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curvature. In addition, for an exponential form of the scale factor, an F (R) bigravity model
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1 Introduction

According to recent cosmological observations in terms of Supernovae Ia [1, 2], large scale
structure [3, 4] with the baryon acoustic oscillations [5], cosmic microwave background ra-
diation [6–11], and weak lensing [12], the current expansion of the universe is accelerating.
We suppose that the universe is homogeneous, as suggested by observations. We have two
representative procedures to explain the cosmic acceleration at the present time. One is the
introduction of the so called dark energy with negative pressure in general relativity (for
reviews on dark energy, see, e.g., [13–20]). The other is the modification of gravity on the
large distances. As a simple way of modification of gravity, here we concentrate on F (R)
gravity [21–23] (for reviews, see, for example, [24–30]).
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On the other hand, as a cosmological scenario in the early universe, there exists the
so-called matter bounce scenario [31–34], in which (i) in the initial phase of the contrac-
tion, the universe is at the matter-dominated stage, (ii) there happens a bounce without
any singularity, and (iii) the primordial curvature perturbations with the observed spectrum
can also be generated (for a review on bounce cosmology, see [35]). It is known that in
this scenario, there is the BKL instability [36] leading to an anisotropic universe after the
contracting phase. In the framework of the Ekpyrotic scenario [37], the resolution of such an
instability to produce the anisotropy of the universe [38] and intrinsic problems in the bounc-
ing process [39, 40] have been studied in refs. [41, 42]. Recently, the curvature perturbations
generated in the matter bounce cosmology with two fields was re-examined in more detail
in ref. [43]. Furthermore, as recent related studies, cyclic cosmology [44], cosmological per-
turbations in bounce cosmology without singularities [45–47], and properties of cosmological
perturbations around the bouncing epoch [48–50] have been investigated. Here, it should be
noted that when there is a massive scalar field, the scale factor and the Riemann curvature
can have the bouncing behaviors with the positive spatial curvature k(> 0), which will be
presented in section VI. This was first shown in ref. [51]. In addition, for the Starobinsky
model proposed in ref. [52], there exists a solution with the non-zero spatial curvature k(6= 0)
in which the scale factor behaves a bounce. Moreover, in refs. [53–55] it has been investigated
that with a simply modified Friedmann equation, the bouncing behavior of the scale factor
would occur at the time when the energy density of matter evolves into a critical value. Thus,
it has been shown that big crunch singularities of negative-energy (Anti-de Sitter) bubbles
in the multiverse can be removed. Also, the behavior of bounce in anisotropic cosmology in
F (R) gravity [56] and a bounce in modified gravty theories [57] have recently been discussed.
We further mention that the form of F (R) leading to non-singular bounce cosmologies has
been derived in ref. [58]. Furthermore, bounces in gravity inspired by string theories [59] and
non-local gravities [60, 61] have been studied.

In addition, it has recently been revealed that a massive graviton can lead to the current
cosmic acceleration. At the early stage, the Fierz-Pauli (FP) action [62] was considered to
describe a linearized or free theory of massive gravity (for reviews, see, for example, [63, 64]).
Recently, the de Rham, Gabadadze, Tolley (dRGT) theory [65, 66] and the Hassan-Rosen
(HR) theory [67, 68], which are non-linear massive gravity theories, have been proposed.
These theories have two desirable properties: one is there is not the Boulware-Deser (BD)
ghost [69, 70]. Another is in the massless limit of the mass of massive graviton the van
Dam-Veltman-Zakharov (vDVZ) discontinuity [71, 72] can be screened through the Vainstein
mechanism [73]. The latter is a similar feature appearing in the Galileon models [74–76]
due to the operation on the Dvali-Gabadadze-Porrati (DGP) brane world scenarios [77–79].
Currently, in various aspects, massive gravity and bi-metric gravity have extensively been
studied in the literature [80–105].

However, thanks to recent works [89, 106], it has been found that in such non-linear
massive gravity theories, the flat homogeneous and isotropic Friedmann-Lemâıtre-Robertson-
Walker (FLRW) universe, which is supported by various cosmological observations, cannot
be stable. Hence, massive gravity theories in the context of general relativity explained
above, which is called “the massive general relativity (GR)” in the literature, have been
extended, for instance, an extended version of the dRGT theory [107], a massive bi-metric
F (R) gravity theory [108, 109], a new massive F (R) gravity [110, 111] proposed very recently,
a scale invariant theory with a dilaton field, or which is called the “Quasi-Dilaton” massive
gravity (QMG) [112, 113] and its extended versions [114], and mass varying scenario in which
a massive graviton mass depends on a dynamical scalar field [115–117].
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In this paper, with the procedure proposed in ref. [118], which corresponds to a kind
of simpler and more useful reconstruction method made by developing the formulation in
ref. [119], we derive F (R) gravity models in which bounce cosmology can occur. In particu-
lar, in the flat FLRW universe we perform the analysis for two cases that the scale factor is
described by exponential and power-law forms. We study the perturbations from the back-
ground solutions and explicitly explore the stability conditions for these models to be stable.
In addition, we investigate an F (R) gravity model with the scale factor having a sum of
exponentials form, where the unification of the bouncing behavior in the early universe and
the late-time cosmic acceleration can be realized. Furthermore, in the FLRW universe with
non-zero spatial curvature, for an exponential form of the scale factor, we reconstruct F (R)
gravity models in which a function of F (R) is expressed by a polynomial in terms of R. Also,
for the scale factor with an exponential form, in the flat FLRW universe, we build F (R) grav-
ity models by using the reconstruction method [120–123] and explore the stability conditions.
We also reconstruct an F (R) bigravity model realizing bounce cosmology. Incidentally, the
bouncing behavior and cyclic cosmology in extended non-linear massive gravity [124] and
bounce cosmology in bigravity [125] have been investigated.

Here, we clarify our purpose of this study. As the first step, in this work we reconstruct
F (R) gravity and F (R) bigravity models with the bouncing behavior. In particular, for F (R)
gravity, we build models in which not only the bounce in the early universe but also the late-
time cosmic acceleration occurs and examine the stability of these models. At the current
stage, these models are still toy models. However, we note that some of the considered models
with an R2 term are known to be viable models for the early-time inflation. Moreover, it
should be emphasized that bounce cosmology may be a natural part of the complete and
viable history of the universe. This is the reason to study better such cosmologies. Our
final goal is to construct the so called viable F (R) gravity and F (R) gravity models, in
which all the cosmological various processes of expansion history of the universe with a
bounce can be realized. This developed subject should be executed as another separate
work in the near future. We use units of kB = cl = ~ = 1, where cl is the speed of light,
and denote the gravitational constant 8πGN by κ2 ≡ 8π/MPl

2 with the Planck mass of

MPl = G
−1/2
N = 1.2× 1019 GeV.

The paper is organized as follows. In section II, we explain a reconstruction method of
F (R) gravity. With this procedure, we derive F (R) gravity models realizing bounce cosmol-
ogy in section III. Furthermore, in section IV we examine the stability of the reconstructed
F (R) gravity models. In section V, we also build an F (R) model where both the bounce
in the early universe and the late-time cosmic acceleration can occur in a unified manner.
In section VI, we investigate an exponential form of the scale factor for the non-zero spatial
curvature, while in section VII, we explore it for the zero spatial curvature. Moreover, in
section VIII we reconstruct F (R) bigravity models in which the bouncing phenomenon can
happen. In section IX, conclusions are presented.

2 Reconstruction method of F (R) gravity

In this section, we explain the reconstruction method of F (R) gravity [118]. The action of
F (R) gravity with matter is expressed as

S =

∫
d4x
√
−gF (R)

2κ2
+

∫
d4xLM (gµν ,ΨM) , (2.1)

with LM the matter Lagrangian and ΨM matter fields.

– 3 –
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In the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe, the metric is given
by

ds2 = −dt2 + a2(t)
∑

i=1,2,3

(
dxi
)2
, (2.2)

with a the scale factor.

