Bounce Problem with Weak Hypotheses of Regularity (*).

Danilo Percivalie

Summary. - In this paper the elastic bounce problem is formulated in very general hypotheses. More precisely we consider the motion of a material point constrained to move in a domain $\Omega \subset \boldsymbol{R}^{n}$, bouncing against its boundary, and we suppose that Ω is neither regular nor convex. Assuming that Ω is in the class of p-convex sets introduced in $[4]$ and $\partial \Omega \in C^{0,1}$, an existence theorem is stated.

Introduction.

In several recent papers the elastic bounce problem for a material point constrained to move in a bounded regular domain $\Omega \subseteq \boldsymbol{R}^{n}$ elastically reflected by the boundary of Ω (see [1], [6], [7]) has been studied. We remark explicitly that a function $x:[0,1] \rightarrow \boldsymbol{R}^{n}, x \in \operatorname{Lip}([0,1])$ is said to be a solution of the elastic bounce problem if, setting $\Omega=\{x: f(x) \leqslant 0\}$ with $f \in C^{2}$ and $d f(x) \neq 0$ on $\partial \Omega$, we have
i) $f(x(t)) \leqslant 0$;
ii) there exists a positive Radon measure μ on $[0,1]$ such that

$$
\begin{equation*}
\operatorname{spt} \mu \subseteq\{t: f(x(t))=0\} \quad \text { and } \quad \ddot{x}=-\mu \nabla f(x(t)) ; \tag{P}
\end{equation*}
$$

iii) the function $\mathcal{E}: t \rightarrow|\dot{x}(t)|^{2}$ is continuous on $[0,1]$.

Indeed such a formulation applies only when Ω is regular enough (namely $\partial \Omega \in C^{1}$) and we have existence results only when f is at least of class $C^{1,1}$.

Another formulation was given by M. Schatzman assuming the convexity of Ω and neglecting the regularity of $\partial \Omega$ (see [8]).

In both cases we cannot consider-for example-those domains of \boldsymbol{R}^{n} which are piecewise "regular» and piecewise «convex» (see Fig. 1).

The aim of this paper is to find an adequate formulation of the elastic bounce problem (which is equivalent to the preceding ones in the "regular» and in the "convex» case) and a larger class of domains (in general neither regular nor convex) to which such a formulation can be applied.
(*) Entrata in Redazione il 9 aprile 1985.
Indirizzo dell'A.: Scuola Normale Superiore, 56100 Pisa, Italia.

Fig. 1.

Here is an outline of the paper.
In Section I we give some definitions and results which are useful tools in proving our main theorems. The notion of (p, q)-convexity is defined and its connection with I-convergence is pointed out.

In Section II we reformulate the elastic bounce problem in non convex and non regular domains and we state an "equivalence» theorem between the "classical" and this new formulation of the elastic bounce problem; moreover an existence theorem in p-convex domains having Lipschitz continuous boundary is stated.

Sections III and IV are devoted to the proof of the previous theorems; as for the latter case we remark that the method consists in defining suitable approximating problems whose limit (in the sense of Γ-convergence) is the generalized elastic bounce problem itself.

Acknowledgement. - I wish to thank Prof. E. De Giorgi who suggested this research.

I. - Notations and preliminary results.

Let (X, d) be a metric space and $f_{h}: X \rightarrow \boldsymbol{R}$. We set

$$
\begin{aligned}
& \Gamma\left(X^{-}\right) \liminf _{h \rightarrow \infty} f_{h}(x)=f_{\infty}(x)=\sup _{A \in \mathcal{\gamma}_{x}} \lim \inf _{h \rightarrow \infty} \inf _{y \in A} f_{h}(y) \\
& \Gamma\left(X^{-}\right) \limsup _{h \rightarrow \infty} f_{h}(x)=f_{\infty}^{+}(x)=\sup _{A \in \dot{f} X_{x}} \limsup _{h \rightarrow \infty} \inf _{y \in A} f_{h}(y)
\end{aligned}
$$

and we say that

$$
\Gamma\left(X^{-}\right) \lim _{h \rightarrow \infty} f_{h}(x)=f_{\infty}(x)
$$

if and only if $f_{\infty}^{+}(x) \equiv f_{\infty}^{-}(x)=f_{\infty}(x)$.

The following properties will be useful in the sequel
Proposition I.1. - Let (X, d) be a metric space, $f_{h}, f_{\infty}: X \rightarrow \boldsymbol{R}$ such that

$$
\Gamma\left(X^{-}\right) \lim _{h \rightarrow \infty} f_{h}=f_{\infty}
$$

then

$$
\inf _{A} f_{\infty} \geqslant \limsup _{h \rightarrow \infty} \inf _{A} f_{h}
$$

for every open set $A \subseteq X$.
Proof. - From the definition of Γ-limit we argue

$$
f_{\infty}(x) \geqslant \limsup _{h \rightarrow \infty} \inf _{y \in A} f_{h}(y)
$$

whence the thesis.
Definition I.2. - Let $x_{0} \in X, \varrho>0$; we put

$$
(\operatorname{Dm} f)\left(x_{0}, \varrho\right)=f\left(x_{0}\right)-\inf _{B_{g}\left(x_{0}\right)} f(x)
$$

with the convention $+\infty-\infty=0$.
($\mathrm{Dm} f)\left(x_{0}, \varrho\right)$ is called «lack of minimality» of x_{0} in $B_{\varrho}\left(x_{0}\right)$.
Proposition I.3. - If $\varrho>0, \Gamma\left(X^{-}\right) \lim f_{h}=f_{\infty}, x_{h} \rightarrow x_{0} \in X^{-}$then

$$
\left(\operatorname{Dm} f_{\infty}\right)\left(x_{0}, \varrho\right) \leqslant \liminf _{h \rightarrow \infty}\left(\operatorname{Dm} f_{h}\right)\left(x_{h}, \varrho\right) .
$$

Proof. - The proof follows easily from Proposition I.1.
Remark I.4. - x_{0} is a minimum point for f_{∞} in $B_{\rho}\left(x_{0}\right)$ if and only if ($\left.\mathrm{Dm} f_{\infty}\right)\left(x_{0}\right.$, $\varrho)=0$; therefore if $\left(\operatorname{Dm} f_{h}\right)\left(x_{0}, \varrho\right)=0$ we argue $\left(\operatorname{Dm~} f_{\infty}\right)\left(x_{0}, \varrho\right)=0$ and x_{0} is a minimum point for f_{∞} in $B_{0}\left(x_{0}\right)$.

