
Bound Coherence for Minimum Distance Computations
David E. Johnson and Elaine Cohen

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

Abstract

Minimum distance computations on complex geometry
commonly employ hierarchies of bounding volumes
that are pruned through establishment of upper and
lower bounds. In this paper we describe a novel time
coherence scheme which utilizes coherence on these
bounds, rather than coherence derived from the
geometry of the bounding volumes or from the
geometry of the underlying model. This method is thus
independent of the bounding volume and model
representations. In tests, we find using this approach
can more than double the speed of a non-coherent
approach.

1 Introduction
In this paper we describe a novel time coherence
scheme for minimum distance computations which
provides a several time speed-up over a previous non-
coherent approach [9]. We are interested in minimum
distance as a predictor of contact in a haptic assembly
project [8]. Others have used minimum distance
computations for robotic path planning [2], collision
avoidance [10], and collision detection [5][1].

For complex concave geometries a useful approach to
compute the minimum distance between models has
been to surround the models in the scene with
hierarchies of bounding volumes [14][9]. These
volumes can be pruned by establishing and refining an
upper bound on the minimum distance between two
models, then removing bounding volumes that have
lower bounds on their distance greater than the current
upper bound. As the algorithm descends the bounding
volume hierarchies, the lower bounds tighten to the
underlying geometry. In the best case, we compute the
minimum distance between just a few leaf node
geometries.

In a scene composed of moving models, the minimum
distance between objects will not change significantly
after a small time step. For convex objects the
geometric location of the closest points between two
models will also not change rapidly. On concave
models though, the closest points may jump
discontinuously, even if the distance between models
changes smoothly. Our approach avoids the problems
associated with these discontinuities by using

coherence on the distance bounds rather than
coherence based on geometric properties. This
approach is thus also independent of the model and
bounding volume representations.

In interactive applications, the scene must be updated
at interactive rates. In haptic applications, the contact
algorithm must run in the kHz range. These types of
applications provide a great deal of temporal
coherence and are well suited for this approach.

2 Background
There is considerable literature on minimum distance
computations for convex objects. The temporal
coherence in tracking the closest points between two
convex objects derives from the geometric coherence
of convex objects. These closest point tracking
methods are competitive with pure collision detection
schemes for efficiency.

Lin showed how the closest points on a convex object
could be tracked in constant time [11]. This was later
extended into the I-COLLIDE system [5]. Gilbert’s
algorithm for computing distance between convex
objects [6] was later shown to have a similar constant
time complexity with minor modification [3]. Turnbull
has extended this approach to convex spline patches
[17].

Rather than explicitly tracking closest points, an
additional way to exploit time coherence for convex
objects is through witness planes. A plane that
separates two objects can be efficiently computed and
offers quick testing of separation on following time
steps. Baraff [1] and Chung [4] used this concept in
collision algorithms.

Two main approaches exist to compute collision and
distance for general concave objects. The first
approach draws upon the work done for convex
objects by attempting to decompose the concave
object into convex partitions [5]. These methods do
not usually provide the minimum distance, only the
collision status. The second approach is to prune
portions of the geometry using hierarchies of bounding
volumes. Quinlan introduced this approach using a
depth-first search of the bounding hierarchy [14].
Johnson generalized it to other surface representations,
including NURBS, by using a breadth-first search [9].



Sato combined convex tracking at a distance with
Quinlan’s concave algorithm for near contact to create
a general collision detection system [15]. He stored the
closest pair of triangles for a number of time steps and
used the distance between that pair as a way to quickly
approximate the minimum distance.

Snyder used time coherence to track penetration depth
on spline models in a modeling system [16].
Numerical methods quickly updated previous points to
find new penetration depths. In [12] Lin used local
updates on global numerical methods to exploit the
temporal coherence of moving curved surfaces. These
methods depend on the coherence of the underlying
geometry for success.