Here, we introduce the number of e-folds defined by N ≡ ln (a/a∗), where a is a scale
factor and a∗ is a value of a at a time t∗. When we take t∗ = t0 with t0 the present time
and and a∗ = a0 at t = t0, we can also define the redshift z as z ≡ a0/a− 1. Moreover, the
Hubble parameter is given by H ≡ ȧ/a, where the dot denotes the time derivative of ∂/∂t,
and we describe it by using a function of g̃(N) as H = g̃(N = − ln (1 + z)). Furthermore, we
write H2 as H2 ≡ G(N) = g̃2(N) with G(N) a function of N . With the quantities defined
above, in this background the Friedmann equation reads

9G(N(R))
(
4G′(N(R)) +G′′(N(R))

) d2F (R)

dR2

−3

(
G(N(R)) +

1

2
G′(N(R))

)
dF (R)

dR
+

1

2
F (R)− κ2ρM = 0 , (2.3)

with

ρM =
∑
i

ρM i0a
−3(1+wi) =

∑
i

ρM i0a
−3(1+wi)
0 exp [−3 (1 + wi)N ] . (2.4)

Here, ρM is the sum of energy density of all matters assumed to be fluids with a constant
equation of state wi defined as wi ≡ PM i/ρM i, where the subscription “i” shows the label of
the fluids and ρM i and PM i are the energy density and pressure of the i-th fluid, respectively,
ρM i0 is a constant, and the prime denotes the derivative with respect to N as G′(N) ≡ dG/dN
and G′′(N) ≡ d2G/dN2.

3 F (R) gravity realizing bounce cosmology

In this section, we study the cosmological background evolutions in the matter bounce cos-
mology and reconstruct F (R) gravity models realizing it.

3.1 Exponential model

We examine the case that the scale factor is expressed by an exponential form. For instance,
we consider a bouncing solution which behaves as

a(t) ∼ eαt
2
. (3.1)

Here, α is a constant with the dimension of mass squared ([Mass]2). In the following, we set
N ≡ ln a(t)/a(t = 0), where a(t = 0) = 1 because we study the bouncing behavior around
t = 0. We now use the reconstruction in ref. [118]. From eq. (2.3), we solve the following
differential equation:

0 = −9G (N (R))
(
4G′ (N (R)) +G′′ (N (R))

) d2F (R)

dR2

+

(
3G (N (R)) +

3

2
G′ (N (R))

)
dF (R)

dR
− F (R)

2
. (3.2)

– 4 –
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Figure 1. The Hubble parameter (solid line) in the second relation in (3.4) for α = 1/2 around a
bounce at t = 0. The dotted line shows H = 0.

Here, we have neglected a contribution from matters and G(N) = H(N)2 and the scalar
curvature R is given by

R = 3G′(N) + 12G(N) . (3.3)

For the model (3.1), we find

N = αt2 , H = Ṅ = 2αt , (3.4)

which give

G(N) = 4αN , R = 12α (1 + 4N) , (3.5)

and therefore

N = −1

4
+

R

48α
. (3.6)

Then, eq. (3.2) has the following form:

0 = −144α2

(
−1 +

R

12α

)
d2F

dR2
+ 3α

(
1 +

R

12α

)
dF

dR
− F

2
. (3.7)

A solution of (3.7) is given by

F (R) =
1

α
R2 − 72R+ 144α . (3.8)

In figure 1, we show the behavior of the Hubble parameter in the second relation in (3.4)
for α = 1/2 around a bounce at t = 0. From this figure, we see that before the bounce (t < 0),
H < 0, while after it (t > 0), H > 0. Thus, the bouncing behavior occurs.

It should clearly be mentioned that the metric with the scale factor (3.1) does not
have a finite maximum in the Riemann curvature, whereas the Riemann curvature takes its
minimum by modulus in the bounce epoch. Thus, this space-time is irrelevant to the thing
necessary to remove a cosmological singularity. By the same reason as written above, in the
model described by eq. (3.8) the Starobinsky inflation [52] cannot be realized. When the

– 5 –



J
C
A
P
0
1
(
2
0
1
4
)
0
0
8

Starobinsky inflation occurs, the scale factor at the slow-roll inflationary stage is given by
a(t) ∝ exp

(
H1t−M2t2/12

)
, where H1 and M are constants with the dimension of mass.

Also, we explore the stability with respect to tensor perturbations, namely, the required
condition F ′(R) > 0. It follows from the second relation in (3.5) with the first one in (3.4)
and eq. (3.8) that we have F ′(R) = (2/α) (R− 36α) = 48

(
2αt2 − 1

)
. Hence, when a bounce

occurs at t = 0, we find F ′(R) < 0. We also see that F ′(R) = 0 at R = 36α. As a result, the
bounce of the scale factor in eq. (3.1) occurs in the unphysical regime of a negative effective
gravitational constant, so that graviton can become a ghost. In addition, for α > 0, F ′′(R) =
2/α > 0, and therefore the stability condition for the cosmological perturbations [23, 126–
128] can be satisfied. Moreover, in refs. [129] and [130] it has been found that even at the
classical level, it is not able to pass the point in which F ′(R) = 0 for a finite R because in a
generic solution a strong anisotropic curvature singularity appears.

3.2 Power-law model

On the other hand, it is known that for the case in which the scale factor is expressed by a
power-law model, given by

a(t) = ā

(
t

t̄

)q
+ 1 , (3.9)

where ā(6= 0) a constant, t̄ is a fiducial time, and q = 2n with n is an integer, a power-law
model of F (R) gravity would be reconstructed. In this case, we acquire

N = ln

[
ā

(
t

t̄

)q
+ 1

]
, (3.10)

H =
āq (1/t̄) (t/t̄)q−1

ā (t/t̄)q + 1
(3.11)

With eqs. (3.3), (3.10), (3.11) and G = H2, we find

G(N) =
(q
t̄

)2
ā2/qe−2N

(
eN − 1

)2(1−1/q)
, (3.12)

R = 6
(q
t̄

)2
ā2/qe−N

(
eN − 1

)1−2/q
(

2− 1

q

)
. (3.13)

Around the bounce behavior, we have N ' 0. Hence, by adopting an approximation eN ' 1

to eq. (3.13), we obtain R ' 6 (q/t̄)2 ā2/q
(
eN − 1

)1−2/q
(2− 1/q). With this approximate

expression of R, eq. (3.2) reads

− q − 2

2q − 1
R2d

2F (R)

dR2
+R

dF (R)

dR
− F (R) = 0 , (3.14)

where we have also neglected the matter contributions. As a solution, we have

F (R) = F̄Rβ , (3.15)

β = 1 ,
2q − 1

q − 2
, (3.16)

with F̄ ( 6= 0) a constant. It has first been shown in ref. [131] that there exist power-law
solutions for such a monomial form of F (R).

– 6 –
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Figure 2. The Hubble parameter in eq. (3.11) around a bounce at t = 0 for ā = 1.0, q = 2 with
n = 1, and t̄ = 1. Legend is the same as figure 1.

In figure 2, for ā = 1.0, q = 2 with n = 1, and t̄ = 1, we depict the behavior of the
Hubble parameter in eq. (3.11) around a bounce at t = 0. It follows from this figure that
before the bounce (t < 0), H < 0, whereas after it (t > 0), H > 0, similarly to that in
figure 1. As a result, the bouncing behavior happens.

For the scale factor in eq. (3.9), from eq. (3.15) we obtain F ′(R) = F̄ βRβ−1, where
R is given by eq. (3.13). When a bounce happens, we have N ' 0 and thus R ≥ 0. As
a consequence, we see that for F̄ > 0, F ′(R) > 0. Furthermore, for β > 1, i.e., q = 2n
with n > 1, F ′′(R) = F̄ β (β − 1)Rβ−2 > 0. Hence, the condition of the stable cosmological
perturbations can be met [23, 126–128]. We mention that in this power-law model in eq. (3.15)
with F̄ > 0, in the limit R → 0, namely, in the bounce, we find F ′(R) = 0 at R = 0. In
this case, since R vanishes when F ′(R) = 0, F ′(R) does not pass the point where F ′(R) =
0 [129, 130].