In addition to the previous hypothesis we suppose now that X is a Hilbert space, $\|:\|$ its norm, $\langle\cdot, \cdot\rangle$ its inner product and $f: X \rightarrow \overline{\boldsymbol{R}}$ is a proper lower semicontinuous function. We set $D(f)=\{x \in X: f(x) \in \boldsymbol{R}\}$ and for each $y \in D(f)$ we define

$$
\partial^{-} f(y)=\left\{\alpha \in X: \liminf _{z \rightarrow y} \frac{f(z)-f(y)-\langle\alpha, z-y\rangle}{\|z-y\|} \geqslant 0\right\}
$$

the set of subdifferentials of f at y.
Remark I.5. - Suppose that $(\operatorname{Dm} f)\left(x_{0}, \varrho\right)=0$ and $f\left(x_{0}\right)<+\infty$ then $0 \in \partial^{-} f\left(x_{0}\right)$.
We now need some further definitions.

Definition I.6. - Let $f: X \rightarrow \boldsymbol{R} \cup\{+\infty\}$ a l.s.c. function. We say that f is a (p, q)-convex function if for every $x, y \in X$ there exists $z \in X$ such that
i) $\left|z-\frac{x+y}{z}\right| \leqslant p|x-y|^{2} ;$
ii) $2 f(z) \leqslant f(x)+f(y)-2 q|x-y|^{2}$.

REMARK I.7. - If f has Lipschitz continuous gradient and M is the Lipschitz constant of grad f then f is ($0,-M / 8$)-convex.

We recall now some properties of (p, q)-convex functions (see [4], [5]).
Proposition I.7. - If f is (p, q)-convex then for every $x, y \in X, 16 p\|y\| \leqslant 1$ and for every $\alpha \in \partial^{-} f(x)$ we have

$$
\begin{equation*}
f(x+y) \geqslant f(x)+\langle\alpha, y\rangle-8(q-|\alpha| p)-\|y\|^{2} \tag{1}
\end{equation*}
$$

Proposition I.8. - Let $\left\{x_{h}\right\}_{h \in N}$ be a sequence of points such that $x_{h_{h}} \rightarrow x_{0}$ and $f\left(x_{h}\right)+f\left(x_{0}\right)<+\infty$ and suppose that there exists a sequence $\left\{\alpha_{h}\right\}_{h \in \boldsymbol{N}}$ such that $\alpha_{h} \in \partial^{-} f\left(x_{h}\right)$ and $\alpha_{h} \xrightarrow{w} \alpha \in X$. Then $\alpha \in \partial^{-} f\left(x_{0}\right)$ and $f\left(x_{h}\right) \rightarrow f\left(x_{0}\right)$.

Proof. - Let $y \in D(f)$ and let y_{n} be a sequence such that $f(y)=\lim _{h} f\left(y_{h}\right)$ and $y_{h} \rightarrow y$. Since $f\left(x_{0}\right) \leqslant \liminf _{h \rightarrow \infty} f\left(x_{h}\right)$ from (1) we argue

$$
f\left(y_{n}\right) \geqslant f\left(x_{n}\right)+\left\langle\alpha_{h}, y_{n}-x_{n}\right\rangle-8\left(q-\left|\alpha_{n}\right| p\right)^{-}\left\|y_{h}-x_{h}\right\|^{2}
$$

and therefore

$$
f(y) \geqslant f\left(x_{0}\right)+\langle\alpha, y-x\rangle-8(q-|\alpha| p)-\left\|y-x_{0}\right\|^{2}
$$

at least when $\left\|y-x_{0}\right\| \leqslant 1 / 16 p$ and therefore $\alpha \in \partial^{-} f\left(x_{0}\right)$. Let now $x_{n}^{\prime} \rightarrow x_{0}$ such that $f\left(x_{h}^{\prime}\right) \rightarrow f\left(x_{0}\right)$. By passing to the lim sup in the following inequality

$$
f\left(x_{h}^{\prime}\right) \geqslant f\left(x_{h}\right)+\left\langle\alpha_{h}, x_{h}^{\prime}-x_{h}\right\rangle-8\left(q-\left|\alpha_{h}\right| p\right)^{-}\left\|x_{h}^{\prime}-x_{h}\right\|^{2}
$$

we obtain $f\left(x_{0}\right) \geqslant \lim _{h} \sup f\left(x_{h}\right)$ and the proof is over.
It is not difficult to generalize this proof to obtain the following result (see [5]).
Proposition I.9. - Let $\left(f_{h}\right)_{h}$ be a sequence of (p, q)-convex functions such that $\Gamma\left(X^{-}\right) \lim f_{h}=f: X \rightarrow \boldsymbol{R} \cup\{+\infty\}$. Then if $x_{h} \rightarrow x_{\infty}$ in X with $2 p d(u, D(f))<\mathbf{1}$ and $\alpha_{h} \rightarrow \alpha$ with $\alpha_{h} \in \partial^{-} f_{h}\left(x_{h}\right)$, then $\subseteq \in \partial^{-} f\left(x_{\infty}\right)$ and $f_{h}\left(x_{h}\right) \rightarrow f\left(x_{\infty}\right)$.

Let now $\Omega \subseteq X$ be a closed set; we say that Ω is p-convex if the function

$$
J(x)= \begin{cases}0 & \text { if } x \in \Omega \\ +\infty & \text { if } x \notin \Omega\end{cases}
$$

is $(p, 0)$-convex.

We remark explicitly that this is equivalent to saying that for every $x, y \in \Omega$ there exists $z \in \Omega$ such that

$$
\left\|z-\frac{x+y}{2}\right\| \leqslant p\|x-y\|^{2} .
$$

Let us recall here some properties of p-convex sets (see [4]).
Proposition I.10. - If $\Omega \subseteq X$ is p-convex then for every $x \in X$ such that $8 p d(x, \Omega) \leqslant 1$ there exists a unique $T(x) \in \Omega$ such that

$$
d(x, \Omega)=\|x-T(x)\|
$$

Proposition I.11. - Let $E=\{x \in X: 64 p d(x, \Omega) \leqslant 1\}$. The map $T: E \rightarrow \Omega$ defined by $T(r)$ in the above theorem is a Lipschitz map.