3 The LUB-Tree Framework
In [9], we discussed using a lower-upper bound (LUB)
tree for minimum distance computations. We can
compute the minimum distance to any surface
representation that implements a set of operations:
bounding volume generation, lower bound on distance
computation, upper bound on model minimum
distance computation, bounding volume refinement,
and computation termination. These bounding
volumes and bound computations are then used to
efficiently prune portions of the geometry and to
converge to the minimum distance.

Figure 1: For polygonal models, we pre-compute a
bounding hierarchy. Only the spheres of some levels
are shown.

We illustrate the action of the LUB-tree framework on
general triangular models. We first pre-compute a
hierarchy of sphere and oriented bounding box (OBB)
bounding volumes for each model using the publicly
available OBBTree package [7]. Portions of the sphere
hierarchy for an example model are shown in Figure 1.
The leaf nodes of the hierarchy surround a single
triangle.

Figure 2: The hierarchies are pruned using bounds on
the distance. Surviving portions of the sphere
hierarchy are shown at selected levels as well as the
active pair lines.

The pruning method starts by invoking the bounding
volume generation operation on each of the two
models. In our example, we use the top sphere of each
pre-computed bounding hierarchy (see Figure 2B). We
treat these bounding volumes as the top nodes of
hierarchical bounding trees and connect them as an
active pair of nodes. Active pairs point between nodes
that still may be part of the minimum distance
solution. The lines between the spheres in Figure 2C
represent the active pairs at the second level in the
minimum distance computation. We then search and
prune the bounding hierarchies using the following
procedure.

1. For each active pair, compute lower bounds on
the distance between nodes using the nodes’
bounding volumes and lower bound operations.

2. Establish an upper bound on the minimum
distance between the models using the upper
bound computation operation.

3. Prune the active pair list by comparing each
lower bound distance to the current upper bound.
(A lower bound greater than the upper bound
implies that the contained geometry must be
further away than the minimum distance.)

4. Split remaining active pairs into new active
pairs by invoking the refinement operation.

5. Repeat until the termination of computation
operation returns true.

Essentially, we wish to show that portions of the
model cannot be part of the minimum distance
solution. Hierarchical bounds allow us to efficiently
test portions of the model and potentially remove large



portions of the model from consideration without high
computational cost.

In Figure 2, the bounding spheres are pruned away
until only one sphere remains on one model and a few
remain on the other. There were twelve levels in the
hierarchical computation; five are shown. The closest
points between the models must be on the triangles
contained by these surviving nodes at the lowest level.

4 Using Bound Coherence to Speed
Minimum Distance Computations

These pruning computations change relatively slowly
as objects in the scene move. Portions of a model close
to portions of another other model will remain roughly
in the same configuration from one instant in time to
the next. We have identified two areas in which to
exploit this coherence: coherence in the upper bound
on the minimum distance and coherence in the lower
bounds on distance between the bounding volumes.

4.1 Upper Bound Coherence

Figure 3: The minimum distance changes smoothly
even when the closest point jumps.

The minimum distance between two objects changes
smoothly as the objects move, even if the closest
points between the models change discontinuously. In
Figure 3, the distance from the space point to the
concave model changes slowly, but the closest point
on the model jumps from the left wall to the bottom.

We save the leaf nodes that produced the closest
points from the previous time step and compute the
distance between these nodes at the start of the
computation at the new time step (the "Estimated
closest point" in Figure 3). This distance provides a
tight initial upper bound on the minimum distance
between the two models. By having a good estimate of
the minimum distance, the pruning algorithm may be
able to remove some active pairs earlier in the
hierarchy than if it were using a loose upper bound
estimate.

 

 
Figure 4: The tops of these images show two different
levels of pruning when using upper bound coherence.
The bottoms of the images show the same levels with
no coherence used. Saving the previous solution
allows additional active pairs to be pruned.