We also remark that in the matter bounce cosmology with two fields [43], for a ∝ (t− t̄)s
with s a constant, cosmological background evolutions consist of the following four phases:
(i) matter contraction phase, (ii) the Ekpyrotic contraction phase, (iii) bounce phase, and
(iv) fast-roll expansion phase. In the matter contraction, the Ekpyrotic contraction, and
fast-roll expansion phases, the scale factor a behaves as power-law type in eq. (3.9), while
in the bounce phase, a evolves as exponential type in eq. (3.1). For the matter contraction
phase, we find s = 2/3, for the Ekpyrotic contraction phase, s would not be set to a specific
value, whereas in the fast-roll expansion phase, we have s = 1/3. On the other hand, for
the Ekpyrotic contraction phase, if the scale factor is described by eq. (3.1), we see that α is
determined by the detailed physics on micro scales of the bounce process. Finally, it should
be emphasized that a specific case of the matter bounce scenario [31–34, 43] investigated by
Brandenberger et al. is able to be realized also in F (R) gravity.

4 Stability of the solutions

In this section, with the procedure of the first reference in ref. [24–30], we examine the
stability of the solutions in F (R) gravity models obtained in section III.

– 7 –
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We suppose that a solution of eq. (2.3) is expressed as G = Gb(N). The description
of G including the perturbation δG(N) from the background solution Gb(N) is given by
G(N) = Gb(N) + δG(N). Here, we note that N(≥ 0) is equal to or larger than 0. (This
is clearly seen from the first equation in (3.4) with α > 0 and eq. (3.10) with ā > 0.) By
substituting this expression into eq. (2.3), we find

J1δG
′′
(N) + J2δG

′
(N) + J3δG(N) = 0 , (4.1)

J1 ≡ Gb(N)
d2F (R)

dR2
, (4.2)

J2 ≡ 3Gb(N)

[(
4G

′
b(N) +G

′′
b(N)

) d3F (R)

dR3
+

(
1− 1

6

G
′
b(N)

Gb(N)

)
d2F (R)

dR2

]
, (4.3)

J3 ≡ Gb(N)

[
12
(

4G
′
b(N) +G

′′
b(N)

) d3F (R)

dR3

−

(
4− 2

G
′
b(N)

Gb(N)
−
G

′′
b(N)

Gb(N)

)
d2F (R)

dR2
+

1

3

1

Gb(N)

dF (R)

dR

]
, (4.4)

where the values of dF (R)/dR, d2F (R)/dR2 and d3F (R)/dR3 are the ones at R = 3G
′
b(N)+

12Gb(N) following from eq. (3.3). Thus, the stability conditions J2/J1 > 0 and J3/J1 > 0
can be written as

6
(

4G
′
b(N) +G

′′
b(N)

) d3F (R)

dR3

(
d2F (R)

dR2

)−1

+

(
6−

G
′
b(N)

Gb(N)

)
> 0 , (4.5)

36
(

4G
′
b(N) +G

′′
b(N)

) d3F (R)

dR3

(
d2F (R)

dR2

)−1

−3

(
4− 2

G
′
b(N)

Gb(N)
−
G

′′
b(N)

Gb(N)

)
+

1

Gb(N)

dF (R)

dR

(
d2F (R)

dR2

)−1

> 0 . (4.6)

4.1 Stability of the exponential model

In the case that the scale factor is described by an exponential form in the exponential model,
with eqs. (3.3), (3.5) and (3.8) we see that Gb = 4αN and therefore the first condition in (4.5)
reads 6−1/N > 0. Moreover, regarding the second condition in (4.6), the quantity on the left-
hand side is equal to zero. In other words, the quantity J3/J1 is not negative. Consequently,
if N < 0 or N > 1/6, the solution could be stable. The latter condition can be satisfied
because N has to be much larger than unity. Thus, the exponential model of the scale factor
could be stable.

4.2 Stability of the power-law model

When the scale factor has a power-law form, given by eq. (3.9), the first stability condi-
tion (4.5) becomes

2

eN − 1

[
q

2q − 1
(β − 2)

(
6− 1

q
− 4eN

q
+

2eN

q2
− 4e−N

)
+ 3

(
eN − 1

)
−
(

2− eN

q

)]
' 2

eN − 1

[
β

(
1− 2

q

)
+

5

q
− 4

]
> 0 , (4.7)
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whereas the second stability condition (4.5) reads

6

(eN − 1)2

{(
−2− 5

q
+

2eN

q2
+ 4e−N

)
eN

+

[
2

(
1− 2

q

)
(β − 2) + 2

(
1− eN

q

)
+

1

β − 1
eN
(

2− 1

q

)] (
eN − 1

)}
' 6

(eN − 1)2

1

q2
(2q − 1) (q − 2) > 0 . (4.8)

Here, in deriving eqs. (4.7) and (4.8), we have used eN ' 1 in those numerators. From
eq. (4.7), we see that if β (1− 2/q)+5/q−4 > 0, the first stability condition can be satisfied.
Furthermore, it follows from eq. (4.8) that for q < 1/2 or q > 2, the second stability condition
can be met.

5 Unified F (R) model of bounce and the late-time cosmic accelerated
expansion

In this section, we reconstruct an F (R) model where not only the bouncing behavior in the
early universe but also the late-time accelerated expansion of the universe can be realized in
a unified manner.

5.1 Sum of exponentials model

As a concrete model, we investigate a sum of exponentials form for the scale factor

a(t) = eY + eY
2
, (5.1)

Y ≡
(
t

t̄

)2

. (5.2)

Here, we again note that t̄ is a fiducial time. In this model, for the limit t/t̄→ 0, i.e., in the
early universe, we obtain a→ eY , which is equivalent to a = eαt

2
with α = 1/t̄2 in eq. (3.1),

and hence the bouncing behavior can occur. While, in the limit t/t̄� 1, we find a→ eY
2

and
hence ä = 4 (1/t̄)2 Y

(
3 + 4Y 2

)
eY

2
> 0. Consequently, the late-time accelerated expansion

of the universe can be realized. In the following, we analyze cosmological quantities around
t = 0 in order to examine bounce cosmology. With N = ln a and H = Ṅ , the form of a in
eq. (5.1) leads to

N = ln
(

eY + eY
2
)
≈ ln

(
2 + Y +

3

2
Y 2

)
, (5.3)

H =
2 (1 + 3Y ) Ẏ

3Y 2 + 2Y + 4
≈ Ẏ

2
, (5.4)

where in deriving the approximate equalities in eqs. (5.3) and (5.4) we have expanded the
exponential function in terms of Y and used Y � 1. By solving the approximate equality
in eq. (5.3) with respect to Y and taking into account the fact that Y = (t/t̄)2 > 0 as in
eq. (5.2), we acquire

t = ±

√√
D − 1

3 (1/t̄)2 , (5.5)

D ≡ 6eN − 11 . (5.6)
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Here, D > 1 because t should be a real number. Thus, from this inequality we have eN > 2,
i.e., N > ln 2. This constraint on N can be satisfied because N � 1. From G = H2 and
eq. (3.3), we find

G(N) =
1

3t̄2

(
−1 +

√
6eN − 11

)
, (5.7)

R =
2

t̄2

(
1 + 2

√
6eN − 11

)
. (5.8)

Accordingly, by applying eqs. (5.7) and (5.8) to eq. (3.2) and providing that contributions
from matter are negligible, we acquire

− 24

t̄2

(
R− 6

t̄2

)
d2F (R)

dR2
+

(
R+

6

t̄2

)
dF (R)

dR
− 2F (R) = 0 . (5.9)

We find a solution of this equation as

F (R) = t̄2R2 − 36R+
36

t̄2
. (5.10)

Here, the reason why the solution in eq. (5.10) includes t̄ is that the dimension of the F (R)
form is adjusted to be mass squared ([Mass]2).

From eq. (5.10) with eqs. (5.5) and (5.8), we acquire F ′(R) = 2t̄2
(
R− 18/t̄2

)
=

24
[
(t/t̄)2 − 1

]
. Accordingly, when a bounce happens at t = 0, F ′(R) < 0. We also see

that F ′(R) = 0 at R = 18/t̄2. Consequently, for the scale factor in eq. (5.1), the bounce is
realized in the regime when a effective gravitational constant is negative, namely, graviton is
a ghost. On the other hand, since F ′′(R) = 2t̄2 > 0, the cosmological perturbations can be
stable [23, 126–128] .

In figure 3, we display the behavior of the Hubble parameter in the first equality with
t̄ = 1 in eq. (5.4) around a bounce at t = 0. In this figure, before the bounce (t < 0), we
have H < 0, and after it (t > 0), we obtain H > 0. This is the same behavior as figures 1
and 2, and therefore the bouncing behavior emerges.

