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Bound charges and currents are among the conceptually challenging topics in advanced courses on

electricity and magnetism. It may be tempting for students to believe that they are merely

computational tools for calculating electric and magnetic fields in matter, particularly because they

are usually introduced through abstract manipulation of integral identities, with the physical

interpretation provided a posteriori. Yet these charges and currents are no less real than free

charges and currents and can be measured experimentally. A simpler and more direct approach to

introducing this topic, suggested by the ideas in the classic book by Purcell and emphasizing the

physical origin of these phenomena, is proposed.VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4773441]

I. INTRODUCTION

The term bound charge (or bound current) is somewhat
misleading because it may seem to refer to charges (or cur-
rents) within isolated atoms and molecules, whereas in reality
it is a collective phenomenon. Edward Purcell, in his textbook
on electricity and magnetism,1 proposed the term structural
charge as an alternative, which accurately suggests that the
material properties and the geometry of the device play a criti-
cal role in establishing these charges.2 Nevertheless, he con-
tinued to adhere to the standard terminology.

Nomenclature aside, Purcell’s way of introducing bound
charges is original and has not been, by and large, adopted in
modern textbooks. This is probably because his derivation
assumes a linear response of the material, is written in the
Gaussian system of units, and unfolds piece-wise within a
much broader discussion (see chapter 10 of Ref. 1). Yet, as
so much in his book, the elegant simplicity and the physical
insights of Purcell’s analysis more than compensate for the
lack of generality. The present contribution, which arose
from my experience of teaching a junior-level electricity and
magnetism course based on the textbook by Griffiths,3 offers
an alternative discussion of bound charges and currents
inspired by Purcell’s treatment of the electric field in matter.

The essence of the proposed approach is to show that
bound volumetric charges and currents arise directly from
Gauss’s and Ampère’s Laws, requiring no abstract deriva-
tions or reference to the potentials. But the pedagogical
benefits go far beyond the simplified mathematical analysis.
First, these “bound” phenomena are introduced as a result
of careful “book-keeping,” of asking which charges account
for which part of the field. This is instructive because bound
charges and currents in fact serve to account for a vast num-
ber of individual electric or magnetic dipoles, too numerous
to be treated one-by-one using Maxwell’s equations. Sec-
ond, deriving expressions for bound charges and currents
directly from Maxwell’s equations emphasizes that these
are real physical phenomena—no less so than free
charges—and can be measured experimentally; they are
neither a mathematical artifact nor merely “an equivalent”
of the polarization or magnetization. And third, the pro-
posed analysis yields the relationship between free and
bound volumetric charges (free and bound volumetric cur-
rents) without any additional effort, and without the need of
defining the displacement field (H-field) or invoking
Gauss’s Law (Ampère’s Law) again.

As a bonus, the constitutive relationships for linear media
arise in this approach naturally and the standard definitions
of susceptibilities appear as a means of simplifying notation.
The usual approach, starting with the constitutive relations,
has the disadvantage of requiring right away an “orgy of
terminology” (see the footnote on page 180 of Ref. 3), some
of which may seem peculiar (e.g., setting ve ¼ er � 1).
The remainder of this paper is organized as follows. Sec-

tion II provides a brief outline of the standard approach
based on integral expressions for scalar and vector potentials.
Purcell’s approach to bound volumetric charges, streamlined
and recast compactly in SI units, and the proposed new treat-
ment of bound volumetric currents, are presented in Secs. III
and IV, respectively (bound surface charges and currents are
noted for completeness). Lastly, Sec. V provides some con-
cluding remarks.