Proof. - Let $x, y \in E$, then

$$
\|T(x)-T(y)\| \leqslant\|T(x)-x\|+\|T(y)-y\|+\|x-y\| \leqslant \frac{1}{32 p}+\|x-y\|
$$

and therefore two cases may occur
i) $\left\|x-y^{\prime}\right\| \geqslant 1 / 32 p$ which yields $\|T(x)-T(y)\| \leqslant 2\|x-y\|$ and the thesis is proven;
ii) $\|x-y\| \leqslant 1 / 32 p$ yields $\|T(x)-T(y)\| \leqslant 1 / 16 p$ and therefore the following inequalities hold.
(*)

$$
\begin{align*}
& \langle T(x)-T(y), y-T(y)\rangle-8 p\|T(x)-T(y)\| y-T(y) \| \leqslant 0 \\
& \langle T(y)-T(x), x-T(x)\rangle-8 p\|T(x)-T(y)\|\|x-T(x)\| \leqslant 0 . \tag{**}
\end{align*}
$$

Adding (*) and (**) we get

$$
4\langle T(x)-T(y), y-x+T(x)-T(y)\rangle \leqslant\|T(x)-T(y)\|^{2}
$$

since we may suppose $T(x) \neq T(y)$ the above inequality yields

$$
\|T(x)-T(y)\| \leqslant \frac{4}{3}\|x-y\| .
$$

Combining this inequality with i) we get

$$
\|T(x)-T(y)\| \leqslant 2\|x-y\|
$$

for every $x, y \in E$.

From the above result we argue that the map $\psi: E \rightarrow \boldsymbol{R}_{+}$defined by $\psi(x)=$ $=\|x-T(x)\|^{2}$ is a C^{1} function with Lipschitz continuous gradient grad $\psi(x)=$ $=2(x-T(x))$.

From now on we will denote by Ω a closed p-convex subset of \boldsymbol{R}^{n} such that $\Omega=\Omega$ and we put $\Omega_{\varepsilon}=\left\{x \in \boldsymbol{R}^{n}: d(x, \Omega) \leqslant \varepsilon\right\}$. We prove the following

Proposimion I.12. - If Ω is p-convex then Ω_{ε} is $4 p$-convex.
Proof. - We have to show that for every $x, y \in \Omega_{\varepsilon}$ there exists $z \in \Omega_{\varepsilon}$ such that

$$
\left|z-\frac{x+y}{2}\right| \leqslant 4|x-y|^{2}
$$

Since Ω is p-convex there exists $z \in \Omega$ such that

$$
\left|z-\frac{T(x)+T(y)}{2}\right| \leqslant p|T(x)-T(y)|^{2}
$$

for every $x, y \in \Omega_{\varepsilon}$ and therefore

$$
\left|z+\frac{x+y}{2}-\frac{T(x)+T(y)}{2}-\frac{x+y}{2}\right| \leqslant p|T(x)-T(y)|^{2} \leqslant 4 p|x-y|^{2}
$$

Put $z^{\prime}=z+(x+y) / 2-(T(x)+T(y)) / 2$; we claim that $z^{\prime} \in \Omega_{\varepsilon}$; in fact

$$
d\left(z^{\prime}, \Omega\right) \leqslant d\left(z^{\prime}, z\right)=\left|\frac{x+y}{2}-\frac{T(x)+T(y)}{2}\right| \leqslant \frac{1}{2}\{|x-T(x)|+|y-T(y)|\} \leqslant \varepsilon
$$

and the theorem is completely proven.
Let now $g: \boldsymbol{R}^{n-1} \rightarrow \boldsymbol{R}$ be a Lipschitz function such that epi $g=\left\{(x, y) \in \boldsymbol{R}^{n-1} \times\right.$ $\times \boldsymbol{R}: g(x) \leqslant y\}$ is a p-convex set; if $\boldsymbol{A} \subset \boldsymbol{R}^{n-1}$ is any open bounded set, we prove the following

Proposition I.13. - For every ε small enough there exists $\psi_{\varepsilon}: \bar{A} \rightarrow \boldsymbol{R}, \psi_{\varepsilon} \in C^{1,1}(\bar{A})$ wuch that if we set $E_{\varepsilon}=\left\{(x, y) \in \bar{A} \times \boldsymbol{R}: d\left((x, y)\right.\right.$, epi $\left.\left.\left.g\right|_{\bar{A}}\right)\right\}$ then $\partial E_{\varepsilon}=\{(x, y): y=$ $\left.=\psi_{\varepsilon}(x)\right\}$.

Proof. - We argue by contradiction and suppose that there exist $\varepsilon_{k} \perp 0$ and $\left(x_{k}, y_{k}\right) \in \partial E_{\varepsilon_{k}}, x_{k} \in A$ such that $\left(\alpha_{k}, 0\right) \in \partial^{-} J_{E_{\varepsilon_{k}}}\left(x_{k}, y_{k}\right)$ with $\left|\alpha_{k}\right|=1$. It is easy to see that $\Gamma\left((\bar{A} \times \boldsymbol{R})^{-}\right) \lim J_{E_{\varepsilon_{k}}}=J_{\text {epig } \mid \bar{A}}$ and moreover we may suppose that $\left(x_{k}, y_{k}\right) \rightarrow$ $\rightarrow\left(x_{0}, g\left(x_{0}\right)\right) \in \bar{A} \times \boldsymbol{R}$ and $\alpha_{k} \rightarrow \alpha$ with $|\alpha|=1$; since $J_{\text {epi } g \mid \bar{A}}\left(x_{0}, g\left(x_{0}\right)\right)=0$ we get
$\alpha \in \partial^{-} J_{\text {epi } g \mid A}\left(x_{0}, g\left(x_{0}\right)\right)$. From the last inclusion we argue

$$
\limsup _{t \rightarrow 0} \frac{t\langle\alpha, \alpha\rangle}{\sqrt{t^{2}|\alpha|^{2}+\left|g\left(x_{0}+t \alpha\right)-g\left(x_{0}\right)\right|^{2}}} \leqslant 0
$$

but g is a Lipschitz function and then

$$
\frac{t\langle\alpha, \alpha\rangle}{\sqrt{t^{2}|\alpha|^{2}+\left|g\left(x_{0}+t \alpha\right)-g\left(x_{0}\right)\right|^{2}}} \geqslant \frac{t|\alpha|^{2}}{|\alpha| t \sqrt{1+M^{2}}}=\frac{1}{\sqrt{1+M^{2}}}
$$

which is a contradiction.
We conclude this section with the following
Proposition I.13. - Let $g: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}, g \in \mathbb{C}^{1,1}\left(\boldsymbol{R}^{n}\right) ;$ set $\Omega=\left\{x \in \boldsymbol{R}^{n}: g(x) \leqslant 0\right\}$ and suppose that $\Omega \neq 0$ and $|d g(x)| \geqslant \lambda>0$ on $\partial \Omega$. Then Ω is $3 M / 8 \lambda$-convex, where M is the Lipschitz constant of grad g.