5.2 Stability of the sum of exponentials model

For the double exponential model in eq. (5.1), the stability condition (4.5) reads

6

(
−2 +

√
6eN − 11

−1 +
√

6eN − 11

)
> 0 . (5.11)

This is satisfied if N > ln (5/2). Since N has to be much larger than unity, this condition
can be met. Moreover, for eq. (5.1), the left-hand side of the inequality (4.6) becomes zero.
Presumably, if we include higher order term in Y , the left-hand side of the inequality (4.6)
might be non-zero, and therefore that we can have some conditions on N , although it might
be quite difficult to execute the nvestigations analytically. Hence, it would be expected that
such a condition could be satisfied because of the large value of N . It follows from the above
considerations that the sum of exponentials model could be compatible with the stability
conditions.
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Figure 3. The Hubble parameter in the first equality with t̄ = 1 in eq. (5.4) around a bounce at
t = 0. Legend is the same as figure 2.

6 Exponential form of the scale factor for the non-zero spatial curvature

In sections III A and IV A, we have seen that in the flat FLRW universe, an exponential form
of the scale factor and the resultant second order polynomial model of F (R) gravity could be
a stable theory realizing the bounce cosmology. In this section, we examine an exponential
form of the scale factor for the non-zero spatial curvature, namely, in the non-flat FLRW
universe.

A more general form of the FLRW metric is written as

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (6.1)

where k = 0 (flat universe), +1 (closed universe) and −1 (open universe) is the spatial
curvature. The metric in eq. (6.1) with k = 0 is equivalent to that in eq. (2.2). The action
describing F (R) gravity is given by (2.1) and in this case, the gravitational field equations
read (

ȧ

a

)2

+
k

a2
=

κ2

3F ′(R)
(ρM + ρDE) , (6.2)

ä

a
= − κ2

6F ′(R)
(ρM + 3PM + ρDE + 3PDE) , (6.3)

where ρDE and PDE are the energy density and pressure of dark energy components of the
universe, respectively, defined by

ρDE ≡ −
1

κ2

(
1

2
F (R)− 1

2
RF ′(R) + 3

ȧ

a
ṘF ′′(R)

)
, (6.4)

PDE ≡
1

κ2

[
1

2
F (R)− 1

2
RF ′(R) +

(
2
ȧ

a
Ṙ+ R̈

)
F ′′(R) + Ṙ2F ′′′(R)

]
. (6.5)

Here, the prime denotes the derivative with respect to the scalar curvature R of ∂/∂R.

– 11 –



J
C
A
P
0
1
(
2
0
1
4
)
0
0
8

We examine the case that the scale factor is expressed as a linear combination of eλt

and e−λt, i.e.,
a(t) = σeλt + τe−λt , (6.6)

with λ, σ and τ constant real numbers (λ, σ, τ ∈ R), τσ 6= 0 and λ 6= 0. We note that for
τ = 0 in eq. (6.6), a ∝ eλt, and hence such a metric describes the de Sitter solution with the
Hubble parameter H = λ when k = 0. Also, we mention that if σ = τ = 1/ (2λ) for k = +1
or σ = −τ = 1/ (2λ) for k = +1, we can have the de Sitter solution [132]. For this model,
the corresponding expressions for the Hubble parameter and scalar curvature become

H(t) =
ȧ

a
= λ

σeλt − τe−λt

σeλt + τe−λt
, (6.7)

R(t) =
6(aä+ ȧ2 + k)

a2
=

6
[
2λ2

(
σ2e4λt + τ2

)
+ ke2λt

]
(σe2λt + τ)2

. (6.8)

6.1 Second order polynomial model

As a form of F (R) to realize the exponential model of the scale factor in eq. (6.6), we take a
second order polynomial in terms of R as

F (R) = α0 + α1R+ α2R
2 , (6.9)

where αj with j = 0, 1, 2 are constant real numbers (αj ∈ R). By substituting eqs. (6.6), (6.8)
and (6.9) into the gravitational field equations (6.2) and (6.3), we find

(α0 + 6α1λ
2)τ4 + 2e2λtτ2

[
3k(α1 − 12α2λ

2) + 2(α0 + 72α2λ
4)στ

]
+6e4λt

{
6k2α2 + 2k(α1 + 12α2λ

2)στ + [α0 − 2λ2(α1 + 96α2λ
2)]σ2τ2

}
+2e6λtσ2

[
3k(α1 − 12α2λ

2) + 2(α0 + 72α2λ
4)στ

]
+ e8λt(α0 + 6α1λ

2)σ4 = 0 , (6.10)

(α0 + 6α1λ
2)τ4 + 4e2λtστ3(α0 + 6α1λ

2)

−6e4λt
{

6k2α2 + 48kα2λ
2στ − [α0 + 6λ2(α1 + 48α2λ

2)]σ2τ2
}

+4e6λt(α0 + 6α1λ
2)σ3τ + e8λt(α0 + 6α1λ

2)σ4 = 0 . (6.11)

In addition, the following condition has to be satisfied

(α1 + 24α2λ
2)τ2 + 2e2λt(6kα2 + α1στ) + e4λt(α1 + 24α2λ

2)σ2 6= 0. (6.12)

It follows from eqs. (6.10) and (6.11) that we find the conditions in terms of the coefficients

α0 + 6α1λ
2 = 0 ,

3k(α1 − 12α2λ
2) + 2(α0 + 72α2λ

4)στ = 0 ,

6k2α2 + 2k(α1 + 12α2λ
2)στ + [α0 − 2λ2(α1 + 96α2λ

2)]σ2τ2 = 0 ,

6k2α2 + 48kα2λ
2στ −

[
α0 + 6λ2(α1 + 48α2λ

2)
]
σ2τ2 = 0 .

These equations are rewritten to

α0 + 6α1λ
2 = 0 ,

(α1 − 12α2λ
2)(k − 4λ2στ) = 0 ,[

3kα2 + (α1 + 24α2λ
2)στ

]
(k − 4λ2στ) = 0 , (6.13)

α2(k + 12λ2στ)(k − 4λ2στ) = 0 .
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For α0α1α2 6= 0, from the system of equations in (6.13) we have two different sets of the
conditions on the parameters: (a) α0 + 6α1λ

2 = 0, k− 4λ2στ = 0, and (b) α0 + 6α1λ
2 = 0,

α1 − 12α2λ
2 = 0, k + 12λ2στ = 0. In both cases, we acquire λ = ±

√
− α0

6α1
. Without loss

of generality, we can assume that λ > 0 and σ > 0. In this case, the set of solutions of the
gravitational field equations in the FLRW universe is divided into the following three types.

• Type I

α0α1 < 0 , α2 6=
α2

1

4α0
, λ =

√
− α0

6α1
, σ > 0 , τ =

k

4λ2σ
, k = ±1 .

From this set of parameters, we see that

R = −2α0

α1
, wDE = −1 ,

where wDE is the equation of state of the dark energy component defined by wDE ≡
PDE/ρDE.

• Type II

α0α1 < 0 , α2 = − α2
1

2α0
, λ =

√
− α0

6α1
, σ > 0 , τ =

−k
12λ2σ

, k = ±1 .

From this set of parameters, we find that

R = −2α0

α1

[
1 +

96e2λtkλ2σ2

(k − 12e2λtλ2σ2)2

]
, wDE = −1 + f(k, σ, τ, λ, α0, α1, α2) ,

where f is a function of the parameters k, σ, τ , λ, α0, α1, and α2.

• Type III

α0 = 0 , α1 = 0 , α2 6= 0 , λ > 0, σ > 0 , τ =
k

4λ2σ
, k = ±1 .

From this set of parameters, we obtain

R = 12λ2 , wDE = −1 .

It should be noted that for the form of the function F (R) in eq. (6.9), there is no solution
other than the de Sitter solution, if the cosmic curvature k is zero (and also f = 0).

We also remark that as the scale factor a(t) satisfying the above solutions, a more
general expression can be described by replacing t→ t− t1 with t1 another fiducial time, i.e.,

a(t) = σeλ(t−t1) + τe−λ(t−t1) .

