects of collisionless 

wave-particle resonances with the toroidal precession drift. By speeding up 

calculations by at least d m ' ,  these bounce averaged fluid equations make 

possible realistic noii1inea.r simulations of turbulent particle transport and 

electron heat transport in tokamaks and other magnetically confined plas- 

mas. 
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Mirror-trapped particles often p1a.y an important role in long m e m  free path plasma 

dynamics, especially in magnetic confinement fusion devices and planetary magnetospheres. 

This Letter presents a reduced nonlinear fluid-like description for mirror-trapped particles. 

These equations should be useful for describing nonlinear trapped particle dynamics in a wide 

range of plasma phenomena, but we will focus on tokamaks, where trapped electrons can 

be an important cause of turbulent transport. Through wave-particle resonances, trapped 

electrons can destabilize the dissipative or collisionless trapped electron mode (TEM) and 

can double the growth rate of the ion temperature gradient (ITG) mode. We include these 

kinetic resonances by using an extension of the method of Ref. [l] to take fluid moments of 

the bounce averaged drift kinetic equation of Ref. [2]. 

Although much progress has been made recently in nonlinear simulations of electrostatic 

core tokamak turbulence arising from the ITC: instability, more realistic simulations require 

proper treatment of the trapped electron dynamics. To date, most simulations have focused 

on ion heat transport and have assumed acliabatic electrons. i.e. iie = noe6/Te, where 

?ie is the fluctuating electron density and & is the fluctuating electrostatic potential. For 

realistic tokamak parameters, however, the nonadiabatic electron response, which primarily 

comes from trapped electrons, is often important. To describe electron heat transport and 

particle transport in addition to ion heat transport. proper treatment of the nonadiabatic 

electron response is necessary. If. the turbulence is electrostatic and the electrons are purely 

adiabatic, there is no net particle transport. since the E x B convection of the perturbed 

electron density is zero (E x B - " f i e  = 0). 

In this Letter, a sophisticated bounce averaged trapped electron fluid model is derived 

which retains the pitch angle dependence of t h e  c~lcctron response, as opposed to more 

simplified models which assume all electrons a l e  t lwpl> .  trapped [:3]. Retaining this pitch 

angle dependence is import,ant for advanced tokaiiiak configurations in the second stability 

regime or with reversed magnetic shear [4], where a large fraction of the trapped electrons 

have favorable toroidal precession drift. This approach also allows- use of a full pitch angle 

scattering operator for electron collisions, not a Iirook-type algebraic approximation, so these 
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equations are continuously valid in the collisionless regime, where the electron response is 

driven by the toroidal precession resonance, in the dissipative regime, and also in the very 

collisional regime where the electrons become adiabatic. Since bounce averaging removes 

the fast parallel time scale, these trapped electron fluid equations are not numerically stiff. 

Coupled with the gyrofluid ion equations derived in Ref. [5-71, these equations can be used 

efficiently in high resolution 3D toroidal simulations which simultaneously include trapped 

electron effects as well as the ITG drive. In addition, these equations enable calculation of 

the full transport matrix: electron and ion heat fluxes and particle fluxes. 

The electron dynamics are actually simpler than the ion dynamics in two respects, be- 

cause me << mi. First, the turbulent scales are on the order of the ion gyroradius, so 

kip, << 1 and we can neglect FLR effects for the electrons a.nd use the drift kinetic equation. 

Second, the turbulent time sc.ales (on the order of the ion transit frequency, wi; = vt;/qR, 

or the diamagnetic frequency, z- = klp;vt;/L,,) are long compared to the electron bounce 

frequency, w << Wbe = &te/qR. Thus we can average over the fast bounce motion so that 

the trapped electron dynamics are described by the nonlinear bounce averaged drift kinetic 

equation [2]. It is useful to rewrite this equation for (.fe)b, the bounce averaged distribu- 

tion function, instead of the nonacliabatic piece h, as i n  Ref. [2]; the two are related by 

fe = Fee@/Te + h e ,  where F'. is the Maxwellian equilibrium. At this point we normalize @ 

to e/Te. In addition, we use the field-aligned coordinate system given by the transformation 

Eq. (10) in Ref. [SI, where z is the radial variable. 9 is perpendicular and mostly poloidal, 

and z = qR8 is the coordinate along the field line at fixed .T and y. Ref. ['i] gives details of 

the simplification of Eq. (31) of Ref. [a], which can he rewritten: 

This equation is four dimensional (4D) (two velocity and two space dimensions), since the 

variation along the field line has been removed hy bounce averaging and the rapid particle 

gyration frequency, w,, = eB/m,c, has been averaged over. The bounce average is defined 

by (A)b = $ d z  . A / ~ v ~ ~ ~ / $ d z / ~ u ~ ~ ~ ,  where the integration is along an orbit. To lowest order in 
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u/wbe, the fast electron parallel motion causes 12, to be constant along a field line, which 

prescribes f e  = ( f e ) b - F e ( @ ) b + F e @  for trapped electrons and fe = Fe@ for passing electrons. 