Figure 4 shows two levels of the pruning process,
comparing pruning with upper bound coherence used
(upper images) to pruning with no coherence (lower
images). In Figure 4A, the fourth level of pruning,
there were 14 sphere nodes and 27 active pairs in the
non-coherent version. The upper bound coherent
version reduced that to 10 spheres and 16 active pairs.

This upper bound coherence has the greatest impact at
the middle of the computation. Initially, the bounding
boxes tend to be so large that even an improved upper
bound cannot prune them. At the end of the
computation, even the non-coherent version would
have converged to a reasonable upper bound by then.

4.2 Lower Bound Coherence

Figure 5: A. We can estimate how far an object has
moved. B. The lower bound can expand by that
amount and still contain the object (B).

The key to the pruning algorithm is that we may throw
away active pairs that have lower bounds on distance
greater than the current upper bound on the minimum
distance. If the models do not move far during a time
step these lower bounds should not change much
either.

We can think of this problem as one model being
stationary and the other moving without loss of
generality. As one model moves, there is a point on
the model that moves a maximum distance during the
transformation (Figure 5A). Since the purpose of the

Previous

Current

Saved leaf
node

Estimated
closest
point

Actual closest point



lower bounds is to show that the contained geometry
must be at least the lower bound distance away, if the
surface moves, then the bounds become that much
more uncertain. The new bound is just the old minus
the length of the maximum movement (Figure 5B).

We estimate the maximum movement of a general
model by surrounding the model with a bounding box.
The maximum movement of the box will be at its
vertices. We measure the movement of each correlated
vertex from one time to the next and use the largest
movement as an overestimate of the model movement
and thus, of the possible change in the lower bound
distance.

If we have stored the lower bounds for the active pairs
from the previous time we can loosen these bounds by
the movement distance and still be sure the geometry
is contained. Using this concept, we can prune saved
active pairs by retrieving their saved lower bound and
subtracting the movement amount, then comparing
this value to the upper bound. So we may potentially
prune an active pair for the cost of retrieval, a
subtraction, and a comparison.

Storing the lower bounds for each active pair used in a
minimum distance computation may require
significant storage. Luckily, not every active pair
holds useful information. If a pair survives a level and
is refined, then loosening its lower bound the next
time is not likely to prune it. So we only save the
active pairs that result in pruning. The saved active
pair distances are stored in a hash table, keyed by the
ID of the active pair. This allows efficient storing and
retrieval.

 

 

Figure 6: Using lower bound coherence allows us to
quickly remove active pairs without having to compute
distances. The top halves of the figures show the active
pairs computed using coherence; the bottom halves
show the active pairs without coherence.

The example in Figure 6 shows many fewer active
pair lines in the lower bound coherent version than in
the non-coherent version. The missing lines were

removed from consideration by the quick lower bound
coherence test.

5 Testing
We tested the efficacy of using bound coherence in
two ways. First, we looked in detail at the pruning
costs using the different coherence methods. Second,
we made a simple path for one model to follow and
tested average computation times for different
amounts of movement.

5.1 Pruning Costs

Non-leaf Leaf box Quick

None 1382 315 371 0

Upper 1167 315 340 0

Lower 521 10 112 1242

Both 458 10 105 1089

Table 1: This table shows the number of pruning tests
vs. the type of coherence used in the ideal case (no
movement). The table shows the number of non-leaf
distance tests, leaf distance tests, OBB tests, and quick
tests used in lower bound coherence pruning.

We first measured the number of pruning tests needed
while using the different coherence speedups. This test
was done under ideal conditions, with no model
movement, so these numbers were the best that could
occur.

With upper bound coherence turned on, we found that
there were moderate gains in efficiency in the number
of non-leaf tests. There were no gains in the leaf case.
This is to be expected, since the upper bound has
typically converged close to the solution by the time
the leaf nodes are reached, even with no coherence
used.

Using lower bound coherence produced dramatic
reductions in the number of both the leaf and non-leaf
tests. Since this is the ideal case, we expect that every
pruned active pair can be pruned the following time
using the quick lower bound coherence test. If the
model were moving, we would not expect to see such
high gains in efficiency.