Similarly, F (R) can be generalized as any function of the form

F (R) = βl
1

Rl
+ . . .+ β1

1

R
+ α0 + α1R+ . . .+ αmR

m , (6.14)

where βj (j = 1, . . . , l) and αi (i = 0, . . . ,m) are constants.
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6.2 Model consisting of an inverse power-law term

Next, we investigate the function F (R) expressed as [22]

F (R) = α1R+ β1
1

R
. (6.15)

With the similar procedure developed in the preceding subsection, we obtain the following
restrictions on the parameters

β1 + 48α1λ
4 = 0 , k − 4λ2στ = 0 .

In addition, the following condition has to be met

(β1 − 144α1λ
4)2 + (−36kα1λ

2 + β1στ)2 +
[
6k2α1 − (β1 − 48α1λ

4)σ2τ2
]2 6= 0 .

It is easy to rewrite this equation in the following form

9k4α2
1 − 3k2α1β1 + β2

1 6= 0 .

From this equation, we obtain the restrictions on the parameters

α1β1 < 0 , λ = 4

√
− β1

48α1
> 0 , σ > 0 , τ =

k

4λ2σ
, k = ±1 .

From this set of parameters, we see that

R = 12

√
− β1

48α1
, wDE = −1 .

It should be cautioned that in the model in eq. (6.15), the late-time cosmic acceleration
which is accepted from the quantum field theoretical point of view cannot be realized because
its de Sitter solution exists in the unstable region where F ′′(R) < 0.

We can consider a slightly different form of the function F (R) as

F (R) = α0 + α1R+ β1
1

R
. (6.16)

With the similar procedure developed in the preceding subsection, we obtain the following
restrictions on the parameters

β1 + 8α0λ
2 + 48α1λ

4 = 0, k − 4λ2στ = 0 . (6.17)

In addition, the following condition has to be met

(β1 − 144α1λ
4)2 + (β1στ − 36kα1λ

2)2 +
[
6k2α1 − (β1 − 48α1λ

4)σ2τ2
]2 6= 0 . (6.18)

It is easy to rewrite this equation in the following form

16(β1 + 6α0λ
2)2 + 4k2(6kα1 + α0στ)2 + (6kα0 + 4β1στ)2 6= 0 . (6.19)

For this type of a function F (R), we have more complicated solutions, but we can impose
additional restrictions and find a set of parameters for which F ′′(R) > 0. For example,

α1 > 0 , β1 > 0 , α0 = −2
√
α1β1 , λ =

1

2

(
β1

α1

)1/4

, σ > 0 , τ =
k

4λ2σ
, k = ±1 ,

(6.20)
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or

α1 > 0 , β1 > 0 , α0 = −
√

3
√
α1β1 , λ =

1

2

(
β1

3α1

)1/4

, σ > 0 , τ =
k

4λ2σ
, k = ±1 .

(6.21)

From this set of parameters, we see that

R = 12λ2, wDE = −1 . (6.22)

In summary, in this section, for the FLRW universe with non-zero spatial curvature,
when the scale factor is given by an exponential form in eq. (6.6), we have reconstructed
a second order polynomial F (R) model in terms of R and an F (R) model consisting of
both a term proportional to R and an inverse power-law term. It has been found that the
de Sitter solution can exist for the case with non-zero spatial curvature. Related to these
consequences, as noted in Introduction, we again mention that if the spatial curvature is
positive, i.e., k(> 0), and a massive scalar field exists, the scale factor as well as the Riemann
curvature can perform the bouncing behaviors [51]. Moreover, when the spatial curvature
has a non-zero value, namely, k(6= 0), in the Starobinsky model [52] there is a solution where
the scale factor can behave a bounce.

7 Exponential form of the scale factor for the zero spatial curvature

In the study of the bouncing behavior with an exponential form of the scale factor, it seems
that another version of the reconstruction method (with an auxiliary scalar field) is more
suitable. Hence, in this section we apply it to the derivation of F (R) gravity models realizing
bounce cosmology.

7.1 Reconstruction method of F (R) gravity

When the scale factor is given by an exponential form in eq. (6.6), with the reconstruction
method [120–123], we find F (R) gravity models with realizing the bounce cosmology. By
using proper functions P (t) and Q(t) of a scalar field t which we identify with the cosmic
time, the action in eq. (2.1) can be represented as

S =
1

2κ2

∫ √
−g (P (t)R+Q(t)) d4x . (7.1)

The variation with respect to t yields

dP (t)

dt
R+

dQ(t)

dt
= 0 , (7.2)

from which it is possible to solve t in terms of R as t = t(R). By substituting t = t(R) into
eq. (7.1), F (R) can be written as

F (R) = P (t(R))R+Q(t(R)) . (7.3)

With eq. (6.2), Q(t) is given by

Q(t) = −6H2(t)P (t)− 6H(t)
dP (t)

dt
. (7.4)
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Taking into account eq. (7.4), from eq. (6.3) we have the differential equation

d2P (t)

dt2
−H(t)

dP (t)

dt
+ 2Ḣ(t)P (t) = 0 , (7.5)

where we have used the expression of the Hubble parameter H = ȧ/a of the first equality
in (6.7). There are two different cases.

7.1.1 Case 1: λ > 0, σ > 0, τ > 0

The general solution of eq. (7.5) is given by

P (t) = (σeλt + τe−λt)

[
c1 cos

(
2
√

3 arctan

(
eλt
√
σ

τ

))
+ c2 sin

(
2
√

3 arctan

(
eλt
√
σ

τ

))]
,

where c1 and c2 are constants. From eq. (7.4), we have

Q(t) = −12λ2 e2λtσ − τ
e2λtσ + τ

{[
c1(σeλt − τe−λt) +

√
3c2

√
στ
]

cos

(
2
√

3 arctan

(
eλt
√
σ

τ

))
+
[
c2(σeλt − τe−λt)−

√
3c1

√
στ
]

sin

(
2
√

3 arctan

(
eλt
√
σ

τ

))}
. (7.6)

It follows from eq. (7.2) that

t± =
1

2λ
ln

[
−Rτ ± 2

√
6λτ
√
R− 6λ2

(R− 12λ2)σ

]
, 6λ2 ≤ R < 12λ2 .

By solving eq. (7.3), we find the most general form of F (R)

F
(1)
± (R) = 2

√
6λ
√
στ
(
A

(1)
± (R) cosC

(1)
± (R) +B

(1)
± (R) sinC

(1)
± (R)

)
,

where

A
(1)
± (R) = ±

√
3c2

√
R− 6λ2 + c1

√
12λ2 −R ,

B
(1)
± (R) = ∓

√
3c1

√
R− 6λ2 + c2

√
12λ2 −R ,

C
(1)
± (R) = 2

√
3 arctan

(√
6λ∓

√
R− 6λ2

√
12λ2 −R

)
.

Note that functions F
(1)
+ (R) and F

(1)
− (R) are defined for the range 6λ2 ≤ R < 12λ2. At the

boundaries of the domain, these functions are characterized by the following behavior

lim
R→6λ2+0

F
(1)
± (R) = 12λ2√στ

(
c1 cos

√
3

2
π + c2 sin

√
3

2
π

)
,

lim
R→12λ2−0

F
(1)
+ (R) = 12

√
3λ2√στc2 ,

lim
R→12λ2−0

F
(1)
− (R) = 12

√
3λ2√στ

(
c1 sin

√
3π − c2 cos

√
3π
)
.
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Figure 4. F
(1)
± (R) (6λ2 ≤ R < 12λ2) and F

(2)
+ (R) (R > 12λ2) as a function of R with the parameters

c1 = 1, c2 = 0; 1; 2; 3 (from the bottom to the top), λ = 1, σ = 1, τ = 1 for F
(1)
± (R) and τ = −1 for

F
(2)
+ (R).

Also, we mention that the function F
(1)
− (R) is fixed by the constants c1, c2, λ, σ, τ . We

acquire a central family of curves, the abscissa R0 of the point intersection of curves of this
family belongs to the region 6λ2 ≤ R < 12λ2 and determined from the equation√

12λ2 −R0 sinC
(1)
− (R0)−

√
3
√
R0 − 6λ2 cosC

(1)
− (R0) = 0 .

A similar situation holds for the function F
(1)
+ (R). The equation for R0 has the form

A
(1)
± (R0) cosC

(1)
± (R0) +B

(1)
± (R0) sinC

(1)
± (R0) = 0 .