The nonlinear term describing convection by the bounce averaged E x B drift has been 

absorbed in d/dt  = d/d t  + 6 x ((a), V. The collision term is discussed below. The 

diamagnetic frequency is W: = (b,cTe/eBLne)[l + qe(v 2 7 2  /-vte - 3/2)], where q e  = L n e / L T e ,  

and the bounce averaged VB and curvature drift frequency, U d e ,  is the toroidal precession 

frequency. Our derivation is correct for general magnetic geometry, but by expanding for 

large aspect ratio circular flus surfaces the bounce average can be written in terms of elliptic 

integrals [2]. We combine the geometric and pitch angle dependence in the usual manner in 

G: u d e  = (k,cT,/eBR)(v2/2v;?,)C;(~. K ) .  It is important to keep the pitch angle dependence 

of Wdc to describe the stabilization of the TEM in reversed shear configurations (S I  < 0). 

The limiting values at  K = 0 and 6 = 1 are independent of shear, but as S decreases, the 

precession drifts of barely trapped particles are reversed, so they cannot resonate with the 

TEM. We have recently emphasized that the Shafranov shift can be even more effective in 

reversing these drifts and stabilizing the TELL 

It will be most convenient to use the velocity spa.ce variables v and K ,  where v is the total 

velocity ( E  = n2U2/2) and K is a pitch angle variable defined by = (1 - pBmin/E)/2EB, 

where.cB = (Bma ,  - B,,i,)/2B,,,a,, B,,,,, and B m i n  are the maximum and minimum values of 

the magnetic field on the flus surface, and = m.v:/2B. Thus K is the pitch angle at the 

outer midplane normalized to unity at the trapped-passing boundary (where E = @Imas), 

and is a constant of the bounce motion. For deeply trapped electrons (with E = @,,,in), 

IC = 0, and the maximum K for passing particles (where ,u = 0) is 1/&. For trapped 

particles ( K  < l),  the poloidal angle of the I>anana tip or turning point, Bt ,  is related to 

K by K = sin(Ot/2). Our pitcli angle variable differs slightly from Ref. [2], but for trapped 

particles the difference is negligible since 1’ M VI. \.\‘riting 1zq11 in terms of 1’ and K :  I T J ~ I I  = 

TJ 1 - 1 - ~ E B K ~ ) B / B ~ ~ ~ ,  the bounce time is 7-6(K) = fdl/lz)llI, and the bounce average d (  
becomes ( Q i ) b ( . ~ ,  y, K )  = ( ~ R / u )  J!bt CLB @(x, J/. B ) / T ~ J ~  - (1 - 2EBK2)B/Bmin- 

Before taking moments of Eq. (1); it is instructive to calculate the total electron density, 



which we break into separate integrals over passing and trapped particles. Since the pass- 

ing particles are adiabatic: 128 = S, d3v@Fe + Jt d3v fe = &, c13v@Fe + Jt d3v((fe)b - (@)bFe 

+ape). Combining the adiabatic pieces for trapped and passing particles gives: ne = 

no@ + st d3v ((fe)b - (@)bFe) . The velocity space integral over trapped particles in v and K 

introduce the following shorthand notation for the pitch angle part of this integration: 

Averaging in pitch angle turns functions of K into functions of 8, because of the 8 dependence 

of the Jacobian and the turning points. The electron density in real space is just the K 

average of the v-averaged (.fL)b. Defining a K-dependent "density" by integrating only over 

v: nt (x ,  y, K )  = JF $.iidv v 2 ( f e ) b ,  the total density in real space is: 

ne(& y, 3 )  = n.o@ + (nt(x',  y, K ) ) K  - 1 7 0 ( ( @ ) b ( N ,  y, (3) 

The K average of ( @ ) b  in Eq. (3)  is analogous to the polarization density in the ion real space 

density, and comes from the d e p e n d e n t  part of the total electron distribution function. 