Using both types of coherence simultaneously added a
modest benefit over the lower bound coherence test.

5.2 Moving Test

This testing under ideal conditions showed the
potential value of the coherence methods. We tested
the different coherence speedups under more typical



conditions by moving one model a number of steps
along a space curve and performing a minimum
distance computation at each step. The distance
traveled at each step is roughly inversely proportional
to the number of samples taken along the curve. We
hope to show more efficiency with more samples ---
and thus more coherence --- along the curve.

10
1

10
2

10
3

10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

samples along path

a
v
g
. 
ti
m

e
 (

s
e
c
)

Figure 7: Average time per computation versus
number of samples along the space curve. Data was
taken with no coherence, with upper bound coherence,
with lower bound coherence, and with both upper and
lower coherence used simultaneously.

Figure 7 shows the results of moving a 1000 triangle
bunny model at different step sizes and with different
types of coherence used. The tests were run on an SGI
Indigo2 workstation with a 195 MHz MIPS R10000
processor. With no coherence, the average time was
essentially constant, at about 0.04 seconds. Using the
upper bound coherence gave an almost constant
improvement of 0.005 seconds, for an average of
0.035 seconds. We suspect that the constant
improvement is related to the way the upper coherence
method works. Since we store the leaf nodes that held
the minimum distance from the previous time and re-
compute their distance at the new time step, the
method somewhat adjusts for the size of step taken.

The efficiency of the lower bound method was
strongly tied to the size of the step. Initially, the lower
bound method was slightly worse than the upper
bound method, but improved to be over two times
faster than the upper bound method alone. The
combination of the two methods added additional
benefit.

We repeated the test for a bounding hierarchy made up
only of spheres, instead of the sphere and oriented-
bounding box combination used in the other tests. The
sphere-only hierarchy was slower, almost twice as
slow under all conditions, but showed improvement
with coherence used.

5.3 Scalability

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

triangles per model

n
o
n
−

c
o
h
e
re

n
t 
ti
m

e
 /
 c

o
h
e
re

n
t 
ti
m

e

Figure 8: The gain in efficiency increases as the model
gets larger. Shown is the ratio non-coherent time vs.
upper and lower coherency time for the path sampled
1000 times. Models with 575 to 10793 triangles were
tested.

We tested a range of 575 to 10793 triangles per model
on the same path. As the models grew larger, the gain
in efficiency from using coherency grew as well.
Figure 8 graphs the ratio of the non-coherent to
coherent times for the path test. With the largest
model, the coherent method gained over a three-fold
improvement in speed. This demonstrates excellent
scalability for using coherency in minimum distance
computations.

6 Discussion
Exploiting the bound coherence over time yields
significant efficiencies. Additionally, the non-coherent
minimum distance computation is easily extended to
take advantage of bound coherence.

For the upper bound coherence, we simply had to
statically allocate an active pair that stored the leaf
nodes containing the closest points. An additional
function parameter specified whether to use this stored
pair the following time, requiring an additional call to
the leaf node distance procedure. In all, this added six
lines of C++ code.

The lower bound coherence method used already
existing hash table code for storage of the pruned
active pairs. We had to add a function parameter for
distance moved, check for saved active pairs during
the refinement stage, perform the quick prune test
based on distance moved, and prep and clean the saved
list for a total of ten lines of C++ code plus the hash
table.

No coherence

Upper

Lower

Both



Using the bound coherence over time opens the
possibility of experimenting with tighter, more
expensive bounding volumes. If a distance
computation is amortized over several time steps with
lower bound coherence, then a tighter bounding
volume may stay useful longer than a less-expensive,
looser bounding volume for an overall gain in
efficiency.

7 Conclusion
We have shown that temporal coherence can be
efficiently exploited in current minimum distance
computations. By utilizing coherence in the bound
computations, we can maintain a distance framework
suitable for different surface and bounding volume
representations.