In figure 4, we depict F
(1)
± (R) (6λ2 ≤ R < 12λ2) as a function of R with the parameters

c1 = 1, c2 = 0; 1; 2; 3, λ = 1, σ = 1 and τ = 1.

7.1.2 Case 2: λ > 0, σ > 0, τ < 0

The general solution of eq. (7.5) is given by

P (t) = (σeλt + τe−λt)

[
c1 cosh

(
2
√

3arctanh

(
eλt
√
−σ
τ

))
+ c2 sinh

(
2
√

3arctanh

(
eλt
√
−σ
τ

))]
.

From eq. (7.4), we obtain

Q(t) = −12λ2 e2λtσ − τ
e2λtσ + τ

{[
c1(σeλt − τe−λt)−

√
3c2
√
−στ

]
cosh

(
2
√

3arctanh

(
eλt
√
−σ
τ

))
+
[
c2(σeλt − τe−λt)−

√
3c1
√
−στ

]
sinh

(
2
√

3arctanh

(
eλt
√
−σ
τ

))}
.

From eq. (7.2), we obtain

t± =
1

2λ
ln

[
−Rτ ± 2

√
6λτ
√
R− 6λ2

(R− 12λ2)σ

]
, R > 12λ2 .

By solving eq. (7.3), we acquire the most general form of F (R)

F
(2)
± (R) = 2

√
6λ
√
−στ

(
A

(2)
± (R) coshC

(2)
± (R) +B

(2)
± (R) sinhC

(2)
± (R)

)
,
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where

A
(2)
± (R) = ±c1

√
R− 12λ2 ∓

√
3c2

√
R− 6λ2 ,

B
(2)
± (R) = ±c2

√
R− 12λ2 ∓

√
3c1

√
R− 6λ2 ,

C
(2)
± (R) = 2

√
3arctanh

[
∓
√

6λ+
√
R− 6λ2

√
R− 12λ2

]
.

We caution that F
(2)
− (R) has no real values for R > 12λ2.

At the boundaries of the domain, this function is characterized by the following behavior

lim
R→12λ2−0

F
(2)
+ (R) = −12

√
3λ2
√
−στc2 .

Hence, we have executed a reconstruction of F (R) gravity for the scale factor in eq. (6.6),
so that we have been able to build several types of F (R) gravity theories realizing bounce

cosmology. In figure 4, we plot F
(2)
+ (R) (R > 12λ2) as a function of R with the parameters

c1 = 1, c2 = 0; 1; 2; 3, λ = 1, σ = 1, and τ = −1.

7.2 Stability of the solutions

Next, we explore the stability of the obtained models. However, there are several problems
associated with the large arbitrariness in the choice of the coefficients and the unwieldy of

emerging relations. As an example, we study the stability of solutions F
(1)
− (R) for one specific

form of the metric.

For instance, we consider a bouncing solution in the form

a(t) =
1

2
eλt +

1

2
e−λt = cosh(λt). (7.7)

For this model, we find

N = ln cosh(t), H = Ṅ = λ tanh(λt) , (7.8)

which presents

G(N) = H2(N) = λ2
(
1− e−2N

)
, R = 3G′(N) + 12G(N) = 6λ2

(
2− e−2N

)
.

For the scale factor in eq. (7.7), the stability conditions (4.5) and (4.6) can be written as
follows.

• Case I (c1 = 0, c2 6= 0)

6− 2

−1 + e2N
+

2
√

3e−N

(−1 + e2N )
(

1 +
√

1− e−2N
) A cosC +B sinC

D cosC + E sinC
> 0 ,

− 12e−N

(−1 + e2N )
(

1 +
√

1− e−2N
) Ā cosC + B̄ sinC

D cosC + E sinC
> 0 ,
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• Case II (c1 6= 0, c2 = 0)

6− 2

−1 + e2N
+

2
√

3e−N

(−1 + e2N )
(

1 +
√

1− e−2N
) B cosC −A sinC

−E cosC +D sinC
> 0 ,

12e−N

(−1 + e2N )
(

1 +
√

1− e−2N
) B̄ cosC − Ā sinC

−E cosC +D sinC
> 0 ,

where

A =
(
−4 + 3e2N

) (
−3eN + 4e3N −

√
−1 + e2N + 4e2N

√
−1 + e2N

)
,

Ā = −
√

3
[(

4− 19e2N + 12e4N
)√
−1 + e2N − eN

(
−9 +

√
1− e−2N

)
− 4e5N

(
−2 +

√
1− e−2N

)
+ e3N

(
−18 + 5

√
1− e−2N

)]
,

B =
√

3
(
−2 + e2N

) [
1 + 4e4N

(
1 +

√
1− e−2N

)
− e2N

(
5 + 3

√
1− e−2N

)]
,

B̄ = 5 +
(

eN
√
−1 + e2N − 3e3N

√
−1 + e2N + 2e5N

√
−1 + e2N − 10e6N

)(
1 +

√
1− e−2N

)
− 13e2N

(
2 +

√
1− e−2N

)
+ e4N

(
31 + 25

√
1− e−2N

)
,

D =
√

3
[
−1 + 2e2N

(
1 +

√
1− e−2N

)]
,

E = −2eN + 2e3N −
√
−1 + e2N + 2e2N

√
−1 + e2N ,

C = 2
√

3 arctan
(

eN +
√
−1 + e2N

)
.

As a result, for case I, if N > 0.251224, whereas for case II, when N > 0.0701889,
both stability conditions can be met. Since the value of N is much larger than unity, these
stability conditions can be satisfied. Thus, we find that for the scale factor in eq. (6.6), the

model F
(1)
− (R) is stable.

In figure 5, we illustrate the behavior of the Hubble parameter in the second relation
with λ = 1 in (7.8) around a bounce at t = 0. From this figure, it is observed that before the
bounce (t < 0), H < 0, and after it (t > 0), H > 0. This behavior is the same as figures 1–3.
Accordingly, the bouncing behavior is realized.

8 F (R) bigravity and cosmological reconstruction

8.1 F (R) bigravity

We start with reviewing F (R) bigravity proposed in ref. [108]. The consistent model of
bimetric gravity, which includes two metric tensors gµν and fµν , was proposed in ref. [68]. It
contains the massless spin-two field, corresponding to graviton, and massive spin-two field.
It has been shown that the Boulware-Deser ghost [70] does not appear in such a theory.
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Figure 5. The Hubble parameter in the second relation with λ = 1 in (7.8) around a bounce at t = 0.
Legend is the same as figure 2.

We consider the following action:

SF = M2
g

∫
d4x
√
− det g R(g) +M2

f

∫
d4x
√
−det f R(f)

+ 2m2M2
eff

∫
d4x
√
−det g

4∑
n=0

β̄n en

(√
g−1f

)
−M2

g

∫
d4x
√
−det g

{
3

2
gµν∂µϕ∂νϕ+ V (ϕ)

}
+

∫
d4xLM (eϕgµν ,ΦM)

−M2
f

∫
d4x
√
−det f

{
3

2
fµν∂µξ∂νξ + U(ξ)

}
. (8.1)

Here, R(g) is the scalar curvature for gµν , R(f) is the scalar curvature for fµν , m is constant
mass of a massive graviton, Meff is defined by 1

M2
eff

= 1
M2

g
+ 1

M2
f

with Mg and Mf constants,

and β̄j (j = 0, . . . , 4) are constants. Moreover, ϕ and ξ are scalar fields, and V (ϕ) and U(ξ)

are the potential of ϕ and ξ, respectively. Furthermore, a tensor
√
g−1f is defined by the

square root of gµρfρν , that is,
(√

g−1f
)µ
ρ

(√
g−1f

)ρ
ν

= gµρfρν . For a general tensor Xµ
ν ,

en(X)’s are defined by

e0(X) = 1 , e1(X) = [X] , e2(X) = 1
2 ([X]2 − [X2]) , e3(X) = 1

6 ([X]3 − 3[X][X2] + 2[X3]) ,

e4(X) = 1
24 ([X]4 − 6[X]2[X2] + 3[X2]2 + 8[X][X3]− 6[X4]) , ek(X) = 0 for k > 4 , (8.2)

where [X] expresses the trace of arbitrary tensor Xµ
ν : [X] = Xµ

µ. By the conformal trans-
formations gµν → e−ϕgJ

µν and fµν → e−ξfJ
µν , the action (8.1) is transformed as

SF = M2
f

∫
d4x
√
−det fJ

{
e−ξRJ(f) − e−2ξU(ξ)