Proof. - By Remark I. 7 (see also [4], Thm. 1.8) we have that g is $(0,-M / 8)$ convex and therefore for every $x, y \in \Omega, g((x+y) / 2) \leqslant(M / 8)|x-y|^{2}$. Take $\bar{z} \in \Omega$ such that

$$
\left|\bar{z}-\frac{x+y}{2}\right|=\min \left\{\left|z-\frac{x+y}{2}\right|: g(z)=0\right\}
$$

by a standard argument there exists $\lambda_{0}>0$ such that $(x+y) / 2=\vec{z}+\lambda_{0} \nabla g(\bar{z})$ and then the following inequality holds

$$
g\left(\bar{z}+\lambda_{0} \nabla g(\bar{z})\right) \geqslant g(\bar{z})+\lambda_{0}|\nabla g(\bar{z})|^{2}-\lambda_{0}^{2} M|\nabla g(z)|^{2}=\lambda_{0}|\nabla g(\bar{z})|^{2}-\lambda_{0}^{2} M|\nabla g(\bar{z})|^{2}
$$

and then

$$
\lambda_{0}|\nabla g(\bar{z})|^{2} \leqslant \frac{M}{8}|x-y|^{2}+M \lambda_{0}^{2}|\nabla g(\bar{z})|^{2}
$$

i.e.

$$
\lambda_{0}|\nabla g(\bar{z})| \leqslant \frac{M}{8|\nabla g(\bar{z})|}|x-y|^{2}+\frac{M \lambda_{0}^{2}}{\lambda}|\nabla g(\bar{z})|^{2} \leqslant \frac{M}{8 \lambda}|x-y|^{2}+\frac{M \lambda_{0}^{2}}{\lambda}|\nabla g(\bar{z})|^{2}
$$

Which is equivalent to

$$
\left|\bar{z}-\frac{x+y}{2}\right| \leqslant \frac{M}{8 \lambda}|x-y|^{2}+\frac{M}{\hat{\lambda}}\left|\bar{z}-\frac{x+y}{2}\right|^{2} \leqslant \frac{M}{8 \lambda}|x-y|^{2}+\frac{M}{4 \lambda}|x-y|^{2} \leqslant \frac{3 M}{8 \lambda}|x-y|^{2}
$$

This inequality completes the proof.

II. - Statement of the problem.

Let $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ be a $C^{1,1}$ function such that $d f(x) \neq 0$ on the set $\Omega=\{x: f(x) \leqslant 0\}$.
In [1], [6], [7] we have studied the elastic bounce problem for a material point constrained to move in the region $\Omega=\{x: f(x) \leqslant 0\}$ and elastically reflected by the «wall» $\partial \Omega=\{x: f(x)=0\}$. Without loss of generality in this paper we assume that no external forces are acting on the point.

Denoting by $x(t)$ the position of the material point at time t, we say, in accordance with [1], [6], [7], that $x \in \operatorname{Lip}\left([0,1] ; \boldsymbol{R}^{n}\right)$ solves the elastic bounce problem, if
i) $f(x(t)) \geqslant 0$;
ii) there exists a positive Radon measure μ on $[0,1]$ such that $\operatorname{spt} \mu \subseteq$ $\subseteq\{t: f(x(t))=0\}$ and

$$
\ddot{x}=-\mu \nabla f(x(t)) ;
$$

iii) the function $\mathcal{E}: t \rightarrow|\dot{x}(t)|^{2}$ is continuous in $[0,1]$
where \dot{x}_{+}, \dot{x}_{-}respectively denote the right and left derivatives of x since x is a $B V$ function (see [1] and [6]). Following [1] we introduce the set

$$
E=\left\{x \in \operatorname{Lip}\left([0,1] ; \boldsymbol{R}^{n}\right): x \text { solves } P\right\}
$$

and define the initial trace $\varepsilon:[0,1] \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{3 n+1}$

$$
\mathcal{E}(t, x)=\left(\frac{|\dot{x}(t)|^{2}}{2}, \quad x(t), \dot{x}_{\tau}(t), f(x(t)) \dot{x}(t)\right)
$$

where $\dot{x}_{\tau}(t)=|\nabla f(x)|^{2} \dot{x}-\langle\dot{x}, \nabla f(x)\rangle \nabla f(x)$.
As observed in [1] when the initial trace b is assigned then the initial Cauchy data are given; without writing complicated formulae we will denote $\dot{x}_{+}(0)$ by \tilde{b} (which is a completely determined function of b).

Now, let $t_{0} \in[0,1]$ and $b \in \mathscr{C}\left(\left\{t_{0}\right\} \times E\right)=\mathscr{B}$ be fixed; we set

$$
G\left(t_{0}, b\right)=\left\{x \in \operatorname{Lip}\left([0,1] ; \boldsymbol{R}^{v}\right): x \in E, \mathscr{G}\left(t_{0}, x\right)=b\right\}
$$

We recall (see []) that the set $G\left(t_{0}, b\right)$ is non empty at least when $f \in C^{1},{ }^{1}\left(\boldsymbol{R}^{n}\right)$.
Let now Ω be a closed subset of \boldsymbol{R}^{n} satisfying the following conditions
$\left(\mathrm{H}_{0}\right) \overline{\bar{\Omega}}=\Omega ;$
$\left(\mathrm{H}_{1}\right) \Omega$ is p-convex;
$\left(\mathbf{H}_{2}\right) \partial \Omega$ is locally the graph of a Lipschitz function.