II. POLARIZATION AND MAGNETIZATION

To set the stage, we first outline the common way of intro-
ducing bound charges and currents at the advanced level
(see, e.g., Sec. 4.2 of Ref. 3). The discussion of fields in mat-
ter typically begins by noting that when dielectrics are
placed in an external electric field they become polarized;
that is, they acquire a microscopically distributed electric
dipole moment. This polarization arises via induced dipole
moment in the molecules caused by charge separation (as in
hydrogen), or by alignment of heretofore randomly oriented
existing dipoles (as in water). The aggregate effect of these
dipoles in the material is to produce a spatially dependent
dipole moment per unit volume, or polarization, P.
The dipole moment in an infinitesimal volume element

can be expressed as dp ¼ Pdv, and therefore the electric
potential VðrÞ of a polarized material at a point r can be
written as

VðrÞ ¼ 1

4peo

ð

V

r̂ � Pðr0Þ
r
2

dv0; (1)

where r ¼ r� r0, r0 denotes position within the volume, and
the “hat” indicates a unit vector. Invoking r0ð1=rÞ ¼ r̂=r2,
using a product rule for the divergence and then applying
the divergence theorem—effectively integrating by parts—
renders Eq. (1) as the sum of two integrals, one over the sur-
face S and the other over the volume it encloses,
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VðrÞ ¼ 1

4peo

þ

S

1

r

Pðr0Þ � ds0 � 1

4peo

ð

V

1

r

r � Pðr0Þdv0: (2)

Because the first term looks like the potential due to a sur-
face charge and the second as the potential due to a volumet-
ric charge, Eq. (2) suggests the presence of two charge
distributions due to polarization,

rb ¼ P � n̂; qb ¼ �r � P; (3)

where n̂ represents the outward pointing unit vector normal
to the surface so that ds ¼ n̂ds. As required by conservation
of charge, the net bound charge is zero because, by virtue of
the divergence theorem, a volume integral of r � P leads to
the corresponding surface integral of P � n̂. This argument
can also be inverted to obtain the second relation of Eq. (3)
from the first by invoking the conservation of charge and
Gauss’s law (see, e.g., Sec. 10-3 of The Feynman Lectures
on Physics4).

A similar but more cumbersome derivation for magnetism
(e.g., section 6.2 of Ref. 3) starts with the integral expression
for the magnetic vector potential analogous to Eq. (1) in
terms of the magnetization M (magnetic dipole moment per
unit volume). This expression can be rendered in terms of
two integrals suggesting the existence of surface and volu-
metric bound currents given by

Kb ¼ M� n̂ and Jb ¼ r�M; (4)

respectively. Notice the absence of the negative sign in the
second of these equations—the electric and magnetic formu-
lations are not perfectly symmetric for various pragmatic
reasons (though they can be made so5).

It is mathematically appealing, and sometimes convenient,
to introduce analogous expressions to Eqs. (3) and (4) with
the roles of the fields P andM reversed. This leads to the con-
struction of fictitious magnetization charges (rM ¼ M � n̂,
qM ¼ �r �M) and fictitious polarization currents (KP ¼ P
� n̂, JP ¼ r� P), first introduced by Jefimenko6 and later by
Mata-Mendez.7 However, unlike the quantities defined in
Eqs. (3) and (4), these mathematical objects do not represent
real physical quantities.

III. BOUND CHARGES IN LINEAR DIELECTRICS

Consider a parallel-plate capacitor constructed of two
identical square plates of area A and separation d, such
that d �

ffiffiffi

A
p

. When a charge density r is placed on the
capacitor, the electric field E0 between the plates can be con-
sidered uniform because the fringing fields due to edge
effects are negligible. If a dielectric material fills the gap
between the plates, it will acquire a polarization P, effec-
tively introducing additional charges on the capacitor plates
due to alignment of the electric dipoles. This bound surface
charge rb, will in turn result in an additional electric field
between the plates E0.

Let us now assume the material between the capacitor
plates is an isotropic, linear dielectric so that the net electric
field E is parallel to the external (applied) electric field E0. In
this case, the field due to bound charges alone E0 is anti-
parallel to E0 and therefore E ¼ E0 � E0 (see Fig. 1). The ra-
tio of the magnitudes of the external electric field (in vacuum)

to the net electric field in the material is the relative permittiv-
ity (or the dielectric constant) er, so that

E ¼ E0

er

; (5)

where er > 1. The relationship between the polarization P and
the bound surface charge rb is easy to derive by considering a
“stack” of infinitesimal electric dipoles, extending from one
plate of the capacitor to the other; all charges associated with
these dipoles cancel out inside the volume and it is seen that
P ¼ rb. For an arbitrary geometry, this relationship becomes
rb ¼ P � n̂ (for details see Sec. 4.2.2 of Ref. 3).
To derive the second relation of Eq. (3), we note first that