The separable 'u and K dependelice of Ecl. (1) and t,he pitch angle dependence of ( @ ) b  

suggest a significantly different approach for deriving trapped electron fluid equations. Both 

the gyrokinetic and drift kinetic. equations have already reduced the velocity space dimen- 

sions from three to two by gyroaveraging. For the ioiis, we take inoiiients over vll and 2 r l  of 

the 5D fi(x, y, z,  v11, vl) to obtain :3D ion fltiicl ecliiatioiis [.I. For the electrons, we start with 

the 5D fe(x, y, J ,  v, K )  and bounce average. which leriioves the para.lle1 coordinate. Then we 

only need to take moments over 'LJ of (fe)b(.r.y. 1..  ti) t o  obtain 3D pitch angle dependent 

"fluid" equations for,the electrons, which axe L'uiictioiis of .r, y, and K .  These moments 

can be thought of as the electron density, pressur('. c.tc.. of banana tips, since K is directly 

related to the turning point by K = sin(Ot/2). The resulting trapped electron fluid equations 

look similar to the 3D ion fluid equations cleri\-e(l i n  Ref. [TI, wit11 the parallel coordinate 

replaced by the pitch angle varia.ble, K .  This has the acl1:antage of retaining the full pitch 



angle dependence of the electron moments, d d e  , and the bounce averaged potential. When 

the real space electron density or pressure is needed, we perform the ri average in Eq. (2). 

We derive trapped electron fluicl equations by averaging Eq. (1) over v. Since only 

even powers of v appear in Ecl. (l), we will only need even moments: n t ( x , y , r c )  = 

SF dv v 6 ( f e ) b ,  - no so dv v 2 ( f e ) b ,  p t ( 2 ,  y, K )  = v 4 ( f e ) b ,  rt (Z,  9, K )  = lsnou:, 

47r m 

t t(2,  y, 6) = lo;(nnu;e dv d 0 ( j ~ ) b ,  which have been 

normalized to their Maxwel1ia.n values. The v 2  dependence of Wde brings the next higher 

even moment into each dynamical equation, introducing the usual closure problem of the 

coupled moments hierarchy. Performing the v integration and redefining u d e  = GbacT'/eBR 

and w,, = kecTe/eBLne, we have: 

dv v 8 ( f e ) b ,  and Q ( T ,  3, r i )  = ,,;(nnUfe 

- 
We require a closure approsinmtion for the highest moment to model toroidal precession 

drift phase mixing, using a.n estension of the method of Ref. [l]. For a %moment electron 

model (evolving nt, p t ,  and r t )  we choose: t t  = -i"(ua?zt + Vb]It + u,rt), and in the 4- 

moment model (also evolving t t ) .  we choose: vf = - 2 2  . IWd ' ( vant  + VbPt + u,rt + V d t t ) .  AS 

in Ref. [$I, each closure coefficient has both a dissipa.tive and non-dissipative piece, u = 

u, + i u ; l w d a  I / u . - ~ ~ .  but now d d e  is pitch angle dependelit. We choose these closure coefficients 

to closely match the collisionless bounce averaged kinetic response function, given by: Re = 

n t ( K ) / ( @ ) b ( K )  = (47i/?z0) s c l u  u Z F t ( - ~ d e  + d $ ) / ( w  - Wde). This can be factored into the 

form: Re = Reo + + -Re2. These integrals [9] become functions of x, = w / w d e  

dde 

d d e  

and K (through W d e ( K ) ) :  Reo = 1 + 3 : ~ ~  - 2 . ~ ~ ' ~ 2 ( - & ) ,  Re1 = -2[1 - &2(-&)], 
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Re2 = -[1+ 2xe - 2$I2Z(-&)] + 3[1 - &Z(-&)], where Z is the plasma dispersion 

function. The corresponding response function from the %moment electron fluid equations 

is (0 = ude/ludel): 

with similar expressions for R,1 and R e 2  and for four moments. We find the closure coeffi- 

cients by minimizing the error between the fluid and kinetic response functions, Reo, Rei, 

and Re2, along the real xe axis. The best fits are ua = (.290, -.OX), V6 = (-1.102, -.6S9), 

and u, = (.S17,1.774) for the :3-moment model, and u, = (-.O%, .07:3), = (.657, -.060), 

u, = (-1.522, -1.OS5), and Ud = (.905,2:073) for the h n o m e n t  model. The response func- 

tion for the +moment model is shown in Fig. 1. essentially identical results are obtained 

with the 3-moment model [i]. 

We now derive collision terms from the Lorentz collision operator: C = 

(ue(v)/2)B/6J[( 1 - J2)6.fe/64, where = vll/v. The energy dependent collision frequency 

is: ve(v) = (4.iinee4 In A/m;v3)( Z e ~  + Hee(v/vte)) ,  where the Z,, part accounts for electron- 

ion collisions (assuming 11 >> . u t i )  summed over ion species ( Z e R  = cj Zfnj/ne), and the 

Hee(z) part is from electron-electron collisions. where Hee(x)  = @exp(-rc2/2)/x + [l - 
l/(z2)]erf(x/fi). This collision operator conserves particles and energy, but not momen- 

tum. The bounce average of this collision operator [lo] enters Eq. (1). and in our variables, 

is: 

This operator must be integrated over c to find the collision terms in the trapped electron 

fluid equations. The velocity dependence of u, should introduce coupling between different 

fluid moment equations, just as the velocity clepenclence of J d e  did. However, for the time 

being we will assume u, = consta.nt when integrating over u ,  which leads to the simple form 

of the collision tems in Eqs. (4). A better approximation will be described in future work, 

which leads to weaker collision ternis in the higher moment equations to model the ue - l /v3 

dependence. 