}
+ 2m2M2

eff

∫
d4x
√
−det gJ

4∑
n=0

β̄ne(n
2
−2)ϕ−n

2
ξen

(√
gJ−1fJ

)
+M2

g

∫
d4x
√
−det gJ

{
e−ϕRJ(g) − e−2ϕV (ϕ)

}
+

∫
d4xLM

(
gJ
µν ,ΦM

)
. (8.3)
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Note that the kinetic terms for ϕ and ξ vanish. By the variations with respect to ϕ and ξ as
in the case of convenient F (R) gravity [23], we obtain

0 = 2m2M2
eff

4∑
n=0

β̄n

(n
2
− 2
)

e(n
2
−2)ϕ−n

2
ξen

(√
gJ−1fJ

)
+M2

g

{
−e−ϕRJ(g) + 2e−2ϕV (ϕ) + e−2ϕV ′(ϕ)

}
, (8.4)

0 =− 2m2M2
eff

4∑
n=0

β̄nn

2
e(n

2
−2)ϕ−n

2
ξen

(√
gJ−1fJ

)
+M2

f

{
−e−ξRJ(f) + 2e−2ξU(ξ) + e−2ξU ′(ξ)

}
. (8.5)

These eqs. (8.4) and (8.5) can be solved algebraically with respect to ϕ and ξ as ϕ =

ϕ

(
RJ(g), RJ(f), en

(√
gJ−1fJ

))
and ξ = ξ

(
RJ(g), RJ(f), en

(√
gJ−1fJ

))
. Substituting the

expressions of ϕ and ξ into (8.3), we acquire the action of F (R) bigravity. We should mention,
however, that it is difficult to solve eqs. (8.4) and (8.5) with respect to ϕ and ξ explicitly.
Therefore, it might be easier to define the model in terms of the auxiliary scalars ϕ and ξ as
in (8.3).

We now explore the cosmological reconstruction program following ref. [108] but in a
slightly extended form. For simplicity, we start from the minimal case: β̄0 = 3, β̄1 = −1,
β̄2 = β̄3 = 0, and β̄4 = 24. In order to evaluate δ

√
g−1f , we examine two matrices M

and N , which satisfy the relation M2 = N . Since δMM + MδM = δN , we find tr δM =
1
2tr

(
M−1δN

)
. For a while, we investigate the Einstein frame action (8.1) in the minimal

case and we neglect the contributions from matters. By the variation with respect to gµν ,
we have

0 = M2
g

(
1

2
gµνR

(g) −R(g)
µν

)
+m2M2

eff

{
gµν

(
3− tr

√
g−1f

)
+

1

2
fµρ

(√
g−1f

)−1 ρ

ν
+

1

2
fνρ

(√
g−1f

)−1 ρ

µ

}
+M2

g

[
1

2

(
3

2
gρσ∂ρϕ∂σϕ+ V (ϕ)

)
gµν −

3

2
∂µϕ∂νϕ

]
. (8.6)

On the other hand, by the variation with respect to fµν , we find

0 = M2
f

(
1

2
fµνR

(f) −R(f)
µν

)
+m2M2

eff

√
det (f−1g)

{
−1

2
fµρ

(√
g−1f

)ρ
ν
− 1

2
fνρ

(√
g−1f

)ρ
µ

+ det
(√

g−1f
)
fµν

}
+M2

f

[
1

2

(
3

2
fρσ∂ρξ∂σξ + U(ξ)

)
fµν −

3

2
∂µξ∂νξ

]
. (8.7)

We should note that det
√
g det

√
g−1f 6=

√
f in general. The variations of the scalar fields

ϕ and ξ are given by

0 = −3�gϕ+ V ′(ϕ) , 0 = −3�fξ + U ′(ξ) . (8.8)

– 21 –



J
C
A
P
0
1
(
2
0
1
4
)
0
0
8

Here, �g (�f ) is the d’Alembertian with respect to the metric g (f), and the prime means
the derivative of the potential in terms of the argument as V ′(ϕ) ≡ ∂V (ϕ)/∂ϕ and U ′(ξ) ≡
∂U(ξ)/∂ξ. By multiplying the covariant derivative ∇µg with respect to the metric g with

eq. (8.6) and using the Bianchi identity 0 = ∇µg
(

1
2gµνR

(g) −R(g)
µν

)
and eq. (8.8), we obtain

0 = −gµν∇µg
(

tr
√
g−1f

)
+

1

2
∇µg
{
fµρ

(√
g−1f

)−1 ρ

ν
+ fνρ

(√
g−1f

)−1 ρ

µ

}
. (8.9)

Similarly, by using the covariant derivative ∇µf with respect to the metric f , from (8.7) we

find

0 = ∇µf

[√
det (f−1g)

{
−1

2

(√
g−1f

)−1ν

σ
gσµ − 1

2

(√
g−1f

)−1µ

σ
gσν + det

(√
g−1f

)
fµν
}]

.

(8.10)

In case of the Einstein gravity, the conservation law of the energy-momentum tensor corre-
sponds to the Bianchi identity. In case of bigravity, however, the conservation laws of the
energy-momentum tensor of the scalar fields are independent of the Einstein equation. The
Bianchi identities give eqs. (8.9) and (8.10) independent of the Einstein equation.

We assume the FLRW universes for the metrics gµν and fµν and use the conformal time
t for the universe with the metric gµν :

ds2
g =

3∑
µ,ν=0

gµνdx
µdxν = a(t)2

[
−dt2 +

3∑
i=1

(
dxi
)2]

,

ds2
f =

3∑
µ,ν=0

fµνdx
µdxν = −c(t)2dt2 + b(t)2

3∑
i=1

(
dxi
)2
. (8.11)

Then, (t, t) and (i, j) components of (8.6) lead to

0 =− 3M2
gH

2 − 3m2M2
eff

(
a2 − ab

)
+

(
3

4
ϕ̇2 +

1

2
V (ϕ)a(t)2

)
M2
g , (8.12)

0 = M2
g

(
2Ḣ +H2

)
+m2M2

eff

(
3a2 − 2ab− ac

)
+

(
3

4
ϕ̇2 − 1

2
V (ϕ)a(t)2

)
M2
g . (8.13)

Here, H = ȧ/a is the Hubble parameter as defined in section II. On the other hand, (t, t)
and (i, j) components of (8.7) yield

0 =− 3M2
fK

2 +m2M2
effc

2

(
1− a3

b3

)
+

(
3

4
ξ̇2 − 1

2
U(ξ)c(t)2

)
M2
f , (8.14)

0 = M2
f

(
2K̇ + 3K2 − 2LK

)
+m2M2

eff

(
a3c

b2
− c2

)
+

(
3

4
ξ̇2 − 1

2
U(ξ)c(t)2

)
M2
f , (8.15)

where K = ḃ/b and L = ċ/c. Both eqs. (8.9) and (8.10) present the identical equation:

cH = bK or
cȧ

a
= ḃ . (8.16)

If ȧ 6= 0, we have c = aḃ/ȧ. On the other hand, if ȧ = 0, we find ḃ = 0, that is, a and b are
constant and c can be arbitrary.
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We redefine scalars as ϕ = ϕ(η) and ξ = ξ(ζ) so that we can identify η and ζ with the
conformal time t, i.e., η = ζ = t. Hence, we acquire

ω(t)M2
g =− 4M2

g

(
Ḣ −H2

)
− 2m2M2

eff(ab− ac) , (8.17)

Ṽ (t)a(t)2M2
g =M2

g

(
2Ḣ + 4H2

)
+m2M2

eff(6a2 − 5ab− ac) , (8.18)

σ(t)M2
f =− 4M2

f

(
K̇ − LK

)
− 2m2M2

eff

(
−c
b

+ 1
) a3c

b2
, (8.19)

Ũ(t)c(t)2M2
f =M2

f

(
2K̇ + 6K2 − 2LK

)
+m2M2

eff

(
a3c

b2
− 2c2 +

a3c2

b3

)
, (8.20)

with

ω(η) = 3ϕ′(η)2 , Ṽ (η) = V (ϕ (η)) , σ(ζ) = 3ξ′(ζ)2 , Ũ(ζ) = U (ξ (ζ)) . (8.21)

Here, ϕ′(η) ≡ ∂ϕ(η)/∂η and ξ′(ζ) ≡ ∂ξ(ζ)/∂ζ. Thus, for arbitrary a(t), b(t), and c(t), if we
choose ω(t), Ṽ (t), σ(t), and Ũ(t) to satisfy eqs. (8.17)–(8.20), the cosmological model with
given evolutions of a(t), b(t), and c(t) can be reconstructed.