Set

$$
J I(x)= \begin{cases}0 & \text { if } x \in \Omega \\ +\infty & \text { if } x \notin \Omega\end{cases}
$$

and fixed $t_{0}=0, b \in \mathfrak{B}$, we introduce the spaces

$$
\begin{aligned}
& X=\left\{x \in \operatorname{Lip}, \dot{x} \in B V: x(0)=b_{1}, \dot{x}_{+}(0)=\tilde{b},|\dot{x}|=|b|=\sqrt{2 b_{1}}, J_{\Omega}(x(t))=0\right\} \\
& Y=\left\{y \in\left(H^{1}(0,1)\right)^{n}: y(1)=0\right\}
\end{aligned}
$$

and consider the problem
(P*) Find $\bar{x} \in X$ and a constant $K(\bar{x}, \Omega, b)$ such that

$$
\min _{\substack{v \in Y \\ 64 v \backslash y \| \leqslant 1}} I(\bar{x}, y)+K(\bar{x}, \Omega, b)\|y\|_{H^{1}}^{2}=I(\bar{x}, 0)=0
$$

and

$$
I(x, y)=\int_{0}^{1}\left[\left\langle\dot{x}_{+}(0), y(0)\right\rangle-\langle\dot{x}, \dot{y}\rangle+J_{\Omega}(x+y)\right] d t
$$

The aim of this paper is to show that problems (P) and $\left(\mathrm{P}^{*}\right)$ are-in a suitable sense-equivalent problems and there exists a large class of domains (indeed those verifying $\left(\mathrm{H}_{0}\right),\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$) in which problem $\left(\mathrm{P}^{*}\right)$ has a solution. More precisely we will prove the following

Theorem 1. - If $f \in C^{1,1}\left(\boldsymbol{R}^{n}\right)$ and $\bar{x} \in G(0, b)$ then

$$
I(x, 0)=\min _{\substack{y \in Y \\ 64 \rho\|y\| \leqslant 1}}\left\{I(x, y)+K\|y\|_{H^{1}}^{2}\right\}=0
$$

with $K=M \cdot \mu\left([0,1]\left(2+1 / \lambda_{0}\right)\right.$ and $\lambda_{0}=\min \left\{|\nabla f(\zeta)|: \zeta \in \partial \Omega \cap S\left(b_{2}, \sqrt{2 b_{1}}\right)\right\}$.
Conservely, if there exist $\vec{x} \in X$ and $\bar{K}(\vec{x}, \Omega, b)$ such that

$$
0=I(\bar{x}, 0)=\min _{\substack{y \in Y \\ 6 \in y \eta\|y\| \leqslant 1}}\left\{I(\bar{x}, y)+\bar{K}\|y\|_{M^{2}}^{2}\right\}
$$

then $\bar{x} \in G(0, b)$.
Theorem 2. - If Ω satisfies hypothesis $\left(H_{0}\right),\left(H_{1}\right),\left(H_{2}\right)$ then problem (${ }^{*}$) admits a solution.

III. - Proof of Theorem 1.

Before beginning the proof of Thm. 1 it is useful to make some simplifying assumptions:
(I_{1}) the set $\partial \Omega \cap S\left(b_{2}, 2|\tilde{b}|\right)$ is supposed to be non empty;
$\left(I_{2}\right)$ by virtue of the previous assumption we may suppose that $\partial \Omega$ is compact so that setting $\lambda=\min _{\partial \Omega}|\nabla f|>0$ the set $\Omega=\{x: f(x) \leqslant 0\}$ becomes $3 M / 8 \lambda$-convex as soon as f is a $C^{1,1}$-function and M is the Lipschitz constant of ∇f.

Now we may state the following
Lemma III. 1.- If $\ddot{x}=-\mu \nabla f(\bar{x})$ and $J_{\Omega}(\vec{x}(t))=0$ (i.e., $\left.f(\bar{x}(t)) \leqslant 0\right)$ then setting $G(\zeta)=\int_{0}^{1} J_{\Omega}(\zeta(t)) d t$ we have

$$
\begin{equation*}
G(\bar{x}+y) \geqslant \int_{0}^{1}\langle y, \nabla f(\bar{x})\rangle d \mu-M \frac{3}{\lambda} \mu([0,1])\|y\|_{H^{1}}^{2} \tag{3.1}
\end{equation*}
$$

for every $y \in Y$ such that $\|y\|_{H^{1}} \leqslant 3 M \mid \lambda$.
Proof. - We first observe that $\int_{0}^{1} J_{\Omega}(\bar{x}+y) d \mu \leqslant \int_{0}^{1} J_{\Omega}(\vec{x}+y) d t$ and therefore

$$
\begin{equation*}
\int_{0}^{1} J_{\Omega}(\bar{x}+y) d t-\int_{0}^{1}\langle y, \nabla f(\bar{x})\rangle d \mu \geqslant \int_{0}^{1}\left[J_{\Omega}(\vec{x}+y)-\langle y, f(\vec{x})\rangle\right] d \mu \tag{3.2}
\end{equation*}
$$

since Ω is $3 M / 8 \lambda$-convex we get

$$
\begin{equation*}
J_{\Omega}(\bar{x}+y)-\langle y, \nabla f(\bar{x})\rangle \geqslant-M \frac{3}{\lambda}|y|^{2}, \quad \forall t \in[0,1] \tag{3.3}
\end{equation*}
$$

for every $y \in Y$ such that $\|y\| \leqslant \lambda_{0} / 2 M\left(2 \lambda_{0}+1\right)$.
The last inequality jields:

$$
\begin{equation*}
G(\bar{x}+y) \geqslant \int_{0}^{1}\langle y, \nabla f(\bar{x})\rangle d \mu-M \frac{3}{\lambda} \int_{0}^{1}|y|^{2} d \mu \tag{3.4}
\end{equation*}
$$

and we observe that

$$
\begin{align*}
\int_{0}^{1}|y(s)|^{2} d \mu=-2 \int_{0}^{1}\langle y, \dot{y}\rangle \mu([0, t]) d t & \leqslant \int_{0}^{1}\left(|y|^{2}+|\dot{y}|^{2}\right) \mu([0, t]) d t \leqslant \tag{3.5}\\
& \leqslant \mu([0,1]) \int_{0}^{1}\left(|y|^{2}+|\dot{y}|^{2}\right) d t=\mu([0,1])\|y\|_{H^{1}}^{2}
\end{align*}
$$

combining the last two inequalities we get (3.1).
From the previous Lemma we argue

$$
\begin{equation*}
\int_{0}^{1} J_{\Omega}(\bar{x}+y) d t+\langle\dot{x}, y\rangle \geqslant-M \frac{3}{\lambda} \mu([0,1])\|y\|_{H^{1}}^{2} \tag{3.6}
\end{equation*}
$$

and then

$$
\begin{equation*}
\int_{0}^{1}\left\{J_{\Omega}(\bar{x}+y)-\langle\dot{x}, y\rangle\right\} d t+\langle\tilde{b}, y(0)\rangle \geqslant-M \frac{3}{\lambda} \mu([0,1])\|y\|_{H^{1}}^{2} \tag{3.7}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
I(\bar{x}, y)+M \frac{3}{\lambda} \mu([0,1])\|y\|_{H^{1}}^{2} \geqslant 0 \tag{3.8}
\end{equation*}
$$