E ¼ E0 � E0 ¼ erE� E0 ¼ erE� rbn̂=e0, and therefore,
using rbn̂ ¼ ðP � n̂Þn̂ ¼ P (valid for both upper and lower
plates), we find

P ¼ eoðer � 1ÞE: (6)

Equation (6) states that the polarization field is parallel to the
electric field inside the dielectric and is often taken as the
definition of a linear medium. It has been derived here from
Eq. (5) assuming a uniform external electric field, but it is
valid in general for linear dielectrics. The positive factor
ve ¼ er � 1 appearing here is the electric susceptibility,
which converts Eq. (6) to a more compact form P ¼ e0veE.
The second relation of Eq. (3) can now be obtained for

non-uniform electric fields by repeatedly invoking Gauss’s
Law. This is the key to Purcell’s “magically” simple deriva-
tion. Let qf denotes any free charge in the volume, so that
the net charge within the dielectric is q ¼ qf þ qb. If E0 is
the electric field due to qf alone, then

qf ¼ r � e0E0 ¼ r � e0erE: (7)

But the total charge in the presence of the material is given
by

qf þ qb ¼ r � e0E; (8)

so that, after substituting Eq. (7), the volumetric bound
charge can be expressed as

qb ¼ �r � ½eoðer � 1ÞE�: (9)

However, according to Eq. (6), the vector in the square
brackets in Eq. (9) is the polarization P, which then leads to
qb ¼ �r � P.
For linear, homogenous, isotropic materials, bound volu-

metric charges are related in a simple way to free charges.

Fig. 1. Bound surface charges, the electric field, and polarization inside a

parallel-plate capacitor filled with a dielectric. Here, E0 is the (external) field

due to free charges alone and E0 is the field due to the bound charges alone.
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This relationship is usually obtained using Gauss’s Law formu-
lated in terms of the displacement field8 [note that D ¼ e0E
þ P ¼ e0erE appears implicitly in Eq. (7)]. Here, it can be
obtained immediately by substituting Eq. (7) into Eq. (9) to get

qb ¼ � er � 1

er

r � ðe0erEÞ ¼ � ve

1þ ve

qf : (10)

Thus, within a linear, homogeneous, isotropic dielectric, in
regions where there are no (free) volumetrically distributed
charges, there are also no bound volumetric charges.

IV. BOUND CURRENTS IN LINEAR MEDIA

We limit the discussion of bound currents to linear, dia-
magnetic and paramagnetic materials (ferromagnetism is an
intrinsically nonlinear quantum phenomenon). Analogous to
Eq. (5), the magnetic field in linear, isotropic medium is
assumed to satisfy

B ¼ lrB0; (11)

where B0 is the external (applied) magnetic field and lr is
the relative permeability of the material (lr > 1 for para-
magnetic materials and lr < 1 for diamagnetic materials).

Now consider an ideal, circular solenoid of cross-sectional
area A and length L �

ffiffiffi

A
p

, of infinitesimally thin coils and
sufficiently long so that fringing effects near the ends can be
ignored. Let the z-axis be the axis of symmetry of the sole-
noid. Then, when current i is flowing through the (empty) sol-
enoid, the magnetic field inside is nearly uniform and given
by B0 ¼ l0in ẑ, where n is the number of coils per unit length
and ẑ is the unit vector along the z-axis. This magnetic field
can be expressed in terms of the effective surface current
flowing azimuthally K ¼ in /̂, by writing B0 ¼ �l0K� n̂,
with n̂ denoting the outward pointing unit vector normal to
the (curved) surface (see Fig. 2).