We now describe how these electron moment equations are solved. The emphasis is 

on numerical solution, but analytic solution follows conceptually similar procedures. In 

our numerical simulations [7,S,11]. the ion gyrofluicl moments are stored and evolved in 

(z, y, z )  space. The electron moments are stored and evolved in (s, y, K )  space, and separate 

electron moments a.re independently evolved in each magnetic well along x .  The bounce 

averaged ( Q ) ~ ( K . )  is calculated from a(:) by numerically integrating along. J, and is then 

used to advance the electron moments in time. The electron nonlinearities are evaluated 

pseudospectrally, as the ion nonlinearities, but in ri rather than in z .  The electron collision 

terms are evaluaked implicitly. The K dependence i n  Eq. (5) and the boundary condition that 

(fe)b = Fe(Qi)b at K = 1 automa.tically incorporates the strong effects of pitch angle scattering 

near the trapped-passing boundary. Only the electron density needs to be evaluated in real 

space. To solve the gyrokinetic quasineutrality eqmtion, the real space density, ne(z ) ,  is 

calculated by performing the K averages of n t ( r i )  and ( @ ) b  as given by Eqs. (2) and (3). 

Then the quasineutrality equation is solved for @, and the cycle is repeated. 

As in the adiabatic limit, special trea tnient is required for t,oroiclally symmetric pertur- 

bations with b, = 0, which have a component which is constant on flus surfaces. When 

k, # 0, trapped electrons scat terecl onto passing orbits quickly become adiabatic, but this 

is not true if k, = 0. When I;, = 0. d& = a,, = 0. so the bounce averaged kinetic 

equation reduces to d ( f e ) b / d f  = (C')!,( (ji)~, - Fe(@)b). This equation applies to passing 

particles with 1 < K. < l/& as well as t.rappecl particles with 0 < K < 1. Thus the 

passing k, = 0 electron moments interact only i-ia collisions with trapped k ,  = 0 moments, 

which in turn interact with trapped I;, # 0 moments only through the nonlinear term in 

d/d t  = B/Bt  + 6 x (Qi)b - V. Conservative boundary conditions for (C)b ensure that there 

is no flux across the K. = l/& boundary. The bounce average is generalized for K > 1 

to an orbit average with 0 fcx so t.1ia.t only the k, = 0 component of Qi or fe leads to a 

nonzero ( @ ) b  or (fe)b, since @ and .f; must vanish as 0 + fca for k, # 0 but not for k, = 0. 

The upper bounds on the ri integrals i n  Eqs. (2)  and (3 )  are extended to K = l/& for 

k, = 0 modes. Note that in the final analysis bhere is no k, = 0 electron response to a 



component $ of which is constant on a. flus surfa.ce, since ( & ) b  = is independent of tc 

so (C)b(5)b = 0. 

To conclude, we demonstrate the accuracy of these trapped electron fluid equations by 

comparing fully nonlocal linear results with kinetic theory in the collisionless limit. The 

eigenfrequencies from the six nioment toroidal gyrofluid equations [7] and the three moment 

trapped electron fluid equations are compared with fully kinetic calculations [12] in Fig. 2. 

These results are for a pure deuterium plasma with 11; = ?le = 3, S = 1, q = 1.5, L,,/R = 1/3, 

and T / R  = 1/6, as in Fig. 1, of Ref. [I'S]. The gyrofluid results with adiabatic electrons are 

also shown. The trapped electron response doubles the growth rates for these parameters, 

even though this is an ITG mode. Our trapped electron niodel also agrees quite well for the 

TEM. Initial nonlinear results using this model have been presented in Refs. [ll] and [7]. 

Quite recently, we have found that this model reproduces several interesting features of the 

transport in the core of supershots and Enhanced Reversed Shear discharges on TFTR [13], 

where the TEM dominates. These results will be reported in a future publication. 
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FIG. 1. Kinetic and fluid bounce averaged response function, Reo, for the 4-moment electron 

model. 

FIG. 2. Comparison 
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of linear eigenfrequencies from the trapped electron fluid equations and 

fully kinetic results (Ref. [12]). Also shown are the gyrofluid results assuming adiabatic electrons. 
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