and being $I(\bar{x}, 0)=0$ we obtain

$$
\begin{equation*}
\max _{\substack{x \in X \\ 64 p\|y\| \leqslant 1}} \min _{\substack{y \in Y}}\left\{I(\bar{x}, y)+M \frac{3}{\lambda} \mu([0,1])\|y\|_{\bar{H}^{1}}^{2}\right\}=0 \tag{3.9}
\end{equation*}
$$

and the first part of Thm. 1 is proven.
Suppose now that there exists $\bar{x} \in X$ and $K>0$ such that

$$
\min _{\substack{y \in Y \\ 64 p\|y\| \leqslant 1}}\left\{I(\bar{x}, y)+K\|y\|^{2}\right\}=0
$$

then there exists $\bar{x} \in X$ such that for every $y \in Y$ we have

$$
\begin{equation*}
\left.\int_{0}^{1}-\langle\dot{\bar{x}}, \dot{y}\rangle+J_{\Omega}(\bar{x}+y)+\langle b, y(0)\rangle\right\} d t+K\|y\|_{\mathbb{I}^{1}}^{2} \geqslant 0 \tag{3.10}
\end{equation*}
$$

Choose $\varphi \in\left(C_{0}^{\infty}([0,1])\right)^{n} \subset Y$ such that $\operatorname{spt} \varphi \subset\{t: f(\vec{x}(t))<0\}$; since

$$
f(\bar{x}+\varepsilon \varphi)=f(\stackrel{\rightharpoonup}{x})+\varepsilon\left\langle\varphi, \nabla f\left(\stackrel{\rightharpoonup}{x}+\varepsilon^{\prime} \varphi\right)\right\rangle
$$

an easy calculation shows that if ε is small enough (independently of t) then $f(x(t)+$ $+\varepsilon \varphi(t))<0$ for every $t \in[0,1]$.

Therefore from (3.10) we argue

$$
\int_{0}^{1}\{-\langle\bar{x}, \dot{\varphi}\rangle+\langle b, \varphi(0)\rangle\} d t+\liminf _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{1} J_{\Omega}(\bar{x}+\varepsilon \varphi) \geqslant 0
$$

but $J_{\Omega}(\vec{x}+\varepsilon \varphi)=0$ if ε is small enough and then

$$
\int_{0}^{1}\{-\langle\dot{\bar{x}}, \dot{\varphi}\rangle+\langle b, \varphi(0)\rangle\} d t \geqslant 0 .
$$

Since the same arguments hold when φ is changed into $-\varphi$ we argue

$$
\int_{0}^{1}\{-\langle\dot{\bar{x}}, \dot{\varphi}\rangle+\langle b, \varphi(0)\rangle\} d t=0
$$

and then $(\ddot{\bar{x}}, \varphi)=0$ for every φ such that $\operatorname{spt} \varphi \subset\{t: f(\bar{x}(t))<0\}\left({ }^{1}\right)$.
Choose now $\theta \in C_{0}^{\infty}([0,1]), \theta \geqslant 0$ and set $y_{\theta}=-\theta \nabla f(\vec{x}), y_{\theta} \in Y$; since \vec{x} is the derivative of a L^{2}-function, the duality between \vec{x} and y_{θ} makes sense and we get

$$
\begin{equation*}
\left(\left(\ddot{\bar{x}}, y_{\theta}\right)\right)=\sum_{i=1}^{n}\left(\ddot{\bar{x}}_{i},-\theta \frac{\partial f}{\partial x_{i}}\right)=\sum_{i=1}^{n}\left(\ddot{\bar{x}} \frac{\partial f}{\partial x},-\theta\right)=-(\langle\ddot{\bar{x}}, \nabla f\rangle, \theta) \tag{3.11}
\end{equation*}
$$

so that from (3.10) we argue

$$
\begin{equation*}
\liminf _{\varepsilon \leftarrow 0}\left[(\langle\ddot{\bar{x}}, \nabla f(\bar{x})\rangle, \theta)+\frac{1}{\varepsilon} \int_{0}^{1} J_{\Omega}\left(\bar{x}+\varepsilon y_{\theta}\right) d t\right] \geqslant 0 \tag{3.12}
\end{equation*}
$$

since

$$
f(\bar{x}(t))-\varepsilon \theta(t) \nabla f(\bar{x}(t)) \leqslant f(\bar{x}(t))-\varepsilon \theta(\bar{t})|\nabla f(x)|^{2}(1-\varepsilon \theta(t) M)
$$

taking $\varepsilon<1 / M\|\theta\|_{\infty}$ we get $f(\vec{x}-\varepsilon \theta \nabla f(\bar{x})) \leqslant 0$ for every $t \in[0,1]$ and therefore (3.12) yields

$$
\begin{equation*}
(\langle\ddot{\bar{x}}, \nabla f(\bar{x})\rangle, \theta) \leqslant 0 \tag{3.13}
\end{equation*}
$$

and then $\langle\ddot{\bar{x}}, \nabla f(\bar{x})\rangle=-\nu$ with $v \in \mathcal{H}^{+}([0,1])$.
${ }^{(1)}$ From now on we denote with (,) the duality between $\mathfrak{D}^{\prime}(0,1)$ and $\mathfrak{D}(0,1)$, and with $(()$,$) the duality between \left(D^{\prime}(0,1)\right)^{n}$ and $(\mathcal{D}(0,1))^{n}$.