8.2 Cosmological bouncing models

Next, we construct cosmological bouncing models. The physical metric, where the scalar
does not directly couple with matter, is given by multiplying the scalar field to the metric
in the Einstein frame in (8.1): gJ

µν = eϕgµν . In the bigravity model, there appears another
(reference) metric tensor fµν besides gµν . In our model, since the matter only couples with
gµν , the physical metric could be given by gJ

µν .
In our formulation, it is convenient to use the conformal time description. The confor-

mally flat FLRW universe metric is given by

ds2 = ã(t)2

[
−dt2 +

3∑
i=1

(
dxi
)2]

. (8.22)

This equation (8.22) with gJ
µν = eϕgµν shows eϕ(t)a(t)2 = ã(t)2, that is, ϕ = −2 ln a(t) +

ln ã(t). By using (8.21), we find

ω(t) = 12
(
H − H̃

)2
. (8.23)

Here, H̃ ≡ 1
ã
dã
dt .

In the following, by making the choice a(t) = b(t) = 1, we explicitly construct the model
generating the bouncing behavior. We should remark that the choice a(t) = b(t) = 1 satisfies
the constraint (8.16).

When a(t) = b(t) = 1, the Einstein frame metric gµν expresses the flat Minkowski space,
although the metric we observe is given by gJ

µν . Equations (8.17), (8.18), (8.19), and (8.20)
with (8.23) are simplified as follows

ω(t)M2
g =12M2

g H̃
2 = m2M2

eff (c− 1) , (8.24)

Ṽ (t)M2
g =m2M2

eff (1− c) = −6M2
g H̃

2 , (8.25)

σ(t)M2
f =2m2M2

eff (c− 1) = 12M2
g H̃

2 , (8.26)

Ũ(t)M2
f =m2M2

effc (1− c) = −6M2
g H̃

2

(
1 +

6H̃2

m2M2
eff

)
. (8.27)

– 23 –



J
C
A
P
0
1
(
2
0
1
4
)
0
0
8

Equation (8.24) can be solved with respect to c as

c = 1 +
6H̃2

m2M2
eff

. (8.28)

We should note that both ω(t) and σ(t) are positive and hence there does not appear any
ghost in the theory.

We now study the bouncing solution

ã(t) ∼ eᾱt
2
, (8.29)

with ᾱ a positive constant. Since
H̃ ∼ 2ᾱt , (8.30)

we find

c(t) = 1 +
12ᾱ2M2

g t
2

m2M2
eff

, (8.31)

and

ω(η) = 12ᾱM2
g η

2 , Ṽ (η) = −12ᾱ2η2 ,

σ(ζ) =
24ᾱ2M2

g ζ
2

M2
f

, Ũ(η) = −
12ᾱ2M2

g ζ
2

M2
f

(
1 +

12ᾱ2M2
g ζ

2

m2M2
eff

)
. (8.32)

Consequently, for eq. (8.29), the solutions in (8.32) can be obtained. Moreover, the
exponential form of the scale factor in eq. (8.29) is equivalent to that in eq. (3.1), which can
lead to the bouncing behavior. This means that in the flat FLRW universe, for an exponential
form of the scale factor in F (R) bigravity, bounce cosmology can be realized, similarly to
that in F (R) gravity, as demonstrated in section III A. For the case that the scale factor has
an exponential form in eq. (8.29), in terms of the physical metric, the bouncing behavior in
F (R) bigravity is the same as that in F (R) gravity. On the other hand, for this case, in the
reference metric, i.e., the fiducial metric existing only in F (R) bigravity, it is clearly seen from
eqs. (8.29) and (8.31) that also in this reference metric, the bouncing behavior can occur,
but the contraction and expansion rates are different each other. In the physical metric,
H̃ = ˙̃a/ã ∼ 2ᾱt as given by eq. (8.30), while in the reference metric, ċ/c = 2It/

(
1 + It2

)
with I ≡ 12ᾱ2M2

g /
(
m2M2

eff

)
. The ratio of H̃ to ċ/c reads R ≡ H̃/ (ċ/c) ' ᾱI−1

(
1 + It2

)
.

Thus, when It2 � 1, the contraction and expansion rates in the physical metric are much
larger than those in the reference metric, while for It2 = O(1), namely, around the bouncing
epoch, the ratio defined above becomes R ∼ m2M2

eff/
(
ᾱ2M2

g

)
. This implies that whether

the contraction and expansion rates in the physical metric is larger or smaller than those in
the reference metric depends on the model parameters.

Furthermore, since the form of the scale factor ã(t) in eq. (8.29) in the physical metric
is equivalent to that of a(t) in eq. (3.1), it is considered that the same consequences as in
section III A in terms of the cosmological evolution and values of F ′(R) [129, 130] and F ′′(R)
would be obtained.

9 Conclusions

In the present paper, we have reconstructed F (R) gravity models where bounce cosmology can
occur. As concrete models, we have demonstrated the cases that in the flat FLRW universe,

– 24 –



J
C
A
P
0
1
(
2
0
1
4
)
0
0
8

the scale factor has exponential and power-law forms in eqs. (3.1) and (3.9), respectively. For
an exponential form of the scale factor in eq. (3.1), an F (R) gravity model with the second
order polynomial in terms of R is reconstructed, whereas for the power-law form, the resultant
F (R) function is proportional to R, equivalent to that in general relativity. In addition, we
have investigated the perturbations from the background solutions and examined the explicit
stability conditions for these reconstructed models. As a result, it has been found that these
models could be stable because the stability conditions can be satisfied. It has to be stressed
that the matter bounce scenario [31–34, 43] (for a specific case) proposed by Brandenberger
et al. is able to be reproduced also in F (R) gravity.

Also, we have explored a sum of exponentials form of the scale factor in eq. (5.1) in
order to derive an F (R) gravity model in which the bounce in the early universe and the
late-time accelerated expansion of the universe can be realized in a unified manner. In this
case, a second order polynomial F (R) gravity model is derived as in a model where the scale
factor consists of a single exponential term. For this model, we have analyzed the stability
condition and confirmed that it can be met. Accordingly, it is considered that the model
with the sum of exponentials form of the scale factor could be stable. It is remarkable that
the R2-gravity theory of the same type as the one realizing inflation occurs as the theory
which gives rise to bounce cosmology does.

Furthermore, in the FLRW universe with non-zero spatial curvature, for the scale factor
with an exponential form in eq. (6.6), we have reconstructed a second order polynomial F (R)
gravity model and an F (R) gravity model with a term proportional toR and that proportional
to 1/R [22]. As a consequence, it has been seen that only in the non-flat FLRW universe with
non-zero spatial curvature, a solution can exist, and that if the cosmic curvature vanishes,
we can obtain only the de Sitter solution and hence bounce cosmology cannot be realized.

Therefore, when the scale factor is given by an exponential form in eq. (6.6), by using
the reconstruction method, we have derived F (R) gravity models realizing bounce cosmol-
ogy. Regarding one model leading to bounce cosmology, we have also analyzed the stability
conditions and confirmed that these conditions can be satisfied and thus this model can be
stable.

Moreover, we have reconstructed an F (R) bigravity model in which bounce cosmology
can be realized. It has been verified that in F (R) bigravity, for an exponential form of the
scale factor in eq. (8.29), in the flat FLRW universe bounce cosmology can be realized. It is
interesting to emphasize that not only in the physical metric but also in the reference metric
the bouncing behavior can happen. Also, if the cosmic time is very far past or future from the
bouncing epoch, the contraction and expansion rates in the physical metric are much larger
than those in the reference metric. On the other hand, around the bouncing epoch, if the
values of the model parameters are determined, we can see which contraction and expansion
rates in the physical or reference metric are larger or smaller.
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