When the solenoid is filled with a paramagnetic or dia-
magnetic material, the magnetic field inside becomes
B ¼ B0 þ B0, where B0 is due to the surface current Kb

resulting from the magnetization. In the geometry considered
here, where B0 is either parallel or anti-parallel to B0, it fol-
lows that B0 ¼ �l0Kb � n̂, where Kb is in the positive
direction (i.e., /̂) for a paramagnet, and in the negative
direction for a diamagnet.
The first of the relationships in Eq. (4) can be obtained

by considering a collection of infinitesimal magnetic
dipoles (current loops) arranged side-by-side and extending
throughout the cross-section of the solenoid. In this case,
all the internal currents will cancel and only the surface
(bound) current remains (for details see Sec. 6.2.2 of
Ref. 3). To derive the second expression in Eq. (4) we note
that B ¼ B0 þ B0 ¼ B=lr � l0ðM� n̂Þ � n̂, and thus, using
ðM� n̂Þ � n̂ ¼ �M, we find

M ¼ lr � 1

l0lr

B: (12)

The factor vm ¼ lr � 1 is the magnetic susceptibility (which
can be positive or negative). Identifying l ¼ l0lr as the
magnetic permeability, Eq. (12) can now be rendered suc-
cinctly as M ¼ vmB=l. Although derived under the assump-
tion of a uniform external magnetic field, this expression is
valid in general for a linear medium.
For arbitrary external magnetic field and arbitrary geome-

try, Purcell’s “magic” can now be recreated for the magnetic
fields by repeated application of Ampère’s Law. Set
J ¼ Jf þ Jb, where Jf and Jb are the free and bound volume
current densities, respectively, and let B0 be the field due to
Jf alone. We then have

Jf ¼ r� 1

l0

B0 ¼ r� 1

l0lr

B; (13)

and the total volumetric current in the material is

Jf þ Jb ¼ r� 1

l0

B: (14)

Finally, using Eq. (13) in Eq. (14) yields

Jb ¼ r� lr � 1

l0lr

B

� �

: (15)

According to Eq. (12), the vector in parentheses on the right-
hand-side of Eq. (15) is the magnetization M, leading to
Jb ¼ r�M.
For linear, homogenous, isotropic materials, rewriting Eq.

(15) with the help of Eq. (13) gives

Jb ¼ ðlr � 1Þr � 1

l0lr

B

� �

¼ vmJf : (16)

In analogy to bound charges, we see that in regions of linear,
homogenous, isotropic medium in which free volumetric cur-
rents are absent, bound volumetric currents are absent as well.

V. CONCLUDING REMARKS

Expressing the effect of electric and magnetic fields in
matter using macroscopic quantities of relative permittivity

Fig. 2. Bound surface currents, the magnetic field, and magnetization inside

a circular solenoid filled with a paramagnet. Here, B0 is the (external) field

due to free currents alone and B0 is the field due to bound currents alone.
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(er) and relative permeability (lr) is equivalent to averaging
contributions of a very large number of microscopic point
charges (all the electrons and protons in the material). In
principle, one could use Maxwell’s equations for a vacuum
with all such point charges taken into account explicitly;
then the distinction between the free and the bound charges
(or currents) would not arise. However, the number of the
individual sources in a macroscopic volume would make
such a computation prohibitively complicated and thus
impractical (see the discussion of this point in the introduc-
tory chapter of Jackson’s Classical Electrodynamics9).

The scheme presented here for introducing bound charges
and currents may be used as an alternative or a supplement
to the standard approach. The main innovation is the treat-
ment of the volumetric effects based on a direct appeal to
Gauss’s and Ampère’s Laws, first for free and then for all
charges and currents. This “bookkeeping” leads immediately
to the expressions for the bound charges and currents in
terms of the polarization and magnetization without any
mathematical “sleight-of-hand.” Thus, the derivation is
grounded in a physically transparent argument.

The symmetry between the discussion of bound charges
and currents clearly reflects the broader symmetry between
the two fields and the analogous role played by electric and
magnetic dipoles. A moving electric dipole, after all, has a
magnetic dipole moment and vice-versa.10 It stands to rea-
son, therefore, that Purcell’s argument for bound volumetric
charges can be recreated for bound volumetric currents.

While the relative ease of this approach, and the natural
way in which the constitutive relations (6) and (12) arise, is
pedagogically advantageous, the apparent cost is the loss of
generality. However, most materials (excluding ferroelectric
and ferromagnetic substances) respond in a linear fashion

unless the external fields are very large, so that the discus-
sion presented here is broadly applicable.
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