Now, take $\psi \in\left(C_{0}^{\infty}([0,1])\right)^{n}$ and set

$$
\psi_{\delta}=|\nabla f|^{2} \psi-\langle\psi, \nabla f(\bar{x})\rangle \nabla f(\bar{x})-\varepsilon|\psi| \nabla f(\bar{x})
$$

then $\varepsilon \psi_{\varepsilon} \in Y$ as ε is small enough and-as in the previous case- $J_{g}\left(\bar{x}+\varepsilon \psi_{\varepsilon}\right)=0$ when ε goes to 0 ; since the same arguments hold when ψ is changed into - ψ we get

$$
\left(\left(\ddot{\vec{x}},|\nabla f|^{2} \psi\right\rangle\right)=(\langle\ddot{\vec{x}}, \nabla f\rangle,\langle\psi, \nabla f\rangle)=-(v,\langle\psi, \nabla f(\bar{x})\rangle)
$$

and then

$$
\left(\left(|\nabla f|^{2} \ddot{\bar{x}}, \psi\right)\right)=-((\nu \nabla f(\bar{x}), \psi))
$$

for every $\psi \in\left(C_{0}^{\infty}([0,1])\right)^{n}$ so that

$$
|\nabla f(\bar{x})|^{2} \ddot{\vec{x}}=-\nu \nabla f(\bar{x})
$$

since $\nabla f(\bar{x}) \neq 0$ on spt \bar{x} we may write

$$
\ddot{\bar{x}}=-\mu \nabla f(\bar{x})
$$

with $\mu \in \mathcal{M}^{+}([0,1]), \mu=v /|\nabla f|^{2}$ and spt $\mu \subseteq\{t: f(\bar{x}(t))=0\}$ and Theorem 1 is completely proven.

REMARK 1. - As we can see in a moment, if the functional contains terms of the type $U(t, x)$ which are L^{1} in the time-variable and C^{2} in the space-variable then Theorem 1 can be easily generalized and the proof remains the same.

Remark 2. - It is not difficult to see that the theorem remains true if f is supposed to be only a Lipschitz map which is $C^{1,1}$ only in a neighborhood V of $\partial \Omega$.

IV. - Proof of Theorem 2.

Let $\Omega_{\varepsilon}=\left\{x \in \boldsymbol{R}^{n}: d(x, \Omega) \leqslant \varepsilon\right\}$; as we have seen in Proposition I.12, Ω_{ε} is (16p + $+3) p$-convex and $\partial \Omega_{\varepsilon} \in C^{1,1}$. Since $\mathscr{F}_{\varepsilon}=S\left(b_{2}, 2|\tilde{b}|\right) \cap \partial \Omega_{\varepsilon} \neq \emptyset$, by using Proposition I.13, we argue that $\mathscr{F} \varepsilon$ is a finite union of graphs of $C^{1,1}$ functions, so that, without loss of generality, we may suppose $\mathscr{F}_{\varepsilon}=\left\{x: x_{n}=g_{\varepsilon}\left(x_{1}, \ldots, x_{n-1}\right)\right\}$ and therefore $\partial d / \partial x_{n} \neq 0$ on $\mathcal{F}_{\varepsilon}$. Since $\mathcal{F}_{\varepsilon}$ is compact we may suppose $0<m_{1} \leqslant \partial d / \partial x_{n} \leqslant m_{2}$ on $\mathscr{F}_{\varepsilon}$.

Let now u_{ε} be a solution of the problem
i) $d\left(u_{\varepsilon}, \Omega\right)-\varepsilon \leqslant 0$;
ii) there exists a Radon measure $\mu_{\varepsilon} \geqslant 0$ such that
$\left(\mathrm{P}_{\varepsilon}\right)$

$$
\operatorname{spt} \mu_{\varepsilon} \leqslant\left\{t: \nexists\left(u_{\varepsilon}(t), \Omega\right)=\varepsilon\right\}
$$

18 - Annali di Matematica
and

$$
\ddot{u}_{\varepsilon}=-\mu_{\varepsilon} \nabla d\left(u_{\varepsilon}\right)
$$

iii) $\left|\dot{u}_{\varepsilon}\right|=|\tilde{b}|$.

Since Ω_{ε} is $4 p$-convex we have

$$
J_{\Omega_{\varepsilon}}\left(u_{\varepsilon}(t)+v(t)\right) \geqslant\left\langle v(t), \nabla f\left(u_{\varepsilon}(t)\right)\right\rangle--32 p|v(t)|^{2}
$$

for every $t \in \operatorname{spt} \mu_{\varepsilon}$ and for every $v \in Y$ with $\|v\| \leqslant 64 p$. The last inequality yields

$$
\begin{aligned}
\int_{0}^{1} J_{\Omega}\left(u_{\varepsilon}+v\right) d \mu_{\varepsilon} \geqslant \int_{0}^{1}\left\langle v(t), \nabla f\left(u_{\varepsilon}\right)\right\rangle & \left.d \mu_{\varepsilon}-62 p+3\right) \int_{0}^{1}|v|^{2} d \mu_{\varepsilon} \geqslant \int_{0}^{1}\left\langle v(t), \nabla f\left(u_{\varepsilon}\right)\right\rangle d \mu_{\varepsilon}- \\
& -62 p \mu_{\varepsilon}([0,1])\|v\|_{H^{1}}^{2}=\left(\ddot{u}_{\varepsilon}, v\right)-32 p \mu_{\varepsilon}([0,1])\|v\|_{\mathbb{H}^{1}}^{2}= \\
& =\int_{0}^{1}\left\langle\dot{u}_{\varepsilon}, \dot{v}\right\rangle d t-\langle b, v(0)\rangle-32 p \mu_{\varepsilon}([0,1])\|v\|_{B^{1}}^{2}
\end{aligned}
$$

and then

$$
\min _{\substack{v \in Y \\\|v v\| \leqslant 1 / 18 c^{2} y}}\left\{\int_{0}^{1}\left(\langle b, v(0)\rangle-\langle\dot{u}, \dot{v}\rangle+32 p \mu_{\varepsilon}([0,1])\left(|v|^{2}+|\dot{v}|^{2}\right)+J_{\Omega_{\varepsilon}}\left(u_{\varepsilon}+v\right)\right) d t\right\}
$$

We observe that

$$
-\ddot{u}_{n, \varepsilon}=+\mu_{e} \frac{\partial d}{\partial x_{n}}
$$

and then

$$
m_{1} \mu_{\varepsilon} \leqslant-\ddot{u}_{n, \varepsilon} \leqslant m_{2} \mu_{\varepsilon}
$$

which yields

$$
0 \leqslant \mu_{\varepsilon}([0,1]) \leqslant \frac{\dot{u}_{n, \varepsilon}^{+}(0)-\dot{u}_{n, s}^{-}(1)}{m_{1}} \leqslant \text { const } .
$$