8 Acknowledgements
We would like to thank the members of Utah’s Virtual
Prototyping work for inspiring this work. Support for
this research was provided by NSF Grant MIP-
9420352, by DARPA grant F33615-96-C-5621, and
by the NSF and DARPA Science and Technology
Center for Computer Graphics and Scientific
Visualization (ASC-89-20219).

9 References
[1] Baraff, David. "Curved Surfaces and Coherence

for Non-penetrating Rigid Body Simulation,"
Computer Graphics, Vol. 24, No. 4, pp.19-28,
1990

[2] Bobrow, J.E., "Optimal robot path planning using
the minimum-time criterion", IEEE Journal of
Robotics and Automation, 4(4), pp. 443-450, Aug.
1988.

[3] Cameron, Stephen. "Enhancing GJK: Computing
Minimum and Penetration Distances Between
Convex Polyhedra", Int. Conf. Robotics and
Automation, April, 1997.

[4] Chung Tat Leung, Kelvin. An Efficient Collision
Detection Algorithm for Polytopes in Virtual
Environments. M. Phil Thesis, The University of
Hong Kong, 1996.

[5] Cohen, J. et al, "I-COLLIDE: An Interactive and
exact Collision Detection System For Large-
Scaled Environments", Proceedings of ACM Int.
3D Graphics Conference, pp. 189-196, 1995.

[6] Gilbert, Elmer, Johnson, Daniel, Keerthi, S. "A
Fast Procedure for Computing the Distance
Between Complex Objects in Three-Dimensional
Space," IEEE Journal of Robotics and
Automation, pp. 193-203, April 1988.

[7] Gottschalk, S., Lin, M.C., and Manocha, D.,
"OBBTree: A Hierarchical Structure for Rapid
Interference Detection," Computer Graphics
Proceedings, Annual Conference Series, 1996,
pp.171-180.

[8] Hollerbach, J.M., Cohen, E.C., Thompson, W.B.,
and Jacobsen, S.C. "Rapid Prototyping of
Mechanical Assemblies," NSF Design and
Manufacturing Grantees Conference,
Albuquerque, Jan. 3-5, 1996.

[9] Johnson, David E. and Cohen, Elaine, "A
framework for efficient minimum distance
computations,’’ Proc. IEEE Intl. Conf. Robotics &
Automation, Leuven, Belgium, May 16-21, 1998,
pp. 3678-3684.

[10] Khatib, O., "Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots," The
International Journal of Robotics Research, 5(1),
pp. 90-98, Spring 1986.

[11] Lin, Ming, Efficient Collision Detection For
Animation and Robotics, Ph.D. thesis, University
of California, Berkeley.

[12] Lin, Ming and Manocha, Dinesh, "Fast Contact
Determination in Dynamic Environments", to
appear in International Journal of Computational
Geometry and Applications.

[13] Lin, Ming and Manocha, Dinesh. "Fast
Interference Detection Between Geometric
Models," The Visual Computer, pp. 542-561,
1995.

[14] Quinlan, Sean. "Efficient Distance Computation
between Non-Convex Objects," IEEE Int.
Conference on Robotics and Automation, pp.
3324-3329, 1994.

[15] Sato, Yuichi et al. "Efficient Collision Detection
Using Fast Distance-Calculation Algorithms For
Convex And Non-Convex Objects", in
Proceedings of the 1996 IEEE International
Conference on Robotics And Automation.
Minneapolis, Minn. April, 1996. pp. 771-778.

[16] Snyder, John M. "An Interactive Tool for Placing
Curved Surfaces without Interpenetration,"
Proceedings of Computer Graphics, pp. 209-218,
1995.

[17] Turnbull, Colin and Cameron, Stephen,
"Computing Distances Between NURBS-defined
Convex Objects", Proc. IEEE Intl. Conf. Robotics
& Automation, Leuven, Belgium, May 16-21,
1998.