Then there exists a subsequence $u_{\varepsilon_{k}} \rightharpoonup \mu$, and then $\mu_{\varepsilon_{k}}([0,1]) \rightarrow \mu([0,1])$.
We consider on V the topology induced by H^{1} and we observe that
(*) $\left\|\dot{u}_{\varepsilon}\right\|_{\infty} \leqslant K$ and therefore we may suppose that $u_{\dot{\varepsilon}} \xrightarrow{\underline{L} \infty} u_{\infty}$ and $\dot{u}_{\varepsilon} \stackrel{L^{2}}{\longrightarrow} \dot{u}_{\infty}$ so that $\left\|\dot{u}_{\varepsilon}-\dot{u}_{\infty}\right\|_{L^{2}} \rightarrow 0$ because $\left\|\dot{u}_{\varepsilon}-\dot{u}_{\infty}\right\|_{L^{2}}^{L^{2}}=2\|\dot{u}\|_{L^{2}}^{2}-2 \int_{0}^{1} \dot{u}_{\varepsilon} \dot{u} d t \rightarrow 0$. Assuming that $\mu_{\varepsilon} \rightarrow \mu, u_{\varepsilon} \xrightarrow{L^{\infty}} u_{\infty}, \dot{u}_{\varepsilon} \rightarrow \dot{u}_{\infty}$ in L^{2}, we define $F_{\varepsilon}: ~: ~ Y ~ \boldsymbol{R} \cup\{+\infty\}$

$$
F_{\varepsilon}(v)=\int_{0}^{1}\left\{\langle b, v(0)\rangle-\left\langle\dot{u}_{\varepsilon}, \dot{v}\right\rangle+J_{\Omega_{\epsilon}}\left(u_{\varepsilon}+v\right)\right\} d t+\boldsymbol{K}_{\varepsilon}\|v\|_{\mathbb{H}^{1}}^{2}
$$

where $K_{\varepsilon}=32 p \mu_{\varepsilon}([0,1])$ and we claim that

$$
\Gamma\left(V^{-}\right) \lim _{s \rightarrow 0} F_{s}(v)=F_{\infty}(v)=I(u, v)+32 p p \mu([0,1])\|v\|^{2}
$$

In fact it is easy to see that for every $v_{\varepsilon} \rightarrow$ in H^{1} we have $\lim _{\varepsilon \rightarrow 0} \inf F_{\varepsilon}\left(v_{\varepsilon}\right) \geqslant F_{\infty}(v)$; moreover if we choose $v_{\varepsilon}=v+\left(u_{\infty}-u_{e}\right)$ we have

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(a_{\varepsilon}\right)=\limsup _{\varepsilon \rightarrow 0}[& \left.\int_{0}^{1}\left\{\left\langle b, v_{\varepsilon}(0)\right\rangle-\left\langle\dot{u}_{\varepsilon}, \dot{v}_{\varepsilon}\right\rangle+J_{\Omega_{\varepsilon}}\left(u_{\varepsilon}+v_{\varepsilon}\right)\right\} d t+K_{3} \int_{0}^{1}\left|v_{\varepsilon}\right|^{2}+\left|\dot{v}_{\varepsilon}\right|^{2}\right]= \\
& =\lim \sup \int_{0}^{1}\left[\left\langle b, v_{\varepsilon}(0)\right\rangle-\left\langle\dot{u}_{\varepsilon}, \dot{v}_{\varepsilon}\right\rangle+J_{\Omega_{\varepsilon}}\left(u_{\varepsilon}+v_{\varepsilon}\right)\right] d t+K_{\infty}\|v\|_{H^{1}}^{2}
\end{aligned}
$$

Since $d\left(u_{\varepsilon}, \Omega\right) \leqslant \varepsilon$ and $u_{\varepsilon}=u_{\infty}$ we have $u_{\infty} \in \Omega$ so that $J_{\Omega}\left(u_{\infty}\right)=0$ and $u_{\infty} \in X ; \dot{v}_{\varepsilon} \rightarrow \dot{v}$ in L^{2} and then

$$
\int_{0}^{1}\left\langle\dot{u}_{\varepsilon}, \dot{v}_{\varepsilon}\right\rangle \rightarrow \int_{0}^{1}\left\langle\dot{u}_{\infty}, \dot{v}\right\rangle \quad \text { and } \quad v_{\varepsilon}(0) \rightarrow v(0) .
$$

It remains to prove that

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \int_{0}^{1} J_{\Omega_{\varepsilon}}\left(u_{\varepsilon}+v_{\varepsilon}\right) d t=\int_{0}^{1} J_{\Omega}\left(u_{\infty}+v\right) \tag{**}
\end{equation*}
$$

two cases may occur
A) There exists $\bar{t} \in[0,1]$ such that $u_{\infty}(\bar{t})+v(\bar{t}) \notin \Omega$. In this case for ε small enough we have $J_{\Omega_{\varepsilon}}\left(u_{\infty}+v\right)=+\infty$ and observing that $u_{\varepsilon}+v_{\varepsilon}=u_{\varepsilon}+v+\left(u_{\infty}-u_{\varepsilon}\right)=$ $=u_{\infty}+v(* *)$ easily follows.
B) $u_{\infty}(t)+v(t) \in \Omega$ for every $t \in[0,1]$. This fact yields $J_{\Omega_{\varepsilon}}\left(u_{\varepsilon}+v_{\varepsilon}\right)=J_{\Omega_{\varepsilon}}\left(u_{\infty}+\right.$ $+v)=0$ for ε small enough and ($* *$) is proven.

We recall now that

$$
\operatorname{Dm} \bar{F}_{\delta}\left(0, \frac{1}{64 p}\right)=0
$$

and by using Proposition I. 11 we argue
and Theorem 2 is completely proven.

REFERENCES

[1] G. Buttazzo - D. Percivale, On the approximation of the elastie bounce problem, J. Differential Equations, 47 (1983), pp. 227-245.
[2] E. De Giorgi, Γ-convergenza e G-convergenza, Boll. Un. Mat. Ital., 14-A (1977), pp. 213-220.
[3] E. De Giorgi - A. Marino - M. Tosques, Funzioni (p, q)-convesse, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 73, pp. 6-14.
[4] M. Degiovanni - A. Marino - M. Tosques, General properties of (p, q)-convex functions and (p, q)-monotone operators to appear in Ricerche Mat.
[5] M. Deglovanni - A. Marino - M. Tosques, Evolution equations associated with (p, q)-convex functions and (p, q)-monotone operators, to appear in Ricerche Mat.
[6] D. Percivale, Uniqueness in the elastic bounce problem, J. Differential Equations, 56 (1985), pp. 206-215.
[7] D. Percivale, Uniqueness in the elastic bounce problem (Part II), to appear.
[8] M. Schatzman, A class of non linear differential equations of second order in time, Nonlinear Analysis, vol. 2 (3) (1978), pp. 355-373.

